
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HUMANIZING THE MACHINE: PROXY ATTACKS TO
MISLEAD LLM DETECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

The advent of large language models (LLMs) has revolutionized the field of
text generation, producing outputs that closely mimic human-like writing. Al-
though academic and industrial institutions have developed detectors to prevent
the malicious usage of LLM-generated texts, other research has doubt about
the robustness of these systems. To stress test these detectors, we introduce a
humanized proxy-attack (HUMPA) strategy that effortlessly compromises LLMs,
causing them to produce outputs that align with human-written text and mislead
detection systems. Our method attacks the source model by leveraging a re-
inforcement learning (RL) fine-tuned humanized small language model (SLM)
in the decoding phase. Through an in-depth analysis, we demonstrate that our
attack strategy is capable of generating responses that are indistinguishable to
detectors, preventing them from differentiating between machine-generated and
human-written text. We conduct systematic evaluations on extensive datasets us-
ing proxy-attacked open-source models, including Llama2-13B, Llama3-70B, and
Mixtral-8×7B in both white- and black-box settings. Our findings show that the
proxy-attack strategy effectively deceives the leading detectors, resulting in an av-
erage AUROC drop of 70.4% across multiple datasets, with a maximum drop of
90.3% on a single dataset. Furthermore, in cross-discipline scenarios, our strat-
egy also bypasses these detectors, leading to a significant relative decrease of up
to 90.9%, while in cross-language scenario, the drop reaches 91.3%. Despite
our proxy-attack strategy successfully bypassing the detectors with such signif-
icant relative drops, we find that the generation quality of the attacked models
remains preserved, even within a modest utility budget, when compared to the
text produced by the original, unattacked source model. Our code is available at:
https://anonymous.4open.science/r/evad_detection

WARNING: This paper contains AI-generated text that is offensive in nature.

1 INTRODUCTION

Large language models (LLMs) such as ChatGPT (OpenAI, 2023), Llama (Touvron et al., 2023a;b;
Meta, 2024) and Mixtral (Jiang et al., 2024), have significantly influenced both the industrial and
academic landscapes, with vast applications in news reporting, story writing, and academic research.
However, there are growing concerns surrounding the misuse of these models, including the fabri-
cation of fake news (Sun et al., 2024), the emergency of malicious content on website (Radivojevic
et al., 2024), and the arise of plagiarism (Khalil & Er, 2023). Concerns regarding misinformation,
plagiarism and copyright (Gao et al., 2022; Else, 2023) have prompted some scientific institutions to
take a stance on the use of AI-generated content in research papers. In response to these challenges,
there is an increasing emphasis on developing robust and reliable detection methods (Sadasivan
et al., 2023; Lu et al., 2023; Valiaiev, 2024) for machine-generated texts.

The methods for detecting AI-generated text ranging from watermarking (Zhao et al., 2023; Kirchen-
bauer et al., 2023a; Singh & Zou, 2023), training-based methods for binary classifiers (Chen
et al., 2023b; Guo et al., 2023; Yu et al., 2023; Li et al., 2023) to zero-shot methods (Bakhtin
et al., 2019; Solaiman et al., 2019; Uchendu et al., 2020; Bao et al., 2023; Mitchell et al., 2023a;
Yang et al., 2023a). While these detectors may provide temporary reassurance, their reliabil-
ity and robustness for detecting machine-generated text remain uncertain. Most recent studies
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have reported detectors are vulnerable when facing attacks (Sadasivan et al., 2023; Krishna et al.,
2024; Zhou et al., 2024; Lu et al., 2023; Jovanović et al., 2024; Nicks et al., 2024; Creo &
Pudasaini, 2024). The recent research (Nicks et al., 2024) has revealed that detectors are vul-
nerable when they are targeted for optimization, meaning language models can be fine-tuned
through reinforcement learning to make the texts generated by the fine-tuned model evade de-
tection. However, this paradigm is feasible only when the language model is relatively small
and weak (e.g., 7B). For larger and stronger models (e.g., 70B), the fine-tuning process becomes
significantly more costly. As shown in the paper (Nicks et al., 2024), the generated-text qual-
ity by the small language model decrease further after fine-tuning, so the fine-tuning parameters
(such as β in DPO (Rafailov et al., 2024)) must be carefully set to balance the evasion perfor-
mance and the generation quality during fine-tuning. Most importantly, it is typically impossi-
ble for a hacker to access, fine-tune, and re-deploy the source model within a detection system.

Figure 1: The probability distribution
of the source model (Llama3-70B) and
the HUMPA-attacked source model us-
ing humanized Llama3-8B, evaluated
on passages from the OpenWebText
dataset. After the attack, the distribution
aligns more closely with that of human-
written text.

Therefore, there is an urgent need to develop more prac-
tical solutions to evade text detection. In our study, we
seek to address the following pivotal inquiries: 1) Can
we devise feasible, cost-effective strategy to attack the
LLM aligning to the distribution of human-written text?
2) Does our attack strategy bypass the leading detectors
while preserving the text generation quality? 3) Does our
attack strategy successfully deceive the detectors to the
same extent as a direct attack on the source model? To
answer these questions, in this work, we introduce an in-
novative yet straightforward attack paradigm that aligns
the distribution of the source model with that of human-
written text by employing a RL fine-tuned humanized
SLM, dubbed HUMPA (humanized proxy attack). Our
approach aims to implement a lightweight attack on the
source model by leveraging the distribution shift of a hu-
manized SLM, adapting it to the target source model without requiring fine-tuning of the source
model itself (as illustrated in Figure 1 and 2). We provide an in-depth analysis, demonstrating
that the HUMPA attack strategy effectively circumvents detectors by making it more challenging to
distinguish between machine-generated text and human-written content. We theoretically analyze
fine-tuning language models with DPO based on the preference data constructed with the detectors,
and demonstrate that attacking with a proxy humanized SLM is comparable to directly attacking
the source LLM. Through extensive experiments using proxy-attacked open-source models, includ-
ing Llama2-13B, Llama3-70B, and Mixtral-8×7B, in both white-box and black-box settings, our
HUMPA-attack strategy consistently deceives top detectors, resulting in an average AUROC drop
of 70.4% across multiple datasets, with a maximum drop of 90.3% on a single dataset. In cross-
discipline scenarios, HUMPA exhibits a significant relative decrease in detection accuracy of up
to 90.9%, while in cross-language scenarios, the reduction reaches 91.3%. Notably, the genera-
tion quality of the attacked models remains well-preserved, maintaining a reasonable utility budget
compared to the output from the unattacked source models.

In summary, we address our contributions as follows:

• We propose an attack strategy, HUMPA, which contaminates the source model by aligning its
distribution to resemble human-written text, using a fine-tuned, humanized small language model.

• By providing an in-depth analysis for the attacking process, we theoretically justify that bringing
an effectively attacked small model via HUMPA is equivalent to attacking the large model.

• Our systematic evaluation across extensive datasets confirms that detectors are consistently de-
ceived by proxy-attacked source models in both white-box and black-box settings. Additionally,
detectors can be misled by a humanized SLM trained on cross-domain data sources. Despite the
evasion, the quality of the texts generated by the compromised models remains preserved.

2 RELATED WORK

Machine-generated Text Detection. The widespread adoption of large language models (LLMs)
underscores the necessity for reliable methodologies to detect the texts generated by these models.
The detection is aiming to ascertain if a given text generated by a language model on the condi-
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Figure 2: Overview of the humanized proxy attack. The attack overrides a large model’s predictions
by using a fine-tuned, smaller, humanized model during decoding. As a result, the LLM produces
more human-like text that can deceive detection systems.

tion that the model is known (white-box) or unknown (black-box) (Wu et al., 2023). In the era
of LLMs, recent efforts are focused on training a binary classifier using model-generated texts to
distinguish between LLM-generated and human-written content (Verma et al., 2023; Venkatraman
et al., 2023). However, these methods usually result in limited generalization capabilities when
exposed to out-of-distribution data (Pu et al., 2023). Zero-shot approaches detect LLM-generated
text by comparing the differences in performance metrics after statistical perturbation without train-
ing. The typical methods including log-probability curvature (DetectGPT (Mitchell et al., 2023a))
and conditional log-probability curvature (Fast-DetectGPT (Bao et al., 2023)), normalized log-rank
perturbation (DetectLLM (Su et al., 2023)), N-gram divergence between multiple completions of a
truncated passage (DNA-GPT (Yang et al., 2023a)), and the intrinsic dimensionality of generated
text (PHD (Tulchinskii et al., 2024)). Binoculars (Hans et al., 2024) evaluates the log perplexity of
the given text by leveraging an “observer” LLM, while a “performer” LLM generates next-token
predictions. The perplexity of these predictions is then calculated based on the observer’s assess-
ment. These methods improve the detectors’ ability to adapt to new data and source models, and
become leading methods in machine-generated text detection.

Detection Evasion Methods As LLM-generated text detectors receive increasing attention, recent
research has been conducted on methods for circumventing these detectors. The popular techniques
are paraphrasing methods, including training an additional model to modify the AI-generated con-
tent (Sadasivan et al., 2023; Krishna et al., 2024), in-context optimization (Lu et al., 2023), space
infiltration (Cai & Cui, 2023), homoglyph-based rewritten (Creo & Pudasaini, 2024), watermark
bypassing (Jovanović et al., 2024; Wu & Chandrasekaran, 2024; Kirchenbauer et al., 2023b). How-
ever, the premise of watermarking involves embedding detectable patterns into generated text prior
to its release, typically hosted behind APIs that enforce watermarking. A single strong LLM with
accessible weights undermine these threats (Nicks et al., 2024). Besides, (Zhou et al., 2024) em-
ploys a surrogate model to mask and substitute words. (Shi et al., 2024) generates substitution
words through a protected LLM. These paraphrasing methods modify prompts or generated con-
tent in the text-level, requiring processing of prompts or output texts with each attack launch. An
alternative research line focuses on adapting the source model, enabling it to generate texts that
evade detection. For example, (Nicks et al., 2024) considers a more robust threat model, where
the pre-trained model is fine-tuned to maximize the ‘humanness’ probability of the detector with
DPO (Rafailov et al., 2024). However, the effectiveness of DPO in evading detection is contingent
on the assumption that the source model is relatively small (e.g., 7B). This makes it challenging to
strike a balance between maintaining high-quality generated text and successfully evading detection.
Prior works (Ding et al., 2023; Xu et al., 2023) indicate the parameter efficient fine-tuning becomes
more expensive when dealing with larger models (e.g., 70B). Different from previous works, our
work attacks the LLM by using a humanized SLM as a proxy attacker during the decoding phase, to
generate text that mimic human writing style while preserving the utility of the generated content.
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3 METHODOLOGY

3.1 TASK DEFINITION.

Text generation. We consider a general framework for text generation processes: given the set
of prompts X and responses Y , an auto-regressive model generates an output sequence y =
[y1, · · · , yT ] ∈ Y conditional on a prompt x ∈ X , based on conditional probability distributions
π(yt|x, y<t), where each yt is a single token. For the rest of this paper, we denote machine and hu-
man generative processes by M and H respectively, and use πM , πH to denote their corresponding
conditional probabilities. This random process also yields an overall distribution of output text y
given prompt x: P(y|x) =

∏T
t=1 π(yt|x, y<t), which for simplicity we also denote by π(y|x).

Machine-Generated Text Detection. Given a prompt-response pair (x, y), a detector D is essen-
tially a binary classifier, whose task is to detect whether the response is generated from a known
language model M or a human process H . To align with existing framework, we assume an im-
plicit reward function r(x, y) that the detector bases its decisions on, which gives higher reward for
human-like texts compared to machine-generated texts. We discuss this reward assumption in detail
in Section 3.3.

Detection Evasion. In the task of detection evasion, we aim to find a new machine generative
process M ′, such that the detector is unable to distinguish texts generated by M ′ from those by H .
In our theoretical analyses, this is formulated as achieving an expected reward Ey∼πM′ (·|x)r(x, y) on
par with the human expected reward, given that the initial expected reward for M ref is much smaller
in comparison; in our experiments, we demonstrate the effectiveness of our model by computing
the area under the receiver operating characteristic curve (AUROC) and showing a decrease for M ′

against M ref .

3.2 FINE-TUNING THE LANGUAGE MODEL WITH RL

Preference-based RL for language models. Preference-based reinforcement learning (PBRL)
leverages human or evaluative feedback to optimize a model’s behavior using RL. Recent studies
apply PBRL to LLMs with the hope of aligning the model to match human preferences. To fine-
tune a pre-trained language model M ref , a preference dataset D := {(x, yw, yl)} is required, where
the responses yw, yl ∼ πref(·|x) are sampled from a reference policy πref that could be obtained
after supervised fine-tuning (SFT), while preferences yw ≻ yl|x are labeled either by AI system or
human annotator, indicating yw is preferred over yl given the query x. In PBRL, the preference is
assumed to be associated with a latent reward function r∗. To learn this reward from the dataset, the
Bradley-Terry model (Bradley & Terry, 1952) is commonly used, which assumes the probability of
yw ≻ yl|x satisfies the following:

p(yw ≻ yl|x) :=
exp

(
r∗(x, yw)

)
exp

(
r∗(x, yw)

)
+ exp

(
r∗(x, yl)

) . (1)

It follows that the maximum-likelihood reward learning objective is

r∗ ← argmax
r∈R

E(x,yw,yl)∼D
[
log σ(r(x, yw)− r(x, yl))

]
,

where σ is the sigmoid function. After obtaining the reward r∗, the RL fine-tuning of a language
model follows the objective

π∗ ← argmax
π

Ex∼D,y∼π(·|x)
[
r∗(x, y)− βDKL[π(y|x)∥πref(y|x)]

]
. (2)

Finally, Direct Preference Optimization (DPO) in (Rafailov et al., 2024) provides a solution for π∗

in equation 2 without learning the reward function, by optimizing the objective

π∗ ← argmax
π

E(x,yw,yl)∼D

[
log σ

(
β log

π(yw|x)
πref(yw|x)

− β log
π(yl|x)

πref(yl|x)

)]
. (3)

3.3 EVADE DETECTION VIA HUMANIZED PROXY ATTACK

When using PBRL to fine-tune large language models (LLMs) for detector evasion, the main chal-
lenge is the significant computational cost due to the large size of the models (e.g., 70B parameters).
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Directly fine-tuning such large models for attacks is impractical, so we propose HUMPA, which
leverages DPO to fine-tune a smaller language model (SLM). The main idea is to fine-tune an SLM
towards optimal reward until it reaches the same level of reward for the human process according to
a scoring detector, and adapt the LLM to achieve the same expected reward.

Obtaining a humanized SLM. DPO fine-tuning technique (Rafailov et al., 2024; Nicks et al., 2024)
can be applied for bypassing detectors. For each prompt x ∈ X in the dataset, sample response
pairs (y1, y2) are generated by the reference model πref . To obtain the dataset D = {(x, yw, yl)},
preference labels are assigned by comparing a scoring detector’s human-ness score s(x, y) on the
responses: if s(x, y1) > s(x, y2), assign preference label y1 ≻ y2 and let yw = y1, yl = y2;
otherwise assign yw = y2, yl = y1. The generated dataset D is then used to fine-tune a pre-trained
SLM M ref

s with DPO in equation 3. As a result, we have a humanized SLM denoted as Ms as the
proxy attacker.

We notice that this label assignment process can be approximated by the Bradley-Terry model in
equation 1 when r(x, y) = C ·s(x, y) with a large constant C (see Appendix A.1), therefore we will
assume the detector follows an implicit reward function r to generate D from now on.

Generally, for fine-tuning a language model using DPO with preference data from detectors, we have
the following lemma characterizing the ability of the fine-tuned model to evade detection (details
and proof refer to Appendix A.2):

Lemma 3.1. Given a starting reference model M ref with a low reward, there exists hyperparameter
β such that the optimal model M∗ fine-tuned on the DPO objective in equation 3 achieves the same
expected reward as H: Ex∼D,y∼πM∗ (·|x)r(x, y) = Ex∼D,y∼πH(·|x)r(x, y).

Intuitively, this result is due to the effect of β on the fine-tuned model: the smaller β is, the closer
M∗ approaches optimal reward, while larger β results in higher similarity to the reference model
and hence higher quality. This is in line with the RL objective in equation 2, in which the β term
controls the strength of regularization.

Attacking the LLM using humanized SLM. With a humanized SLM trained on the DPO objective,
our proxy attack HUMPA operates on the LLM’s next-token output distribution by multiplying a
logit offset for each token probability. This offset is calculated as the ratio between the logits of the
proxy-attacker small model Ms and those of the pre-trained reference small model M ref

s . Formally,
at each time step t, given the tokens y<t, the probability distribution of our proxy-attacker large
model M ′ is calculated as

πM ′(yt|x, y<t) =
1

Zx,y<t
πref
M (yt|x, y<t)

(
πMs(yt|x, y<t)

πref
Ms

(yt|x, y<t)

)α

, (4)

where Zx,y<t =
∑

yt
πref
M (yt|x, y<t)

(πMs (yt|x,y<t)

πref
Ms

(yt|x,y<t)

)α
is the normalization factor and α is the attack

ratio. The term
(πMs (yt|x,y<t)

πref
Ms

(yt|x,y<t)

)α
captures the distribution shift from pre-trained to fine-tuned on the

small model, and attempts to approximate the corresponding shift on the large model πM′ (yt|x,y<t)

πref
M (yt|x,y<t)

.
Prior works (Mitchell et al., 2023b; Liu et al., 2024a;b) suggest taking the logarithm of logits, which
allows us to derive the probability distribution from the proxy-attacked model M ′ as

pM ′(yt|x, y<t) = softmax
[
prefM (yt|x, y<t) + α

(
pMs(yt|x, y<t)− prefMs

(yt|x, y<t)
) ]

, (5)

where prefM , pMs and prefMs
are the logarithmic logits for the pre-trained large model M ref , the fine-

tuned small model Ms and the pre-trained small model M ref
s respectively. Our method tuning at a

small scale and applying the attack to the large model through Equation 5. It is important to note
that M and Ms only need to share the same vocabulary1. Compared to generically fine-tuning the
large model using DPO, we have the following theorem (for the proof refer to Appendix A.3).

Theorem 3.2. Assuming the small fine-tuned model Ms achieves optimum according to the DPO
objective with β = β0, our proposed inference model M ′ in equation 4 is the same as an alternative
large model fine-tuned on the DPO objective with β = β0/α.

1If vocabularies does not match, methods like those in (Gao et al., 2024) can be used to address this issue.
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Theorem 3.2 reveals that the attack ratio α has a similar (but inverted) effect as β on the resulting
model M ′: larger α leads to higher reward and better detection evasion, while smaller α keeps M ′

closer to the reference model M ref . Therefore, α effectively controls the trade-off between evasion
performance and quality at the decoding phase, in contrast to β0 which is applied at fine-tuning.

Finally, combining Theorem 3.2 with Lemma 3.1, we have the following claim for HUMPA.

Corollary 3.3. Given parameter β0 for fine-tuning the SLM Ms on the DPO objective equation 3,
there exists attack ratio α > 0 such that the resulting proxy attacker M ′ achieves the same expected
reward as the human process H according to detector D, thereby evading detection.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. We conduct a wide variety of empirical studies to show the effectiveness of our method.
We follow (Bao et al., 2023) to evaluate both the white-box and black-box detectors. We evaluate the
detection evasion capability of HUMPA attacked by humanized SLMs on the same dataset, including
OpenWebText (Gokaslan & Cohen, 2019), WritingPrompts (Fan et al., 2018) and PubMedQA (Jin
et al., 2019). We randomly sample 500 examples of each dataset as human-written texts. For cross-
domain evaluation, detection evasion is performed using humanized SLMs on a different dataset.
The experiments are conducted on the cross-discipline corpus GPABench2 (Liu et al., 2023), a
dataset containing titles and abstracts of scientific writing across Computer Science (CS), Physics
(PHX), and Humanities and Social Sciences (HSS). Evasion is evaluated on PHX, where the source
model is attacked by a humanized SLM from CS, and on HSS, where the source model is attacked
by a humanized SLM from PHX. The cross-language evaluation is conducted on WMT-2016 (Bojar
et al., 2016), where 150 examples are sampled from the Germany set as human-written texts. The
humanized SLM is fine-tuned using samples from the English domain.

Evaluation Metrics. Following previous works, we compute the area under the receiver operating
characteristic curve (AUROC) to evaluate the performance of all detectors. We also provide the
results of area under the precision-recall curve (AUPRC) in Appendix. To evaluate the quality of the
generated texts (i.e., utility), we adopt the popularly used ROUGE-1, ROUGE-2, ROUGE-L (Chin-
Yew, 2004) and BERTScore (Zhang et al., 2019) to evaluate the texts produced by the LLMs during
the text generation phase. Detailed explanation of the metrics are in Appendix C

Source Models. To validate our approach for evading detection, we include the most ad-
vanced open-source LLMs: Llama2, Llama3, and Mixtral. Specifically, for the base large
model, we use Llama2-13B (Llama2-13B-Chat), Llama3-70B (Llama3-70B-Instruct),
and Mixtral-8×7B (Mixtral-8×7B-Instruct-v0.1). We use these source models as the
base large models, attacked by small humanized model Llama2-7B (Llama2-7B-Chat), Llama3-
8B (Llama3-8B-Instruct) and Mistral-7B (Mistral-7B-Instruct-v0.1), respectively.

The Detectors. We conduct experiments with a variety of strong open-source detectors from prior
literature, including RoBERTa-base and RoBERTa-large (Solaiman et al., 2019), the language mod-
els trained for detection, the zero-shot detectors Likelihood and Log Rank, the perturbation-based
zero-shot method DetectGPT (Mitchell et al., 2023a), DetectLLM (Su et al., 2023) and DNA-
GPT (Yang et al., 2023a). We also involve Fast-DetectGPT (Bao et al., 2023) that uses a surrogate
model respectively to compute the conditional probability curvature for the texts obtained from the
sampling model, and Binoculars Hans et al. (2024) that computes the ratio of perplexity to cross-
perplexity obtained from “observer” and “performer” models.

The Settings. We evaluate the zero-shot methods in two settings, the white-box (source model is
known) setting and black-box (source model is unknown) setting (Yang et al., 2023b; Bao et al.,
2023). Following (Bao et al., 2023), we set the surrogate model in each detector to be identical
to the source model, whereas in the black-box setting, the surrogate model differs from the source
model. We utilize GPT-Neo-2.7B (Black et al., 2021) as the surrogate model for all detectors (Bao
et al., 2023). Apart from it, Fast-DetectGPT adpots a GPT-J-6B (Wang & Komatsuzaki, 2021) as
the sampling model in the black-box setting. Binoculars adopts a Falcon-7B as the observer
and Falcon-7B-Instruct (Almazrouei et al., 2023) as the performer model. In both settings,
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Table 1: AUROCs of detectors and generation utility scores on text generated by different models,
averaging across OpenWebText, WritingPrompts and PubMedQA from detailed Table 4 and 5 in
Appendix D. The model name in parentheses after HUMPA refers to the SLM. The generation
utilities of texts produced by HUMPA and the source model are within the budget of ∆SBert ≤ 0.02
and ∆ROUGE-1 ≤ 0.03. The highest attack results (the greatest relative decrease) are boldfaced,
while the lowest attack results are underlined for each model.

Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

The Generation Utility
SBert 0.8278 0.8206 0.8276 0.8126 0.8342 0.8281

ROUGE-1 0.2780 0.2517 0.2926 0.2685 0.2911 0.2663
ROUGE-2 0.0972 0.0798 0.1019 0.0929 0.1045 0.0818
ROUGE-L 0.1995 0.1779 0.2078 0.1800 0.2140 0.1863

The White-box Setting
Likelihood 0.9995 0.8610 0.9995 0.9070 0.8932 0.4730
LogRank 0.9993 0.8424 0.9991 0.8769 0.9072 0.4598

LRR 0.8547 0.6634 0.8512 0.5084 0.9039 0.3656
NPR 0.9908 0.9148 0.9836 0.8387 0.8747 0.6629

DNA-GPT 0.9815 0.6656 0.9908 0.8410 0.8217 0.3388
DetectGPT 0.8915 0.8430 0.8313 0.7906 0.6353 0.5348

Fast-DetectGPT 0.9949 0.9262 0.9952 0.8864 0.9933 0.4590
The Black-box Setting

Roberta-base 0.9044 0.7902 0.8225 0.5600 0.6992 0.5506
Roberta-large 0.8874 0.7862 0.8130 0.5556 0.7016 0.6233

Likelihood(Neo-2.7) 0.9961 0.6971 0.9699 0.7338 0.8156 0.3542
LogRank(Neo-2.7) 0.9850 0.6976 0.9733 0.7203 0.8254 0.3519

LRR(Neo-2.7) 0.9843 0.7773 0.9537 0.5361 0.8210 0.3309
NPR(Neo-2.7) 0.8586 0.6881 0.8574 0.5893 0.7076 0.3639

DNA-GPT(Neo-2.7) 0.7116 0.4295 0.7567 0.5296 0.5983 0.1907
DetectGPT(T5-3B/Neo-2.7) 0.8282 0.6209 0.7696 0.5853 0.6760 0.3811

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9961 0.7389 0.9885 0.7720 0.8758 0.2590
Binoculars(Falcon-7B) 1.0000 0.7896 0.9989 0.8596 0.9353 0.3053

DetectGPT applies T5-3B (Raffel et al., 2020) as the sampling model to generate the perturbed
texts.

Implementing Details. We divided the dataset into evaluation and training sets. For the Open-
WebText, WritingPrompts, PubMedQA, CS, and PHX datasets, we randomly choose 10k training
samples each following the setup in (Nicks et al., 2024). For the WMT-2016 dataset, all English
samples were used as the training set. Then, based on the samples, we prompt the LLMs to gen-
erate corresponding texts using an 8-token prefix from human-written text as the starting point for
the machine-generated content for dataset OpenWebText, WritingPrompts and WMT-2016. For the
PubMedQA dataset, we use the tokenized question as a prompt for generating answers with the
LLMs. For the cross-discipline scientific abstract dataset, we use the tokenized title as the prompt.
We employ the temperature of 1.0 across all the experiments, which is the same setting in (Nicks
et al., 2024). In the DPO fine-tuning phase for SLMs, we set a β value to 0.2 and used 5 epochs.
We apply Low-Rank Adaptation (LoRA) to fine-tuning the SLM, setting the batch size to 8, the
learning rate to 2e − 4, and the optimizer to AdamW. We choose the attack ratio α from the set
{0.1, 0.2, ..., 1.0} to balance the generation utility and the detection evasion performance. We con-
duct the experiments on a server with 4 NVIDIA A100 GPUs, each one with 80GB RAM.

4.2 MAIN RESULTS

White-box and black-box machine-generated detection evasion. We study the basic question
of the feasibility of whether LLMs can generate human-like texts that, within a utility budget, can
deceive detectors when attacked by a small humanized language model. Table 1 lists the evaluation
of our method with mainstream LLM detection methods in white- and black-box settings averaging
across three datasets for each model. Following prior work (Nicks et al., 2024), the SLM is fine-
tuned with DPO against a scoring detector. In our experiments, we use Fast-DetectGPT for scoring.
From the results, we find that LLMs attacked by the humanized small model are effective against all
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Table 2: AUROCs of detectors and generation utility scores on text generated by different models
on HSS. The humanized SLM is fine-tuned from PHX. The generation utilities of texts produced by
HUMPA and the source model are within the budget of ∆SBert ≤ 0.02 and ∆ROUGE-1 ≤ 0.03.

Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

The Generation Utility
SBert 0.8291 0.8201 0.8007 0.7976 0.8105 0.7997

ROUGE-1 0.2632 0.2385 0.2506 0.2277 0.2381 0.2104
ROUGE-2 0.0535 0.0459 0.0513 0.0448 0.0447 0.0364
ROUGE-L 0.1470 0.1315 0.1383 0.1299 0.1334 0.1178

The White-box Setting
Likelihood 1.0000 0.8706 0.9999 0.8317 0.8145 0.4925
LogRank 0.9997 0.8575 0.9976 0.7842 0.8244 0.4670

LRR 0.8096 0.6536 0.4530 0.3323 0.7862 0.3387
NPR 0.9993 0.9414 0.9954 0.9327 0.9226 0.8313

DNA-GPT 0.9622 0.7278 0.9985 0.7534 0.6946 0.2822
DetectGPT 0.9338 0.8306 0.9170 0.8081 0.5982 0.5796

Fast-DetectGPT 0.9965 0.9365 0.9961 0.9739 0.9700 0.5333
The Black-box Setting

Roberta-base 0.8550 0.7608 0.7399 0.6119 0.6895 0.5583
Roberta-large 0.8304 0.7291 0.7298 0.5819 0.6733 0.5934

Likelihood(Neo-2.7) 0.9590 0.7121 0.9403 0.5987 0.6679 0.3149
LogRank(Neo-2.7) 0.9617 0.7057 0.9343 0.5553 0.6587 0.2879

LRR(Neo-2.7) 0.9384 0.6624 0.8717 0.3780 0.5816 0.2153
NPR(Neo-2.7) 0.9422 0.7511 0.9226 0.7528 0.8010 0.6218

DNA-GPT(Neo-2.7) 0.9113 0.5827 0.9672 0.5760 0.6320 0.2082
DetectGPT(T5-3B/Neo-2.7) 0.8160 0.6510 0.8026 0.6788 0.6993 0.5371

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9891 0.7488 0.9839 0.6296 0.7827 0.5333
Binoculars(Falcon-7B) 0.9971 0.7869 0.9990 0.7094 0.8252 0.1852

detection methods, showing a greater AUROC relative decrease in the black-box setting compared
to the white-box setting for each detector and for each model. Furthermore, we find that in the white-
box setting, DetectGPT is the most robust method across the models compared to others, whereas
LRR exhibits a greater decrease than the other methods when detecting texts generated by Llama3-
70B, which has been attacked by the humanized small model Llama3-8B, as well as texts produced
by Mixtral-8×7B, which have been attacked by Mistral-7B. Additionally, we find that DNA-GPT
has more fragile than the other methods for HUMPA (Llama2-7B), with relative decrease 32.0%
and 39.6% in the white-box and the black-box setting respectively. In the black-box setting for Fast-
DetectGPT, HUMPA (Mistral-7B) exhibits the highest AUROC relative decrease compared to other
methods and models, achieving a relative decrease of 70.4%, within a budget of ∆SBert ≤ 0.02 and
∆Rouge-1 ≤ 0.03 for the produced texts.

4.3 RESULTS IN CROSS-DOMAIN SCENARIOS

In real-world scenarios, an SLM proxy attacker may be unaware of the specific dataset that will be
used to evaluate the detectors. We simulate two common real-world scenarios. The first is a class-
room test, where the task is to write a scientific essay based on a given title, and the SLM proxy at-
tacker is fine-tuned on a different academic discipline. The second scenario involves cross-language
evasion, simulating an international hacker attempting to bypass detectors using a humanized SLM
fine-tuned in another language.

Cross-discipline Detection Evasion. We assess HUMPA on cross-disciplinary datasets, randomly
selecting 200 human-written texts for each dataset. Specifically, we evaluate the detection methods
on HSS, as shown in Table 2, using the source models attacked by the humanized SLM which was
DPO fine-tuned on the PHX dataset. As demonstrated in Table 2, HUMPA successfully evaded all
detection methods across all source models. Notably, DNA-GPT shows a 24.4% relative decrease
compared to Llama2-13B and a 59.4% decrease compared to Mixtral-8×7B in the white-box setting,
and a 36.1% decrease compared to Llama2-13B and a 67.1% relative decrease compared to Mixtral-
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8×7B in the black-box setting. We also perform an assessment on PHX using humanized SLMs
fine-tuned on the CS dataset (see Table 6 in Appendix E).

(a) ROC Curves

Figure 3: ROC curves in log scale evaluated on Writ-
ingPrompts, where the source model is Mixtral-8×7B.
‘HUMPA-’ denotes this detector is evaluated on the texts
produced by the attacked model.

Cross-language Detection Evasion.
In this scenario, we assess the de-
tectors on texts generated by LLMs
in Germany, while the humanized
SLM is fine-tuned using English. For
evaluation, we sample 150 human-
written texts. The results are pre-
sented in Appendix Table 7. The
findings include: 1) In the white-box
setting, LRR is the most fragile de-
tector when evaluating on the texts
generated by the attacked Llama2-
13B and Llama3-70B, with relative
decrease 74.3% and 72.6% respec-
tively. 2) In the black-box set-
ting, when Llama2-13B is attacked
by HUMPA (Llama2-7B), the zero-
shot detectors Likelihood and LogRank experience a relative performance drop of 91.3% and 90.1%,
respectively. Fast-DetectGPT has relatively decrease 74.8% and 79.2% when evaluating on the texts
generated by the attacked Llama3-70B and Mixtral-8×7B.

4.4 EXPERIMENTAL ANALYSIS

Interpretation of AUROC. In real-world scenarios, our focus goes beyond overall detection

(a) ∆SBert vs. ∆AUROC (b) ∆ROUGE-1 vs. ∆AUROC

Figure 4: Analysis of RoBERTa-base evaluated on texts
generated by DPO (Llama2-13B), where DPO refers to the
direct fine-tuning of Llama2-13B, and on texts generated by
HUMPA (Llama2-7B).

accuracy; we prioritize recall (the
true positive rate) while striving to
minimize type-I errors, aiming for a
low false positive rate. As shown
in Figure 3, Fast-DetectGPT exhibits
a relative decrease of 95.8% in TPR
at 1% FPR, while Likelihood, Lo-
gRank, and DNA-GPT all experience
a relative decrease of over 80% in the
white-box setting. In the black-box
setting, Fast-DetectGPT and DNA-
GPT show the largest and second-
largest relative decreases, at 89.4%
and 87.5%, respectively.

Utility Preserving. We evaluate the Roberta-base on the texts generated by directly fine-
tune Llama2-13B against the scoring detector Roberta-large, following the approach in (Nicks
et al., 2024). In comparison, Roberta-base is evaluated on the texts generated by Llama2-
13B attacked using a humanized SLM Llama2-7B via our method HUMPA . The texts gen-
erated by DPO (Llama2-13B) are obtained by fine-tuning Llama2-13B for 1 to 10 epochs,
while the results from HUMPA (Llama2-7B) are produced by varying the attack ratio α

(a) AUROC v.s. α (b) AUROC v.s. β

Figure 5: Analysis of attack ratio α and β in DPO

from 0.1 to 1.0. We present the
AUROC decrease (∆AUROC) with
respect to the BERTScore decrease
(∆SBert) for both methods in Fig-
ure 4(a), and ∆AUROC with re-
spect to the ROUGE-1 decrease
(∆ROUGE-1) in Figure 5(b). The
figures clearly show that both meth-
ods can deceive the detector but in-
cur some utility loss. However, for
a comparable AUROC decrease, our
attack method HUMPA results in less utility loss.
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Analysis of α. We evaluate several black-box detectors on the texts generated by the at-
tacked Llama2-13B model, using the humanized SLM Llama2-7B fine-tuned with β = 0.1
with varying attack ratio α, on 200 samples randomly selected from WritingPrompts dataset.

Table 3: Time comparison between HUMPA and
directly fine-tuning the source LLM using DPO.
‘Sampling’ refers to the stage of sampling re-
sponse pairs, ‘Fine-tuning’ represents DPO fine-
tuning using LoRA, and ‘Inference’ is the process
of generation.

Llama2-13B Llama3-70B Mixtral-8x7B
Sampling (hrs) 18.61 41.64 63.52

Fine-tuning (hrs) 3.09 9.54 13.58
Inference (secs) 12.88 27.87 32.51

HUMPA HUMPA HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

Sampling (hrs) 13.87 10.97 10.83
Fine-tuning (hrs) 2.04 3.20 1.39
Inference (secs) 39.87 47.22 36.75

The trend in Figure 5(a) shows the AUROC de-
crease as α increases (more analysis refer to
Appendix G).

Analysis of β. To analyze the parameter β of
the fine-tuned humanized SLM, we measure its
impact on the AUROC performance of various
detectors with respect to different values of β in
DPO. The evaluation is conducted using several
black-box detectors. We maintain the attack ra-
tio of the humanized SLM at 0.5. The results,
shown in Figure 5, suggest that detectors ex-
hibit increased vulnerability as β decreases.

Efficiency. As described in Section 3.3, fine-
tuning the model with DPO requires a prefer-
ence dataset, which is generated by sampling
response pairs (y1, y2) from the model. To di-
rectly fine-tune the source model, preference pairs are sampled from the source model itself. In
contrast, HUMPA samples pairs from the SLM, as the SLM is the model that needs to be fine-tuned.
We compare the runtime of HUMPA with prior work (Nicks et al., 2024), which samples pairs from
the source model and apply DPO fine-tuning on the source model for 10k training samples. To com-
pare the fine-tuning time, we set the DPO batch size to 8 and epoch to 5. The results are in Table 3.
We find that HUMPA is much more efficient than directly DPO fine-tuning attack the source model.
We also report the inference time for a single pass with a batch size of 1. The inference time of
HUMPA is slightly slower than that of the source model, but the sacrifice is not significant.

5 CONCLUSION

The rapid evolution of potent Large Language Models (LLMs) underscores the critical necessity
for robust detection methods. In this paper, we propose a plug-and-play attack strategy, HUMPA ,
that utilizes a small proxy model to contaminate the source models, aligning their distribution with
human-like distribution. Additionally, we theoretically justify bringing an effectively attacked small
model via HUMPA is equivalent to attacking the large model. Our systematical experiments vali-
date HUMPA remains versatile across diverse text sources or cross-domain sources. In light of our
results, we argue that the leading zero-shot machine generated text detectors are not robust to adver-
saries and may even favor machine-generated text over actual human-generated content. In conclu-
sion, our innovations offer compelling support to the urgent demand for robust detection methods
within the realm of LLM development, bridging critical gaps in developing reliable detectors.

6 ETHICS STATEMENT

The primary goal of this paper is not to provide a technique for evading machine-generated text de-
tection systems, but rather to highlight the vulnerabilities present in current detection mechanisms.
With the growing availability of LLMs, often released with publicly accessible tokens and freely
available for use, it becomes easier for adversaries to exploit these models by employing smaller
proxy models to compromise their outputs effortlessly, which would potentially circumvent detec-
tion systems. This study serves as a call to action for the broader research community to prioritize
the development of more robust detection methods.

We aim to raise awareness of the potential risks posed by such attacks and emphasize the need
for future research focused on strengthening text detection systems. We are confident that, with
increased attention and effort, the community will devise more sophisticated techniques to enhance
the robustness and reliability of machine-generated text detection in the face of evolving adversarial
threats.
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APPENDIX: HUMPA

A THEORETICAL ANALYSIS

We present some additional technical details and theorem proofs in the following sections.

A.1 DETECTOR SCORE AND THE REWARD MODEL

In this section, we continue the discussion in Section 3.3 on the relation between the human-ness
score s(x, y) utilized by the detector model and an implicit reward r(x, y) that the DPO framework
assumes. Specifically, we demonstrate that taking r(x, y) = C · s(x, y) in the Bradley-Terry model
yields approximately the same data generation as using the human-ness score directly for a large
constant C. In fact,

p(y1 ≻ y2|x) =
exp

(
r(x, y1)

)
exp

(
r(x, y1)

)
+ exp

(
r(x, y2)

)
=

1

1 + exp
(
r(x, y2)− r(x, y1)

)
=

1

1 +
[
exp

(
s(x, y2)− s(x, y1)

)]C →

1, s(x, y1) > s(x, y2),

0, s(x, y1) < s(x, y2),

0.5, s(x, y1) = s(x, y2),

as C → +∞. This results in the label y1 ≻ y2 if and only if s(x, y1) > s(x, y2) and vice versa,
which is exactly how the dataset D = {(x, y1, y2)} is constructed in our case (under the edge case
of s(x, y1) = s(x, y2), a random preference is assigned).

It is also worth noting that, though taking C → +∞ may appear extreme, using the Bradley-Terry
model along with r(x, y) = C · s(x, y) with a moderate positive C to generate the dataset D also
makes sense. For example, when taking C = 1, one would assign the preference y1 ≻ y2 with
probability σ

(
s(x, y1) − s(x, y2)

)
where σ is the sigmoid function. This also reflects the binary

classification nature of the detector: choosing threshold value ŝ(x) for human-generated tasks and
assigning the “human” label to response y with probability σ

(
s(x, y) − ŝ(x)

)
is akin to a logistic

regression model.

A.2 PROOF OF LEMMA 3.1

Before we prove Lemma 3.1, we first introduce some useful notations. Given input text x ∈ X ,
denote by r∗(x) := maxy r(x, y) the maximal possible reward attributed to the prompt-response
pair (x, y) given x. Next, given a text generation process M , denote by ∆M (x) := r∗(x) −
Ey∼πM (·|x)r(x, y) the suboptimality of M according to reward r. Intuitively, the larger this sub-
optimality gap, the smaller the expected reward for texts generated by M , and thus the more likely
the detector will label the generated texts as machine-generated. With this we establish the following
assumption stating the effectiveness of the detector:
Assumption A.1. The implicit reward r(x, y) from the detector D favors human-generated texts
H(y|x) over machine-generated texts of the reference model M ref(y|x), but H does not achieve
optimal reward. More formally, for a reasonable prior distribution of input texts P(X ),

Ex∼P(X )r
∗(x) > Ex∼P(X ),y∼πH(·|x)r(x, y) > Ex∼P(X ),y∼πM (·|x)r(x, y). (6)

A direct effect of this assumption is the following suboptimality gap relation:

0 < Ex∼P(X )∆H(x) < Ex∼P(X )∆Mref (x).

Notice that we assume the human generative process H does not maximize reward, i.e.
Ey∼πH(·|x)r(x, y) ̸= r∗(x). This is natural since one would expect a detector to overfit the most
apparent differences between human- and machine-generated texts, and hence the implicit reward
does not completely reflect how human-like the response texts are.

With this we now restate Lemma 3.1 in more technical terms and present its proof:
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Lemma A.2. For any target compression ratio λ ∈ (0, 1), there exists β ∈ (0,+∞) such
that the optimal model M∗ which minimizes the DPO objective LDPO in equation 3 achieves
Ex∼P(X )∆M∗(x) = λEx∼P(X )∆Mref (x). In particular, if we take

λ =
Ex∼P(X )∆H(x)

Ex∼P(X )∆Mref (x)
,

the fine-tuned model M∗ is indistinguishable from H in that

Ex∼P(X ),y∼πM∗ (·|x)r(x, y) = Ex∼P(X ),y∼πH(·|x)r(x, y).

Proof of Lemma A.2. Based on conclusions of previous work (Rafailov et al., 2024), the optimal
solution to both the KL-constrained reward maximization objective in equation 2 and the DPO ob-
jective in equation 3 is

πM∗(y|x) = 1

Z(x)
πMref (y|x) exp

(
1

β
r(x, y)

)
, (7)

where the normalization factor Z(x) :=
∑

y πMref (y|x) exp
(
1
β r(x, y)

)
. With this we can calculate

the expected reward under πM∗ as

Ey∼πM∗ (·|x)r(x, y) =
∑
y

πM∗(y|x)r(x, y)

=
∑
y

1

Z(x)
πMref (y|x) exp

(
1

β
r(x, y)

)
r(x, y). (8)

Notice now that when β → 0 + 0,

πM∗(y|x) =
πMref (y|x) exp

(
1
β r(x, y)

)∑
y′ πMref (y′|x) exp

(
1
β r(x, y

′)
)

=
πMref (y|x)∑

y′ πMref (y′|x) exp
(
1
β [r(x, y

′)− r(x, y)]
)

→

{
0, y /∈ argmaxy r(x, y),

πMref (y|x)/
∑

y′∈argmaxy r(x,y) πMref (y′|x), y ∈ argmaxy r(x, y),

which means πM∗(y|x) ̸= 0 if and only if the response y is within the optimal set
argmaxy r(x, y) = {y∗|r(x, y∗) = r∗(x)}. This leads to

lim
β→0+0

Ey∼πM∗ (·|x)r(x, y) = r∗(x) = max
y

r(x, y), (9)

which means as β approaches 0, the reward is maximized.

On the other hand, when β → +∞, we have

Z(x)→
∑
y

πMref (y|x) = 1,

and so

lim
β→+∞

Ey∼πM∗ (·|x)r(x, y) =
∑
y

πMref (y|x)r(x, y) = Ey∼π
Mref (·|x)r(x, y). (10)
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Next, we prove this expected reward is also monotonically decreasing with respect to β. Taking the
derivative of equation 8 to β gives us

∂Ey∼πM∗ (·|x)r(x, y)

∂β

=

∑
y πMref (y|x) exp

(
1
β r(x, y)

)(
− 1

β2 r(x, y)
)
r(x, y)

Z(x)

−
[∑

y πMref (y|x) exp
(
1
β r(x, y)

)(
− 1

β2 r(x, y)
)]
·
[∑

y πMref (y|x) exp
(
1
β r(x, y)

)
r(x, y)

]
Z2(x)

=
1

β2

[
−
∑
y

πM∗(y|x)r2(x, y) +
(∑

y

πM∗(y|x)r(x, y)
)2]

=
1

β2

[
− Ey∼πM∗ (·|x)r

2(x, y) +
(
Ey∼πM∗ (·|x)r(x, y)

)2] ≤ 0,

where we plugged in the solution to the DPO objective from equation 7 for the second equality,
and the inequality is due to the Cauchy-Schwartz inequality. Combining this with equation 9 and
equation 10, we see that Ey∼πM∗ (·|x)r(x, y) increases from the expected reward of the reference
model Ey∼π

Mref (·|x)r(x, y) to the optimal reward r∗(x) as β goes from +∞ to 0. Taking a final
outer expectation in x, we have the same conclusion that

Ex∼P(X )∆M∗(x) = r∗(x)− Ey∼πM∗ (·|x)r(x, y)

increases from 0 to Ex∼P(X )∆Mref (x, y) as β increases from 0 to +∞. Therefore for any λ ∈ (0, 1),
there exists β ∈ (0,+∞) such that

Ex∼P(X )∆M∗(x) = λEx∼P(X )∆Mref (x, y).

A.3 PROOF OF THEOREM 3.2

In this section we prove Theorem 3.2, which we restate below, using subscripts l, s to denote large
and small language models respectively for clarity:

Theorem A.3. Assuming the small fine-tuned model Ms achieves optimum according to the DPO
objective with β = β0, our proposed inference model M ′ in equation 4 is equivalent to an alternative
large model M∗

l optimally fine-tuned on the DPO objective with β = β0/α.

Proof of Theorem A.3. According to equation 4, the next-token prediction logits are

πM ′(yt|x, y<t) =
1

Zx,y<t
πMref

l
(yt|x, y<t)

(
πM∗

s
(yt|x, y<t)

πMref
s

(yt|x, y<t)

)α

.

Taking a cumulative product for t = 1, · · · , T , we have

πM ′(y|x) =
T∏

t=1

πM ′(yt|x, y<t)

=

T∏
t=1

1

Zx,y<t
πMref

l
(yt|x, y<t)

(
πM∗

s
(yt|x, y<t)

πMref
s

(yt|x, y<t)

)α

=
1

Zl(x)

[ T∏
t=1

πMref
l

(yt|x, y<t)

]( ∏T
t=1 πM∗

s
(yt|x, y<t)∏T

t=1 πMref
s

(yt|x, y<t)

)α

=
1

Zl(x)
πMref

l
(y|x)

(
πM∗

s
(y|x)

πMref
s

(y|x)

)α

,
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where for the third inequality we substituted
∏T

t=1 Zx,y<t with Zl(x), which can be shown to be
independent from y:

Zl(x) =

T∏
t=1

∑
yt

πMref
l

(yt|x, y<t)

(
πM∗

s
(yt|x, y<t)

πMref
s

(yt|x, y<t)

)α

=
∑

y1,··· ,yT

[ T∏
t=1

πMref
l

(yt|x, y<t)

]( ∏T
t=1 πM∗

s
(yt|x, y<t)∏T

t=1 πMref
s

(yt|x, y<t)

)α

=
∑
y

πMref
l

(y|x)
(

πM∗
s
(y|x)

πMref
s

(y|x)

)α

.

Now using the close-form solution to DPO in equation 7, we have

πM ′(y|x) = 1

Zl(x)
πMref

l
(y|x)

(
πM∗

s
(y|x)

πMref
s

(y|x)

)α

=
1

Zl(x)
πMref

l
(y|x)

(
exp

(
1
β0
r(x, y)

)
Zs(x)

)α

=
1

Z(x)
πMref

l
(y|x) exp

(
α

β0
r(x, y)

)
,

where for the last equality we again used Z(x) := Zl(x) · Zs(x)
α to simplify the normalization

factor. Comparing this again to the DPO solution in equation 7, this is exactly the same as the
optimal model for fine-tuning the LLM Ml on D with β = β0/α, thus completing the proof.

B ADDITIONAL RELATED WORK

Proxy Approaches to Accelerate Fine-tuning. Proxy “tuning” at decoding time is a popular
method for efficient fine-tuning. It uses a proxy model during the decoding phase to reduce or
eliminate the need for fine-tuning LLMs. Emulated fine-tuning (Mitchell et al., 2023b) and proxy-
tuning (Liu et al., 2024a) balance fine-tuning and pre-training by decoupling the fine-tuning model
scales, transferring knowledge from a fine-tuned small language model to a larger one. Furthermore,
DeRa (Liu et al., 2024b) and ARGS (Khanov et al., 2024) have explored merging auxiliary models
at the output level to learn a trade-off between reward and regularization, guiding the text generation
process. (Huang et al., 2024) leverages a reward model to guide LLM realignment toward a cus-
tom objective. These decoding alignment approaches that merge logits have been applied in various
tasks (Xu et al., 2024; Chen et al., 2023a), where (Xu et al., 2024) adopts a safety-aware decoding
strategy to defend against LLM jailbreaks, and (Chen et al., 2023a) innovatively uses speculative
sampling in transformer decoding to accelerate LLMs. While our work shares a similar vision with
these proxy fine-tuning methods in prior or contemporary research, our objective is to fine-tune
an SLM toward an optimal reward until it reaches the same level as human process according to
a scoring detector, which adapts the LLM to achieve the same expected reward, thereby evading
detection.

C EVALUATION METRICS

Throughout our experiments, we employ the Area Under the Receiver Operating Characteristic
Curve (AUROC) and the Area Under the Precision-Recall Curve (AUPRC) as primary metrics to
evaluate the performance of each detector. To assess the utility and quality of the generated text, we
utilize BERTScore and ROUGE-1/2/L metrics. We provide a detailed explanation of these metrics.

AUROC. Area Under the Receiver Operating Characteristic (AUROC) measures the detection ac-
curacy by evaluating the area under the receiver operating characteristic curve, indicating the prob-
ability that a classifier ranks a random machine-generated text higher than a random human-written
text, with a value ranging from 0.0 to 1.0.
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Table 4: Detailed AUROCs of the white-box detectors and generation utility scores in Table 1 on the
texts generated by different models on the dataset OpenWebText, WritingPrompts and PubMedQA
respectively. The generation utilities of texts produced by HUMPA and the source model are within
the budget of ∆SBert ≤ 0.02 and ∆ROUGE-1 ≤ 0.03.

Dataset Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

OpenWebText

The Generation Utility
SBert 0.8355 0.8231 0.8229 0.8078 0.8280 0.8141

ROUGE-1 0.2750 0.2506 0.2730 0.2447 0.2709 0.2413
ROUGE-2 0.0616 0.0529 0.0576 0.0499 0.0574 0.0487
ROUGE-L 0.1564 0.1435 0.1529 0.1400 0.1513 0.1360

The White-box Setting
Likelihood 0.9986 0.7993 0.9985 0.8635 0.7287 0.1878
LogRank 0.9982 0.7708 0.9974 0.8135 0.7585 0.1826

LRR 0.7548 0.5133 0.6936 0.3905 0.8183 0.1841
NPR 0.9964 0.9130 0.9822 0.8675 0.8365 0.5649

DNA-GPT 0.9721 0.5686 0.9900 0.8024 0.7012 0.1153
DetectGPT 0.8060 0.7422 0.6535 0.5792 0.3255 0.2048

Fast-DetectGPT 0.9998 0.9926 1.0000 0.9971 0.9972 0.3786

Writing

The Generation Utility
SBert 0.8054 0.8076 0.8086 0.7979 0.8142 0.8057

ROUGE-1 0.2285 0.2322 0.2553 0.2341 0.2613 0.2325
ROUGE-2 0.0433 0.0438 0.0474 0.0433 0.0484 0.0428
ROUGE-L 0.1312 0.1333 0.1457 0.1348 0.1436 0.1297

The White-box Setting
Likelihood 0.9999 0.8383 1.0000 0.9092 0.9691 0.3857
LogRank 0.9999 0.8208 1.0000 0.8875 0.9742 0.3736

LRR 0.9623 0.6908 0.9528 0.3824 0.9616 0.2629
NPR 0.9984 0.9098 0.9948 0.7590 0.9723 0.7019

DNA-GPT 0.9749 0.5255 0.9934 0.8273 0.7909 0.1787
DetectGPT 0.8795 0.8151 0.8571 0.8295 0.6573 0.4776

Fast-DetectGPT 0.9999 0.8783 0.9998 0.9866 0.9888 0.5968

PubMed

The Generation Utility
SBert 0.8717 0.8676 0.8513 0.8323 0.8605 0.8468

ROUGE-1 0.3804 0.3547 0.3506 0.3268 0.3684 0.3396
ROUGE-2 0.2206 0.2027 0.2006 0.1855 0.2076 0.1883
ROUGE-L 0.3108 0.2888 0.2848 0.2650 0.2971 0.2714

The White-box Setting
Likelihood 1.0000 0.9455 1.0000 0.9483 0.9817 0.8455
LogRank 0.9999 0.9355 1.0000 0.9297 0.9890 0.8231

LRR 0.8471 0.7860 0.9072 0.7524 0.9318 0.6499
NPR 0.9776 0.9215 0.9737 0.8896 0.8154 0.7219

DNA-GPT 0.9976 0.9026 0.9891 0.8932 0.9731 0.7224
DetectGPT 0.9891 0.9718 0.9832 0.9632 0.9231 0.9221

Fast-DetectGPT 0.9850 0.9076 0.9857 0.6754 0.9939 0.4017
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Table 5: Additional results following Table 4, the black-box AUROC results on the dataset Open-
WebText, WritingPrompts and PubMedQA respectively.

Dataset Detectors↓
Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA

(Llama2-7B) (Llama3-8B) (Mistral-7B)

OpenWebText

Roberta-base 0.9681 0.8454 0.9188 0.7681 0.7997 0.6339
Roberta-large 0.9534 0.8529 0.9022 0.7624 0.8136 0.7349

Likelihood(Neo-2.7) 0.9986 0.5792 0.9342 0.6313 0.6369 0.1052
LogRank(Neo-2.7) 0.9627 0.5927 0.9446 0.6224 0.6554 0.1033

LRR(Neo-2.7) 0.9680 0.6175 0.9322 0.5631 0.6791 0.1200
NPR(Neo-2.7) 0.8867 0.6220 0.8781 0.6439 0.6815 0.2912

DNA-GPT(Neo-2.7) 0.6165 0.3203 0.7786 0.5652 0.5329 0.1011
DetectGPT(T5-3B/Neo-2.7) 0.7416 0.5102 0.5491 0.3867 0.5650 0.2505

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9909 0.7088 0.9829 0.7988 0.7816 0.0544
Binoculars(Falcon-7B) 1.0000 0.7903 0.9990 0.8830 0.8840 0.0439

Writing

Roberta-base 0.9673 0.8548 0.9169 0.7144 0.8018 0.6184
Roberta-large 0.9401 0.8548 0.8720 0.6728 0.7818 0.6975

Likelihood(Neo-2.7) 0.9926 0.6416 0.9830 0.7355 0.8588 0.2378
LogRank(Neo-2.7) 0.9940 0.6310 0.9823 0.7115 0.8596 0.2280

LRR(Neo-2.7) 0.9876 0.8656 0.9595 0.2918 0.8305 0.1612
NPR(Neo-2.7) 0.9134 0.8414 0.9447 0.5643 0.8027 0.3523

DNA-GPT(Neo-2.7) 0.7514 0.3666 0.8483 0.6197 0.6711 0.1755
DetectGPT(T5-3B/Neo-2.7) 0.8678 0.6131 0.8621 0.6801 0.7175 0.3316

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9974 0.6466 0.9842 0.7736 0.8837 0.1505
Binoculars(Falcon-7B) 1.0000 0.6773 0.9990 0.8771 0.9539 0.2019

PubMed

Roberta-base 0.7779 0.6704 0.6317 0.1976 0.4960 0.3995
Roberta-large 0.7686 0.6510 0.6648 0.2315 0.5095 0.4375

Likelihood(Neo-2.7) 0.9971 0.8706 0.9924 0.8345 0.9512 0.7195
LogRank(Neo-2.7) 0.9984 0.8691 0.9929 0.8269 0.9613 0.7243

LRR(Neo-2.7) 0.9972 0.8489 0.9693 0.7535 0.9534 0.7115
NPR(Neo-2.7) 0.7677 0.6089 0.7479 0.5598 0.6173 0.4471

DNA-GPT(Neo-2.7) 0.7670 0.5766 0.6431 0.4040 0.5910 0.2955
DetectGPT(T5-3B/Neo-2.7) 0.8752 0.7394 0.8975 0.6892 0.7451 0.5612

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9999 0.8613 0.9983 0.7436 0.9620 0.5720
Binoculars(Falcon-7B) 1.0000 0.9012 0.9987 0.8186 0.9679 0.6702

AUPRC. Area Under the Precision-Recall Curve (AUPRC) is a measure of a detector’s performance,
focusing on the trade-off between precision (the accuracy of machine-generated examples) and recall
(the ability to identify all machine-generated examples). An AUPRC of 1.0 means perfect precision
and recall, while an AUPRC of 0.0 means the detector fails completely. This metric is useful when
dealing with imbalanced datasets, where the number of positive and negative examples is not equal.

BERTScore (Zhang et al., 2019). BERTScore is a metric used to evaluate the quality of texts gener-
ated by the pre-trained BERT. It compares the generated text to a reference text by utilizing BERT’s
embeddings to match words by cosine similarity. BERTScore measures how well the generated text
matches the reference text in terms of meaning and context, rather than just exact word matches.
This makes it a more robust evaluation method for assessing the quality of generated texts.

ROUGE (Chin-Yew, 2004). Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a set
of metrics used to evaluate the quality of generated text by comparing it to reference texts. We adopt
the popularly used ROUGE-1, ROUGE-2, ROUGE-L. ROUGE-1 measures the overlap of unigrams
(single words) between the generated text and the reference text. ROUGE-2 measures the overlap
of bigrams (two consecutive words) between the generated text and the reference text. ROUGE-L
measures the longest common subsequence (LCS) between the generated text and the reference text,
capturing the longest sequence of words that appear in both texts in the same order. These metrics
help assess how similar the generated text is to the reference text in terms of content and structure.

D ADDITIONAL MAIN RESULTS

The detailed AUROC results on the dataset OpenWebText, WritingPrompts and PubMedQA. More
results are in Table 4 for the white-box setting and Table 5 for the black-box setting. Throughout
our experiments, we run DetectGPT and NPR with default 10 perturbations, and DNA-GPT with a
truncation ratio of 0.2 and 10 prefix completions. The findings from the white-box performances
in Table 4 include DNA-GPT being the most fragile detector when evaluating texts generated by
Llama2-13B and Mixtral-8×7B on OpenWebText and WritingPrompts, with an AUROC relative
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Table 6: AUROCs of detectors and generation utility scores on text generated by different models
on PHX. The humanized SLM is fine-tuned from CS. The generation utilities of texts produced by
HUMPA and the source model are within the budget of ∆SBert ≤ 0.02 and ∆ROUGE-1 ≤ 0.03.

Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

The Generation Utility
SBert 0.8351 0.8308 0.8118 0.8034 0.8057 0.7888

ROUGE-1 0.2972 0.2965 0.2992 0.2712 0.2330 0.2045
ROUGE-2 0.0831 0.0783 0.0782 0.0770 0.0641 0.0505
ROUGE-L 0.1700 0.1620 0.1602 0.1543 0.1369 0.1204

The White-box Setting
Likelihood 0.9999 0.8376 0.9974 0.6348 0.6630 0.2604
LogRank 0.9982 0.7999 0.9932 0.5553 0.6533 0.2354

LRR 0.4277 0.3563 0.2588 0.1800 0.5065 0.1505
NPR 0.9781 0.8403 0.9859 0.7343 0.7955 0.5706

DNA-GPT 0.9884 0.6653 0.9943 0.4812 0.6001 0.1513
DetectGPT 0.5784 0.5996 0.4987 0.4131 0.2568 0.1778

Fast-DetectGPT 0.9978 0.9881 0.9999 0.9799 0.8390 0.1319
The Black-box Setting

Roberta-base 0.8718 0.7801 0.7535 0.4775 0.7379 0.6387
Roberta-large 0.8132 0.7183 0.6495 0.4435 0.7339 0.6343

Likelihood(Neo-2.7) 0.8185 0.5475 0.9351 0.3526 0.3199 0.0928
LogRank(Neo-2.7) 0.8226 0.5458 0.9309 0.3078 0.2848 0.0691

LRR(Neo-2.7) 0.7536 0.5125 0.8463 0.1807 0.2328 0.0369
NPR(Neo-2.7) 0.5517 0.4396 0.6458 0.4298 0.5210 0.3357

DNA-GPT(Neo-2.7) 0.8078 0.3820 0.9004 0.2909 0.4249 0.1130
DetectGPT(T5-3B/Neo-2.7) 0.1697 0.1877 0.2994 0.2673 0.2516 0.1958

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9673 0.6714 0.9759 0.3919 0.4697 0.0427
Binoculars(Falcon-7B) 0.9904 0.7093 0.9812 0.4127 0.5183 0.0489

decrease of 83.6%, the largest among all detectors. Another key finding is that Fast-DetectGPT
demonstrates the most vulnerability on the PubMed dataset, with AUROC relative decreases of
31.5% and 59.6% for texts produced by HUMPA -attacked Llama3-70B and Mixtral-8×7B, respec-
tively. Furthermore, our findings reveal that DetectGPT stands out as the most robust detector, with
the smallest AUROC relative decrease on WritingPrompts for Llama2-13B and Mixtral-8×7B, and
also the least decrease on PubMed across all attacked models.

In the black-box setting shown in Table 5, our findings indicate that DNA-GPT is the most fragile
detector when evaluating texts generated by the HUMPA -attacked Llama2-13B across all three
datasets, with relative AUROC decreases of 48.1%, 51.2%, and 50.0%. Additionally, we find that
Fast-DetectGPT experiences the greatest AUROC relative decrease when evaluating on the texts
produced by the attacked Mixtral-8×7B on the OpenWebText and WritingPrompts datasets, with
relative decreases of 93.0% and 83.0%, respectively.

E ADDITIONAL CROSS-DOMAIN RESULTS

The cross-discipline AUROC results of HUMPA on PHX are in Table 6. In the white-box setting,
we observe that DNA-GPT is the most vulnerable when evaluating texts generated by the attacked
Llama2-13B and Llama3-70B models. On texts produced by the attacked Mixtral-8×7B, Fast-
DetectGPT exhibits the largest relative decrease in performance across all detectors, with an 84.3%
drop in the white-box setting and a 90.9% drop in the black-box setting.

F RESULTS IN AUPRC

Similar to AUROC, we include the AUPRC results on the OpenWebText, WritingPrompts and Pub-
MedQA dataset in Table 11. We find that HUMPA bypasses all detectors on the texts produced by
the three models. The largest relative decrease across these datasets occurs on the OpenWebText,
with LRR showing a 57.5% drop in the white-box setting when evaluating texts from the attacked
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Table 7: Cross-language performances (AUROC) of detectors and generation utility scores on text
generated by different models on Germany. The humanized SLM is fine-tuned from English. The
generation utilities of texts produced by HUMPA and the source model are within the budget of
∆SBert ≤ 0.02 and ∆ROUGE-1 ≤ 0.03.

Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

The Generation Utility
SBert 0.8209 0.8209 0.8158 0.8063 0.8306 0.8210

ROUGE-1 0.2124 0.1883 0.1951 0.1934 0.2878 0.2633
ROUGE-2 0.1108 0.1116 0.1149 0.1145 0.1314 0.1302
ROUGE-L 0.1747 0.1627 0.1667 0.1663 0.2209 0.2063

The White-box Setting
Likelihood 0.9900 0.3685 0.9596 0.3637 0.5186 0.2286
LogRank 0.9824 0.3358 0.9517 0.3262 0.5838 0.2296

LRR 0.5943 0.1528 0.6608 0.1812 0.7725 0.2849
NPR 0.9590 0.4077 0.5315 0.4171 0.7928 0.5315

DNA-GPT 0.9924 0.3732 0.9828 0.3957 0.6486 0.1426
DetectGPT 0.8427 0.4818 0.7219 0.3859 0.6064 0.5252

Fast-DetectGPT 0.9935 0.8676 0.9156 0.4536 0.9572 0.3490
The Black-box Setting

Roberta-base 0.5606 0.5291 0.5730 0.3605 0.4298 0.3389
Roberta-large 0.5508 0.4776 0.5530 0.3620 0.4859 0.3388

Likelihood(Neo-2.7) 0.9900 0.0860 0.4781 0.1780 0.3746 0.2200
LogRank(Neo-2.7) 0.9824 0.0972 0.5394 0.1803 0.3930 0.2204

LRR(Neo-2.7) 0.8045 0.1814 0.7876 0.2132 0.5188 0.2526
NPR(Neo-2.7) 0.6039 0.1857 0.5674 0.2801 0.4788 0.2662

DNA-GPT(Neo-2.7) 0.7496 0.1290 0.8494 0.2222 0.4889 0.1233
DetectGPT(T5-3B/Neo-2.7) 0.5161 0.1732 0.4787 0.2722 0.4108 0.2465

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9127 0.2133 0.7686 0.1941 0.5536 0.1152
Binoculars(Falcon-7B) 0.9929 0.3108 0.9901 0.3265 0.7293 0.1564

Table 8: The performances and generation utility of HUMPA with larger α tested on detectors.

Likelihood LogRank LRR NPR DNA-GPT DetectGPT Fast-DetectGPT Binoculars SBert ROUGE-1/2/L
Dipper Paraphrasing 0.8125 0.7998 0.7220 0.5193 0.6240 0.2675 0.9754 0.9398 0.8006 0.2076/0.0226/0.1191

Query-based Substitutions 0.9843 0.9921 0.9828 0.3030 0.7072 0.1914 0.9972 1.0000 0.7989 0.2015/0.0383/0.1256
HUMPA (α = 1.2) 0.1647 0.1625 0.1599 0.2592 0.0723 0.2124 0.0794 0.1743 0.8053 0.2281/0.0422/0.1409
HUMPA(α = 1.5) 0.0109 0.0109 0.0117 0.0617 0.0034 0.0582 0.0007 0.0021 0.8014 0.2137/0.0404/0.1383

Mixtral-8×7B, and Fast-DetectGPT exhibiting a 59.9% drop in the black-box setting for the same
texts.

Table 12 lists the AUPRC results for cross-domain scenarios. We find that HUMPA bypasses the
detectors in these settings. The largest relative decrease occurs in the CS→PHX setting, where the
black-box Fast-DetectGPT evaluates texts from the attacked Mixtral-8×7B, showing a 60.8% drop
in AUPRC.

G MORE ANALYSIS OF α

The ratio α controls the intensity of the attack on the LLM, with larger values of α yielding
higher rewards and better detection evasion, while smaller values keep the attacked LLM closer
to the source LLM, thus limiting the attack’s effectiveness. We present the detector evasion
performance of HUMPA with higher α values, such as 1.2 and 1.5, compared to two state-of-
the-art baselines: the paraphrase generation attack method DIPPER (Krishna et al.) and the
query-based word substitution attack method (Shi et al., 2024), as shown in Table 8. We find
that HUMPA outperforms the baselines in evasion performance while maintaining high genera-
tion utility. However, when α increases, the generation utility diminishes. For another instance,
we consider a commercial detector GPTZero (Tian & Cui, 2023). We fine-tune a Llama2-7B
model using GPTZero as the scoring detector and evaluate GPTZero on text generated by the at-
tacked Llama2-13B model. The results are presented in Table 9. We find that GPTZero also
can be bypassed with α increases, and the generation utility accordingly decreases in a scope.
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Table 9: Performance and generation
utility on GPTZero.

Llama2-13B HUMPA HUMPA
(α=1.5) (α = 2.0)

SBert 0.8189 0.8075 0.7939
ROUGE-1 0.2587 0.2217 0.2131
ROUGE-2 0.0480 0.0452 0.0392
ROUGE-L 0.1497 0.1372 0.1266
AUROC 0.9951 0.8295 0.7987

This phenomenon aligns with our findings in Theorem 3.2,
which highlight that α governs the trade-off between eva-
sion performance and generation quality. Technically,
when α → 0, the attack model approaches the reference
model, with quality on par with the original LLM and no
evasion ability; when α →∞, the attack model regresses
to a deterministic model, selecting next token based on
maximized probability increase from pre-trained to fine-
tuned SLM, which is an extremely aggressive attacker
with no concern for quality (also notice the LLM has no
influence on the attacker in this extreme case). These dif-
ferent scenarios suggest that an adversary should choose a proper α, balancing attack effect and text
quality. Since fine-tuned SLMs can adjust the output distributions of large models during the infer-
ence, α can be selected at a low time cost, and concerns about robustness arise in the enhancement
of such detection methods.

H HUMAN EVALUATION

Table 10: Performances of different evasion meth-
ods evaluated using Roberta-base.

Methods AUROC Fluency Win Rate
DIPPER Paraphrasing 0.9717 54.16%
DPO (Llama2-13B) 0.6968 51.67%

HUMPA (Llama2-7B) 0.6394 57.50%

To reliably assess the quality of texts gener-
ated by the attacked model compared to those
produced by the original, unattacked model, it
is essential to evaluate the perceived natural-
ness of the text from users’ perspective. For
instance, users expect the text to be smooth,
coherent, and grammatically correct. This en-
sures that the generated text feels natural and is
easy to read. Therefore, we evaluate the qual-
ity of the text based on its fluency. We produced 120 pairs of text 150 Llama2 tokens long and
with the same prefix. One from each pair was generated by base Llama2-13B, while the other was
generated by Llama2-13B attacked by HUMPA with a DPO fine-tuned Llama2-7B model against
Roberta-large with β = 0.1 for 5 epochs, and the attack ratio α = 1.3 to balance between the
generation utility and the evasion performance. We also include two baselines: one is DPO directly
fine-tuned on Llama2-13B against Roberta-large (Nicks et al., 2024), another is DIPPER Paraphras-
ing (Krishna et al.). We then ask three human annotators to choose the text with better fluency when
presented with each pair. The two texts were presented in a randomized order to the annotators.
The results are shown in Table 10. We find that HUMPA demonstrates superior attack performance
while preserving better text naturalness.

I SENSITIVITY OF TRAINING SIZES

The SLM is fine-tuned using DPO, and the resulting model is influenced by the size of the train-
ing data. Consequently, the training data size affects the performance of the attacked LLM in
evading detection. To obtain a effective humanized SLM, a larger training size is desirable.
However, increasing the training size requires more time for fine-tuning. To explore the im-
pact of training size on both time efficiency and detection evasion performance, we fine-tuned a
Llama2-7B model against Roberta-large on the OpenWebText dataset using varying training sizes.

Table 13: Performances on different training size

Training Size AUROC Time (hrs)
1K 0.88 0.27
5K 0.71 1.35
8K 0.68 1.90
10K 0.62 2.04

We use LoRA to perform DPO fine-tuning on
the SLM with β = 0.1, and batch size of 8
for 5 epochs. We varying the training size and
record the fine-tuning runtime. We evaluate
RoBERTa-base detector on text generated by
the attacked Llama2-13B model with α = 1.5,
and the results are in Table 13. We find that as
the training size increases, the performance of
detection decreases, while the fine-tuning time
grows. This suggests a trade-off between efficiency and performance: increasing the training size
improves evasion but reduces efficiency due to longer fine-tuning times. If prioritizing evasion per-
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formance, a larger training size might be preferable. On the contrary, if efficiency or fine-tuning
time is more critical, a smaller training size provides a better balance.

J ANALYSIS OF SCORING DETECTOR

The scoring detector plays an important role in obtaining the reward. Theoretically, a weak

Figure 6: The performances of detectors
evaluated on text generated by the attacked
Llama2-13B. Each line in the figure repre-
sents a combination of an evaluation detector
and a scoring detector, denoted as ’Evalua-
tion Detector (Scoring Detector)’.

detector yields relatively low reward for human-
generated texts, while machine-generated texts are
given relatively high reward, resulting in a reduced
gap between the two. Hence an attacker can more
easily bypass the detector and overfit to the weak
scoring detector. Therefore at deployment, when
faced with a strong target detector, the attacker’s per-
formance will suffer.

We conduct an empirical analysis of the impact of
different scoring detectors on the WritingPrompts
dataset. Specifically, we use the white-box LRR
and Fast-DetectGPT as scoring detectors when con-
structing the preference data for DPO fine-tuning.
Using these two preference datasets, we fine-tune
Llama2-7B with β = 0.1 for 5 epochs to obtain two
humanized SLMs as attackers. We then evaluate the white-box LRR and Fast-DetectGPT on the
text generated by the attacked Llama2-13B model with varying levels of attack ratio α in Figure 6.
We find that when LRR is used as the scoring detector, the attacked Llama2-13B model exhibits a
moderate performance drop. In contrast, when Fast-DetectGPT is used for scoring, the performance
drops are huge. An SLM fine-tuned against a weak scoring detector cannot perform well in the face
of a strong target detector, though we surmise this gap may be simply due to the lack of high-quality
human-machine labels without access to strong scoring detectors and may hence be unavoidable. In
practice, although there is no assumption which specific scoring detector the attacker should choose,
a strong, well-calibrated detector is desirable for this purpose.

K ANALYSIS OF SMALL MODEL SIZE

Table 14: Performance with dif-
ferent size of SLM.

Model AUROC
Llama2-13B 0.9673

HUMPA(Llama2-13B) 0.4176
HUMPA(Llama2-7B) 0.4594

HUMPA(TinyLlama-1.1B) 0.7706

To study the impact of model size, we fine-tune a Llama2-13B, a
Llama2-7B and a TinyLlama-1.1B (Zhang et al., 2024) on Writ-
ingPrompts dataset as the SLM respectively. We use RoBERTa-
large as the scoring detector and evaluate RoBERTa-base on the
text generated by the attacked Llama2-13B model, each attacked
with an attack ratio of α = 1.5. The results are in Table 14. We
find that different SLMs exhibit varying levels of effectiveness
when attacking the LLM, with Llama2-13B being the most effec-
tive choice. This suggests that when selecting an SLM for such
attacks, a stronger SLM tend to demonstrate better evasion performance. However, fine-tuning a
larger model and loading it during inference to attack the LLM incurs significant time and memory
costs. Practitioners need to balance these factors according to their specific priorities.

L REAL CASES

We provide several real examples randomly selected from OpenWebText and the cross-domain sce-
nario PHX→HSS across different models. Note that, as discussed in Section 3.3, the parameter α
controls the trade-off between attack effectiveness and text generation quality: higher α leads to
higher reward according to the detector, but also strays away from pre-trained LLM and thus decays
in quality. With this in mind, the following examples are generated with α = 1.5, which as shown
in previous sections can be considered an effective attack. From our observations, no significant
qualitative differences are apparent between the generated texts.
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Real cases of samples from OpenWebText

Llama2-13B: DENVER — The New England Patriots could be without two key players for their AFC
Championship Game matchup against the Denver Broncos on Sunday. Tight end Rob Gronkowski and
defensive lineman Malcom Brown did not participate in practice on Wednesday, and both have been listed
as questionable for the game, according to the Patriots’ injury report. Gronkowski has a knee injury, while
Brown has a foot injury. ”It’s early in the week, so we’ll see how it goes,” Patriots coach Bill Belichick
said when asked about the status of his players. ”We’ll evaluate it day by day and see where we’re at by
the end of the week.” If Gronkowski and Brown are unable to play, it would be a significant loss for the
Patriots. Gronkowski is one of the team’s top receiving threats
HUMPA (Llama2-7B): DENVER — The New England Patriots could have the luxury of having all six
of their top wide receivers available for Sunday’s AFC Championship Game against the Denver Broncos.
Julian Edelman, who has missed the last two games with a knee injury, was a full participant in practice
on Thursday and is expected to play, a source told ESPN. The Patriots also expect to have Chris Hogan
(shoulder) and Malcolm Mitchell (knee) back in the lineup, after both players missed last week’s divisional
round playoff game against the Houston Texans. The only receiver who did not participate in practice on
Thursday was Danny Amendola, who is dealing with a thigh injury. However, he is expected to play on
Sunday, per the source. The Patriots have a deep and talented receiving corps, and having all six players
available could

Llama3-70B:
On Tuesday, it was reported that New York state lawmakers had reached a deal for a $175 billion budget
that would increase taxes on the wealthy and large corporations. [newline] On Wednesday, Governor
Cuomo signed the budget into law. [newline] According to Cuomo, the new budget would increase the
income tax rate for individuals earning over $1 million per year and corporations earning over $5 million
per year. Additionally, it would implement a new tax on luxury real estate in New York City, and would
establish a new tax on opioid manufacturers. [newline] Cuomo said in a statement, ”This budget is a
testament to what can be accomplished when lawmakers work together to benefit the people of this great
state.” Some critics argued that the new taxes could lead to wealthy individuals and corporations leaving
the state. The Business Council of New York State said in a statement, ”Increasing taxes on our most
successful entrepreneurs and businesses will only encourage them to take their investments and jobs to
more competitive states.” However, supporters of the budget argued that it would
HUMPA (Llama3-8B):
On Tuesday, it was reported that New York Giants tight end Daniel Bellinger was arrested following
an incident at a dinner party at the home of one of his teammates. According to the report, Bellinger
allegedly got into a physical altercation with one of the party’s attendees. The team has since released
a statement regarding the situation. On Wednesday, the NFLPA announced that it will be conducting its
own investigation into the allegations surrounding Bellinger’s arrest. This move is likely in anticipation
of potential discipline from the NFL, which could potentially stem from the league’s personal conduct
policy. [newline] Bellinger’s lawyer has since released a statement claiming that his client was acting
in self-defense during the alleged altercation. [newline] Update: TMZ has released video footage of the
altercation, which appears to show Bellinger allegedly punching and kicking a man multiple times. On
Thursday, it was reported that the NFL has placed Bellinger on the commissioner’s exempt list, effectively
suspending him pending further investigation. Should Bellinger ultimately be suspended or disciplined

Mixtral-8×7B:
After weeks of negotiations, National and Labour finally have a deal in the books to bring the Electoral
Transformation Bill to fruition for an imminent vote in parliament. In a statement the two political parties
issued Thursday afternoon, both said talks on the topic have been “constructive and carried out in a positive
and courteous way with a good willingness to reach an agreement.” The agreement they finally reached,
per the statement, allows for Māori to put forward three different electoral models to be put to a binding
citizens-initiated referendum. If any one of them are successful, then “the number of members from the
Māori electoral specials seats, in total, would be fixed at 120%, of the MPs who would be returned with an
equivalent proportion of voters in the general electoral specials seats.” The two parties will put forward a
joint motion of am
HUMPA (Mistral-7B):
After weeks of negotiations, National and Labour have thrashed out agreement on legislation that will
give parties less money and force (some) MPs to live more normal lives. Labour anger at National’s
insistence that there must be correlation between private and public sector pay rises and a feeling the party
didn’t push hard enough on funding for MPs did take its toll. But relationships appear to be good and the
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government suggested the parties could work together on other bills - although not one on alcohol, about
which the Greens have similar gripes. The crowningpiece - literally for Helen Clark and Chester Borrows
who travelled up to Parliament flanked by placard carriers demanding greater gender equality in elecitons
- was an amendment to Clause 5 of the Electoral Act. This allows parties in a coalition or cumulative vote
deal (eg parties laddering candidates in a district single-preference system) to

Real cases of samples from PHX→HSS

Llama2-13B: Introduction to the Special Issue on Diversion from Standard Prosecution in the Criminal
Justice System [newline] Introduction: The special issue on diversion from standard prosecution in the
criminal justice system explores the various ways in which criminal cases can be diverted from the tradi-
tional prosecution process. Diversion programs offer an alternative to prosecution and punishment, and
can be an effective tool for addressing the root causes of criminal behavior and promoting rehabilitation.
This issue brings together a range of articles and research papers that examine the different forms of di-
version, their benefits and challenges, and the impact they have on the criminal justice system. [newline]
The articles in this special issue cover a range of topics related to diversion from standard prosecution,
including the different types of diversion programs available, the factors that influence their effectiveness,
and the role of diversion in addressing issues of racism and inequality in the criminal justice system.
HUMPA (Llama2-7B): Introduction to the Special Issue on Diversion from Standard Prosecution: Toward
a More Holistic and Effective Approach to Addressing Crime [newline] This special issue of the journal
devotes attention to diversion from standard prosecution, a topic that has gained increasing importance in
the criminal justice system. Diversion programs have been developed as an alternative to traditional crim-
inal prosecution, with the goal of addressing the root causes of criminal behavior and reducing recidivism
rates. These programs have been shown to be effective in addressing various types of crimes, including
drug offenses, property crimes, and even violent crimes. [newline] The articles in this special issue explore
various aspects of diversion from standard prosecution, including the effectiveness of diversion programs,
the factors that contribute to their success, and the challenges and limitations that must be addressed in
order to realize their full potential. [newline] One of the key themes that emerges from

Llama3-70B: Acceptability of App-Based Contact Tracing for COVID-19: Cross-Country Survey Evi-
dence [newline] **Title:** Acceptability of App-Based Contact Tracing for COVID-19: Cross-Country
Survey Evidence [newline] **Background:** [newline] The COVID-19 pandemic has led to unprece-
dented global efforts to control the spread of the virus. One promising approach is digital contact tracing,
which uses mobile apps to rapidly identify and notify individuals who have been in close proximity to
someone infected with COVID-19. However, the success of such apps relies heavily on public accep-
tance and adoption. [newline] **Objective:** [newline] This study aims to investigate the acceptability of
app-based contact tracing for COVID-19 across different countries and identify factors influencing public
willingness to use such apps. [newline] **Methods:** [newline] We conducted a cross-country online sur-
vey among 10,000 participants from 15 countries, including the United States, United Kingdom, Australia,
Canada, Germany, France
HUMPA (Llama3-8B): Acceptability of App-Based Contact Tracing for COVID-19: Cross-Country Sur-
vey Evidence [newline] Abstract: [newline] Contact tracing is a crucial component in controlling the
spread of COVID-19. The use of app-based contact tracing has been widely adopted globally, but its ac-
ceptability varies across countries. This study aimed to investigate the acceptability of app-based contact
tracing and its correlates across countries. [newline] Methods: [newline] We conducted a cross-country
survey of 13,993 adults from 20 countries. The survey included questions on demographic characteristics,
COVID-19-related experiences, and attitudes towards app-based contact tracing. We used multivariable
logistic regression to identify factors associated with acceptability. [newline] Results: [newline] The over-
all acceptability of app-based contact tracing was 63.1%. Country-wise, the acceptability ranged from
44.1% in Japan to 84.5% in China. In multivariable analysis, factors associated with higher acceptability
included being male, younger age, higher education, previous COVID-19

Mixtral-8×7B: Put More Women in Charge and Other Leadership Lessons from COVID-19 Women face
significant, unique, and disproportionate risks, impacts, and challenges relative to COVID-19, both as a
result of public health measures to stem the spread of the virus and from the crisis itself. However, evidence
from around the world also suggests that despite facing more severe adversity, women have been at the
forefront of pandemic response efforts, often leveraging their networks, knowledge, and experience forged
in other crisis contexts, to take action swiftly and creatively to help those in need. Drawing on extensive
global research, this paper examines the critical roles that women at all levels, from civil society to the
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highest corridors of power, have played in pandemic response and recovery efforts. The authors present a
series of case study narratives to demonstrate that the success of COVID- response has been dependent in
significant part on women in leadership, and in
HUMPA (Mistral-7B): Put More Women in Charge and Other Leadership Lessons from COVID-19 [new-
line] While COVID-19 has thrown a curveball at businesses, some are managing to fight through quite
effectively. New Zealand saw lockdowns lift a lot earlier than most. It’s going to open up again, sooner
rather than later, and this is attributed, to a large extent due to the exceptional leadership. [newline] This
begs the question – What makes exceptional leadership stick? The difference is found at the intersection of
love and power. Historically, women have better skills and hold the power in matters of relationship, em-
pathy, compassion, resilience and what Danial Goleman calls Social Intelligence at work or where EI-EQ
meet. The good news is that infusing these skills into the workplace can only benefit an organisation – but
is challenge at times to balance these with ”masculine” behaviour based on transactional power dynamics
we are used to.
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Table 11: AUPRCs of detectors on the texts generated by different models on the dataset OpenWeb-
Text, WritingPrompts and PubMedQA respectively.

Dataset Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

OpenWebText

The White-box Setting
Likelihood 0.9984 0.8705 0.9983 0.9082 0.6931 0.3485
LogRank 0.9980 0.8495 0.9971 0.8702 0.7230 0.3456

LRR 0.7582 0.5755 0.7099 0.4870 0.8079 0.3435
NPR 0.9971 0.9400 0.9833 0.9005 0.7911 0.5569

DNA-GPT 0.9605 0.6375 0.9890 0.8521 0.6611 0.3233
DetectGPT 0.7690 0.6990 0.6471 0.5828 0.3890 0.3454

Fast-DetectGPT 0.9998 0.9922 1.0000 0.9979 0.9972 0.4277
The Black-box Setting

Roberta-base 0.9593 0.7798 0.8723 0.7286 0.7558 0.5779
Roberta-large 0.9454 0.8453 0.8970 0.7305 0.7941 0.7224

Likelihood(Neo-2.7) 0.9459 0.6746 0.9334 0.6951 0.6243 0.3205
LogRank(Neo-2.7) 0.9629 0.7008 0.9467 0.6916 0.6429 0.3200

LRR(Neo-2.7) 0.9754 0.7344 0.9476 0.6650 0.6880 0.3259
NPR(Neo-2.7) 0.8935 0.6823 0.8904 0.7012 0.6935 0.3908

DNA-GPT(Neo-2.7) 0.6011 0.4097 0.7713 0.6041 0.5557 0.3223
DetectGPT(T5-3B/Neo-2.7) 0.6692 0.5029 0.5298 0.4397 0.5370 0.3601

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9928 0.8046 0.9855 0.8543 0.7762 0.3112
Binoculars(Falcon-7B) 1.0000 0.6413 0.9990 0.7632 0.8468 0.3131

Writing

The White-box Setting
Likelihood 0.9999 0.9046 1.0000 0.9477 0.9684 0.5342
LogRank 0.9999 0.8921 1.0000 0.9326 0.9735 0.5216

LRR 0.9686 0.7884 0.9590 0.5347 0.9626 0.4276
NPR 0.9986 0.9397 0.9962 0.8499 0.9768 0.7603

DNA-GPT 0.9655 0.6043 0.9894 0.8678 0.7892 0.3651
DetectGPT 0.8567 0.8112 0.8540 0.8279 0.6188 0.4842

Fast-DetectGPT 0.9999 0.8736 0.9998 0.9843 0.9908 0.6026
The Black-box Setting

Roberta-base 0.9615 0.8202 0.8917 0.6602 0.7637 0.5944
Roberta-large 0.9345 0.8202 0.8474 0.6532 0.7455 0.6748

Likelihood(Neo-2.7) 0.9928 0.7470 0.9833 0.8029 0.8609 0.4113
LogRank(Neo-2.7) 0.9943 0.7402 0.9836 0.7847 0.8643 0.4045

LRR(Neo-2.7) 0.9876 0.8656 0.9656 0.4397 0.8463 0.3629
NPR(Neo-2.7) 0.9134 0.8414 0.9533 0.6547 0.8332 0.4615

DNA-GPT(Neo-2.7) 0.7253 0.4352 0.8301 0.6663 0.6693 0.3522
DetectGPT(T5-3B/Neo-2.7) 0.8369 0.6128 0.8351 0.6854 0.6893 0.4075

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9981 0.7535 0.9881 0.8335 0.8904 0.3656
Binoculars(Falcon-7B) 1.0000 0.5458 0.9988 0.7519 0.9245 0.3465

PubMed

The White-box Setting
Likelihood 1.0000 0.9672 1.0000 0.9670 0.9866 0.8725
LogRank 0.9999 0.9613 1.0000 0.9567 0.9888 0.8577

LRR 0.8520 0.8257 0.9146 0.8118 0.9176 0.6755
NPR 0.9769 0.9274 0.9723 0.8929 0.7603 0.6594

DNA-GPT 0.9965 0.9360 0.9733 0.8931 0.9720 0.7620
DetectGPT 0.9893 0.9753 0.9851 0.9673 0.9074 0.9091

Fast-DetectGPT 0.9859 0.9173 0.9891 0.6946 0.9950 0.4771
The Black-box Setting

Roberta-base 0.6820 0.5615 0.5334 0.3424 0.4545 0.4079
Roberta-large 0.6954 0.5737 0.5899 0.3510 0.4741 0.4343

Likelihood(Neo-2.7) 0.9972 0.9142 0.9926 0.8768 0.9481 0.7570
LogRank(Neo-2.7) 0.9985 0.9152 0.9933 0.8739 0.9603 0.7646

LRR(Neo-2.7) 0.9974 0.9020 0.9746 0.8131 0.9551 0.7475
NPR(Neo-2.7) 0.6687 0.5507 0.6428 0.5017 0.5306 0.4319

DNA-GPT(Neo-2.7) 0.7065 0.6068 0.6142 0.4528 0.5367 0.3807
DetectGPT(T5-3B/Neo-2.7) 0.8473 0.7562 0.8844 0.6953 0.6953 0.5656

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9999 0.9160 0.9984 0.8206 0.9666 0.6567
Binoculars(Falcon-7B) 1.0000 0.8120 0.9986 0.7414 0.9679 0.6563
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Table 12: AUPRCs of detectors in on the texts generated by different models in the cross-domain
scenarios. CS→PHX denotes that the detectors are evaluated on the texts sampled from PHX while
the humanized small language model is fine-tuned on CS. PHX→HSS and EN→GER follow the
same pattern.

Dataset Models→ Llama2-13B HUMPA Llama3-70B HUMPA Mixtral-8x7B HUMPA
(Llama2-7B) (Llama3-8B) (Mistral-7B)

CS→PHX

The White-box Setting
Likelihood 0.9999 0.9028 0.9965 0.7530 0.6824 0.4265
LogRank 0.9983 0.8784 0.9848 0.6862 0.6594 0.3984

LRR 0.4680 0.4343 0.3702 0.3403 0.5274 0.3340
NPR 0.9792 0.8876 0.9647 0.7886 0.7919 0.6177

DNA-GPT 0.9890 0.7616 0.9933 0.6208 0.6312 0.3773
DetectGPT 0.5483 0.5809 0.4789 0.4610 0.3666 0.3388

Fast-DetectGPT 0.9972 0.9839 0.9999 0.9800 0.8298 0.3256
The Black-box Setting

Roberta-base 0.8615 0.7001 0.6816 0.4681 0.6969 0.5744
Roberta-large 0.7883 0.6516 0.6173 0.4363 0.7121 0.6121

Likelihood(Neo-2.7) 0.8469 0.6800 0.9383 0.5102 0.4198 0.3237
LogRank(Neo-2.7) 0.8568 0.6815 0.9362 0.4679 0.3895 0.3149

LRR(Neo-2.7) 0.8152 0.6537 0.8708 0.3733 0.3686 0.3089
NPR(Neo-2.7) 0.5995 0.5032 0.6511 0.5387 0.5927 0.4432

DNA-GPT(Neo-2.7) 0.7973 0.4665 0.8675 0.4299 0.5017 0.3542
DetectGPT(T5-3B/Neo-2.7) 0.3351 0.3407 0.3817 0.3710 0.3785 0.3540

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9728 0.7826 0.9807 0.5259 0.4977 0.3100
Binoculars(Falcon-7B) 0.9848 0.5682 0.9661 0.4109 0.4870 0.3126

PHX→HSS

The White-box Setting
Likelihood 0.9997 0.9118 0.9999 0.8960 0.8057 0.5624
LogRank 1.0000 0.9224 0.9978 0.8562 0.8077 0.5352

LRR 0.8046 0.6941 0.4602 0.4202 0.7554 0.4167
NPR 0.9993 0.9624 0.9959 0.9519 0.9266 0.8403

DNA-GPT 0.9585 0.7985 0.9984 0.8320 0.6860 0.4240
DetectGPT 0.9133 0.8215 0.9055 0.7896 0.5455 0.5506

Fast-DetectGPT 0.9966 0.9377 0.9958 0.9659 0.9686 0.5133
The Black-box Setting

Roberta-base 0.8390 0.7328 0.7057 0.6085 0.6380 0.5419
Roberta-large 0.8422 0.7272 0.7631 0.5784 0.6832 0.6084

Likelihood(Neo-2.7) 0.9599 0.7121 0.9355 0.6720 0.6370 0.4104
LogRank(Neo-2.7) 0.9647 0.7821 0.9334 0.6337 0.6259 0.3846

LRR(Neo-2.7) 0.9511 0.7550 0.8927 0.5139 0.6022 0.3490
NPR(Neo-2.7) 0.9444 0.8043 0.9177 0.7816 0.8164 0.6672

DNA-GPT(Neo-2.7) 0.8803 0.6267 0.9453 0.6685 0.6178 0.3734
DetectGPT(T5-3B/Neo-2.7) 0.7280 0.6249 0.7580 0.6533 0.6275 0.5235

Fast-DetectGPT(GPT-J/Neo-2.7) 0.9909 0.8393 0.9858 0.7171 0.7826 0.5133
Binoculars(Falcon-7B) 0.9957 0.6370 0.9990 0.5766 0.7493 0.3382

EN→GER

The White-box Setting
Likelihood 0.9903 0.5519 0.9257 0.4742 0.4865 0.3569
LogRank 0.9824 0.5116 0.9132 0.4382 0.5271 0.3568

LRR 0.5583 0.3338 0.6446 0.3439 0.7028 0.3875
NPR 0.9434 0.5346 0.5096 0.5000 0.7343 0.5096

DNA-GPT 0.9918 0.5513 0.9788 0.5181 0.5942 0.3284
DetectGPT 0.7913 0.5286 0.6529 0.4566 0.5790 0.5050

Fast-DetectGPT 0.9917 0.7943 0.9197 0.5133 0.9546 0.4053
The Black-box Setting

Roberta-base 0.4993 0.4934 0.5135 0.4001 0.4403 0.3984
Roberta-large 0.4970 0.4496 0.4974 0.3958 0.4760 0.3946

Likelihood(Neo-2.7) 0.9903 0.3170 0.4616 0.3392 0.3980 0.3480
LogRank(Neo-2.7) 0.9824 0.3185 0.5023 0.3403 0.4064 0.3480

LRR(Neo-2.7) 0.8099 0.3632 0.7743 0.3545 0.4954 0.3579
NPR(Neo-2.7) 0.5762 0.3457 0.5351 0.3788 0.4649 0.3640

DNA-GPT(Neo-2.7) 0.7324 0.3303 0.8468 0.3765 0.4822 0.3257
DetectGPT(T5-3B/Neo-2.7) 0.4876 0.3394 0.4880 0.3773 0.4238 0.3560

Fast-DetectGPT(GPT-J/Neo-2.7) 0.8955 0.3986 0.7648 0.3720 0.5299 0.3221
Binoculars(Falcon-7B) 0.9951 0.3786 0.9922 0.3814 0.7244 0.3315
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