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ABSTRACT

Understanding the theoretical boundaries of a learning mechanism and ascertain-
ing its fundamental capabilities remains a persistent challenge in machine learn-
ing. While the VC-dimension has been instrumental in quantifying a model’s
data-fitting abilities, its independence from data distribution sometimes limits its
practicality. In this study, we address the problem of establishing realistic bounds
on a model’s classification power by harnessing the underlying combinatorial ge-
ometry of data using novel tools. We introduce conditions that rely on local com-
putations performed on small data subsets to determine the global performance of
classifiers. Specifically, by considering a dataset {(Xi, yi)}ni=1, where Xi ∈ Rd is
a feature vector and yi is the corresponding label, we establish optimal bounds on
the training error (in terms of number of misclassifications) of a linear classifier
based on the linear separability of local data subsets, each comprising of (d + 2)
data points. We also prove an optimal bound on the margin of Support Vector
Machines (SVMs) in terms of performance of SVMs on (d + 2) sized subsets
of data. Furthermore, we extend these results to a non-linear classifier employ-
ing hypersphere boundary separation. This research contributes valuable insights
into assessing the classification potential of both linear and non-linear models for
large datasets. By emphasizing local computations on subsets of data with fixed
cardinality, it provides a foundation for informed and efficient decision-making in
practical machine learning applications.

1 INTRODUCTION

How can we rigorously evaluate the fundamental capabilities of a learning mechanism? This ques-
tion remains an enduring challenge in machine learning theory, particularly given the field’s trans-
formative impact on various domains in recent years. One of the most significant contributions to
this issue is the concept of VC-dimension (Vapnik–Chervonenkis dimension) Vapnik (2000); Har-
vey et al. (2017); Blumer et al. (1989). This measure provides theoretical bounds on a classifier’s
performance by representing the maximum number of data points a model can ‘shatter’, given all
possible arrangements and labelings. Essentially, VC-dimension gauges a model’s ability to fit even
the most complex patterns within a dataset. For instance, consider a binary classification problem
where we seek to draw an optimal decision boundary to separate data points into two (positive and
negative) classes. The VC-dimension of a hypothesis class or model reveals the largest number of
data points this model can correctly classify, irrespective of their arrangement, thus encapsulating
the essence of a model’s learning prowess.

Despite its versatility, the VC-dimension does not account for the distribution of data points, which
sometimes limits its use as a practical measure to quantify the classification power of classifiers
Steinke & Zakynthinou (2020); Holden & Niranjan (1995); Kowalczyk & Ferrá (1996); Lorena
et al. (2019); Mossel & Umans (2002). For example, the VC-dimension of a linear classifier is
d + 1, i.e., there exists a set of d + 2 points with a particular labeling for which a linear classifier
can not learn the decision boundary of a binary classification problem. However, a linear classifier
effectively and successfully classifies large dataset of points. The fact that some rare prohibitive
point configurations exist is of little consequence in practice. Therefore, it is more desirable from a
practical viewpoint to design a satisfactory bound that takes into account the arrangement of data.
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To elaborate on this, consider a scenario where µ is an unknown probability distribution over a
product set X × Y . Here, X is a metric space of (potentially very large) dimension d, representing
the feature vectors of data points (henceforth, referred to as data points) and Y = {−1,+1} denotes
the class labels. Let (X1, y1), (X2, y2), . . . , (Xn, yn) be independent samples drawn from µ. For
simplicity, we focus on a binary classification problem, where yi ∈ {±1}. Within this framework,
we address the following question: can one measure a realistic bound on the classification power
of a classifier on this sample “efficiently”. We assume that n is large enough to prohibit the global
processing of the complete dataset at once. Instead, the processing relies on numerous local queries
consisting of a small fraction of data points. Further, the sampling process might be noisy, making
it impractical to train a model on these samples alone. Also, we focus mostly on linear classifiers in
this paper. With these settings in mind, we ask the following question: For a given set of samples
(Xi, yi) from an unknown distribution µ, is it possible to deduce from local computations on small
subsets of samples whether there exists a linear classifier that correctly classifies every data point?
The answer to this question is in the affirmative. Informally, we know that if the data points are
linearly classifiable locally, then they are also classifiable globally. This conclusion stems from
Kirchberger’s famous theorem in discrete geometry, proven in 1903 (Kirchberger (1903); Webster
(1983); Houle (1991); Lay (2007)).
Theorem 1. (Kirchberger 1903) Given that A and B are compact subsets of Euclidean space, Ed,
then for every subset T ⊆ A ∪ B, with |T | ≤ d+ 2, T ∩ A and T ∩ B can be strictly separated by
a hyperplane if and only if A and B can be strictly separated by a hyperplane.

Here, local computation refers to the task of evaluating whether a given (d+ 2)-sized subset of the
dataset is linearly separable. Importantly, this computation size independent of the overall dataset
size n. For instance, if one has a dataset comprising of a large number of data points in a reasonably
large dimension d, the theorem indicates that the question of linear separability for the entire dataset
can be decided by examining multiple subsets of just d + 2 points. Moreover, these computations
can be naturally parallelized, offering efficiency in practical applications.

In this work, we extend the above mentioned result in multiple significant directions. First, we
consider the scenario where data is linearly separable. In such cases, the Support Vector Machine
(SVM) Cervantes et al. (2020); Campbell & Ying (2022); Tan & Wang (2004); James et al. (2013)
serves as a canonical linear classifier. Specifically, SVM aims to find the classifier that maximizes the
distance—known as the ‘margin’—between the separating hyperplane and the nearest data points
(the closest/support vectors). The associated optimization problem is:

Minimize:
1

2
∥w∥2

Subject to: yi(w ·Xi + b) ≥ 1, for i = 1, 2, . . . , n

where, w represents the weight vector, b represents the bias term, and Xi and yi are as previously
defined. The margin, is calculated as 1

∥w∥ . We address the following question regarding the value
of margin an SVM algorithm may achieve for a particular dataset.

Given a linearly separable set of samples (Xi, yi) and a constant w0, is there a hyperplane wTX −
b = 0 such that, yi(w ·Xi + b) ≥ 1, and the 1

∥w∥ ≥ w0.

In the context of this question, and in the spirit of the Kirchberger theorem, we prove:
Theorem 2. (SVM-Kirchberger) Let A and B be disjoint, non-empty compact sets of Ed. Then
A∪B is strictly linearly separable with margin w0 if and only if for each subset T ⊂ A∪B of d+2
or fewer points, there exists a linear SVM of margin w0 that strictly separates T ∩ A and T ∩ B.

To address a more real-world scenario where the data may not be perfectly linearly separable, we
introduce a significant advancement: a fractional extension of the Kirchberger theorem. This frac-
tional version offers a way to quantify the margin of error—specifically, it provides a bound on the
number of misclassified samples based on local data of (d+2) samples.As a result, this allows us to
infer global property (misclassification) of the dataset based on local (d+ 2)-sample data sets. The
formal statement of our result is as follows:
Theorem 3. (Fractional Kirchberger) Let α be a constant in the range 0 < α ≤ 1. Consider a
dataset A∪B ⊂ Ed, with |A∪B| = n. If an α fraction of all (d+2)-member subsets of A∪B are
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strictly linearly separable, then there exists a constant β, such that at least βn members of A ∪ B
are also linearly separable. Moreover, β ≥ 1− (1− α)1/(d+1), and this bound on β is optimal.

Proceeding further, we extend the fractional Kirchberger theorem into the realm of SVMs, and show
the following result.
Theorem 4. (SVM Fractional Kirchberger) Let A and B be disjoint, non-empty compact sets of Ed,
with |A∪B| = n. Given a dimension d and α > 0, assume that an α fraction of the (d+2)-member
subsets of A ∪ B can be linearly classified by an SVM algorithm with a margin of w0. Then, there
exists a constant β(α, d) > 0 such that βn members of A ∪ B can be accurately classified using a
soft-margin SVM with a margin of w0.

To clarify, a soft-margin SVM modifies the original constraints, allowing for some degree of mis-
classification. Specifically, the constraints become, yi(w·Xi+b) ≥ 1−ξi, and the objective function
includes an additional penalty term, C

∑n
i=1 ξi, to account for each misclassified point. Finally, we

apply our methods to the case of separation by hypersphere in d-dimensions as an example of a
non-linear classifier. We prove a fractional Kirhberger type theorem for the hypersphere separation.
Theorem 5. (Fractional Hypersphere Separation) For a constant α < 1, and finite disjoint point
sets A,B ⊂ Ed, if α

(
n

d+3

)
of the distinct d + 3-member subsets of A ∪ B are strictly spherically

separable, then there exists a constant β < 1 such that βn points of A∪ B are strictly separated by
a hypersphere.

In addition to the theoretical contributions highlighted earlier, we also perform an experimental
evaluation. Our methods are versatile, capable of handling real-world complications like imprecise
sensors and data corruption, making them both theoretically and practically relevant.

The rest of the paper is organized as follows: Section 2 introduces preliminaries and reviews the
idea of point-hyperplane duality that is used throughout the paper. Section 3 is the main section and
presents proofs of Theorems 2, 3, and 4, which state Kirchberger type results for SVMs. Section 2
discusses the case of hypersphere separation and proves Theorem 5. Finally, Section 5 concludes
the paper.

2 PRELIMINARIES AND BACKGROUND

In this section, we present preliminaries for understanding the key concepts that underpin our results.
We begin by introducing point-hyperplane duality, a fundamental concept in our proofs, which ele-
gantly transforms points into flat affine subspaces and vice versa. This concept is widely known in
the literature as point-hyperplane duality Agarwal & Sharir (2005); Bennett & Bredensteiner (2000).
To provide a clear understanding, we include a concise introduction with a small illustrative example
in Section 2.1. Our results also draw upon the fractional versions of the well-known Helly theorem.
To contextualize these theorems, we briefly review the the Fractional Helly Theorem in Section 2.2.
For further details, we refer the readers to Matousek (2002). Before discussing these prerequisites,
we define some preliminary notions that will be employed throughout this paper. As stated in the
introduction, the subject of this paper will be data points that are represented as d-tuples of real
numbers in Euclidean space Ed. Thus, feature vectors are points in Ed.
Definition 1. (Hyperplane)- A hyperplane h in Ed is defined for real coefficients a1, a2, .., ad, ad+1,
not all identically equal to 0, as:

h = {x ∈ Ed : a1x1 + a2x2 + ..+ adxd + ad+1 = 0}.

Definition 2. (Signed Halfspace)- For hyperplane h ∈ Ed, the positive open half-space h+ is
defined as:

h+ = {x ∈ Ed : a1x1 + a2x2 + ..+ adxd + ad+1 > 0},
and the negative open half-space h− is defined as:

h− = {x ∈ Ed : a1x1 + a2x2 + ..+ adxd + ad+1 < 0 }.

Definition 3. (Strict Linear Separability)- Let A and B be disjoint point sets in Ed. If A and B are
strictly linearly separable, then then there exists a hyperplane h and associated open half-spaces
h+ and h−, such that A ⊂ h+, B ⊂ h−.
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(a) (b) (c) (d)

Figure 1: (a) Points a and b in primal space E2. (b) a∗ and b∗ in dual space E3. (c) h∗ = (−5, 7,−9)
is a point in the intersection of D+(a) and D−(b). (d) h is a linear separator for points a and b.

The term fractional separability will be used in this paper to refer to the ratio of correctly classified
data points to the cardinality of the dataset achieved by an optimal classifier in the sense that the this
ratio is maximal over all possible classifiers of a given type.

2.1 POINT-HYPERPLANE DUALITY

In the following sections, we will explore a powerful concept known as duality transformation be-
tween points and hyperplanes. When dealing with a set of points in a Euclidean space, referred to as
the primal space, we can create another Euclidean space, the dual space or reference space. In this
dual space, a unique relationship exists between points in the primal space and hyperplanes in the
dual space, and vice versa. This duality transformation has two essential qualities: (a) Preservation
of incidences: It ensures that the relationships or incidences between points and hyperplanes remain
intact. (b) Consistency in order: It maintains the order of incidences, which can either be identical
or opposite to that in the primal or reference space. This latter quality is particularly important for
connecting separating hyperplanes to points in set intersections. Much of the literature on geometric
duality focuses on the point-line duality mapping, denoted as π : E2 7→ E2∗. In this mapping, each
point p (or line l) in the primal space corresponds to a line p∗ (or point p∗) in the dual space, respec-
tively, with the same incidence and order properties as mentioned earlier. In this paper, we adopt
similar notation and language to describe duality transformations in Ed. To facilitate understanding,
we introduce preliminary definitions and notation related to point-hyperplane duality, followed by
an illustrative example.
Definition 4. (Duality Transform) We define the duality transform D : Ed 7→ Ed+1 in the following
manner for point p = (p1, p2, .., pd) ∈ Ed, and hyperplane h = {x ∈ Ed : a1x1 + a2x2 + .. +
adxd + ad+1 = 0}:

D(p) = p∗ = {x ∈ Ed+1 : x1p1 + x2p2 + ..+ xdpd + xd+1 = 0},
D(h) = h∗ = (a1, a2, .., ad+1) ∈ Ed+1.

Example: Consider points a = (2, 3) and b = (1, 1) in E2 (Figure 1). We can find the equation of a
separating hyperplane in the following way:

(i) The signed duality transform of a yields:
D+(a) = a∗+ = {x ∈ E3 : 2x1 + 3x2 + x3 > 0}.

(ii) The signed duality transform of b yields:
D−(b) = b∗− = {x ∈ E3 : x1 + x2 + x3 < 0}.

(iii) Select a point h∗ such that h∗ ∈ D+(a)∩D−(b). The point h∗ = (−5, 7,−9) satisfies this
condition.

(iv) Take the dual transformation of h∗ to produce D(h∗) = h = {x ∈ E2 : −5x1+7x2−9 =
0}.

(v) h strictly linearly separates a and b.

Set Notation – Instead of adhering to the traditional classification language used in the introduction,
we opt for the convenience of separate labels, denoted as A and B, to represent sets of data points be-
longing to the positive class (yi = +1) and the negative class (yi = −1), respectively. Subsequently,
the upcoming theorems will employ the notation of A and B without any loss of generality.
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2.2 FRACTIONAL HELLY

‘Helly-type’ problems broadly address the global properties of a set of geometric objects that are
implied by properties of its local subsets, typically of some fixed cardinality Helly (1923); Eckhoff
(1993); Bárány et al. (1982); Bárány & Kalai (2022). The crux of the arguments presented in Sec-
tion 3 will be based on a fractional variety of Helly’s Theorem. Our exploration centers on scenarios
where not all subsets of cardinality (d + 1) or fewer share a common intersection. Instead, only a
fraction, denoted as α, exhibits this property. Throughout this paper, we will refer to the fraction
of the entire set with a common intersection as β. This concept was first elucidated by Liu and
Katchalski Katchalski & Liu (1979), who demonstrated that for a given value of α, a lower bound
can be guaranteed for β. Subsequently, Kalai proved an optimal value of β in terms of α and d as
an application of his work on the Least Upper Bound Theorem G.Kalai (1984), which we state here
and refer to as the Fractional Helly Theorem:

Theorem 6. Let F be a finite family of convex sets in Ed with |F| = n. If at least α of the
(

n
d+1

)
subsets of size d + 1 have non-empty intersection, where α ∈ [0, 1], then at least β(α, d) > 0
members of F have a common intersection. In particular, β = 1− (1− α)1/(d+1).

The derivation of this bound hinges on a fascinating insight involving the representation of a family
of convex sets and their intersection patterns as a simplicial complex, often referred to as a ‘nerve’,
within Ed. In this context, each set is represented as a vertex, and intersections between sets are
depicted as edges. Notably, this bound is demonstrated to be optimal in the general case. However,
the lower bound in Theorem 6 provides an asymptotic estimate n → ∞. For a specific value of n,
a more precise version of the Fractional Helly Theorem is implied by a result known as the ‘Least
Upper Bound Theorem’ due to Kalai G.Kalai (1984) and Eckhoff Eckhoff (1985).

Theorem 7. Let F be a family of convex sets in Ed, with |F| = n. If there are α
(
n
k

)
intersecting

k-tuples of F , and α
(
n
k

)
>

∑d
i=0

(
r

k−i

)(
n−r
i

)
, then F has an intersecting subfamily of size at least

d+ r + 1.

This result yields a tight bound on β when the size of F is given in addition to the value of α. In the
real world scenarios we encounter, this value of β is most valuable.

3 KIRCHBERGER-TYPE THEOREMS FOR SVMS

In this section we present the proofs of the theorems stated in the introduction. We begin with the
proof of Theorem 2, an extension of Kirchberger’s Theorem to the realm of strict linear separation
with a margin in Section 3.1. Subsequently, we present the proof of the fractional version of Kirch-
berger’s theorem, Theorem 3, in Section 3.2. Recall that ‘fractional’ signifies scenarios where only a
fraction of subsets of size d+2 samples are linearly separable. Following the proof, we present some
simulation results for illustration. Moving forward in Section 3.3, we give the proof of Theorem 4,
which provides a lower bound on the performance of a soft-margin SVM classifier—a fractional
counterpart to Theorem 2. A notable feature unifying all the theorems presented in this section, and
one that the forthcoming proofs substantiate, is their remarkable dependency solely on fundamental
dataset properties: size, dimensionality, and the average performance of the classifier on subsets of
cardinality (d+ 2).

3.1 HARD-MARGIN SVM CLASSIFICATION

Here we present a proof that establishes a crucial equivalence: the local conditions required for
ensuring perfect linear separation with a specified margin, specifically the distance between a sepa-
rating hyperplane and the closest data points to that hyperplane, remain identical to those articulated
in Kirchberger’s theorem. The key distinction lies in replacing ‘linearly separable’ with ‘linearly
separable with a margin of w0(Figure 2). This leads us to a significant conclusion: Kirchberger’s
theorem applies not only to strict linear separation but also to strict linear separation with a margin,
making it directly applicable to support vector machines. We note that this result is mentioned in
Lay (2007) without a proof. This result will also play a pivotal role in proving Theorem 4.
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Proof. Theorem 2 (SVM-Kirchberger): It is enough to prove the sufficiency of the condition. Let
U denote a (d+2)-member subset of A∪B. Since each (d+2)-point subset U of A∪B is linearly
classifiable with margin w0 then for all such U there is a hyperplane wTX−b = 0, such that (w·a ≤
1|a ∈ U ∩ A) and (w · b ≥ 1|b ∈ U ∩ B), with 1

∥w∥ ≥ w0. These conditions are equivalent to the
following: ∀u ∈ U,∀x ∈ w, min(d(u, x)) ≥ w0

2 and ∀a ∈ U ∩ A, a ∈ w−, ∀b ∈ U ∩ B, b ∈ w+,
where w+/− is the positive/negative halfspace bounded by w. Consider the modified sets A′ and B′

such that A′ = A + {x ∈ Ed : ∥x∥ < w0

2 } and B′ = B + {x ∈ Ed : ∥x∥ < w0

2 }. In other words,
the modified sets consist of open balls of radius w0

2 centered at the points of the original set. For
each U ′, where U ′ is a (d+2)-member subset of A′∪B′, (min(d(u′, x)) ≥ min(d(u, x))− w0

2 > 0
for u′ ∈ U ′, x ∈ w. Furthermore, since the original points of U are correctly classified by w
with minimum distance w0

2 from w, then U ′ ∩ A′ ⊂ w−, U ′ ∩ B′ ⊂ w+, and therefore w strictly
separates U ′. Since this is true for all U ′, then by Kirchberger’s Theorem there exists hyperplane w’
that strictly separates A′ ∪ B′. It is clear that that w’ also strictly separates A∪ B. Additionally, we
have that min(d(a, x)) ≥ w0

2 , and min(d(b, x)) ≥ w0

2 for all a ∈ A, b ∈ B, x ∈ w’.

x2

x1

(a)

1
∥w0∥

x2

x1

(b)

x2

x1

1∥w0∥

(c)

1∥w0∥

x2

x1

(d)

Figure 2: (a) Original set. (b) Original set with wmin. (c) and (d) (d + 2)-tuples linearly separable
with margin w0.

3.2 FRACTIONAL KIRCHBERGER THEOREM

Here, we will prove Theorem 3 by harnessing the point-hyperplane duality relation (as in Sec-
tion 2.1) in conjuntion with the Fractional Helly Theorem 2.2. Our objective is to establish a vital
connection: the lower bound on set intersections, as provided by the Fractional Helly Theorem, is
equivalent to a lower bound for the number of linearly separable points in a binary class dataset.
The essential connection is made by observing that for a point p of a given class, the union of all
separating hyperplanes that correctly classify p forms a convex set under the duality transformation.
The problem of proving the existence of a common separating hyperplane is thereby re-framed as a
problem of proving the existence of a common point of intersection amongst convex sets in the dual
space, for which the solution is provided by the Fractional Helly Theorem. Before proving the main
result, we formally establish the correspondence between common intersections in the dual space
and separating hyperplanes (as demonstrated in the example in Section 2.1). Throughout this paper,
we denote the two classes of data points as A and B. We make a simplifying assumption, without
loss of generality, that our objective is to find a hyperplane placing A in its corresponding negative
open half-space and and B in the positive open half-space.

Lemma 1. For any A ⊆ A and B ⊆ B, A and B are strictly linearly separated by a hyperplane
h in Ed if and only if the corresponding dual point h∗ in the transformed space Ed+1, lies in the
intersection of all negative dual transforms of points in A, as well as, in the intersection of positive
dual transforms of points in B, i.e., h∗ ∈

⋂
a∈A

D−(a), h∗ ∈
⋂
b∈B

D+(b).

Proof. If the transformed point h∗ ∈
⋂

a∈A

D−(a), in Ed+1, then by Definition 4, we have that,

each point a ∈ A, a1h1 + a2h2 + · · · + adhd + hd+1 < 0. Similarly, for each point b ∈ B,
we have that, b1h1 + b2h2 + · · · + bdhd + hd+1 > 0. Recall that h = x1h1 + x2h2 + · · · +
xdhd + hd+1 = 0, in Ed. Thus, A ⊂ h− and B ⊂ h+, in the primal space, and therefore, h
strictly separates A ∪ B. Alternatively, if A ∪ B are strictly separated by a hyperplane h′, then for
h′ = {x ∈ Ed : h1x1 + h2x2 + · · · + hdxd + hd+1 = 0}, Definitions 2 and 3 assert that for all
a ∈ A, h1a1+h2a2+ ..+hdad+hd+1 < 0, and for all b ∈ B h1b1+h2b2+ ..+hdbd+hd+1 > 0.
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Then by Definition 6, h′∗ ∈ D−(a) and h′∗ ∈ D+(b). In words, if point a is below hyperplane h′

and point b is above hyperplane h′ in Ed then hyperplane a∗ is below point h′∗ and hyperplane b∗ is
above point h′∗ in Ed+1. Therefore, h′∗ is a point in the intersection of negative/positive halfspaces
bounded by a∗ and b∗.

We are now prepared to prove one of our key findings, which establishes a precise lower bound
on the misclassification error for any linear classifier. This result directly relates to a fundamental
aspect of support vector machines.

Proof. Theorem 3 (Fractional Kirchberger): The duality transform may be applied to A ∪ B to
obtain the family of halfspaces C = D−(A) ∪D+(B). Thus, C contains n halfspaces of Ed+1 that
are in one to one correspondence with the points of A∪B. Let f denote an arbitrary (d+2)-member
subset of A∪B. By Lemma 1, if f admits a strict linear separation, then

⋂
D−(f ∩A)∩D+(f ∩B)

is non-empty. If there are α
(

n
d+2

)
such (d + 2)-member subsets of A ∪ B, then there are α

(
n

d+2

)
intersecting (d + 2)-tuples of C. It follows from the Fractional Helly Theorem, that there are at
least βn halfspaces of C that share a common intersection. Then by Lemma 1, the dual of a point
h∗ ∈ Ed+1 from this intersection produces a hyperplane h ∈ Ed that strictly separates at least βn
members of A ∪ B.

Here, β (the optimal lower bound stated in Theorem 6) is in fact an asymptotic bound that holds for
all n. However, we may refine this bound when we wish to assess the fractional linear separability
of A ∪ B for a specific value of n. As established in the proof of Theorem 3, linear separators
correspond to intersection points among the halfspaces of A ∪ B. Therefore, we can readily apply
the bound from Theorem 7 to the case of fractional linear separability. Once we determine the value
of α, which signifies the fraction of strictly linearly separable (d+2)-tuples in Ed, we can conclude
that there are αn intersecting dual halfspaces in Ed+1. Now, considering d′ = d+1 and k = d′+1,
Theorem 7 can be applied, resulting in:

β =
r + d′ + 1

n
, (1)

where r is determined as:

r = argmax
r

r|
d′∑
i=0

(
r

k − i

)(
n− r

i

)
< α

(
n

k

) . (2)

In this manner, we leverage the dataset’s size to establish a precise lower bound on the fractional
linear separability of A∪B. To demonstrate the tightness of the lower bound provided by Theorem
3 in relation to the optimal linear separator, we conducted a series of experiments. In these exper-
iments, we randomly placed points in a d-dimensional hypercube, assigning each point a random
label of either yi = 1 or yi = −1 with equal probability. We repeated this process for n = 20 points
across 5000 trials. For each trial, we performed and recorded the following computations:

1. We calculated α by examining each (d+ 2)-tuple of points to test for linear separability.
2. Using α, we we derived the theoretical lower bound of β using equations equation 1 and

equation 2.
3. We determined the true value of β by identifying an optimal linear separator minimizing

the misclassification count.

The procedure was conducted separately for d = 2 and d = 3, and the aggregated results are
presented in Figure 3.

3.3 SOFT-MARGIN SVM CLASSIFICATION

In this subsection, we utilize the Fractional Kirchberger Theorem to establish a fractional counterpart
to Theorem 2. Essentially, Theorem 4 provides a lower bound on the performance of a soft-margin
SVM when not all samples from the dataset {(Xi, yi)} can be accurately linearly classified with a
margin of w0. As previously, we maintain the notations A and B to denote the two classes within
data.
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(a) (b)

(c) (d)

Figure 3: (a) β comparison in E2. (b) β comparison in E3. (c) α histogram for E2. (d) α histogram
for E3.

Proof. Theorem 4 (SVM Fractional Kirchberger): Since each of the α
(

n
d+2

)
of the d+2-member

sets of A ∪ B admit a linear separator with margin w0, they are linearly separable, then Theorem
2 implies the existence of β, for which there exists some U ⊂ A ∪ B, with |U | ≥ βn such that
conv(U ∩ A) ∩ conv(U ∩ B) = ∅. To simplify the following argument, we may assume that
each (d + 2)-member subset of A ∪ B that are not separable with margin w0 are also not linearly
separable. Observe that the lower bound of β would remain valid with or without our simplifying
assumption, which is to say that the (d + 2)-tuples of A ∪ B that are separable with margin w0 but
are possibly linearly separable have no representation in U . By this assumption, if a set of points
is linearly separable, it is linearly separable with margin w0. Since U is linearly separable, then by
Kirchberger’s Theorem, every (d+2)-member subset of U must be linearly separable and therefore
by our assumption must be separable with margin w0. Then we observe that there are some closest
pair of points (amin, bmin) : {amin ∈ U ∩A, bmin ∈ U ∩B} such that d(amin, bmin) > δ, and the
remainder of the proof follows identically to that of Theorem 4.

We employ the Fractional Kirchberger Theorem to obtain U because the (d+2)-member subsets of
U differ from the (d+2)-tuples of A∪B that are separable with margin w0. Theorem 4 necessitates
that linear separation with with margin w0 holds for the entire family of (d + 2)-tuples of the set
under consideration.

4 FRACTIONAL HYPERSPHERE CLASSIFICATION

In this section, we present the paper’s final result: a fractional Kirchberger-type theorem that es-
tablishes a lower bound on the performance of a hypersphere classifier when applied to a specific
dataset. This lower bound is based on the classifier’s performance with samples of size d + 3.
Conditions for achieving strict spherical separability of the entire dataset are well-known in the lit-
erature Lay (2007; 1971); Simons & Trapp (1974), and we extend these results to the fractional
setting. We begin by providing a formal definition of spherical separability.
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Definition 5. (Spherical Separability)- Given point sets A, B in Ed. A∪B are strictly separable by
hypersphere hs = {x ∈ Ed : ∥x− p∥ = γ} if for a ∈ A, ∥a− p∥ < γ and for b ∈ B, ∥b− p∥ > γ,
or vice versa.

Our proof method involves stereographically projecting Ed onto a tangent hypersphere of Ed+1

(as Figure 4 illustrates), effectively transforming the problem into one of linear separation in Ed+1

(hence the d + 3 requirement). We consider the point set A ∪ B, where not all of its (d + 3)-
member subsets exhibit strict spherical separability. To extend this result to the fractional case,
we demonstrate that when only α

(
n

d+3

)
of (d + 3)-point samples can be correctly classified by a

hypersphere, we can apply the Fractional Helly Theorem to the dual of the projected points. This
yields a lower bound on the size of the largest subset with a common intersection (βn). Through the
duality transformation, this lower bound on the intersection number in the dual space corresponds
to a lower bound on the number of points in the original dataset that are accurately classified by a
hypersphere.

Proof. Theorem 5 (Fractional Hypersphere Separation): Let T be a subset of d + 3 points in
Ed. Consider the embedding of Ed into a hyperplane h of Ed+1. Let S be a (d + 1)-dimensional
hypersphere tangent to h at an arbitrary point p. Let p0 denote the antipodal point to p. Then there
is a bijective map, π, that sends each point z ∈ Ed to {S/p0} ∩ r, where r is the ray originating
from z and passing through p0. If T is strictly spherically separable in Ed, then a d-dimensional
hypersphere hs exists such that all points in T ∩ A lie in hint

s and all points in T ∩ B lie in hext
s ,

where hint
s and hext

s denote the interior and exterior of hs, respectively. Considering the projections
of T and hs onto S, it follows that π(hs) is contained in the intersection of S with a hyperplane
Hs ∈ Ed+1 such that π(hint

s ) and π(hext
s ) are strictly linearly separated by Hs. Observe that the

projections of a set of d+3 points in Ed corresponds to a set of d′ +2 points in Ed′
for d′ = d+1.

Since there are α
(

n
d′+2

)
such subsets of projected points that are strictly linearly separable in Ed′

,
then by Theorem 3 there exists a hyperplane H ′

s ⊂ Ed′
that strictly linearly separates the projections

of βn members of A ∪ B. Thus, π−1(H ′
s) is a hypersphere in Ed that satisfies the claim.

Figure 4: Stereographic projection of Ed onto S.

5 CONCLUSION

Through the lens of duality, we have unveiled the remarkable potential of the Fractional Helly The-
orem to establish lower bounds on fractional linear separability, fractional separability with margin,
and fractional separation by hypersphere. Notably, the bounds deduced from Theorem 2 and Theo-
rem 4 find direct, real-world applications in hard-margin and soft-margin SVMs, respectively. One
paramount aspect of our work is the deterministic nature of these lower bounds. Each bound is
obtained as a direct combinatorial implication of the given classifier’s performance on small subsets
of the dataset {(Xi, yi)}, offering a practical and qualitatively distinct alternative to VC-dimension-
based performance analysis. Moreover, this approach takes into account dataset distribution while
maintaining manageable local computation requirements with fixed sample cardinality. The fusion
of combinatorial methods with machine learning approaches will afford a fresh perspective on evalu-
ating classification potential. The practical implementation of these bounds and their integration into
real-world machine learning systems opens exciting avenues for further research and innovation.
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Imre Bárány, Meir Katchalski, and János Pach. Quantitative helly-type theorems. Proceedings of
the American Mathematical Society, 86(1):109–114, 1982.

Kristin P Bennett and Erin J Bredensteiner. Duality and geometry in SVM classifiers. In ICML,
volume 2000, pp. 57–64. Citeseer, 2000.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability and
the vapnik-chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.

Colin Campbell and Yiming Ying. Learning with support vector machines. Springer Nature, 2022.

Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodrı́guez-Mazahua, and Asdrubal Lopez. A com-
prehensive survey on support vector machine classification: Applications, challenges and trends.
Neurocomputing, 408:189–215, 2020.
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