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Fig. 1: Qualitative results on Mip-NeRF360 [1] dataset garden scene.

Abstract. Recently, 3D Gaussian Splatting (3DGS) has emerged as an
efficient approach for accurately representing scenes. However, despite
its superior novel view synthesis capabilities, extracting the geometry
of the scene directly from the Gaussian properties remains a challenge,
as those are optimized based on a photometric loss. While some concur-
rent models have tried adding geometric constraints during the Gaussian
optimization process, they still produce noisy, unrealistic surfaces.
We propose a novel approach for bridging the gap between the noisy
3DGS representation and the smooth 3D mesh representation, by inject-
ing real-world knowledge into the depth extraction process. Instead of ex-
tracting the geometry of the scene directly from the Gaussian properties,
we instead extract the geometry through a pre-trained stereo-matching
model. We render stereo-aligned pairs of images corresponding to the
original training poses, feed the pairs into a stereo model to get a depth
profile, and finally fuse all of the profiles together to get a single mesh.
The resulting reconstruction is smoother, more accurate and shows more
intricate details compared to other methods for surface reconstruction
from Gaussian Splatting, while only requiring a small overhead on top
of the fairly short 3DGS optimization process.
We performed extensive testing of the proposed method on in-the-wild
scenes, obtained using a smartphone, showcasing its superior reconstruc-
tion abilities. Additionally, we tested the method on the Tanks and Tem-
ples and DTU benchmarks, achieving state-of-the-art results.
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Fig. 2: The proposed pipeline for surface reconstruction. First, we represent the scene
by applying a 3DGS model. We then use the 3DGS model to render stereo-aligned
pairs of images corresponding to the original views. For each pair, using a shape from
stereo algorithm, we reconstruct an RGB-D structure, which is then integrated from
all views using TSDF [9] into a triangulated mesh of the scene.

1 Introduction

The Gaussian Splatting Model for radiance field rendering (3DGS) [19] has re-
cently marked a significant leap forward in the realm of novel view synthesis,
surpassing previous neural rendering methods in both speed and accuracy. By
optimizing the distribution, size, color, and opacity of a cloud of Gaussian el-
ements, and projecting, or splatting them onto virtual cameras, 3DGS is able
to generate realistic images of complex scenes from novel viewing directions in
real-time. However, direct reconstruction of surfaces from 3DGS involves signif-
icant challenges. The main problem is that the locations of the Gaussian ele-
ments in 3D space do not form a geometrically consistent surface, as those are
optimized for best matching the input images when projected back onto their
image planes. Consequently, reconstructing surfaces based on the centers of the
Gaussians yields noisy and inaccurate results. Current state-of-the-art methods
attempt to regularize the 3DGS optimization process by adding additional geo-
metric constraints [14], flattening the Gaussian elements, [15], or extracting the
geometry using opacity fields [51], but they still rely on the Guassian locations
and form noisy, unrealistic surfaces.

We propose an alternative approach for extracting depth from the optimized
Gaussian point cloud, which does not rely on the noisy locations of the Gaus-
sians. Instead, we take advantage of a powerful geometric regularizer, trained on
real-world data - a pre-trained stereo matching model. Stereo matching models
solve a correspondence problem on stereo-aligned pairs of images, from which
accurate depth can be extracted. Our main observation is that through 3DGS
rendering, we can artificially create stereo-aligned pairs of images correspond-
ing to the original views, feed these pairs into a pre-trained stereo model, and
fuse the resulting depths using the Truncated Signed Distance Function (TSDF)



GS2Mesh 3

algorithm [9]. The result is a smooth, geometrically consistent surface, that is
extracted from the noisy 3DGS cloud using real-world regularization.

The proposed method reduces surface reconstruction time dramatically, tak-
ing only a small overhead on top of the 3DGS capturing of the scene, which
is significantly faster compared to neural surface reconstruction methods. For
instance, reconstruction of an in-the-wild scene taken by a standard smartphone
camera requires less than five minutes of additional computation time after a
3DGS scene capture. Additionally, since we reconstruct the surface based on the
3DGS capture, it is straightforward to bind the mesh to the original model, as
mentioned in [14, 37], for mesh-based manipulation of the Gaussian elements.
Moreover, since our mesh is more accurate, it does not require any additional
refinements [14].

We tested the proposed method on the Tanks and Temples (TnT) bench-
mark [21] as well as the DTU [16] benchmark, two commonly used 3D recon-
struction datasets, and achieved state-of-the-art results. Additionally, we exten-
sively tested our method on in-the-wild scenes captured with a smartphone,
showing qualitative results of the proposed method’s reconstruction abilities. To
summarize, our main contribution,

– We propose a novel method for fast and accurate in-the-wild surface recon-
struction, by using a pre-trained stereo matching model as a geometric prior
for extracting depth from a 3DGS model.

2 Related Efforts

2.1 Multi-View Stereo and Stereo Matching

Multi-View Stereo (MVS) is a fundamental geometry reconstruction method,
where depth maps are extracted for each reference image based on correspon-
dences with neighboring images. In the field of deep MVS methods, the pioneer-
ing work of MVSNet [46] introduced an end-to-end framework for MVS learning,
which can be divided into three parts: 2D feature extraction, homography, and
3D cost volume with 3D convolutions. Latter methods presented an improve-
ment to this scheme, by improving the 3D cost volume [26, 55], improving the
architecture for 2D feature extraction [38], using a vision transformer (ViT) ar-
chitecture for feature extraction [4], and improving 3D convolutions for more
efficient computations using a coarse-to-fine method [13, 45]. To fuse the ex-
tracted depth maps into one point cloud or mesh there are two main methods:
Fusibile [12], which has recently been generalized by [44], and TSDF [9]. MVS
methods deeply rely on accurate camera poses for the calculation of epipolar
lines, and on in-the-wild scenes they struggle to achieve high accuracy as in the
controlled environment, since small errors in pose estimation result in a noisy
reconstruction, as we show in our ablation study.

Deep stereo matching methods [5, 18, 22, 29, 34, 53] are related to deep MVS
methods, however, since it is guaranteed that matching pixels between two im-
ages must lie in the same row, the cost volume layer works on the disparity
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instead of the depth. Recent state-of-the-art stereo matching models, such as
RAFT [25], IGEV [43], and DLNR [56], use iterative refinement using GRU or
LSTM layers. Unlike MVS methods, stereo methods require only two images
which are typically closer to each other compared to MVS, and share the same
image plane, resulting in less occluded regions which are visible only in one of
the views.

2.2 Neural Rendering for Novel View Synthesis and Surface
Reconstruction

Novel view synthesis methods are trained on a set of images from a scene, and
aim to render views of a scene from any given pose. The pioneering work of
Neural Radiance Fields (NeRF) [27] presented a major leap forward in accu-
racy by incorporating importance sampling and positional encoding to enhance
rendering quality. However, the use of relatively large Multi-Layer Perceptrons
(MLP) to capture the scene resulted in long training times. Later, Mip-NeRF [1]
improved the quality of the rendered view with a different sampling method,
although training and rendering times remained long. InstantNGP [28] tackled
the extended training times of previous efforts, by incorporating a hash grid and
an occupancy grid with a small MLP.

Neural surface reconstruction methods [35, 39, 48, 49], in addition to accu-
rately rendering novel views, are also capable of reconstructing the surface of the
scene. IDR [49] trained an SDF represented by an MLP for both color and geom-
etry reconstruction. Neus [39] reduced the geometric error by utilizing weighted
volume rendering, and HF-Neus [40] enabled coarse-to-fine refinement for high-
frequency detail reconstruction by decomposing the implicit SDF into a base
function and a displacement function. RegSDF [54] used a point cloud obtained
from shape-from-motion (SfM) as regularization, in addition to regularizing the
curvature of the zero-level of the SDF function. NeuralWarp [10] suggested re-
fining the geometry by regularizing image consistency between different views
through warping based on implicit geometry. Neuralangelo [24], using a 3D hash
encoded grid, enabled detailed reconstruction and achieved state-of-the-art re-
sults on leading benchmarks. However, reconstruction time of these methods can
reach up to several days per scene. In the context of novel stereo views, a recent
model [36] has managed to successfully perform unsupervised training of a stereo
model using rendered stereo-aligned triplets from a neural scene reconstruction
method, showcasing the possibility of novel view synthesis as a data factory.

2.3 Gaussian Splatting for Novel View Synthesis and Surface
Reconstruction

Recently, a major leap forward was presented by 3DGS [19], a faster and more ac-
curate method for scene capturing. 3DGS represents the scene as a point cloud of
3D Gaussians, where each Gaussian has the properties of opacity, rotation, scale,
location, and spherical harmonics. The scaling of the Gaussians is anisotropic,
which allows them to represent thin structures in the scene. The Gaussians are
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initialized using an SfM algorithm [32,33], which extracts the camera poses and
provides an initial guess for the locations of the Gaussians. The capturing time
is short compared to other methods based on MLPs, and it is capable of real-
time rendering. Concurrent works on GS [6, 8, 11, 42, 50] have improved on the
vanilla 3DGS in various ways, such as by reducing optimization time, increasing
accuracy, reducing aliasing and removing the need for COLMAP [32,33] poses.

As discussed earlier, the Gaussian locations in the vanilla 3DGS do not form
a geometrically consistent surface. Recent methods try to manipulate the Gaus-
sian elements to extract more accurate surfaces [7, 14, 15]. SuGaR [14], the pi-
oneering method in surface reconstruction from Gaussian Splatting, added a
regularization term for post-process optimization based on the opacity levels of
the Gaussians, forcing the Gaussian element cloud to align with the surface.
2DGS [15] flattens the Gaussians into 2D elements, and GOF [51] extracts the
surface by creating an opacity field from the Gaussians. However, since these
methods utilize the location and opacity of the Gaussian elements, they recon-
struct the surface with noisy undulations.

3 Method

We propose a novel pipeline for surface reconstruction from 3DGS, as illustrated
in Fig. 2. In this section, we will explain in detail each step of the pipeline. We
note that additionally, we can mask out specific objects by projecting segmen-
tation masks from Segment Anything Model (SAM) [20] between consecutive
images using depth maps. Additional information on masking is available in the
supplementary material.

3.1 Scene Capture and Pose Estimation

We start with a video or images of a static scene as input. Following the vanilla
3DGS, we employ COLMAP [32, 33] for SFM to identify points of interest and
deduce camera matrices from the provided images.

3.2 3DGS and Stereo-Aligned Novel View Rendering

The elements extracted from the previous stage are then fed into the 3DGS
model to accurately represent the scene. For completeness, we will give a short
formulation of the 3DGS process; In 3DGS, 3D Gaussian elements are defined in
space by G(x) = exp(− 1

2 (x− xp)
⊤Σ−1(x− xp)), where xp is the center of the

Gaussian, and Σ is its covariance matrix. During optimization, Σ is factorized
into the rotation R and scale S matrices: Σ = RSS⊤R⊤. When rendering,
the Gaussians are projected onto the image plane: Σ′ = JWΣW⊤J⊤, where
W is the view transformation, and J is the Jacobian of the affine projective
transformation onto the image plane. By removing the last row and column of
Σ′, we remain with 2D Gaussians in the image plane. To calculate the color of
a pixel in the image plane, 3DGS employs alpha blending which applies weights
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to the opacity from front to back, C =
∑

i∈N αici
∏i−1

j=1(1 − αj), where αi is
the product of the the ith 2D Gaussian with its opacity parameter, and ci is the
the directional appearance component. For more details, see the original 3DGS
paper [19].

During the 3DGS process the Gaussians are optimized based on the photo-
metric loss between the given source images and their corresponding rendered
images. This creates a representation of the scene that allows rendering novel
views which were not present in the original training data. It is important to
note that the vanilla 3DGS relies on sufficient coverage of the scene, and in ar-
eas lacking sufficient coverage, noisy artifacts might appear, as seen in Fig. 8.
Additionally, since the 3DGS is optimized based on the training images, staying
close to a training image will result in a cleaner render.

Therefore, when generating novel stereo views of the scene, we input a suf-
ficient amount of images that cover the region of interest. Additionally, we stay
as close as possible to the original training poses, by choosing the left image of
the stereo pair to be at the same pose RL, TL as a training image. Following this
choice, the right pose with a horizontal baseline of b is formulated as follows:
RR = RL, TR = TL + (RL × [b, 0, 0]). This ensures that the resulting left-right
cameras are stereo-calibrated.

3.3 Stereo Depth Estimation

With the rendered stereo-aligned image pairs, we can essentially turn a scene cap-
tured from a single camera into a scene captured from a pair of stereo-calibrated
cameras, using the novel view synthesis capabilities of 3DGS. We then apply
a stereo matching algorithm to form depth profiles from every stereo pair. We
have tested several stereo matching algorithms in the experimental section, and
achieved the best qualitative and quantitative results with DLNR [56], a state-
of-the-art neural stereo matching model, with the pre-trained Middlebury [31]
weights. To further enhance the resulting reconstructions, we apply several masks
to the output of the stereo model. The first mask is an occlusion mask, which
is calculated by applying a threshold on the difference between the left-to-right
and right-to-left disparities of the same pair of images. This masks out parts of
the scene that were only visible in one of the cameras, and therefore the stereo
model’s output in these areas is unreliable. We justify the use of this mask by
the fact that the occluded areas will be filled in from adjacent stereo views. An
example of an occlusion mask can be seen in Fig. 3, and we added an experi-
ment in the supplementary material which demonstrates the effectiveness of the
occlusion mask.

The second mask is applied based on the depth of the stereo output. The rela-

tionship between stereo matching errors can be described as ϵ(Z) ≈ ϵ(d)

fx ·B
Z2 [3],

where ϵ(d) represents the disparity output error, Z is the ground-truth depth,
ϵ(Z) is the error of the depth estimate, fx denotes the camera’s horizontal focal
length, and B is the baseline. Conversely, the disparity between matching pix-
els in two images of an object that is positioned at a short distance from the
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cameras can exceed the maximum disparity limit produced by stereo matching
algorithms. Thus, estimating the depth of an object that is too close to the
camera can result in an error due to the limitation of the matching algorithms,
and estimating the depth of an object that is distant results in a quadratic er-
ror. Therefore, we consider depth in the range 4B ≤ Z ≤ 20B. This approach
enhances the overall accuracy and reliability of the depth estimation process,
ensuring more consistent geometric reconstructions. With the above considera-
tions taken into account, we now have two contradicting factors when setting
the horizontal baseline of the stereo pair; On the one hand, a larger baseline
allows for a wider “sweet spot” for the stereo model. On the other hand, the
3DGS limits how far we can stray from the original training images without pro-
ducing noisy renders. In the experimental section, we tested different baselines
and found that a horizontal baseline of 7% of the scene radius, or 3.5% of the
scene diameter, which allows for a “sweet spot” in the range of 14% to 70% of
the scene diameter, provides the best results.

Fig. 3: Example of our method’s output on DTU [16] scan105. From left to right: The
rendered left and right images, segmentation mask, left-right disparity, occlusion mask,
and shading - depth gradient.

3.4 Depth Fusion into Triangulated Surface

To further enhance geometric consistency and smooth out any noise and errors
which might have originated from the individual depth profiles, we aggregate all
of the extracted depths using the Truncated Signed Distance Function (TSDF)
algorithm [9], followed by the Marching-Cubes meshing algorithm [41].

4 Experiments and Results

We present experiments which demonstrate that our method is able to accu-
rately reconstruct surfaces in a more geometrically consistent way than other
3DGS-based or MVS approaches, as well as achieve comparable performance
to neural reconstruction methods while taking significantly less time to run.
For quantitative results, we tested our method on the Tanks and Temples [21]
and DTU [16]datasets, and compared our results to various neural and 3DGS-
based reconstruction methods. We also compared between different versions of
our model to justify our design choices. Additionally, we show qualitative recon-
struction results from Mip-NeRF360 [1], demonstrating that our method achieves
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comparable visual quality to neural reconstruction methods, and on in-the-wild
videos taken from smartphones, we show our superiority in terms of geometric
consistency and smoothness when compared to SuGaR [14]. Finally, we perform
an ablation study on the MobileBrick [23] dataset, which validates the contribu-
tion of novel-view image generation and stereo, by replacing two different points
in our pipeline with a deep MVS model. We note that in the MobileBrick dataset
the camera poses are manually refined, and are shown to be more accurate than
COLMAP [32,33] poses for reconstruction [23]. The comparison we present thus
favors MVS models in that respect.

Image

SuGaR

Ours

Fig. 4: Qualitative comparison of mesh reconstruction from in-the-wild videos between
our method and SuGaR [14].

4.1 Datasets

DTU [16]. This dataset is an MVS dataset, containing scans of small objects,
as well as accurate camera poses and 3D point clouds. We use the dataset and
evaluation code from [15], which calculates the Chamfer Distance (CD) between
the reconstructed and ground-truth point clouds.
Tanks and Temples (TnT) [21]. This dataset contains videos of large objects
such as vehicles, buildings and statues. These objects are scanned with a laser
scanner for an accurate ground-truth 3D point cloud. As the videos and the
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laser scanned objects are difficult to align [30], for evaluation we use the official
TnT [21] evaluation alignment method. It first aligns the point clouds using
ICP [2], and then calculates the precision, recall, and F1 score.
Mip-NeRF360 [1]. This dataset contains scenes taken from a 360 degree view,
with emphasis on minimizing photometric variations through controlled capture
conditions. Since there is no ground-truth in terms of surface reconstruction, we
leave this as a qualitative comparison only.
MobileBrick [23]. This dataset contains videos of LEGO models, with corre-
sponding 3D ground-truth meshes created from the LEGO 3D model. The poses
are manually refined and are more accurate than the COLMAP ones [32, 33].
This dataset is challenging since most of the videos in the test set are taken
from a top view of the model, thus, creating occlusions and leaving areas in the
model with little visibility. We use the official evaluation code.
In-the-wild videos. For reconstruction of in-the-wild objects, our method
presents a favorable balance between accuracy and computation time. To val-
idate this claim, we captured scenes containing various objects such as plants,
sculptures, figures and everyday items, with intricate geometries and textures,
and reconstructed their surface. Each video contains one or two cycles of mov-
ing around the object, depending on the object’s size, without any measures
to maintain a persistent radius or pose of the camera, and without any control
of the lighting in the environment. Since these objects are filmed only with a
smartphone camera, there is no ground-truth reconstruction for these objects.

4.2 Baselines

Gaussian Splatting-based methods. For the DTU [16] dataset, We compare
our method with the vanilla 3DGS [19] and SuGaR [14], as well as additional
state-of-the-art methods, namely 2DGS [15] and Gaussian Opacity Fields (GOF)
[51]. For the TNT [21] and Mip-NeRF360 [1] datasets, as well as for in-the-wild
scenes, we compare with SuGaR [14].
Neural rendering methods. For the DTU [16] dataset, we compare our
method with Neuralangelo [24], VolSDF [47], and NeuS [39]. For the TnT [21]
dataset, we compare with Neuralangelo [24], NeuralWarp [10] and NeuS [39]. For
the Mip-NeRF360 [1] dataset, we compare with BakedSDF [48].
Deep MVS. for in-the-wild scenes and the MobileBrick [23] dataset, we compare
with MVSformer [4], a state-of-the art deep MVS network.

4.3 Results

DTU [16]. Tab. 1 presents quantitative results on the DTU [16] dataset. We
ran the 3DGS step of our method for 30000 iterations, but as we show in the
supplementary material, we can achieve nearly identical results with only 7000
iterations, reaching a mean Chamfer Distance of 0.70 with only ∼ 12m of total
runtime per scan. We used the same TSDF as in 2DGS [15] and GOF [51],
which is based on the Open3D implementation [9], for a fair comparison. We
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Table 1: Quantitative results on the DTU [16] dataset, comparing our method with
state-of-the art neural and Gaussian Splatting-based methods. Chamfer distance - lower
is better. Red-1st, Orange-2nd, Yellow-3rd. Table adapted from [51].

24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean Time

N
eu

ra
l NeRF [27] 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49 > 12h

VolSDF [47] 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86 > 12h
NeuS [39] 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84 > 12h
Neuralangelo [24] 0.37 0.72 0.35 0.35 0.87 0.54 0.53 1.29 0.97 0.73 0.47 0.74 0.32 0.41 0.43 0.61 > 12h

G
au

ss
ia

n
Sp

la
tt

in
g 3DGS [19] 2.14 1.53 2.08 1.68 3.49 2.21 1.43 2.07 2.22 1.75 1.79 2.55 1.53 1.52 1.50 1.96 11.2m

SuGaR [14] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 ∼ 1h
2DGS [15] 0.48 0.91 0.39 0.39 1.01 0.83 0.81 1.36 1.27 0.76 0.70 1.40 0.40 0.76 0.52 0.80 18.8m
GOF [51] 0.50 0.82 0.37 0.37 1.12 0.74 0.73 1.18 1.29 0.68 0.77 0.90 0.42 0.66 0.49 0.74 30m
Ours - DLNR Baseline 3.5% 0.61 0.85 0.64 0.39 0.96 1.25 0.80 1.52 1.10 0.68 0.59 0.93 0.45 0.60 0.54 0.79 ∼20m
Ours - DLNR Baseline 10.5% 0.69 0.81 0.95 0.51 0.82 1.06 0.72 1.18 0.93 0.61 0.54 0.66 0.37 0.54 0.50 0.73 ∼20m
Ours - RAFT Baseline 7% 0.59 0.81 0.68 0.40 0.83 1.15 0.73 1.35 1.05 0.62 0.53 0.80 0390 0.55 0.49 0.73 ∼20m
Ours - DLNR Baseline 7% 0.59 79 0.70 0.38 0.78 1.00 0.69 1.25 0.96 0.59 0.50 0.68 0.37 0.50 0.46 0.68 ∼20m

apply the mask supplied with the dataset before inputting the depths into the
TSDF algorithm. The table is adapted from GOF [51] for consistency. Within the
splatting-based methods, our method achieves the best score, while maintaining
a similar runtime. Additionally, when compared to the neural methods, which
take more than 12 hours to reconstruct a single scene, our method surpasses
some of the methods, and is comparable with Neuralangelo [24], the state-of-
the-art method. Additionally, we test our method with RAFT [25] as the stereo
model with the RVC weights [17] and with DLNR [56] as the stereo model with
the Middlebury weights [31], achieving better results with DLNR. Finally, we
compare between three different horizontal baselines: 3.5%, 7% and 10.5% of
the scene radius. We achieve the best results with 7%, noting that increasing
or decreasing the horizontal baseline has a negative effect on the results. Fig. 3
shows an example of the intermediate representations of our method on one of
DTU [16] scan105, and the full set of reconstructed meshes is available in the
supplementary material.

Table 2: Quantitative results on the Tanks and Temples [21] benchmark. F1 score -
higher is better.

Barn Caterpillar Ignatius Truck Mean F1 ↑ Runtime

N
eu

ra
l NeuralWarp [10] 0.22 0.18 0.02 0.35 0.19

NeuS [39] 0.29 0.29 0.83 0.45 0.47 ∼16h-48h
Neuralangelo [24] 0.70 0.36 0.89 0.48 0.61

G
S SuGaR [14] 0.01 (0.08) 0.02 (0.09) 0.06 (0.34) 0.05 (0.17) 0.04 (0.17) ∼2h

Ours 0.21 (0.22) 0.17 (0.12) 0.64 (0.68) 0.46 (0.40) 0.37 (0.36) ∼1h

Tanks and Temples [21]. Tab. 2 presents a summary of the reconstruction
results on the TnT [21] benchmark. Since SuGaR [14] yields a sparse mesh, and
thus its recall drops significantly, we include a precision metric that is unaf-
fected by mesh sparsity. However, it is important to note that this metric does
not account for missing parts in the reconstruction. The results show that our
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Image SuGaR Ours

OursSuGaR

Ours

SuGaR

Fig. 5: Qualitative results on Tanks and Temples [21]. Top row: Ignatius scene, com-
pared to SuGaR [14]. Bottom row: Barn scene, compared to SuGaR.

method outperforms SuGaR [14] in both F1 and precision. Additionally, it is
evident from Fig. 5 that our method is able to reconstruct fine details such as
in the Barn scene. Moreover, our method has a significant advantage in terms
of processing time, requiring less than 60 minutes of total computation time per
TnT [21] scene, compared to the 16-48 hours needed by neural reconstruction
methods. The reason for our relatively longer computation times for TnT [21]
is since each scene containing hundreds of frames, compared to a typical in-the-
wild scene which contains less than 100 frames. It is important to note that
the TnT [21] dataset predominantly features large scenes, whereas our method
is based on 3DGS reconstruction that is designed for accurate reconstruction
of smaller ones, and TSDF which is better suited for reconstruction of specific
objects. This is particularly evident in the case of the Ignatius and Truck scenes,
relatively small scenes, where our method performed on-par with the neural
reconstruction methods.
Mip-NeRF360 [1]. As illustrated in Fig. 1 and Fig. 6, we present a qualitative
analysis of scenes from the Mip-NeRF360 [1] dataset. This comparison reveals
that our approach surpasses SuGaR [14] in terms of reconstruction quality and
presents on-par results with BakedSDF [48]. Notably, our method excels in re-
constructing fine details; for instance, even the small groves in the garden scene’s
table are evident in the reconstruction, and there are intricate details in the ob-
jects on the countertop scene. Furthermore, while BakedSDF [48] requires 48
hours for training, our method achieves comparable results in less than an hour.
Compared to SuGaR [14], our method generates smoother and more realistic
surfaces, especially in reflective areas; we note that our countertop is smooth
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Image SuGaR

BakedSDF Ours

Fig. 6: Qualitative comparison on Mip-NeRF360 [1] dataset with BakedSDF [48] and
SuGaR [14].

and flat, while SuGaR’s countertop has many bumps in areas with glare. This is
likely due to our model’s use of a small baseline for stereo matching, where the
reconstruction distortion is relatively small, and additionally, due to our model
integrating the reconstructed patches from various viewing directions, which fur-
ther reduces potential distortions.
In-the-wild comparison. Our comprehensive in-the-wild comparisons demon-
strate the superior performance of our method across various scenes, as illus-
trated in Fig. 4, with additional results provided in the supplementary material.
Our method surpasses SuGaR [14] in extracting accurate and noise-free meshes
from 3DGS.

4.4 Ablation Study

Our main contribution is the use of a pre-trained stereo model to extract depth
from a 3DGS scene using novel stereo views. To strengthen our claim of the
benefit of using novel stereo views, we perform two ablations, which include
replacing steps of our pipeline with deep MVS methods.
MVS on original images. Our method extracts depth from each original pose,
by creating novel stereo-aligned views from that pose and applying a pre-trained
stereo matching model. One obvious comparison would be to take each original
pose and extract the depth using a pre-trained deep MVS model which will take
as input the original training set of the scene. In the first ablation, we run a pre-
trained deep MVS model on the original images, and fuse the resulting depths
using TSDF [9].
MVS on rendered images. Applying 3DGS to the scene and re-rendering the
images from the original poses can reduce distortion and camera noise, which
may enhance the quality of the reconstruction regardles of the novel stereo views.
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In the second ablation, we run a pre-trained deep MVS model on the rendered
images from the original poses, which are the left image of each stereo-aligned
novel view, and fuse the resulting depths using TSDF [52].
Evaluation. We evaluate on the MobileBrick [23] test set, and compare our
method against MVSFormer [4], a state-of-the-art deep MVS model. To ensure
a fair comparison, we use TSDF [9] as the fusion method both for our method
and the deep MVS model.
Results. Tab. 3 shows the mean accuracy, recall, F1 and Chamfer Distance of
Our method, compared to MVSFormer [4] with the original and rendered images
as input. Fig. 7 shows a qualitative comparison on one of the scans in the Mobile-
Brick [23] dataset, with the rest of the scans, as well as additional examples from
in-the-wild scenes, available in the supplementary material. Qualitative compar-
ison shows that applying deep MVS directly on the original images results in a
reconstruction filled with holes. Applying MVS on the rendered images slightly
improves the quality of the reconstruction, however, our method still produces
a significantly smoother reconstruction. Quantitative comparison confirms that
inputting rendered images to the same MVS model results in a smoother recon-
structed surface, as evident by the higher recall, with a slight trade-off in accu-
racy. Overall, our method performs better, as evident by the higher recall and
F1 and lower Chamfer distance, even though the manually refined poses given
by the MobileBrick [23] dataset should give an advantage to MVSFormer [4].

Table 3: Ablation study results on MobileBrick [23] dataset. We compare our method
against MVSFormer [4] with two types of inputs: the original images with the original
refined poses, and the rendered images with the same poses.

2.5mm Radius 5mm Radius Chamfer Distance
(mm) ↓Method Acc ↑ Recall ↑ F1 ↑ Acc ↑ Recall ↑ F1 ↑

MVSFormer [4] 80.77 55.02 64.60 96.33 71.32 81.14 9.11
MVSFormer + Rendered 80.16 59.92 68.04 96.84 77.50 85.59 7.10
Ours 68.77 69.27 68.94 89.46 87.37 88.28 4.94

Fig. 7: Example from MobileBrick [23] dataset, on the castle scene. From left to right:
the ground truth mesh, reconstruction of MVSFormer [4] with original images, recon-
struction of MVSFormer with rendered images, and our reconstruction.
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5 Limitations

Fig. 8: Examples of limitations of our method. On the left, we show a rendered image
from the Caterpillar scene from TnT [21] dataset, highlighting an area with “floater”
Gaussians. On the right, the Truck scene from TnT [21] dataset, highlighting the miss-
ing windshield.

Our pipeline consists of 3DGS, depth extraction via stereo, and TSDF fusion.
Each of these steps exhibits limitations that can impact the final reconstruction:
3DGS can produce noisy “floater" Gaussians in areas which aren’t sufficiently
covered in the original training images, as can be seen in the right side of Fig. 8.
Additionally, stereo matching models are known to struggle with transparent
surfaces, as can be seen in the left side of Fig. 8. Finally, TSDF fusion does
not scale well for larger scenes, such as the Meetingroom and Courthouse scenes
from TnT [21]. Swapping the 3DGS and stereo with future versions which will
have improved accuracy and robustness, as well as adding fusion methods better
suited for larger scenes, should help mitigate the effect of these limitations.

6 Conclusion

We introduce a novel approach for bridging the gap between noisy Gaussian
point clouds and smooth surfaces in 3D. Instead of applying geometric optimiza-
tions directly on the Gaussians and extracting the depth using their locations,
we use a pre-trained stereo model as a geometric prior with real-world knowl-
edge to extract the depth. While this approach preserves the inherent properties
of the 3DGS representation, it also enhances the accuracy and fidelity of the
reconstructed surfaces. Our experimental results on DTU [16], Tanks and Tem-
ples [21], Mip-NeRF360 [1], MobileBrick [23] and real-world scenes captured
using smartphones - demonstrate the superiority of our method over the cur-
rent state-of-the-art methods for surface reconstruction from Gaussian splatting
models, offering both improved accuracy and significantly shorter computation
times compared to neural methods.
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