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ABSTRACT

Sharpness-Aware Minimization (SAM), which performs gradient descent on ad-
versarially perturbed weights, can improve generalization by identifying flatter
minima. However, recent studies have shown that SAM may suffer from conver-
gence instability and oscillate around saddle points, resulting in slow convergence
and inferior performance. To address this problem, we propose the use of a looka-
head mechanism in the methods of extra-gradient and optimistic gradient. By
examining the nature of SAM, we simplify the extrapolation procedure, resulting
in a more efficient algorithm. Theoretical results show that the proposed method
converge to a stationary point and escape saddle points faster. Experiments on
standard benchmark datasets also verify that the proposed method outperforms the
SOTAs, and converge more effectively to flat minima.

1 INTRODUCTION

Deep learning models have been successful in various real-world applications (LeCun et al., 2015).
However, highly over-parameterized neural networks may suffer from model overfitting and poor
generalization (Zhang et al., 2021). Hence, reducing the performance gap between training and
testing is an important research topic (Neyshabur et al., 2017). Recently, there have been a number of
works exploring the close relationship between loss geometry and generalization performance. In
particular, it has been observed that flat minima often imply better generalization (Chatterji et al.,
2020; Jiang et al., 2020; Chaudhari et al., 2019; Dziugaite & Roy, 2017; Petzka et al., 2021).

To locate flat minima, a popular approach is based on Sharpness-Aware Minimization (SAM) (Foret
et al., 2021). Recently, a number of variants have also been proposed (Kwon et al., 2021; Zhuang et al.,
2022; Du et al., 2022b;a; Jiang et al., 2023; Liu et al., 2022). The main idea of SAM is to first add a
(adversarial) perturbation to the weights and then perform gradient descent there. However, these
methods are myopic as they only update their parameters based on the gradient of the adversarially
perturbed parameters. Consequently, the model may converge slowly as it lacks good information
about the loss landscape. Recent research has found that SAM can suffer from convergence instability
near a saddle point (Kim et al., 2023; Compagnoni et al., 2023; Kaddour et al., 2022).

To alleviate the myopic problem, one possibility is to encourage the model to gather more information
about the landscape by looking further ahead, and thus find better trajectory to converge (Leng et al.,
2018; Wang et al., 2022). In game theory, two popular methods that can encourage the agent to look
ahead are the method of extra-gradient (Korpelevich, 1976; Gidel et al., 2019; Lee et al., 2021) and
its approximate cousin, the method of optimistic gradient (Popov, 1980; Gidel et al., 2019; Daskalakis
& Panageas, 2018; Daskalakis et al., 2018; Mokhtari et al., 2020). Their key idea is to first perform
an extrapolation step that looks one step ahead into the future, and then perform gradient descent
based on the extrapolation result (Bohm et al., 2022). Besides game theory, similar ideas have also
been proven successful in deep learning optimization (Zhou et al., 2021; Zhang et al., 2019; Lin
et al., 2020a), and reinforcement learning (Liu et al., 2023). As SAM is formulated as a minimax
optimization problem (Foret et al., 2021), this inspires us to also leverage an extrapolation step for
better convergence.

In this paper, we introduce the look-ahead mechanism to SAM. Our main contributions are fourfold:

(i) We incorporate the idea of extrapolation into SAM so that the model can gain more informa-
tion about the landscape, and thus help convergence.

(ii) By studying the SAM updates, we propose to reduce the computational cost by removing
some steps from a straightforward application of extra-gradient or optimistic gradient ascent.
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(iii) We provide theoretical guarantees that they converge to stationary points at the same rate as
SAM.

(iv) Experimental results show that the proposed method has better performance, and also
converge to a flatter minimum.

2 BACKGROUND

Sharpness-Aware Minimization (SAM). SAM (Foret et al., 2021) attempts to improve generalization
by finding flat minima (Foret et al., 2021; Wen et al., 2023). This is achieved by minimizing the
worst-case loss within some perturbation radius. Mathematically, it is formulated as the following
minimax optimization problem (Jiang et al., 2023; Liu et al., 2022; Zhao, 2022; Du et al., 2022a):

minw∈Rn maxϵ:∥ϵ∥≤ρ L(w + ϵ), (1)

where L is the loss function, w is the model parameter, and ϵ is the perturbation whose magnitude is
bounded by ρ. By taking first-order approximation on the objective, the optimal ϵ for the maximization
subproblem can be obtained as (Foret et al., 2021; Kwon et al., 2021)

ϵ∗(w) =
ρ∇wL(w)

∥∇wL(w)∥
. (2)

Thus, (1) can be solved by performing gradient descent

wt = wt−1 − η∇wt−1
L

wt−1 + ϵt−1

∣∣∣∣
ϵt−1=

ρ∇wt−1
L(wt−1)

∥∇wt−1
L(wt−1)∥

 (3)

at iteration t, where η is the learning rate.

As SAM requires two forward-backward calculations in each iteration, computationally it is more
expensive than standard empirical risk minimization (ERM). Recently, a number of variants (including
AE-SAM (Jiang et al., 2023), LookSAM (Liu et al., 2022), SS-SAM (Zhao, 2022), ESAM (Du et al.,
2022a)) have been proposed to reduce this cost by using SAM only in iterations that it is likely to be
useful, and use ERM otherwise. For example, Jiang et al. (2023) proposes the AE-SAM, which uses
SAM only when the loss landscape is locally sharp, with sharpness being approximated efficiently
by ∥∇L(wt)∥2. It is shown that ∥∇L(wt)∥2 can be modeled empirically with a normal distribution
N (µt, σ

2
t ), in which µt and σ2

t are estimated in an online manner by exponential moving average as:

µt = δµt−1 + (1− δ)∥∇L(wt)∥2, σ2
t = δσ2

t−1 + (1− δ)(∥∇L(wt)∥2 − µt)
2, (4)

where δ ∈ (0, 1) controls the forgetting rate. When the loss landscape is locally sharp (i.e.,
∥∇L(wt)∥2 ≥ µt + ctσt), SAM is used; otherwise, ERM is used. The threshold ct is decreased
linearly from κ2 to κ1 by the schedule:

ct =
t

T
κ1 +

(
1− t

T

)
κ2, (5)

where T is the total number of iterations.

Besides reducing the training cost, another direction is to improve the performance. For exam-
ple, ASAM (Kwon et al., 2021) introduces adaptive sharpness to improve generalization; and
GSAM (Zhuang et al., 2022) uses a new surrogate loss function that focuses more on sharpness.

Extra-Gradient (EG) (Korpelevich, 1976). Consider the minimax problem:

minx∈Rm maxy∈Rn f(x, y). (6)

EG performs gradient descent-ascent (GDA), i.e., gradient ascent ∇yf(x, y) on y and gradient
descent −∇xf(x, y) on x. Specifically, let z := [x, y]⊤ and F (z) := [∇xf(x, y),−∇yf(x, y)]

⊤.
At the tth iteration, the EG update can be written as:

zt = zt − ηF (zt), zt+1 = zt − ηF (zt), (7)

where η is the learning rate. While the update on zt+1 is the usual descent, the update on zt performs
an extra extrapolation step which avoids shortsightedness of both players (x and y) by looking one
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step ahead into the future (Gidel et al., 2019; Bohm et al., 2022; Jelassi et al., 2020; Pethick et al.,
2022). EG has been widely used in two-player zero-sum games (Fudenberg & Tirole, 1991). In
machine learning, this has been used in the training of generative adversarial network (GAN) (Gidel
et al., 2019), poker games (Lee et al., 2021), and more recently, faster optimization in large-batch
training (Lin et al., 2020a; Xu et al., 2019).

As shown in (7), each EG iteration requires computing the gradients w.r.t. x and y twice. To reduce
the cost, the method of optimistic gradient (OG) (Popov, 1980) stores the past gradient F (zt−1) and
reuses it in the next extrapolation step. The update in zt is thus changed to:

zt = zt − ηF (zt−1). (8)

Hence, the gradients w.r.t. x and y only need to be computed once in each iteration. It can be shown
that OG enjoys a similar convergence rate as EG (Gidel et al., 2019), and has been commonly used
in solving differentiable minimax games (Gidel et al., 2019; Liang & Stokes, 2019; Daskalakis &
Panageas, 2018; Daskalakis et al., 2018).

3 LOOKAHEAD IN SAM
While SAM has shown improved generalization on various tasks, recently it is observed that SAM can
have convergence instability near a saddle point (Kim et al., 2023; Compagnoni et al., 2023), leading
to slow convergence and poor performance. As an example, consider minimizing the following
quadratic function as in (Compagnoni et al., 2023): minx∈R2 ℓ(x) ≡ x⊤Hx, where H ≡ diag(−1, 1).
The saddle point is at [0, 0]. we run SAM with an initial x0 = [0.02, 0.02], and SGD optimizer with
learning rate of 0.005. In every SGD step t, we add Gaussian noise ϵ′t ∼ N (0, 0.01) to the gradient
as in (Compagnoni et al., 2023). As can be seen from Figure 1, SAM is trapped in the saddle point.

Figure 1: Example showing that SAM can
be trapped in a saddle point.

In the following, inspired by the method of extra-
gradient (EG), we propose a number of lookahead mech-
anisms to alleviate the convergence problem of SAM.

3.1 SAM+EG

A straightforward solution is to use EG on SAM’s min-
imax optimization problem in (1). This leads to the
following update at iteration t:

ŵt = wt−1 − ηt∇wt−1L(wt−1 + ϵt−1), (9)

ϵ̂t = Π(ϵt−1 + η′
t∇ϵt−1L(wt−1 + ϵt−1)), (10)

wt = wt−1 − ηt∇ŵtL(ŵt + ϵ̂t), (11)
ϵt = Π(ϵt−1 + η′

t∇ϵ̂tL(ŵt + ϵ̂t)), (12)

where Π(·) in (10) is the projection Π(ϵ) := argminϵ′:∥ϵ′∥≤ρ ∥ϵ − ϵ′∥ = ϵ
max(1,∥ϵ∥/ρ) , η′t is the

learning rate. The learning rates in (10) and (12) are set to 1, as is commonly used in SAM (Foret
et al., 2021) and its variants. As can be seen from (9)-(12), each update requires four gradient
computations, which can be expensive. Moreover, gradient descent ascent (GDA) on (1), as is
performed in EG, converges at a rate of O(T− 1

4 ) for non-convex strongly-concave settings (Lin
et al., 2020b; Mahdavinia et al., 2022) (might be even slower in general non-convex non-concave
settings), where T is the total number of epochs. This is much slower than the O(1/

√
T ) rate of

SAM (Andriushchenko & Flammarion, 2022) 1.

3.2 SAM+OG

In each epoch, SAM+EG has to compute the gradient w.r.t w and ϵ twice in each iteration, which can
be expensive when used on large deep networks. Motivated by the optimistic gradient (OG) approach
(Korpelevich, 1976), at iteration t, we rewrite (9) as:

ŵt = wt−1 − ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1),

and (10) as
ϵt = Π(ϵt−1 + η′t∇ϵ̂t−1

L(ŵt−1 + ϵ̂t−1)).

1Note that though the rate of SAM is faster than EG, SAM (as well as our proposed method) may not
converge to the exact stationary point of (1) (the definition of stationary point will be introduced in Sec. A.5).
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Since ∇ŵt−1
L(ŵt−1+ ϵ̂t−1) and ∇ϵ̂t−1

L(ŵt−1+ ϵ̂t−1) has already been computed in t−1, we only
need to compute the gradient w.r.t. w and ϵ once. However, SAM+OG still belongs to GDA-based
method. Similar to SAM+EG, it converges at a rate of O

(
T− 1

4

)
(Mahdavinia et al., 2022), which is

also much slower than the rate of SAM.

3.3 SAM+EG WITH APPROXIMATED MAX ORACLE

As the maximization w.r.t. ϵ in (1) has an approximated solution (2) (approximated max oracle)
following (Foret et al., 2021), one can directly apply extra-gradient (Leng et al., 2018) on the
minimization problem in (3), which is easier than the original minimax optimization formulation.
The EG update is then:

ŵt = wt−1 − ηt∇wt−1
L (wt−1 + ϵ̂t) , (13)

wt = wt−1 − ηt∇ŵt
L (ŵt + ϵ′t) ,

where ϵ̂t ≡
ρ∇wt−1

L(wt−1)

∥∇wt−1
L(wt−1)∥ and ϵ′t ≡

ρ∇ŵtL(ŵt)

∥∇ŵtL(ŵt)∥ . Following SAM, we drop ∇wt ϵ̂t and ∇wtϵ
′
t to

make the gradient computation feasible for large neural networks. This method is named SAM+EG
with Approximated Max Oracle (SAM+EG-AMO). Comparing with SAM, it contains two approxi-
mated gradient steps, and the accumulation of errors leads to bad performance. As will be empirically
shown in Section 5.1, this method does not work well.

3.4 EG-SAM, OG-SAM, AND AO-SAM

To improve the convergence rate for SAM+EG, and achieve better performance than SAM+EG-AMO,
we propose the following method that incorporates both the lookahead and the approximated solution
in (2):

ŵt = wt−1 − ηt∇wt−1
L(wt−1), (14)

ϵ̂t =
ρ∇wt−1

L(wt−1)

∥∇wt−1L(wt−1)∥
, (15)

wt = wt−1 − ηt∇ŵt
L(ŵt + ϵ̂t). (16)

The updates in (14)-(16) can be interpreted as that we first perform a lookahead step (14) at wt−1,
add perturbation ϵ̂t in (15) as in SAM, and then update wt−1 using the information on L(ŵt + ϵ̂t)
via (16). In practice, stochastic gradients are used instead of batch gradients in the update. Let the
loss on the ith sample be ℓi(wt). The whole procedure, which will be called Extra-Gradient SAM
(EG-SAM), is shown in Algorithm 1.

Algorithm 1: Extra-Gradient SAM (EG-
SAM).
Input: Training set S, number of epochs T ,

batch size b, learning rate η0, ρ0, w0.
1 for t = 1, 2, . . . , T do
2 sample a minibatch It from S with size b;
3 ŵt =

wt−1 − ηt∇wt−1

[
1
b

∑
i∈It

ℓi(wt−1)
]

;

4 ϵ̂t =
ρt∇wt−1

1
b

∑
i∈It

ℓi(wt−1)

∥∇wt−1
1
b

∑
i∈It

ℓi(wt−1)∥
;

5 wt =

wt−1 − ηt∇ŵt

[
1
b

∑
i∈It

ℓi(ŵt + ϵ̂t)
]

;

6 return wT .

Algorithm 2: Optimistic-Gradient SAM (OG-
SAM).
Input: Training set S, number of epochs T ,

batch size b, learning rate η0, ϵ0 = 0,
w0 = 0, g0 = 0.

1 for t = 1, 2, . . . , T do
2 sample a minibatch It from S with size b;
3 ŵt = wt−1 − ηtgt−1 ;

4 ϵ̂t =
ρt∇wt−1

1
b

∑
i∈It

ℓi(wt−1)

∥∇wt−1
1
b

∑
i∈It

ℓi(wt−1)∥
;

5 gt = ∇ŵt

[
1
b

∑
i∈It

ℓi(ŵt + ϵ̂t)
]

;
6 wt = wt−1 − ηtgt ;
7 return wT .

Similar to EG+SAM, EG-SAM has to compute the gradient w.r.t w twice in each iteration, which
can be expensive for large deep networks. Following the same idea in Sec. 3.2, at iteration t we use
OG and rewrite (14) as:

ŵt = wt−1 − ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1). (17)
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Since ∇ŵt−1
L(ŵt−1 + ϵ̂t−1) has already been computed in t− 1, we only require to compute the

gradient once. Equation (17) can be interpreted as the optimistic mirror descent method with L2
norm (Chiang et al., 2012; Wei et al., 2021), i.e.,

ŵt = argmin
w

{
ηt

〈
w,∇ŵt−1L(ŵt−1 + ϵ̂t−1)

〉
+

1

2
||w −wt−1||22

}
= wt−1−ηt∇ŵt−1L(ŵt−1+ϵ̂t−1),

which improves the performance by leveraging the information from the past gradient (Rakhlin
& Sridharan, 2013), and has been widely used in online learning (Chiang et al., 2012) and game
theory (Wei et al., 2021). The procedure, which will be called optimistic-gradient SAM (OG-SAM),
is shown in Algorithm 2. Note that again we use the stochastic gradient which is more feasible in
practice. Comparing with SAM+EG-AMO, OG-SAM inherits from SAM+OG, which guarantees
convergence without accessing ∇ŵϵ̂ (Gidel et al., 2019). Therefore, though OG-SAM also does not
compute ∇ŵϵ̂ in the updated scheme, it can achieve good performance.

OG-SAM still has to compute the gradient in each iteration, which can be expensive for large neural
network. To alleviate this issue, we integrate AE-SAM’s adaptive policy (Jiang et al., 2023) with
OG-SAM. Assume that ∥ 1

b

∑
i∈It

∇wtℓi(wt)∥2 follows the normal distribution N (µt, σ
2
t ) with

mean µt and variance σ2
t . If ∥ 1

b

∑
i∈It

∇wt
ℓi(wt)∥2 is large (i.e., ≥ µt + ctσt, where ct is varied as

in (5)), we use OG-SAM. Otherwise, SGD (i.e., ERM) is used instead.

Recall that in (17), we need to access ∇ŵt−1
L(ŵt−1 + ϵ̂t−1) at iteration t. If

∥ 1
b

∑
i∈It−1

∇wt−1
ℓi(wt−1)∥2 < µt−1 + ct−1σt−1 in iteration t − 1, SAM is not used and

∇ŵt−1
L(ŵt−1 + ϵ̂t−1) is not computed. In that case, we replace ∇wt−1

L(ŵt−1 + ϵ̂t−1) with
∇wt−1

L(wt−1). The whole procedure, which will be called Adaptive Optimistic Gradient SAM
(AO-SAM), is shown in Algorithm 3.

Algorithm 3: Adaptive Optimistic Gradient SAM (AO-SAM).
Input: Training set S, number of epochs T , batch size b, learning rate η , w0, ϵ0 = 0, ŵ0,

µ0 = 0, and σ0 = e−10.
1 for t = 1, 2, . . . , T do
2 sample a minibatch It from S with size b;
3 gt =

1
b

∑
i∈It

∇wt
ℓi(wt);

4 update µt and σt as in AE-SAM (4);
5 if ∥ 1

b

∑
i∈It

∇wtℓi(wt)∥2 ≥ µt + ctσt then
6 ŵt = wt−1 − ηtgt−1 ;

7 ϵ̂t =
ρt∇wt−1

1
b

∑
i∈It

ℓi(wt−1)

∥∇wt−1
1
b

∑
i∈It

ℓi(wt−1)∥
;

8 gt = ∇ŵt

1
b

∑
i∈It

ℓi(ŵt + ϵ̂t);
9 wt = wt−1 − ηtgt;

10 return wT .

4 ANALYSIS

4.1 EG-SAM’S ODE ON QUADRATIC LOSS

Consider the objective
minw ℓ(w) ≡ w⊤Hw. (18)

Recall that the Ordinary Differential Equation (ODE) of SAM follows (Compagnoni et al., 2023):

dwτ = −H

(
wτ +

ρHwτ

||Hwτ ||

)
dτ, (19)

where τ is the time. For EG-SAM, note that its update in (14)-(16) can be rewritten as

dwτ = −H

(
wτ +

ρHwτ

||Hwτ ||
− ητHwτ

)
dτ. (20)

where ητ : R+ → R+ can be any function satisfying for every τ ∈ R+ and ϵ′ ∈ R+, the following
condition ητ ≥ ητ+ϵ′ > 0 holds. The relationship between EG-SAM/SAM’s ODE and their original
updated scheme is in Appendix A.1.
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Let {λi}di=1 be the eigenvalues of H , and λmax and λmin be the maximum and minimum eigenvalues,
respectively. For a given point w′, define its region of attraction (ROA) (Chang et al., 2019) as the
set such that all trajectories starting inside it converge to w′ (Mao, 2007). Smaller ROA means less
possibility to converge to that point.

The following Proposition shows that EG-SAM has a smaller ROA (i.e., less possibility) than SAM
for any non-degenerate saddle point 2. Proofs are in Appendix A.
Proposition 4.1. For a non-degenerated saddle point, EG-SAM has a smaller ROA than SAM.

This Proposition also indicates that SAM is easier to be trapped in a saddle point than EG-SAM.
Moreover, the following shows that for the stationary point with smaller λmax, EG-SAM has larger
ROA.
Proposition 4.2. For non-degenerated stationary points w∗

1 and w∗
2 , with the largest Hessian

eigenvalues λ1
max and λ2

max, respectively. If λ1
max > λ2

max, then w∗
1 has a smaller ROA than w∗

2 .

As a smaller λmax indicates a flatter minimum (Jastrzebski et al., 2020; Dinh et al., 2017; Kaur
et al., 2022), this Proposition shows that a smaller λmax implies a larger ROA for EG-SAM. Thus,
EG-SAM has more chance to converge at flatter minima.

4.2 CONVERGENCE ANALYSIS

In this section, we study the convergence properties of EG-SAM, OG-SAM, and AO-SAM. Note that
our analysis is different from those in the literature on extra-gradient (EG) (Gidel et al., 2019; Bohm
et al., 2022; Jelassi et al., 2020; Pethick et al., 2022; Gorbunov et al., 2022; Cai et al., 2022) and
optimistic gradient (OG) (Gidel et al., 2019; Liang & Stokes, 2019; Daskalakis & Panageas, 2018;
Daskalakis et al., 2018; Mahdavinia et al., 2022). EG and OG assume that f in (6) is (strongly) convex
w.r.t. x, and (strongly) concave, (strongly) monotonic or co-coercive w.r.t. y (Gorbunov et al., 2022;
Cai et al., 2022; Mahdavinia et al., 2022). In the context of SAM optimization, x corresponds to w and
y corresponds to ϵ. Obviously, these assumptions do not hold for deep networks. On the other hand,
the following analysis does not need to assume convex loss, and only uses the common assumptions
in smooth and non-convex analysis for stochastic gradient methods. Specifically, Assumptions 4.3
and 4.4 below follow from (Andriushchenko & Flammarion, 2022; Bottou et al., 2018; Cutkosky &
Orabona, 2019), while Assumption 4.5 follows (Bottou et al., 2018; Hazan & Kale, 2014; Huang
et al., 2021), which is used in the proof of convergence analysis for SAM (Mi et al., 2022; Dai et al.,
2023; Zhang et al., 2023; Yue et al., 2023).
Assumption 4.3. (Bounded variance) There exists σ ≥ 0 s.t. Ei∼U([1,n])

[
∥∇ℓi(w)−∇L(w)∥2

]
≤

σ2 for all i ∼ U([1, n]) (the uniform distribution over {1, 2, . . . , n}, where n is the total number of
samples).
Assumption 4.4. (β-smoothness) There exists β ≥ 0 s.t. ∥∇ℓi(w)−∇ℓi(v)∥ ≤ β∥w − v∥ for all
w,v ∈ Rm and i = 1, 2, . . . , n.
Assumption 4.5. (Uniformly Bounded Gradient) There exists G ≥ 0 s.t. Ei∼U([1,n])∥ℓi(w)∥2 ≤ G2.

The following provide convergence rates on EG-SAM, OG-SAM, and AO-SAM respectively.

Theorem 4.6. Assume that ηt = min
(

1
2β ,

1√
T

)
, ρt = 1√

T
in Algorithm 1, then EG-SAM satisfies

1
T

∑T
t=0 E∥∇wt

L(wt)∥2 = O
(

1√
T
+ 1√

Tb

)
.

Theorem 4.7. Assume that ρt = min
(

1√
T
, 1
β

)
, ηt = min

(
1√
T
, 1
β

)
in Algorithm 2, then OG-SAM

satisfies: 1
T

∑T
t=0 E∥∇wtL(wt)∥2 = O

(
1√
T
+ 1√

Tb

)
.

Theorem 4.8. Assume that ρt = min
(

1√
T
, 1
β

)
, ηt = min

(
1√
T
, 1
2β

)
in Algorithm 3, then AO-SAM

satisfies: 1
T

∑T
t=0 E∥∇wt

L(wt)∥2 = O
(

1√
T
+ 1√

Tb

)
.

In summary, EG-SAM, OG-SAM, AO-SAM have the same O( 1√
T

+ 1√
Tb

) rate as SAM (An-
driushchenko & Flammarion, 2022) and its variant AESAM (Jiang et al., 2023), and is faster than the
O(log T/

√
T ) rate of GSAM (Zhuang et al., 2022) and SSAM (Mi et al., 2022).

2Non-degenerate saddle point means the Hessian matrix at that point is invertible.
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5 EXPERIMENTS

In this section, we empirically demonstrate the performance of the proposed methods on a number
of benchmark datasets. Recall that the training speed is mainly determined by how often the SAM
update is used. As in (Jiang et al., 2023), we evaluate efficiency by measuring the fraction of SAM
updates used: %SAM ≡ 100× (

∑T
t=1 #{SAMs} used at epoch t)/T , where T is the total number

of epochs and is the same for all methods.
Table 1: Testing accuracy and fraction of SAM
updates (%SAM) on CIFAR-10 using ResNet-18.
The best accuracy is in bold.

accuracy %SAM

SAM 96.52 ±0.12 100.0 ±0.0

SAM+EG 96.45 ±0.05 200.0 ±0.0

SAM+OG 96.45 ±0.03 100.0 ±0.0

SAM+EG-AMO 92.57 ±0.08 200.0 ±0.0

EG-SAM 96.86 ±0.01 150.0 ±0.0

OG-SAM 96.79 ±0.02 100.0 ±0.0

AO-SAM 96.82 ±0.04 61.1 ±0.0

Table 2: Testing accuracy and fraction of SAM
updates (%SAM) on CIFAR-100 using ResNet-
18. The best accuracy is in bold.

accuracy %SAM

SAM 80.17 ±0.05 100.0 ±0.0

SAM+EG 79.91 ±0.16 200.0 ±0.0

SAM+OG 79.92 ±0.08 100.0 ±0.0

SAM+EG-AMO 74.65 ±0.07 200.0 ±0.0

EG-SAM 80.89 ±0.12 150.0 ±0.0

OG-SAM 80.76 ±0.15 100.0 ±0.0

AO-SAM 80.70 ±0.14 61.2 ±0.0

(a) CIFAR-10. (b) CIFAR-100.

Figure 2: Convergence on CIFAR-10 and CIFAR-100 (with ResNet-18 backbone).
5.1 CIFAR-10 AND CIFAR-100

Setup. In this section, we perform experiments on the popular image classification datasets CIFAR-10
and CIFAR-100 (Krizhevsky et al., 2009). 10% of the training set is used for validation. Following
the SAM literature (Jiang et al., 2023; Mi et al., 2022; Kwon et al., 2021), we use the commonly-used
ResNet-18 (He et al., 2016), ResNet-32 (He et al., 2016), and WideResNet-28-10 (Zagoruyko &
Komodakis, 2016).

Following the setup in (Jiang et al., 2023; Foret et al., 2021), we use batch size 128, initial learning
rate 0.1, cosine learning rate schedule (Loshchilov & Hutter, 2017), and SGD optimizer. The
number of training epochs is 200 for all experiments. For the proposed methods, we select ρ ∈
{0.01, 0.05, 0.08, 0.1, 0.5, 0.8, 1, 1.5, 1.8, 2} by using CIFAR-10’s validation set on ResNet-18. The
selected ρ is then directly used on CIFAR-100 and the other backbones. For the ct schedule in (5),
since different SAM variants yield different %SAM’s, we vary the hyper-parameters (κ1, κ2) so that
the %SAM obtained by AO-SAM matches their %SAM values.

Comparison among EG-SAM, OG-SAM, AO-SAM and SAM. First, we compare the proposed EG-
SAM (Extra Gradient SAM), OG-SAM (Optimistic Gradient SAM), AO-SAM (Adaptive Optimistic
SAM) with SAM and its three variants: (i) SAM+EG, which directly applies the EG updates (7) on
SAM’s objective (6); (ii) SAM+OG, which directly applies the OG updates ((7) that replaces the
update on zt with (8)) on (6); (3) SAM+EG-AMO (SAM+EG approximated max oracle), which
uses (13) as the update scheme . Experiments are performed on CIFAR-10 and CIFAR-100 with the
ResNet-18 backbone, and repeated 5 times with different random seeds.

Tables 1 and 2 shows the testing accuracy versus %SAM. Figure 2 shows the testing accuracies
(results on the loss and training accuracies are shown in Figure 4 in Appendix B). Note that as
SAM+EG takes two SAM steps ((9), (10) and (11), (12)) in every epoch, its %SAM is 200. Similarly,
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Table 3: Testing accuracy and fraction of SAM updates on CIFAR-10 with different levels of label
noise. Results of ERM, SAM, and ESAM with ResNet-18 and ResNet-32 are from (Jiang et al., 2023).
† means (Jiang et al., 2023) do not provide standard derivation for that baseline. Other baseline results
are obtained with the authors’ provided code. The best accuracy is in bold.

noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

R
es

N
et

-1
8

ERM 87.92† 0.0 70.82† 0.0 49.61† 0.0 28.23† 0.0

SAM (Foret et al., 2021) 94.80† 100.0 91.50† 100.0 88.15† 100.0 77.40† 100.0
ESAM (Du et al., 2022a) 94.19† 100.0 91.46† 100.0 81.30† 100.0 15.00† 100.0

ASAM (Kwon et al., 2021) 91.17 ± 0.19 100.0 87.38 ± 0.61 100.0 83.22 ± 0.41 100.0 71.03 ± 0.88 100.0
OG-SAM 95.12 ± 0.12 100.0 92.16 ± 0.35 100.0 88.45 ± 0.53 100.0 77.47 ± 0.65 100.0

SS-SAM (Zhao, 2022) 94.61 ± 0.16 60.0 91.81 ± 0.13 60.0 78.67 ± 0.42 60.0 62.94 ± 1.01 60.0
AE-SAM (Jiang et al., 2023) 92.13 ± 0.14 61.4 86.02 ± 0.62 61.4 75.95 ± 1.30 61.4 67.28 ± 1.66 61.4

AO-SAM 95.02 ± 0.04 61.2 92.62 ± 0.18 61.3 89.36 ± 0.12 61.2 78.12 ± 0.38 61.2

R
es

N
et

-3
2

ERM 87.43† 0.0 70.82† 0.0 46.26† 0.0 29.00† 0.0

SAM (Foret et al., 2021) 95.08† 100.0 91.01† 100.0 88.90† 100.0 77.32† 100.0
ESAM (Du et al., 2022a) 93.42† 100.0 91.63† 100.0 82.73† 100.0 10.09† 100.0

ASAM (Kwon et al., 2021) 92.04 ± 0.09 100.0 88.83 ± 0.11 100.0 83.90 ± 0.56 100.0 75.64 ± 0.75 100.0
OG-SAM 95.25 ± 0.04 100.0 92.11 ± 0.07 100.0 88.36 ± 0.22 100.0 77.61 ± 0.39 100.0

SS-SAM (Zhao, 2022) 95.03 ± 0.23 60.0 90.59 ± 0.30 60.0 87.22 ± 0.46 60.0 48.89 ± 1.02 60.0
AE-SAM (Jiang et al., 2023) 92.04 ± 0.27 61.3 86.83 ± 0.49 61.3 73.90 ± 0.44 61.2 67.64 ± 1.34 61.3

AO-SAM 95.32 ± 0.12 61.2 91.73 ± 0.65 61.2 89.40 ± 0.44 61.2 77.78 ± 0.84 61.2

W
id

eR
es

N
et

-2
8-

10

ERM 90.07 ± 0.36 0.0 86.02 ± 0.33 0.0 80.98 ± 0.52 0.0 67.67 ± 0.72 0.0

SAM (Foret et al., 2021) 94.47 ± 0.12 100.0 91.74 ± 0.04 100.0 88.35 ± 0.21 100.0 71.37 ± 1.55 100.0
ESAM (Du et al., 2022a) 95.09 ± 0.04 100.0 89.16 ± 0.21 100.0 42.64 ± 0.55 100.0 20.14 ± 0.69 100.0

ASAM (Kwon et al., 2021) 91.25 ± 0.16 100.0 88.08 ± 0.07 100.0 83.45 ± 0.12 100.0 71.44 ± 0.46 100.0
OG-SAM 95.31 ± 0.06 100.0 92.67 ± 0.13 100.0 88.37 ± 0.58 100.0 77.86± 1.83 100.0

SS-SAM (Zhao, 2022) 94.47 ± 0.09 60.0 91.90 ± 0.11 60.0 88.43 ± 0.37 60.0 74.64 ± 0.79 60.0
AE-SAM (Jiang et al., 2023) 93.49 ± 0.14 61.3 90.36 ± 0.12 61.3 85.95 ± 0.47 61.3 71.21± 1.56 61.3

AO-SAM 95.52 ± 0.24 61.1 92.68 ± 0.10 61.2 89.29 ± 0.28 61.2 77.13 ± 0.72 61.2

for SAM+EG-AMO, its %SAM is 200; and for EG-SAM, its %SAM is 150. As can be seen, though
EG-SAM has the highest accuracy, it is also the third slowest. On the other hand, OG-SAM is as fast
as SAM, but is more accurate. Similarly, AO-SAM is as accurate as OG-SAM, but is faster. Hence,
we will only focus on AO-SAM in the sequel. Moreover, comparing with losses and accuracies, there
exists monotonic relationship between training (resp. testing) accuracy and training (resp. testing)
loss for EG-SAM, OG-SAM, and AO-SAM.

Note that SAM+OG only outperforms SAM on CIFAR-10 slightly, and SAM+EG performs even
worse than SAM. On CIFAR-100, SAM+EG and SAM+OG perform worse than SAM. This is because
EG and OG belong to the GDA family, and a direct use on SAM inherits their slow convergence
(Section 3.4). This can also be seen from the convergence plots in Figure 2, which shows that
SAM+OG and SAM+EG have slower convergence. SAM+EG-AMO also performs worse than SAM
on CIFAR-10 and CIFAR-100, indicating that directly using minimization based extra-gradient does
not perform well due to the approximation. On the contrary, EG-SAM, OG-SAM, and AO-SAM
have relatively fast convergence rate on both datasets.

Comparison with Baselines in CIFAR-10 and CIFAR-100.

Following (Jiang et al., 2023), we compare AO-SAM and OG-SAM with: (i) ERM; (ii) SAM (Foret
et al., 2021); and its variants (iii) ESAM (Du et al., 2022a), (iv) ASAM (Kwon et al., 2021), (v)
SS-SAM (Zhao, 2022), and (vi) AE-SAM (Jiang et al., 2023). As different SAM variants yield
different %SAM’s, we vary the (κ1, κ2) values in (5) for AE-SAM and AO-SAM so as to attain
comparable %SAM values for fairer comparison. We also study the robustness of the various methods
to label noise. Specifically, a certain fraction (20%, 40%, 60% and 80%) of the training labels in
CIFAR-10 and CIFAR-100 are randomly flipped. Experiments are repeated 5 times with different
random seeds.

Table 3 shows the results on CIFAR-10 corrupted with label noise. Results on CIFAR-100 are in
table 6 in Appendix B. As can be seen, AO-SAM and OG-SAM outperform all baselines at all label
noise ratios on both data sets. Moreover, the accuracy improvement gets larger as the label noise
ratio increases. This demonstrates the superiority of AO-SAM and OG-SAM particularly in difficult
learning environments that requires better generalization ability.
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Results on the datasets without label noise are shown in Table 7 in Appendix B. As can be seen,
OG-SAM and AO-SAM are still consistently more accurate than the baselines on both datasets and
all models.

5.2 ImageNet
In this experiment, we perform experiment on the ImageNet dataset using ResNet-50 (He et al.,
2016). The batch size is 512, initial learning rate is 0.1, cosine learning rate schedule, and the
number of training epochs is 90. the other experimental setup are the same as in Section 5.1. The
experiment is repeated 3 times with different random seeds. OG-SAM is not compared here, as
previous experiments show that it does not perform better than AO-SAM but takes more %SAM.
Table 4 shows the testing accuracy and %SAM. As can be seen, the proposed AO-SAM again
outperforms all the baselines.

Table 4: Testing accuracy (mean and standard deviation) and
fraction of SAM updates (%SAM) on ImageNet using ResNet-50.
Results of SAM and ESAM are from (Jiang et al., 2023), ASAM
is from (Kwon et al., 2021), and other baselines are obtained by
the authors’ provide code.

accuracy %SAM

ERM 77.11 ±0.14 0.0 ±0.0

SAM (Foret et al., 2021) 77.47 ±0.12 100.0 ±0.0

ESAM (Du et al., 2022a) 77.25 ±0.75 100.0 ±0.0

ASAM (Kwon et al., 2021) 76.63 ±0.18 100.0 ±0.0

AO-SAM 77.68 ±0.04 61.1 ±0.0

SS-SAM (Zhao, 2022) 77.41 ±0.05 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 77.46 ±0.07 61.3 ±0.0

Table 5: Eigenvalues of the
Hessian on CIFAR-10 with
ResNet18.

λ1 λ1/λ5

ERM 88.8 3.3
SAM 29.6 3.3

EG-SAM 10.8 1.8
OG-SAM 13.1 2.0
AO-SAM 11.1 1.8

(a) ERM. (b) SAM. (c) EG-SAM. (d) OG-SAM. (e) AO-SAM.

Figure 3: Hessian spectra obtained by ERM, SAM, EG-SAM, OG-SAM, and AO-SAM on CIFAR-10
with ResNet18.

5.3 FLAT MINIMA

In this section, we compare the abilities of ERM, SAM, OG-SAM and AO-SAM to converge to flat
minima. Following (Mi et al., 2022; Foret et al., 2021), we illustrate this by examining the eigenvalue
spectrum of the Hessian at the converged solution. Experiments are performed on CIFAR-10 with
the ResNet-18 backbone. As can be seen from Figure 3, the Hessian’s eigenvalues of EG-SAM,
OG-SAM and AO-SAM are smaller than those of ERM and SAM, indicating that the loss landscapes
at both OG-SAM’s and AO-SAM’s converged solutions are flatter compared to SAM and ERM. As
in (Foret et al., 2021; Mi et al., 2022), Table 5 shows the largest eigenvalue of the Hessian (λ1) and
the ratio λ1/λ5 (where λ5 is the 5th largest eigenvalue). As can be seen, EG-SAM, OG-SAM and
AO-SAM have smaller λ1 and λ1/λ5 than ERM and SAM, again indicating that they have flatter
minima than SAM and ERM. This agrees with Section 4.1 that EG-SAM converges to flat minima,
and Table 7 where EG-SAM, AO-SAM, and OG-SAM have higher accuracies than SAM and ERM.

6 CONCLUSION

In this paper, we integrate the lookahead mechanism, which has been proven effective in game theory
and optimization, into SAM. Lookahead enables the model to gain more information about the loss
landscape, thus alleviating the problem of convergence instability in SAM’s minimax optimization
process. Theoretical results show that the proposed method can converge to a stationary point and is
not easy to be trapped in saddle points. Experiments on standard benchmark datasets also verify that
the proposed method outperforms the SOTAs, and converges more effectively to flat minima.
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A PROOFS

A.1 PROOFS FOR EG-SAM AND SAM ODE

Before we dive into our proof, we briefly discuss the connection between the ODE of SAM (19) and
EG-SAM (20), and the gradient descent scheme for SAM (3) and EG-SAM (14-16):

Firstly, rewrite the (3) as:

wt −wt−1

η
= −∇wt−1L

wt−1 + ϵt−1

∣∣∣∣
ϵt−1=

ρ∇wt−1
L(wt−1)

∥∇wt−1
L(wt−1)∥

 ,

Then, replacing wt−wt−1

η by dwt

dt
3. Note that ∇wL(w) = Hw when L = w⊤Hw. Putting them

together, we obtain our result.

EG-SAM can be obtained by using similar approach to (14-16). Now we start our proof.
Lemma A.1. (SAM ODE, Lemma C.6 (Compagnoni et al., 2023)) In terms of (18), for all ρ > 0,
if H is PSD, the origin is (locally) asymptotically stable. Additionally, if H is not PSD, and
∥Hwτ∥ ≤ −ρλi,∀i, then the origin is still (locally) asymptotically stable.

Lemma A.2. (EG-SAM ODE) In terms of (18), if ρ ≥ ∥Hwτ∥
(
ητ − 1

λi

)
,∀i, τ , the origin is

(locally) asymptotically stable.

Proof. Let V (x) :=
w⊤

τ Kwτ

2 be the Lyapunov function of EG-SAM, where K is a diagonal matrix
with positive eigenvalues (k1, · · · , kd). Therefore, we have

V (wτ ) =
1

2

d∑
i=1

ki
(
wi

τ

)2
> 0,

And

V̇ (wτ ) =

d∑
i=1

kiw
i
τ

dwi
τ

dτ

(a)
=

d∑
i=1

q2iikiw
i
τ

(
−λi

(
wi

τ +
ρHwi

τ

||Hwτ ||
− ητλiw

i
τ

))

=
d∑

i=1

q2iiki(−λi)

(
1 +

ρλi

∥Hwτ∥
− ητλi

)(
wi

τ

)2
dτ

(a) is because the H is symmetry and can be decomposed as H = Q⊤Λ Q (Theorem 5.11
in Apostol (1991)), where Q is an orthogonal matrix with qij as its i row j column element,

and Λ is diagonal matrix of the eigenvalues of H . Then, dwi
τ

dτ can be written as dwi
τ

dτ =(
−λi

(
wi

τ +
ρλiw

i
τ

||Hwτ || − ητλiw
i
τ

))
q2ii.

For the term q2iikiλi

(
1 + ρλi

∥Hwτ∥ − ητλiw
i
τ

) (
wi

τ

)2
, when λi > 0, to ensure

−q2iikiλi

(
1 + ρλi

∥Hwτ∥ − ητλiw
i
τ

) (
wi

τ

)2 ≤ 0, we should have 1 + ρλi

∥Hwτ∥ − ητλi ≥ 0,

and thus ρ ≥ ∥Hwτ∥
(
ητ − 1

λi

)
.

Similarly, when λi < 0, to ensure −q2iikiλi

(
1 + ρλi

∥Hwτ∥ − ητλiw
i
τ

) (
wi

τ

)2 ≤ 0, we should have

1 + ρλi

∥Hwτ∥ − ητλi ≤ 0, and thus ρ ≥ ∥Hwτ∥
(
ητ − 1

λi

)
.

3The justification of this approximation can be found in https://francisbach.com/
gradient-flows/
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Therefore, when ρ ≥ ∥Hwτ∥
(
ητ − 1

λi

)
,∀i, we always have V (wτ ) > 0 and V̇ (wτ ) ≤ 0.

According to Theorem 1.1 (Mao, 2007), the dynamics of wτ is bounded inside this set and cannot
diverge if V (wτ ) > 0 and V̇ (wτ ) ≤ 0.

Proposition A.3. For non-degenerated saddle point, EG-SAM has smaller ROA than SAM.

Proof. Recall that non-degenerated saddle point has both positive and negative eigenvalues (Theorem
9.6. in (Apostol, 1991)). According to Lemma A.1, the ROA for SAM is:

{
wt|ρ ≥ −∥H wt∥

λmin

}
.

The ROA for EG-SAM is:
{
wt|ρ ≥ ∥Hwt∥

(
ητ − 1

λmin

)}
, according to Lemma A.2. Since(

η − 1
λmin

)
>

(
− 1

λmin

)
, we have:

{
wt|ρ ≥ ∥Hwt∥

(
ητ − 1

λmin

)}
⊂

{
wt|ρ ≥ −∥H wt∥

λmin

}
,

which implies EG-SAM has smaller ROA than SAM.

Proposition A.4. For non-degenerated stationary points w∗
1 and w∗

2 with largest eigenvalues
λ1
max, λ

2
max, if λ1

max > λ2
max, then w∗

1 has smaller ROA than w∗
2 .

Proof. Recall that non-degenerated stationary point has all positive eigenvalues (Theorem 9.6.
in (Apostol, 1991)). The ROA for EG-SAM is:

{
wt|ρ ≥ ∥Hwt∥

(
ητ − 1

λmax

)}
, accord-

ing to Lemma A.2. Since λ1
max > λ2

max, we have:
{
wt|ρ ≥ ∥Hwt∥

(
ητ − 1

λ1
max

)}
⊂{

wt|ρ ≥ ∥Hwt∥
(
ητ − 1

λ2
max

)}
, which implies that w∗

1 has smaller ROA than w∗
2 .

A.2 EG-SAM CONVERGENCE

Let Lt(w) := 1
b

∑
i∈It

ℓi(w) be the mini-batch version of L(w) at epoch t, where w ∈ Rm,
It is the mini-batch, and ℓi(w) is the loss for sample i. Let wt−1/2 := ŵt + ϵ̂t = wt−1 +

ρ ∇Lt(wt−1)
||∇Lt(wt−1)∥ − η∇Lt(wt−1). Note that the update scheme of EG-SAM can be rewritten as:

wt = wt−1 − ηt∇Lt(wt−1/2). In the following, we assume that ρ, η, β > 0.

Lemma A.5.〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)

)
,∇L(w)

〉
≥ (1 + βη)∥∇L(w)∥2 − βρ∥∇L(w)∥.

Proof.〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
= ⟨∇L(w + (ρ− η∥∇L(w)∥) ∇L(w)

∥∇L(w)∥
)−∇L(w),∇L(w)⟩+ ∥∇L(w)∥2

=
∥∇L(w)∥

ρ− η∥∇L(w)∥
⟨∇L(w + (ρ− η∥∇L(w)∥) ∇L(w)

∥∇L(w)∥
)−∇L(w),

(ρ− η∥∇L(w)∥)
∥∇L(w)∥

∇L(w)⟩

+∥∇L(w)∥2
(a)

≥ (1− β(ρ− η∥∇L(w)∥)
∥∇L(w)∥

)∥∇L(w)∥2

≥ (1 + ηβ)∥∇L(w)∥2 − βρ∥∇L(w)∥.

The first equation is based on the fact that ⟨∇L(w),∇L(w)⟩ = ∥∇L(w)∥2, while (a) uses the
co-coercivity property of the smooth function L.
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Lemma A.6.

E⟨∇Lt(w+ρ∇Lt(w)/∥∇Lt(w)∥−η∇Lt(w)),∇L(w)⟩ ≥ (
1

2
+ηβ)∥∇L(w)∥2−βρ∥∇L(w)∥−β2σ2η2

2b
−ρ2β2.

Proof. Note that〈
∇Lt

(
w + ρ ∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w)
)
,∇L(w)

〉
=

〈
∇Lt

(
w + ρ ∇Lt(w)

∥∇Lt(w)∥ − η∇Lt(w)
)
−∇Lt(w + ρ ∇L(w)

∥∇L(w)∥ − η∇L(w)),∇L(w)
〉

−
〈
−∇Lt(w + ρ ∇L(w)

∥∇L(w)∥ − η∇L(w)),∇L(w)
〉
.

In the following, we bound the first term and second term of the RHS separately. For the first term,

−E
〈
∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥
− η∇Lt(w)

)
−∇Lt(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
(a)

≤ 1

2
E∥∇Lt

(
w + ρ

∇Lt(w)

∥∇Lt(w)∥
− η∇Lt(w)

)
−∇Lt(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w))∥2

+
1

2
∥∇L(w)∥2

≤ β2

2
E∥ρ ∇Lt(w)

∥∇Lt(w)∥
− η∇Lt(w)− (ρ

∇L(w)

∥∇L(w)∥
− η∇L(w))∥2 + 1

2
∥∇L(w)∥2

(b)

≤ β2σ2η2

2b
+ ρ2β2 +

1

2
∥∇L(w)∥2.

(a) is based on the Young’s inequality, (b) is using the triangle inequality and Assumption 4.4.

For the second term, on using Lemma A.5,

E
〈
∇Lt(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
= E

〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
− η∇L(w)),∇L(w)

〉
≥ (1 + βη)∥∇L(w)∥2 − βρ∥∇L(w)∥.

Combining them together, we obtain the result.

Lemma A.7. With assumptions 4.3, 4.4 and 4.5, and also assume η ≤ 1
2β , we have:

η

(
ηβ − η3β3 − 2ηβ

(
1

2
+ ηβ

)
+

(
1

2
+ ηβ

))
E∥∇L(wt)∥2

≤ EL(wt)− EL(wt+1) + η2β3ρ2 + η(1− 2ηβ)βρG+ η(1− 2ηβ)
β2σ2

2b

+2ρ2β2η(1− 2ηβ) + η2β
σ2

b
.

Proof. Using the property of smooth function L (Assumption (4.4)), we have:

EL(wt+1) ≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+
η2β

2
E∥∇Lt(wt−1/2)∥2

≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+
η2β

2
E∥∇Lt(wt−1/2)−∇L(wt−1/2)∥2

+
η2β

2
E∥∇L(wt−1/2)∥2

≤ EL(wt)− ηE⟨∇L(wt−1/2),∇L(wt)⟩+ η2β
σ2

2b
+

η2β

2
E∥∇L(wt−1/2)∥2.

The first inequality is using the property of smooth function (Assumption (4.4)) and take the expecta-
tion on both sides.
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Then,

EL(wt+1)
(a)

≤ EL(wt)− η2βE∥∇L(wt)∥2 + η2βE∥∇L(wt−1/2)−∇L(wt)∥2

−η(1− 2ηβ)E⟨∇L(wt−1/2),∇L(wt)⟩+ η2β
σ2

2b
(b)

≤ EL(wt)− η2βE∥∇L(wt)∥2 + η2β3E∥wt−1/2 −wt∥2

−η(1− 2ηβ)

[
−βρE∥∇L(wt)∥ +

(
1

2
+ ηβ

)
E∥∇L(wt)∥2 −

β2σ2η2

2b
− ρ2β2

]
+η2β

σ2

2b

≤ EL(wt)− η2βE∥∇L(wt)∥2 + η2β3ρ2 + η4β3 E∥∇L(wt)∥2

+η(1− 2ηβ)βρE∥∇L(wt)∥ − η(1− 2ηβ)

(
1

2
+ ηβ

)
E∥∇L(wt)∥2

+η3(1− 2ηβ)
β2σ2

2b
+ 2ρ2β2η(1− 2ηβ) + η2β

σ2

b
.

(a) is by using the trick: ∥∇L(wt−1/2)∥2 = −∥∇L(wt)∥2 + ∥∇L(wt−1/2) − ∇L(wt)∥2 +
2⟨∇L(wt−1/2),∇L(wt)⟩. (b) is by using Lemma A.6. The last inequality is based on the fact
that β2E∥wt−1/2−wt∥2 ≤ β2E∥(ρ−η∥∇L(wt)∥) ∇L(wt)

∥∇L(wt)∥∥
2 ≤ β2ρ2+η2β2E∥∇L(wt)∥2, and

the assumption η ≤ 1
2β . Finally, after simplification, we obtain the result.

Theorem 4.5. Assume that ηt = min
(

1
2β ,

1√
T

)
, ρ = 1√

T
in Algorithm 1, then EG-SAM satisfies

1
T

∑T
t=0 E∥∇wt

L(wt)∥2 = O
(

1√
T
+ 1√

Tb

)
.

Proof. With ηt = min
(

1
2β ,

2.99
4β

)
= 1

2β , we have
(
ηβ − ηβ3 − 2ηβ

(
1
2 + ηβ

)
+
(
1
2 + ηβ

))
> 0.

By further using Lemma A.7 and the above analysis, there exists a positive constant C such that:

CηE∥∇L(wt)∥2 ≤ EL(wt)− EL(wt+1) + η3(1− 2ηβ)
β2σ2

2b
+ 2ρ2η(1− 2ηβ) + η2β

σ2

b

+η2β3ρ2 + ηβρG.

Setting ρ = 1√
T

and ηt = min
(

1
2β ,

1√
T

)
. By telescoping from t = 1 to T , and divide by T ,

C

T

T∑
t=1

E∥∇L(wt)∥2

≤ L(w0)− EL(wT+1)

ηT
+ η2

β2σ2

2b
+ 2ρ2(1− 2ηβ) + ηβ

σ2

b
+ ηβ3ρ2 + βρG

=
L(w0)− EL(wT+1)√

T
+

(
β2σ2b/

√
T + 2b/

√
T + 2βσ2 + 2bβ2/T + 2βG

)
2
√
Tb

= O

(
1√
T

+
1√
Tb

)
.

A.3 OG-SAM CONVERGENCE

Recall from Section A.2 that Lt(w) := 1
b

∑
i∈It

ℓi(w). In the following, we assume ρ, η, β > 0.
Also, we use assumptions 4.3, 4.4 and 4.5.
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Lemma A.8. The update scheme of OG-SAM is equivalent to

ŵt = ŵt−1 − 2ηt∇ŵt−1
L

ŵt−1 + ϵ̂t−1

∣∣∣∣
ϵ̂t−1=

ρ∇wt−1
L(wt−1)

∥∇ŵt−1
L(wt−1)∥


+ηt−1∇ŵt−2

L

ŵt−2 + ϵ̂t−2

∣∣∣∣
ϵ̂t−2=

ρ∇wt−2
L(wt−2)

∥∇wt−2
L(wt−2)∥

 .

Proof. Recall that in OG-SAM, we have:

ŵt = wt−1 − ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1), (21)

and
wt−1 = wt−2 − ηt∇ŵt

L(ŵt−1 + ϵ̂t−1). (22)

Substitute wt−1 in (21) by (22), we have

ŵt = wt−2 − 2ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1). (23)

Also, note that in OG-SAM,

ŵt−1 + ηt−1∇ŵt−2
L(ŵt−2 + ϵ̂t−2) = wt−2. (24)

Substitute (24) into (23), we have:

ŵt = ŵt−1 − 2ηt∇ŵt−1
L(ŵt−1 + ϵ̂t−1| ϵ̂t−1 =

ρ∇wt−1L(wt−1)

∥∇wt−1L(wt−1)∥
)

+ηt−1∇ŵt−2
L(ŵt−2 + ϵ̂t−2|ϵ̂t−2 =

ρ∇wt−2L(wt−2)

∥∇ŵt−2
L(wt−2)∥

),

which is the desired result.

Lemma A.9. 〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥

)
,∇L(w)

〉
≥ ∥∇L(w)∥2 − βρ∥∇L(w)∥.

Proof.〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
),∇L(w)

〉
=

〈
∇L

(
w + ρ

∇L(w)

∥∇L(w)∥

)
−∇L(w),∇L(w)

〉
+ ∥∇L(w)∥2

=
∥∇L(w)∥

ρ

〈
∇L(w + ρ

∇L(w)

∥∇L(w)∥
)−∇L(w),

ρ

∥∇L(w)∥
∇L(w)

〉
+ ∥∇L(w)∥2

(a)

≥
(
1− βρ

∥∇L(w)∥

)
∥∇L(w)∥2

(b)

≥ ∥∇L(w)∥2 − βρ∥∇L(w)∥

(a) is the co-coercivity property. (b) is by simple calculation.

Lemma A.10.

E
[〈

∇wt−1
[L(wt−1)],∇wt−1

Lt

(
wt−1 + ρ

∇wt−1
Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)〉]
≥ 1

2
∥∇L(wt−1)∥2 − βρ∥∇L(wt−1)∥ − ρ2β2.
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Proof. Similar to the proof of Lemma A.6, note that〈
∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
,∇L(wt−1)

〉
=

〈
∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
−∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
−
〈
−∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
.

To bound the RHS,

−E
〈
∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
−∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
≤ 1

2
E∥∇Lt

(
wt−1 + ρ

∇Lt(wt−1)

∥∇Lt(wt−1)∥

)
−∇Lt

(
wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥

)
∥2 + 1

2
∥∇L(wt−1)∥2

≤ β2

2
E
∥∥∥∥ρ ∇Lt(wt−1)

∥∇Lt(wt−1)∥
− ρ

∇L(wt−1)

∥∇L(wt−1)∥

∥∥∥∥2 + 1

2
∥∇L(wt−1)∥2

≤ ρ2β2 +
1

2
∥∇L(wt−1)∥2.

The first inequality is by the Young’s inequality. Also, it has been proven that〈
∇Lt(wt−1 + ρ

∇L(wt−1)

∥∇L(wt−1)∥
),∇L(wt−1)

〉
≥ ∥∇L(wt−1)∥2 − βρ∥∇L(wt−1)∥.

Combining the two inequalities together, we obtain the desired result.

Lemma A.11.

E
[〈
∇ŵt−1

L(ŵt−1),

∇ŵt−2

[
Lt−1

(
ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥

)
−∇wt−1

[
Lt

(
wt−1 + ρ

∇ŵt−1
Lt(wt−1)

∥∇wt−1Lt(wt−1)∥

)]〉]
≤ G

(
β2ρ2 +

5β2η2G2

2

) 1
2

.

Proof.

E
[〈

∇
ŵt−1

[L(ŵt−1)],∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

) − ∇ŵt−1
[Lt(ŵt−1 + ρ

∇wt−1
Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)]

〉]

≤
(
E∥∇

ŵt−1
[L(ŵt−1)]∥2

) 1
2

(
E∥ ∇ŵt−2

Lt−1(ŵt−2 + ρ
∇wt−2

Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

) − ∇ŵt−1
[Lt(ŵt−1 + ρ

∇wt−1
Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)]∥2

) 1
2

≤ G

((
β
2
ρ
2
+

β2

2
E
[
∥ 2η∇ŵt−2

[Lt−1(ŵt−2 + ρ
∇wt−2

Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

) − η∇ŵt−3
[Lt−2(ŵt−3 + ρ

∇wt−3
Lt−2(wt−3)

∥∇wt−3
Lt−2(wt−3)∥

)∥2

])2) 1
2

≤ G

(
β
2
ρ
2
+

5β2η2G2

2

) 1
2

.

The first inequality uses the Cauchy-Schwartz inequality. The last inequality uses the triangle
inequality.

Lemma A.12. With assumptions 4.3, 4.4 and 4.5,

E
∥∥∥∥2η∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)− η∇ŵt−2

Lt−1(ŵt−2 + ρ
∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2
≤ 4η2β2ρ2

b
+

4η2σ2

b
+ η2G2.
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Proof.

E
∥∥∥∥2η∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)− η∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

)

∥∥∥∥2
≤ E∥2η∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥

)∥2 + E∥η∇ŵt−2
Lt−1(ŵt−2 + ρ

∇wt−2
Lt−1(wt−2)

∥∇wt−2
Lt−1(wt−2)∥

)∥2

≤ 4η2E
∥∥∥∥∇ŵt−1

Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1
Lt(ŵt−1)∥

)−∇wt−1
Lt(ŵt−1)∥2 + η2E∥∇ŵt−1

Lt(ŵt−1)−∇ŵt−1
L(ŵt−1)

∥∥∥∥2
+η2G2

≤
4η2β2E

[
∥ρ ∇wt−1

Lt(wt−1)

∥∇wt−1
Lt(wt−1)∥∥

2
]

b
+

4η2σ2

b
+ η2G2

≤ 4η2β2ρ2

b
+

4η2σ2

b
+ η2G2.

Lemma A.13. If ρ < 1
2β ,

E[L(wt−1)] ≤ E[L(ŵt)] +
βη2T
2

G2.

Proof. Based on the update scheme of OG-SAM, wt−1 = ŵt + ηtgt−1. By the smoothness
assumption on Assumption 4.4,

L(wt−1)− L(ŵt)− ηt⟨∇L(ŵt),∇Lt(wt)⟩ ≤
βη2t
2

||gt−1∥2 + ηtG
2.

Also, based on the Young’s inequality and assumption 4.5,

E [⟨∇L(wt−1 + ηtgt−1),∇Lt(wt−1)⟩] ≤ G2

Therefore,

E[L(wt−1)] ≤ E[L(ŵt)] +
βη2t
2

||gt−1∥2 + ηtG
2.

Lemma A.14. With assumptions 4.3, 4.4 and 4.5, we have:

1

2
ηE∥∇L(ŵt−1)∥2 ≤ E[L(ŵt−1)]− E[L(ŵt)] + ηβρE∥∇L(ŵt)∥+ ηρ2β2

+η

[
G

(
β2ρ2 +

5β2η2G2

2

) 1
2

]
+

β

2

(
4η2β2ρ2

b
+ 4η2σ2 + η2G2

)
.

Proof. Using the definition of smoothness on Assumption (4.4) and taking the expectation on both
sides, we have:

E[L(ŵt)] ≤ E[L(ŵt−1)]

−ηE
[〈

∇ŵt−1 [L(ŵt−1)], 2∇ŵt−1 [Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)−∇ŵt−2 [Lt−1(wt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

〉]
+
β

2
E
∥∥∥∥2η∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)− η∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2

≤ E[L(ŵt−1)]− ηE

[〈
∇ŵt−1 [L(ŵt−1)],∇ŵt−1 [Lt−1(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)

〉]
+ηE

[〈
∇ŵt−1 [L(ŵt−1)],∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)−∇ŵt−1 [Lt(wt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(ŵt−1)∥
)]

〉]
+
η2β

2
E
∥∥∥∥2∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)−∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2

.
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Using Lemmas A.12, A.11 and A.10 above,

E[L(ŵt)] ≤ E[L(ŵt−1)]− ηE
[〈

∇ŵt−1 [L(ŵt−1)],∇ŵt−1 [Lt(ŵt−1 + ρ
∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)

〉]
+ηE

[〈
∇ŵt−1 [L(ŵt−1)],∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)−∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)]

〉]
+
β

2
E
∥∥∥∥2η∇ŵt−1 [Lt(ŵt−1 + ρ

∇wt−1Lt(wt−1)

∥∇wt−1Lt(wt−1)∥
)− η∇ŵt−2 [Lt−1(ŵt−2 + ρ

∇wt−2Lt−1(wt−2)

∥∇wt−2Lt−1(wt−2)∥
)

∥∥∥∥2

≤ E[L(ŵt−1)]− ηE
[
∥∇L(ŵt−1)∥2 − βρ∥∇L(ŵt−1)∥ − ρ2β2]

+ηE

[
G

(
β2ρ2 +

5β2η2G2

2

) 1
2

]
+

βη2

2

(
4β2ρ2

b
+ 4σ2 +G2

)
.

This can then be simplified as:

1

2
ηE∥∇L(ŵt−1)∥2 ≤ E[L(ŵt−1)]− E[L(ŵt)] + ηβρE∥∇L(ŵt)∥+ ηρ2β2

+η

[
G

(
β2ρ2 +

5β2η2G2

2

) 1
2

]
+

β

2

(
4η2β2ρ2

b
+ 4η2σ2 + η2G2

)
,

which is the desired result.

Theorem 4.6. Assume that ρt = min
(

1√
T
, 1
β

)
, ηt = min

(
1√
T
, 1
β

)
in Algorithm 2, then OG-SAM

satisfies: 1
T

∑T
t=0 E∥∇wt

L(wt)∥2 = O
(

1√
T
+ 1√

Tb

)
.

Proof. Using Lemma A.14, and with ρt = min
(

1√
T
, 1
β

)
, ηt = min

(
1√
T
, 1
β

)
, and the fact that

√
a+ b ≤

√
a+

√
b, we have

E∥∇L(ŵt−1)∥2 ≤ 2[E[L(ŵt−1)]− E[L(ŵt)]

η
+ 2βρG+ 2ρ2β2

2

[
βρ+

5βηG

2

]
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
.

Telescoping from 1 to T , and substitute ηT to 1√
T

, we have:

1

T

T∑
t=1

E∥∇L(ŵt)∥2 ≤ 2(E[L(ŵ0)]− E[L(ŵt+1)])√
Tη

+
2βG√

T
+

2ρ2β2

T

+
2β√
T

+
5βG√

T
+

2β
(

4β2ρ2

b + 4σ2 +G2
)

T

≤ O

(
1√
T

+
1√
Tb

)
.

We obtain:
1

T

T∑
t=0

E∥∇ŵt
L(ŵt)∥2 = O

(
1√
T

+
1√
Tb

)
.

Finally, using Lemma A.13, we have:

1

T

T∑
t=0

E∥∇wt
L(wt)∥2 ≤ 1

T

T∑
t=0

E∥∇ŵt
L(ŵt)∥2 +

β +
√
TG2

T
= O

(
1√
T

+
1√
Tb

)
.
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A.4 AO-SAM CONVERGENCE

Theorem 4.7. Assume that ρt = min
(

1√
T
, 1
β

)
, ηt = min

(
1√
T
, 1
2β

)
in Algorithm 3, then AO-SAM

satisfies:

1

T

T∑
t=0

E∥∇wt
L(wt)∥2 = O

(
1√
T

+
1√
Tb

)
.

Proof. Note that for AO-SAM,

1. If ∥ 1
b

∑
i∈It

∇wt
ℓi(wt)∥2 < µt + ctσt, then it is the SGD update scheme on epoch t.

2. If gt−1 in step 6 of Algorithm 3 is the gradient obtained by OG-SAM, and
∥ 1
b

∑
i∈It

∇wt
ℓi(wt)∥2 ≥ µt + ctσt, i.e., gt−1 = ∇ŵt−1

[
1
b

∑
i∈It−1

ℓi (ŵt−1 + ϵ̂t−1)
]
,

then it is the OG-SAM update scheme on epoch t.

3. If gt−1 in step 6 of Algorithm 3 is the gradient obtained by SGD, and
∥ 1
b

∑
i∈It

∇wt
ℓi(wt)∥2 ≥ µt + ctσt, then it is EG-SAM update scheme on epoch t. The

reason is that when the last step is SGD, gt−1 = ∇wt−1Lt (wt−1), by following steps 7-8
in Algorithm 3, Therefore,

wt = wt−1 − ηtgt

= wt−1 − ηt∇ŵt

1

b

∑
i∈It

ℓi

wt−1 − ηt∇wt−1Lt (wt−1) +
ρ∇wt−1

1
b

∑
i∈It

ℓi (wt−1)∥∥∥∇wt−1
1
b

∑
i∈It

ℓi (wt−1)
∥∥∥
 ,

which is exactly EG-SAM.

Therefore, our main goal is to combine these three different schemes together. Define ζ1t ∈ {0, 1},
ζ2t ∈ {0, 1} and ζ3t ∈ {0, 1} to indicate which update scheme is used in epoch t: ζ1t = 1 means
that OG-SAM is used; ζ2t = 1 means that SGD is used; while ζ3t = 1 means that EG-SAM is used.
Obviously, ζ1t + ζ2t + ζ3t = 1.

Recall that in Theorem 4.5, we have:

CE∥∇L(wt)∥2 ≤ EL(wt)− EL(wt+1) + η2(1− 2ηβ)
β2σ2

2
+ 2ρ2η(1− 2ηβ) + η2β

σ2

b

+η2β3ρ2 + ηβρG.

Recall that in Theorem 4.6, we have:

E∥∇L(wt−1)∥2 ≤ 2[E[L(wt−1)]− E[L(wt)]]

η
+ 2βρG+ 2ρ2β2

2

[
βρ+

5βηG

2

]
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
+

βη2t
2

||gt−1∥2 + ηtG
2.

Also from (2.9) in Theorem 2.1 of (Ghadimi & Lan, 2013),(
ηt −

L

2
η2t

)
∥∇L(wt−1)∥2 ≤ L(wt−1)− L(wt) +

β

2
η2t σ

2,

for SGD. By simple calculation and using assumption 4.5, we have

∥∇L(wt−1)∥2 ≤ E[L(wt−1)]− E[L(wt)]

ηt
+

β

2
ηtσ

2 +
β

2
ηtG

2.
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Therefore,
E
[
E∥∇L(wt−1)∥2

]
≤ ζ1t

[
E[L(wt−1)]− E[L(wt)]

η
+ 2βρG+ 2ρ2β2 + 2

[
βρ+

5βηG

2

]
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
+

βη2
t

2
||gt−1∥2 + ηtG

2

]
+ζ2t

[
E[L(wt−1)]− E[L(wt)]

η
+

β

2
ησ2 +

β

2
ηG2

]
+
ζ3t
C

[
E[L(wt−1)]− E[L(wt)] + η(1− 2ηβ)

β2σ2

2
+ 2ρ2η2(1− 2ηβ) + η2β

σ2

b
+ η2β3ρ2 +Gβρη

]
≤

[
E[L(wt−1)]− E[L(wt)]

η
+ 2βρG+ 2ρ2β2 + 2

(
βρ+

5βηG

2

)
+ 2ηβ

(
4β2ρ2

b
+ 4σ2 +G2

)
+

βη2
t

2
||gt−1∥2 + ηtG

2

]
+

[
E[L(wt−1)]− E[L(wt)]

η
+

β

2
ησ2 +

β

2
ηG2

]
+

1

C

[
E[L(wt−1)]− E[L(wt)] + η2(1− 2ηβ)

β2σ2

2
+ 2ρ2η(1− 2ηβ) + η2β

σ2

b
+ η2β3ρ2 +Gβρη

]
.

The second equation is due to the fact that ζ1, ζ2, ζ3 ≤ 1. Note that the summation of RHS from
t = 0 to T is exactly the summation of EG-SAM, OG-SAM, and SGD together, which has been
shown to have O( 1√

T
+ 1√

Tb
), O( 1√

T
+ 1√

Tb
), and O( 1√

T
) rates in Theorem 4.6, Theorem 4.5, and

Theorem 2.1 in (Ghadimi & Lan, 2013), respectively. As the finite summation of O( 1√
T
+ 1√

Tb
) is

still O( 1√
T
+ 1√

Tb
), the result follows.

A.5 CONNECTION TO MINIMAX GAME

To further explore the relationship between the converged point of our method and the original
objective in SAM (referred to as equation 1), we first introduce the concept of a stationary point in a
minimax game, following the definition provided by (Lin et al., 2020b):

Consider a minimax problem minx maxy f(x, y). The stationary point x of this minimax problem
satisfies ∥∇xϕ(x)∥2 = 0, where ϕ(x) := maxy f(x, y).

Therefore, the stationary point w of SAM (as defined in (1)) is characterized by the condition
∥∇w maxϵ:∥ϵ∥≤ρ L(w + ϵ)∥ = 0. This condition defines the point at which the gradient of the
maximized loss with respect to w is zero, indicating a stationary point in the context of the SAM
minimax problem.
Proposition A.15. If w∗

t ∈
{
wt | E∥∇L(wt)∥2 = 0

}
, then E∥∇maxϵ,∥ϵ∥≤ρ L(w

∗
t + ϵ)∥2 ≤ β2ρ2.

Proof. Note that

E∥∇ max
ϵ,∥ϵ∥≤ρ

L(w∗
t + ϵ)∥2 = E∥∇ max

ϵ,∥ϵ∥≤ρ
L(w∗

t + ϵ)−∇L(w∗
t ) +∇L(w∗

t )∥2

≤ E∥∇ max
ϵ,∥ϵ∥≤ρ

L(w∗
t + ϵ)−∇L(w∗

t )∥2 + E∥∇L(w∗
t )∥2

(a)

≤ β2ρ2 + 0

where the first inequality uses the triangle inequality, and (a) uses the fact that E∥∇L(wt)∥2 = 0 as
well as the β-smoothness assumption.

Note that
{
wt | E∥∇L(wt)∥2 = 0

}
is the EG-SAM’s stationary point set. The result reveals that the

stationary point w∗
t found by EG-SAM is very close to the stationary point of (1), especially when ρ

is small.

B EXTRA EXPERIMENTS

Extra experiments include testing loss, testing accuracy, and training loss for CIFAR-10 and CIFAR-
100 ( Figure 4); Testing accuracy with noise label on CIFAR-100 (Figure 6); as well as training and
testing accuracy on CIFAR-10 and CIFAR-100 (Table 7 ). Fig. 5 reveals the gradient norm.
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For Table 7, Besides ResNet-18 and WideResNet-28-10, we also compare our baselines with
PyramidNet-110 (Han et al., 2017), as well as ViT-S16(Dosovitskiy et al., 2021). The number
of training epochs in PyramidNet is 300, other settings are similar to ResNet-18.

All discussion of these experiments are illustrated in Section 5.

Besides, we added a experiment regarding increasing ρ in Table 9. As can been from the table, i.e.,
ρt = ρ0 +

t(ρT−ρ0)
T , where ρT is the final value ρT (1.0 in our experiment), while ρ0 is the initial

value of ρ (0.1 in our experiment). our method with increasing ρ still outperforms the SAM, and is
comparable to EG-SAM, while SAM with increasing ρ perform worse than original SAM method.

(a) CIFAR-10. (b) CIFAR-10. (c) CIFAR-10.

(d) CIFAR-100. (e) CIFAR-100. (f) CIFAR-100.

Figure 4: Training accuracy, training and testing losses on CIFAR-10 and CIFAR-100 (with ResNet-18
backbone).

(a) CIFAR-10. (b) CIFAR-100.

Figure 5: Gradient Norm on CIFAR-10 and CIFAR-100 (with ResNet-18 backbone).

We also added the performance comparison between GSAM, MSAM, and our AO-SAM in CIFAR-10
and CIFAR-100 with WideResNet-28-10 backbone. From the below table 10, we find that our method
also outperforms GSAM and MSAM.

We also provide clock computational time. Table 11 is the clock computational time per epoch on
CIFAR-10 with Resnet-18 as the backbone. As can be seen, the higher % SAM ratio means more
clock computational time, and our proposed OG-SAM has relatively same training time as SAM,
while AO-SAM is faster than SAM.
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Table 6: Testing accuracy and fraction of SAM updates on CIFAR-100 with different levels of label
noise. Methods are grouped based on %SAM. The best accuracy is in bold. The * denotes that the
best result are statistically significant compared with the best baseline with p value less than 0.95
using matched-pair t-test.

noise = 20% noise = 40% noise = 60% noise = 80%
accuracy %SAM accuracy %SAM accuracy %SAM accuracy %SAM

R
es

N
et

-1
8

ERM 66.83 ± 0.21 0.0 54.58 ± 0.96 0.0 47.98 ± 0.36 0.0 26.21 ± 3.40 0.0

SAM (Foret et al., 2021) 69.60 ± 0.19 100.0 59.85 ± 0.53 100.0 52.50 ± 0.25 100.0 23.79 ± 3.21 100.0
ESAM (Du et al., 2022a) 75.33 ± 0.19 100.0 67.75 ± 0.83 100.0 4.79 ± 3.58 100.0 1.29 ± 0.10 100.0

ASAM (Kwon et al., 2021) 67.76 ± 0.86 100.0 57.13 ± 0.06 100.0 48.69 ± 0.04 100.0 29.46 ± 0.10 100.0
OG-SAM 75.45 ± 0.27 100.0 68.01 ± 0.19 100.0 56.63 ± 0.10 100.0 29.77* ± 1.08 100.0

SS-SAM (Zhao, 2022) 75.68 ± 0.62 60.0 64.72 ± 0.20 60.0 55.55 ± 1.49 60.0 23.90 ± 5.63 60.0
AE-SAM (Jiang et al., 2023) 68.69 ± 0.35 61.4 57.35 ± 0.24 61.4 47.95 ± 1.01 61.4 27.11 ± 0.57 61.4

AO-SAM 75.69* ± 0.35 61.2 68.35* ± 0.21 61.3 56.95* ± 1.00 61.2 29.76 ± 1.21 61.3

R
es

N
et

-3
2

ERM 69.33 ± 0.24 0.0 55.77 ± 0.74 0.0 46.96 ± 0.93 0.0 25.67 ± 0.98 0.0

SAM (Foret et al., 2021) 70.88 ± 0.32 100.0 60.40 ± 0.07 100.0 53.10 ± 0.36 100.0 10.66 ± 5.56 100.0
ESAM (Du et al., 2022a) 77.09 ± 0.22 100.0 66.17 ± 1.78 100.0 3.02± 0.26 100.0 1.85± 0.73 100.0

ASAM (Kwon et al., 2021) 69.64 ± 1.36 100.0 57.88 ± 0.61 100.0 48.79 ± 0.24 100.0 28.06± 1.05 100.0
OG-SAM 78.05 ± 0.23 100.0 66.74 ± 0.19 100.0 56.06* ± 0.13 100.0 29.55 ± 2.08 100.0

SS-SAM (Zhao, 2022) 71.34 ± 0.32 60.0 61.45 ± 1.36 60.0 51.76 ± 0.04 60.0 13.96± 3.17 60.0
AE-SAM (Jiang et al., 2023) 68.94 ± 0.12 61.3 58.41± 1.89 61.3 51.48± 1.08 61.2 28.44 ± 0.76 61.3

AO-SAM 78.11* ± 0.14 61.2 68.71* ± 0.46 61.2 54.58 ± 0.30 61.2 29.78* ± 0.42 61.2

W
id

eR
es

N
et

-2
8-

10

ERM 74.31 ± 0.61 0.0 62.31 ± 0.41 0.0 48.23 ± 0.92 0.0 29.96 ± 0.21 0.0

SAM (Foret et al., 2021) 76.04 ± 0.38 100.0 64.65 ± 0.79 100.0 56.03 ± 0.76 100.0 29.48 ± 0.23 100.0
ESAM (Du et al., 2022a) 80.06 ± 0.12 100.0 72.03 ± 0.79 100.0 9.75 ± 2.12 100.0 1.16 ± 0.08 100.0

ASAM (Kwon et al., 2021) 74.37 ± 0.18 100.0 62.91 ± 0.71 100.0 51.35 ± 0.31 100.0 33.12 ± 0.16 100.0
OG-SAM 80.14 ± 0.29 100.0 72.79 *± 0.51 100.0 57.01 *± 0.34 100.0 36.33 *± 1.68 100.0

SS-SAM (Zhao, 2022) 75.48 ± 0.26 60.0 64.72 ± 0.25 60.0 54.83 ± 0.48 60.0 35.88 ± 3.23 60.0
AE-SAM (Jiang et al., 2023) 75.46 ± 0.36 61.3 63.04 ± 0.68 61.3 52.29 ± 0.63 61.3 33.72 ± 0.62 61.3

AO-SAM 80.32* ± 0.07 61.2 72.10 ± 0.48 61.2 56.89 ± 0.30 61.2 36.03 ± 0.59 61.2
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Table 7: Means and standard deviations of testing accuracy and fraction of SAM updates (%SAM)
on CIFAR-10 and CIFAR-100. Results of ERM, SAM, and ESAM are from (Jiang et al., 2023). †
denotes that the baseline results are obtained with the authors’ provided code. Methods are grouped
based on %SAM. The highest accuracy for each network architecture is in bold.

CIFAR-10 CIFAR-100
Accuracy % SAM Accuracy % SAM

R
es

N
et

-1
8

ERM 95.41 ±0.03 0.0 ±0.0 78.17 ±0.05 0.0 ±0.0

SAM (Foret et al., 2021) 96.52 ±0.12 100.0 ±0.0 80.17 ±0.15 100.0 ±0.0

ESAM (Du et al., 2022a) 96.56 ±0.08 100.0 ±0.0 80.41 ±0.10 100.0 ±0.0

ASAM (Kwon et al., 2021) 96.55† ±0.14 100.0 ±0.0 80.52† ±0.13 100.0 ±0.0

OG-SAM 96.79 ±0.02 100.0 ±0.0 80.76 ±0.15 100.0 ±0.0

SS-SAM (Zhao, 2022) 96.64† ±0.02 60.0 ±0.0 80.49† ±0.10 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 96.66† ±0.02 61.3 ±0.1 79.96† ±0.08 61.3 ±0.0

AO-SAM 96.82 ±0.04 61.1 ±0.0 80.70 ±0.14 61.2 ±0.0

W
id

eR
es

N
et

-2
8-

10

ERM 96.34 ±0.12 0.0 ±0.0 81.56 ±0.14 0.0 ±0.0

SAM (Foret et al., 2021) 97.27 ±0.11 100.0 ±0.0 83.42 ±0.05 100.0 ±0.0

ESAM (Du et al., 2022a) 97.29 ±0.11 100.0 ±0.0 84.51 ±0.02 100.0 ±0.0

ASAM (Kwon et al., 2021) 97.38† ±0.09 100.0 ±0.0 84.48† ±0.10 100.0 ±0.0

OG-SAM 97.56 ±0.03 100.0 ±0.0 84.74 ±0.02 100.0 ±0.0

SS-SAM (Zhao, 2022) 97.32† ±0.03 60.0 ±0.0 84.39† ±0.04 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 97.37† ±0.08 61.3 ±0.0 84.23† ±0.08 61.3 ±0.0

AO-SAM 97.49 ±0.02 61.2 ±0.0 84.80 ±0.11 61.2 ±0.0

P
yr

am
id

N
et

-1
10

ERM 96.62 ±0.10 0.0 ±0.0 81.89 ±0.15 0.0 ±0.0

SAM (Foret et al., 2021) 97.30 ±0.10 100.0 ±0.0 84.46 ±0.05 100.0 ±0.0

ESAM (Du et al., 2022a) 97.81 ±0.01 100.0 ±0.0 85.56 ±0.05 100.0 ±0.0

ASAM (Kwon et al., 2021) 97.71† ±0.09 100.0 ±0.0 85.55† ±0.11 100.0 ±0.0

OG-SAM 97.79 ±0.04 100.0 ±0.0 85.74 ±0.14 100.0 ±0.0

SS-SAM (Zhao, 2022) 97.62† ±0.03 60.0 ±0.0 85.41† ±0.11 60.0 ±0.0

AE-SAM (Jiang et al., 2023) 97.52† ±0.07 61.4 ±0.1 85.43† ±0.08 61.4 ±0.1

AO-SAM 97.87 ±0.02 61.2 ±0.0 85.60 ±0.07 61.2 ±0.12

Vi
T-

S1
6

ERM 86.69 ±0.11 0.0 ±0.0 62.42 ±0.22 0.0 ±0.0

SAM (Foret et al., 2021) 87.37 ±0.09 100.0 ±0.0 63.23 ±0.25 100.0 ±0.0

ESAM (Du et al., 2022a) 84.27 ±0.11 100.0 ±0.0 62.11 ±0.15 100.0 ±0.0

AO-SAM 88.27 ±0.12 100.0 ±0.0 64.45 ±0.23 100.0 ±0.0

Method CIFAR-10 CIFAR-100 ImageNet
SAM 0.05 0.1 0.05
ESAM 0.05 0.05 0.05
ASAM 0.05 0.1 1.0
AE-SAM 0.05 0.05 0.05
SS-SAM 0.1 0.05 0.05

Table 8: Values of ρ for Different Methods in Experiments

CIFAR-10 with ResNet-18
SAM (Foret et al., 2021) 96.52 ± 0.12
EG-SAM increasing ρ 94.67 ± 0.03
EG-SAM 96.86 ± 0.01
EG-SAM-increasing ρ 96.79 ± 0.06

Table 9: Increasing ρ results in CIFAR-10 with ResNet-18.
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CIFAR-10 CIFAR-100
GSAM (Zhuang et al., 2022) 97.42 ± 0.03 84.48 ± 0.06
MSAM (Behdin et al., 2023) 96.95 ± 0.04 84.07 ± 0.06
OG-SAM 97.49 ± 0.02 84.80 ± 0.11

Table 10: More baselines.

Method SAM EG-SAM EG+SAM OG-SAM OGDA+SAM SAM+AMO AO-SAM

Time per epoch (Sec.) 33.90 54.73 71.24 34.97 41.73 70.06 27.52

Table 11: Time per epoch.
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