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ABSTRACT

Active domain adaptation (DA) aims to maximally boost the model adaptation on
a new target domain by actively selecting limited target data to annotate, whereas
traditional active learning methods may be less effective since they do not consider
the domain shift issue. Despite active DA methods address this by further proposing
targetness to measure the representativeness of target domain characteristics, their
predictive uncertainty is usually based on the prediction of deterministic models,
which can easily be miscalibrated on data with distribution shift. Considering
this, we propose a Dirichlet-based Uncertainty Calibration (DUC) approach for
active DA, which simultaneously achieves the mitigation of miscalibration and the
selection of informative target samples. Specifically, we place a Dirichlet prior
on the prediction and interpret the prediction as a distribution on the probability
simplex, rather than a point estimate like deterministic models. This manner enables
us to consider all possible predictions, mitigating the miscalibration of unilateral
prediction. Then a two-round selection strategy based on different uncertainty
origins is designed to select target samples that are both representative of target
domain and conducive to discriminability. Extensive experiments on cross-domain
image classification and semantic segmentation validate the superiority of DUC.

1 INTRODUCTION

Despite the superb performances of deep neural networks (DNNs) on various tasks (Krizhevsky
et al., 2012; Chen et al., 2015), their training typically requires massive annotations, which poses
formidable cost for practical applications. Moreover, they commonly assume training and testing data
follow the same distribution, making the model brittle to distribution shifts (Ben-David et al., 2010).
Alternatively, unsupervised domain adaptation (UDA) has been widely studied, which assists the
model learning on an unlabeled target domain by transferring the knowledge from a labeled source
domain (Ganin & Lempitsky, 2015; Long et al., 2018). Despite the great advances of UDA, the
unavailability of target labels greatly limits its performance, presenting a huge gap with the supervised
counterpart. Actually, given an acceptable budget, a small set of target data can be annotated to
significantly boost the performance of UDA. With this consideration, recent works (Fu et al., 2021;
Prabhu et al., 2021) integrate the idea of active learning (AL) into DA, resulting in active DA.

The core of active DA is to annotate the most valuable target samples for maximally benefiting the
adaptation. However, traditional AL methods based on either predictive uncertainty or diversity are
less effective for active DA, since they do not consider the domain shift. For predictive uncertainty
(e.g., margin (Joshi et al., 2009), entropy (Wang & Shang, 2014)) based methods, they cannot measure
the target-representativeness of samples. As a result, the selected samples are often redundant and
less informative. As for diversity based methods (Sener & Savarese, 2018; Nguyen & Smeulders,
2004), they may select samples that are already well-aligned with source domain (Prabhu et al.,
2021). Aware of these, active DA methods integrate both predictive uncertainty and targetness into
the selection process (Su et al., 2019; Fu et al., 2021; Prabhu et al., 2021). Yet, existing focus is
on the measurement of targetness, e.g., using domain discriminator (Su et al., 2019) or clustering
(Prabhu et al., 2021). The predictive uncertainty they used is still mainly based on the prediction of
deterministic models, which is essentially a point estimate (Sensoy et al., 2018) and can easily be
miscalibrated on data with distribution shift (Guo et al., 2017). As in Fig. 1(a), standard DNN is
wrongly overconfident on most target data. Correspondingly, its predictive uncertainty is unreliable.
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(b) Examples of different prediction distributions
Figure 1: (a): point-estimate entropy of DNN and expected entropy of Dirichlet-based model, where
colors of points denote class identities. Both models are trained with source data. (b): examples of the
prediction distribution of three “monitor” images on the simplex. The model is trained with images
of “keyboard”, “computer” and “monitor” from the Clipart domain of Office-Home dataset. For the
two images from the Real-World domain, the entropy of expected prediction cannot distinguish them,
whereas Udis and Udata calculated based on the prediction distribution can reflect what contributes
more to their uncertainty and be utilized to guarantee the information diversity of selected data.

To solve this, we propose a Dirichlet-based Uncertainty Calibration (DUC) method for active DA,
which is mainly built on the Dirichlet-based evidential deep learning (EDL) (Sensoy et al., 2018). In
EDL, a Dirichlet prior is placed on the class probabilities, by which the prediction is interpreted as
a distribution on the probability simplex. That is, the prediction is no longer a point estimate and
each prediction occurs with a certain probability. The resulting benefit is that the miscalibration of
unilateral prediction can be mitigated by considering all possible predictions. For illustration, we plot
the expected entropy of all possible predictions using the Dirichlet-based model in Fig. 1(a). And we
see that most target data with domain shift are calibrated to have greater uncertainty, which can avoid
the omission of potentially valuable target samples in deterministic model based-methods.

Besides, based on Subjective Logic (Jøsang, 2016), the Dirichlet-based evidential model intrinsically
captures different origins of uncertainty: the lack of evidences and the conflict of evidences. This
property further motivates us to consider different uncertainty origins during the process of sample
selection, so as to comprehensively measure the value of samples from different aspects. Specifically,
we introduce the distribution uncertainty to express the lack of evidences, which mainly arises from
the distribution mismatch, i.e., the model is unfamiliar with the data and lacks knowledge about it. In
addition, the conflict of evidences is expressed as the data uncertainty, which comes from the natural
data complexity, e.g., low discriminability. And the two uncertainties are respectively captured by
the spread and location of the Dirichlet distribution on the probability simplex. As in Fig. 1(b), the
real-world style of the first target image obviously differs from source domain and presents a broader
spread on the probability simplex, i.e., higher distribution uncertainty. This uncertainty enables
us to measure the targetness without introducing the domain discriminator or clustering, greatly
saving computation costs. While the second target image provides different information mainly from
the aspect of discriminability, with the Dirichlet distribution concentrated around the center of the
simplex. Based on the two different origins of uncertainty, we design a two-round selection strategy
to select both target-representative and discriminability-conducive samples for label query.

Contributions: 1) We explore the uncertainty miscalibration problem that is ignored by existing
active DA methods, and achieve the informative sample selection and uncertainty calibration simulta-
neously within a unified framework. 2) We provide a novel perspective for active DA by introducing
the Dirichlet-based evidential model, and design an uncertainty origin-aware selection strategy to
comprehensively evaluate the value of samples. Notably, no domain discriminator or clustering
is used, which is more elegant and saves computation costs. 3) Extensive experiments on both
cross-domain image classification and semantic segmentation validate the superiority of our method.

2 RELATED WORK

Active Learning (AL) aims to reduce the labeling cost by querying the most informative samples to
annotate (Ren et al., 2022), and the core of AL is the query strategy for sample selection. Committee-
based strategy selects samples with the largest prediction disagreement between multiple classifiers
(Seung et al., 1992; Dagan & Engelson, 1995). Representative-based strategy chooses a set of
representative samples in the latent space by clustering or core-set selection (Nguyen & Smeulders,
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2004; Sener & Savarese, 2018). Uncertainty-based strategy picks samples based on the prediction
confidence (Lewis & Catlett, 1994), entropy (Wang & Shang, 2014; Huang et al., 2018), etc, to
annotate samples that the model is most uncertain about. Although these query strategies have shown
promising performances, traditional AL usually assumes that the labeled data and unlabeled data
follow the same distribution, which may not well deal with the domain shift in active DA.

Active Learning for Domain Adaptation intends to maximally boost the model adaption from
source to target domain by selecting the most valuable target data to annotate, given a limited labeling
budget. With the limitation of traditional AL, researchers incorporate AL with additional criteria of
targetness (i.e., the representativeness of target domain). For instance, besides predictive uncertainty,
AADA (Su et al., 2019) and TQS (Fu et al., 2021) additionally use the score of domain discriminator
to represent targetness. Yet, the learning of domain discriminator is not directly linked with the
classifier, which may cause selected samples not necessarily beneficial for classification. Another line
models targetness based on clustering, e.g., CLUE (Prabhu et al., 2021) and DBAL (Deheeger et al.,
2021). Differently, EADA (Xie et al., 2021) represents targetness as free energy bias and explicitly
reduces the free energy bias across domains to mitigate the domain shift. Despite the advances, the
focus of existing active DA methods is on the measurement of targetness. Their predictive uncertainty
is still based on the point estimate of prediction, which can easily be miscalibrated on target data.

Deep Learning Uncertainty measures the trustworthiness of decisions from DNNs. One line of
the research concentrates on better estimating the predictive uncertainty of deterministic models via
ensemble (Lakshminarayanan et al., 2017) or calibration (Guo et al., 2017). Another line explores to
combine deep learning with Bayesian probability theory (Denker & LeCun, 1990; Goan & Fookes,
2020). Despite the potential benefits, BNNs are limited by the intractable posterior inference and
expensive sampling for uncertainty estimation (Amini et al., 2020). Recently, evidential deep learning
(EDL) (Sensoy et al., 2018) is proposed to reason the uncertainty based on the belief or evidence
theory (Dempster, 2008; Jøsang, 2016), where the categorical prediction is interpreted as a distribution
by placing a Dirichlet prior on the class probabilities. Compared with BNNs which need multiple
samplings to estimate the uncertainty, EDL requires only a single forward pass, greatly saving
computational costs. Attracted by the benefit, TNT (Chen et al., 2022) leverages it for detecting
novel classes, GKDE Zhao et al. (2020) integrates it into graph neural networks for detecting out-of-
distribution nodes, and TCL (Li et al., 2022) utilizes it for trustworthy long-tailed classification. Yet,
researches on how to effectively use EDL for active DA remain scarce.

3 DIRICHLET-BASED UNCERTAINTY CALIBRATION FOR ACTIVE DA

3.1 PROBLEM FORMULATION

Formally, in active DA, there are a labeled source domain S = {xsi , ysi }nsi=1 and an unlabeled target
domain T = {xtj}ntj=1, where ysi ∈ {1, 2, · · · , C} is the label of source sample xsi and C is the
number of classes. Following the standard setting in (Fu et al., 2021), we assume that source and
target domains share the same label space Y = {1, 2, · · · , C} but follow different data distributions.
Meanwhile, we denote a labeled target set as T l, which is an empty set ∅ initially. When training
reaches the active selection step, b unlabeled target samples will be selected to query their labels from
the oracle and added into T l. Then we have T = T l ∪ T u, where T u is the remaining unlabeled
target set. Such active selection step repeats several times until reaching the total labeling budget B.

To get maximal benefit from limited labeling budget, the main challenge of active DA is how to
select the most valuable target samples to annotate under the domain shift, which has been studied
by several active DA methods (Su et al., 2019; Fu et al., 2021; Prabhu et al., 2021; Deheeger et al.,
2021; Xie et al., 2021). Though they have specially considered targetness to represent target domain
characteristics, their predictive uncertainty is still mainly based on the prediction of deterministic
models, which can easily be miscalibrated under the domain shift, as found in (Lakshminarayanan
et al., 2017; Guo et al., 2017). Instead, we tackle active DA via the Dirichlet-based evidential model,
which treats categorical prediction as a distribution rather than a point estimate like previous methods.

3.2 PRELIMINARY OF DIRICHLET-BASED EVIDENTIAL MODEL

Let us start with the general C-class classification. X denotes the input space and the deep model f
parameterized with θ maps the instance x ∈ X into a C-dimensional vector, i.e., f : X → RC . For
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standard DNN, the softmax operator is usually adopted on the top of f to convert the logit vector into
the prediction of class probability vector ρ1, while this manner essentially gives a point estimate of ρ
and can easily be miscalibrated on data with distribution shift (Guo et al., 2017).

To overcome this, Dirichlet-based evidential model is proposed by Sensoy et al. (2018), which treats
the prediction of class probability vector ρ as the generation of subjective opinions. And each subjec-
tive opinion appears with certain degrees of uncertainty. In other words, unlike traditional DNNs,
evidential model treats ρ as a random variable. Specifically, a Dirichlet distribution, the conjugate
prior distribution of the multinomial distribution, is placed over ρ to represent the probability density
of each possible ρ. Given sample xi, the probability density function of ρ is denoted as

p(ρ|xi, θ) = Dir(ρ|αi) =

{
Γ(

∑C
c=1 αic)∏C

c=1 Γ(αic)

∏C
c=1 ρ

αic−1
c , if ρ ∈ 4C

0 , otherwise
, αic > 0, (1)

where αi is the parameters of the Dirichlet distribution for sample xi, Γ(·) is the Gamma function
and 4C is the C-dimensional unit simplex: 4C = {ρ|∑C

c=1 ρc = 1 and ∀ρc, 0 ≤ ρc ≤ 1}. For
αi, it can be expressed as αi = g(f(xi,θ)), where g(·) is a function (e.g., exponential function) to
keep αi positive. In this way, the prediction of each sample is interpreted as a distribution over the
probability simplex, rather than a point on it. And we can mitigate the uncertainty miscalibration by
considering all possible predictions rather than unilateral prediction.

Further, based on the theory of Subjective Logic (Jøsang, 2016) and DST (Dempster, 2008), the
parameters αi of Dirichlet distribution is closely linked with the evidences collected to support the
subjective opinion for sample xi, via the equation ei = αi − 1 where ei is the evidence vector. And
the uncertainty of each subjective opinion ρ also relates to the collected evidences. Both the lack
of evidences and the conflict of evidences can result in uncertainty. Having the relation between αi
and evidences, the two origins of uncertainty are naturally reflected by the different characteristics of
Dirichlet distribution: the spread and the location over the simplex, respectively. As shown in Fig.
1(b), opinions with lower amount of evidences have broader spread on the simplex, while the opinions
with conflicting evidences locate close to the center of the simplex and present low discriminability.

Connection with softmax-based DNNs. Considering sample xi, the predicted probability for class
c can be denoted as Eq. (2), by marginalizing over ρ. The derivation is in Sec. E.1 of the appendix.

P (y = c|xi,θ)=

∫
p(y = c|ρ)p(ρ|xi,θ)dρ=

αic∑C
k=1 αik

=
g(fc(xi,θ))∑C
k=1 g(fk(xi,θ))

=E[Dir(ρc|αi)]. (2)

Specially, if g(·) adopts the exponential function, then softmax-based DNNs can be viewed as
predicting the expectation of Dirichlet distribution. However, the marginalization process will
conflate uncertainties from different origins, making it hard to ensure the information diversity of
selected samples, because we do not know what information the sample can bring.

3.3 SELECTION STRATEGY WITH AWARENESS OF UNCERTAINTY ORIGINS

In active DA, to gain the utmost benefit from limited labeling budget, the selected samples ideally
should be 1) representative of target distribution and 2) conducive to discriminability. For the former,
existing active DA methods either use the score of domain discriminator (Su et al., 2019; Fu et al.,
2021) or the distance to cluster centers (Prabhu et al., 2021; Deheeger et al., 2021). As for the latter,
predictive uncertainty (e.g., margin (Xie et al., 2021), entropy (Prabhu et al., 2021)) of standard
DNNs is utilized to express the discriminability of target samples. Differently, we denote the two
characteristics in a unified framework, without introducing domain discriminator or clustering.

For the evidential model supervised with source data, if target samples are obviously distinct from
source domain, e.g., the realistic v.s. clipart style, the evidences collected for these target samples
may be insufficient, because the model lacks the knowledge about this kind of data. Built on this, we
use the uncertainty resulting from the lack of evidences, called distribution uncertainty, to measure
the targetness. Specifically, the distribution uncertainty Udis of sample xj is defined as

Udis(xj ,θ) , I[y,ρ|xj ,θ] =

C∑
c=1

ρ̄jc

(
ψ(αjc + 1)− ψ(

C∑
k=1

αjk + 1)

)
−

C∑
c=1

ρ̄jclogρ̄jc, (3)

1ρ = [ρ1, ρ2, · · · , ρC ]> = [P (y = 1), P (y = 2), · · · , P (y = C)]> is a vector of class probabilities.
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Figure 2: Illustration of DUC. When the training reaches the active selection steps, the distribution
uncertainty Udis and data uncertainty Udata of unlabeled target samples are calculated according
to the Dirichlet distribution with parameter α. Then κb samples with the highest Udis are chosen
in the first round. In the second round, according to Udata, we select the top b samples from the
instances chosen in the first round to query their labels. These labeled target samples are added into
the supervised learning. When reaching the total labeling budget B, the active selection stops.

where θ is the parameters of the evidential deep model, ψ(·) is the digamma function and ρ̄jc =
E[Dir(ρc|αj)]. Here, we use mutual information to measure the spread of Dirichlet distribution on
the simplex like Malinin & Gales (2018). The higher Udis indicates larger variance of opinions due
to the lack of evidences, i.e., the Dirichlet distribution is broadly spread on the probability simplex.

For the discriminability, we also utilize the predictive entropy to quantify. But different from previous
methods which are based on the point estimate (i.e., the expectation of Dirichlet distribution), we
denote it as the expected entropy of all possible predictions. Specifically, given sample xj and model
parameters θ, the data uncertainty Udata is expressed as

Udata(xj ,θ) , Ep(ρ|xj ,θ) [H[P (y|ρ)]] =

C∑
c=1

ρ̄jc

(
ψ(

C∑
k=1

αjk + 1)− ψ(αjc + 1)

)
. (4)

Here, we do not adoptH[E[Dir(ρ|αj)]], i.e., the entropy of point estimate, to denote data uncertainty,
in that the expectation operation will conflate uncertainties from different origins as shown in Eq. (2).

Having the distribution uncertainty Udis and data uncertainty Udata, we select target samples accord-
ing to the strategy in Fig. 2. In each active selection step, we select samples in two rounds. In the first
round, top κb target samples with highest Udis are selected. Then according to data uncertainty Udata,
we choose the top b target samples from the candidates in the first round to query labels. Experiments
on the uncertainty ordering and selection ratio in the first round are provided in Sec. D.1 and Sec. 4.3.

Relation between Udis, Udata and typical entropy. Firstly, according to Eq. (2), the typical entropy
of sample xj can be denoted as H[P (y|xj ,θ)] = H[E[Dir(ρ|αj)]] = −∑C

c=1 ρ̄jclogρ̄jc, where
ρ̄jc = E[Dir(ρc|αj)]. Then we have Udis(xj ,θ) + Udata(xj ,θ) = H[P (y|xj ,θ)], by adding Eq.
(3) and Eq. 4 together. We can see that our method actually equals to decomposing the typical
entropy into two origins of uncertainty, by which our selection criteria are both closely related to
the prediction. While the targetness measured with domain discriminator or clustering centers is not
directly linked with the prediction, and thus the selected samples may already be nicely classified.

Discussion. Although Malinin & Gales (2018) propose Dirichlet Prior Network (DPN) to distinguish
between data and distribution uncertainty, their objective differs from us. Malinin & Gales (2018)
mainly aims to detect out-of-distribution (OOD) data, and DPN is trained using the KL-divergence
between the model and the ground-truth Dirichlet distribution. Frustratingly, the ground-truth
Dirichlet distribution is unknown. Though they manually construct a Dirichlet distribution as the
proxy, the parameter of Dirichlet for the ground-truth class still needs to be set by hand, rather than
learned from data. In contrast, by interpreting from an evidential perspective, our method does
not require the ground-truth Dirichlet distribution and automatically learns sample-wise Dirichlet
distribution by maximizing the evidence of ground-truth class and minimizing the evidences of wrong
classes, which is shown in Sec. 3.4. Besides, they expect to generate a flat Dirichlet distribution for
OOD data, while this is not desired on our target data, since our goal is to improve their accuracy.
Hence, we additionally introduce losses to reduce the distribution and data uncertainty of target data.
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3.4 EVIDENTIAL MODEL LEARNING

To get reliable and consistent opinions for labeled data, the evidential model is trained to generate
sharp Dirichlet distribution located at the corner of the simlpex for these labeled data. Concretely,
we train the model by minimizing the negative logarithm of the marginal likelihood (Lnll) and the
KL-divergence between two Dirichlet distributions (LKL). Lnll is expressed as

Lnll =
1

ns

∑
xi∈S

−log

(∫
p(y = yi|ρ)p(ρ|xi,θ)dρ

)
+

1

|T l|
∑
xj∈T l

−log

(∫
p(y = yj |ρ)p(ρ|xj ,θ)dρ

)

=
1

ns

∑
xi∈S

C∑
c=1

Υic

(
log
( C∑
c=1

αic
)
− logαic

)
+

1

|T l|
∑
xj∈T l

C∑
c=1

Υjc

(
log
( C∑
c=1

αjc
)
− logαjc

)
, (5)

where Υic/Υjc is the c-th element of the one-hot label vector Υi/Υj of sample xi/xj . Lnll is
minimized to ensure the correctness of prediction. As for Lkl, it is denoted as

Lkl =
1

C · ns

∑
xi∈S

KL
[
Dir(ρ|α̃i)‖Dir(ρ|1)

]
+

1

C · |T l|
∑
xj∈T l

KL
[
Dir(ρ|α̃j)‖Dir(ρ|1)

]
, (6)

where α̃i/j = Υi/j + (1−Υi/j)
⊙
αi/j and

⊙
is the element-wise multiplication. α̃i/j can be

seen as removing the evidence of ground-truth class. Minimizing Lkl will force the evidences of other
classes to reduce, avoiding the collection of mis-leading evidences and increasing discriminability.
Here, we divide the KL-divergence by the number of classes, since its scale differs largely for different
C. Due to the space limitation, the computable expression is given in Sec. E.4 of the appendix.

In addition to the training on the labeled data, we also explicitly reduce the distribution and data
uncertainties of unlabeled target data by minimizing Lun, which is formulated as

Lun = βLUdis + λLUdata =
β

|T u|
∑
xk∈T u

Udis(xk,θ) +
λ

|T u|
∑
xk∈T u

Udata(xk,θ), (7)

where β and λ are two hyper-parameters to balance the two losses. On the one hand, this regularizer
term is conducive to improving the predictive confidence of some target samples. On the other hand,
it contributes to selecting valuable samples, whose uncertainty can not be easily reduced by the model
itself and external annotation is needed to provide more guidance. To sum up, the total training loss is

Ltotal = Ledl + Lun = (Lnll + Lkl) + (βLUdis + λLUdata). (8)

The training procedure of DUC is shown in Sec. B of the appendix. And for the inference stage, we
simply use the expected opinion, i.e., the expectation of Dirichlet distribution, as the final prediction.

Discussion. Firstly, Lnll,Lkl are actually widely used in EDL-inspired methods for supervision, e.g.,
Bao et al. (2021); Chen et al. (2022); Li et al. (2022). Secondly, our motivation and methodology
differs from EDL. EDL does not consider the origin of uncertainty, since it is mainly proposed for
OOD detection, which is less concerned with that. And models can reject samples as long as the
total uncertainty is high. By contrast, our goal is to select the most valuable target samples for model
adaption. Though target samples can be seen as OOD samples to some extent, simply sorting them
by the total uncertainty is not a good strategy, since the total uncertainty can not reflect the diversity
of information. A better choice is to measure the value of samples from multiple aspects. Hence, we
introduce a two-round selection strategy based on different uncertainty origins. Besides, according to
the results in Sec. D.5, our method can empirically mitigate the domain shift by minimizing LUdis ,
which makes our method more suitable for active DA. Comparatively, this is not included in EDL.

Time Complexity of Query Selection. The consumed time in the selection process mainly comes
from the sorting of samples. In the first round of each active section step, the time complexity is
O(|T u|log|T u|). And in the second round, the complexity is O((κb)log(κb)). Thus, the complexity
of each selection step is O(|T u|log|T u|) +O((κb)log(κb)). Assuming the number of total selection
steps is r, then the total complexity is

∑r
m=1(O(|T um|log|T um|) +O((κb)log(κb))), where T um is the

unlabeled target set in the m-th active selection step. Since r is quite small (5 in our paper), and
κb ≤ |T um| ≤ nt, the approximated time complexity is denoted as O(ntlognt).
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Table 1: Accuracy (%) on miniDomainNet with 5% target samples as the labeling budget (ResNet-50).
Method clp→pnt clp→rel clp→skt pnt→clp pnt→rel pnt→skt rel→clp rel→pnt rel→skt skt→clp skt→pnt skt→rel Avg

Source-only 52.1 63.0 49.4 55.9 73.0 51.1 56.8 61.0 50.0 54.0 48.9 60.3 56.3
Random 61.6 78.7 61.6 64.0 78.7 63.7 60.5 64.3 61.1 64.8 58.7 75.2 66.1

BvSB (Joshi et al., 2009) 63.2 77.9 62.7 66.7 80.5 64.9 64.3 67.0 62.2 67.6 62.5 77.8 68.1
Entropy (Wang & Shang, 2014) 63.3 78.3 61.0 65.7 81.4 63.2 63.3 66.2 63.0 67.9 60.5 78.3 67.7

CoreSet (Sener & Savarese, 2018) 62.6 78.3 60.2 62.1 79.9 63.6 63.6 65.2 59.1 63.1 62.3 78.1 66.5
WAAL (Shui et al., 2020) 63.2 80.2 62.1 60.6 80.3 64.6 62.9 64.1 59.5 65.4 61.8 78.6 66.9
BADGE (Ash et al., 2020) 64.3 80.8 63.5 65.2 80.2 63.8 65.9 65.4 63.4 66.7 63.3 79.2 68.5

AADA (Su et al., 2019) 62.4 77.5 61.7 61.9 79.7 61.1 65.6 66.0 60.8 65.1 62.1 80.0 67.0
DBAL (Deheeger et al., 2021) 62.9 79.2 60.8 64.6 78.1 62.5 65.6 65.2 59.2 66.3 61.3 80.3 67.2

TQS (Fu et al., 2021) 67.8 82.0 65.4 67.5 84.8 66.1 63.8 67.2 62.5 71.1 64.4 81.6 70.4
CLUE (Prabhu et al., 2021) 57.6 77.5 58.6 58.9 76.8 65.9 66.3 60.2 60.5 66.2 58.7 76.0 65.3

EADA (Xie et al., 2021) 66.0 80.8 63.5 69.4 83.0 65.1 71.1 68.6 65.7 71.0 64.3 81.0 70.8
DUC 67.1±0.4 81.1±0.5 67.1±0.5 74.0±0.6 83.5±0.3 67.6±0.3 72.4±0.7 70.3±0.4 66.5±0.4 73.5±0.3 70.0±0.5 81.1±0.3 72.9±0.4

Fully-supervised 74.8 89.2 73.8 82.9 89.2 75.1 82.4 75.6 74.9 82.7 73.8 88.7 80.3
For miniDomainNet, since these compared baselines do not report the results on this dataset, we report our own runs based on their open source code.

Table 2: Accuracy (%) on Office-Home and VisDA-2017 with 5% target samples as the labeling
budget (ResNet-50).

Method VisDA-2017 Office-Home
Synthetic→Real Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Source-only 44.7 ± 0.1 42.1 66.3 73.3 50.7 59.0 62.6 51.9 37.9 71.2 65.2 42.6 76.6 58.3
Random 78.1 ± 0.6 52.5 74.3 77.4 56.3 69.7 68.9 57.7 50.9 75.8 70.0 54.6 81.3 65.8

BvSB (Joshi et al., 2009) 81.3 ± 0.4 56.3 78.6 79.3 58.1 74.0 70.9 59.5 52.6 77.2 71.2 56.4 84.5 68.2
Entropy (Wang & Shang, 2014) 82.7 ± 0.3 58.0 78.4 79.1 60.5 73.0 72.6 60.4 54.2 77.9 71.3 58.0 83.6 68.9

CoreSet (Sener & Savarese, 2018) 81.9 ± 0.3 51.8 72.6 75.9 58.3 68.5 70.1 58.8 48.8 75.2 69.0 52.7 80.0 65.1
WAAL (Shui et al., 2020) 83.9 ± 0.4 55.7 77.1 79.3 61.1 74.7 72.6 60.1 52.1 78.1 70.1 56.6 82.5 68.3
BADGE (Ash et al., 2020) 84.3 ± 0.3 58.2 79.7 79.9 61.5 74.6 72.9 61.5 56.0 78.3 71.4 60.9 84.2 69.9

AADA (Su et al., 2019) 80.8 ± 0.4 56.6 78.1 79.0 58.5 73.7 71.0 60.1 53.1 77.0 70.6 57.0 84.5 68.3
DBAL (Deheeger et al., 2021) 82.6 ± 0.3 58.7 77.3 79.2 61.7 73.8 73.3 62.6 54.5 78.1 72.4 59.9 84.3 69.6

TQS (Fu et al., 2021) 83.1 ± 0.4 58.6 81.1 81.5 61.1 76.1 73.3 61.2 54.7 79.7 73.4 58.9 86.1 70.5
CLUE (Prabhu et al., 2021) 85.2 ± 0.4 58.0 79.3 80.9 68.8 77.5 76.7 66.3 57.9 81.4 75.6 60.8 86.3 72.5

EADA (Xie et al., 2021) 88.3 ± 0.1 63.6 84.4 83.5 70.7 83.7 80.5 73.0 63.5 85.2 78.4 65.4 88.6 76.7
DUC 88.9 ± 0.2 65.5±0.3 84.9±0.2 84.3±0.4 73.0±0.4 83.4±0.2 81.1±0.3 73.9±0.3 66.6±0.5 85.4±0.2 80.1±0.2 69.2±0.3 88.8±0.1 78.0±0.3

Fully-supervised 93.3 95.6 99.5 99.5 99.3 99.6 99.5 99.3 95.8 99.5 99.5 95.6 99.5 98.5

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate DUC on three cross-domain image classification datasets: miniDomainNet (Zhou et al.,
2021), Office-Home (Venkateswara et al., 2017), VisDA-2017 (Peng et al., 2017), and two adaptive
semantic segmentation tasks: GTAV (Richter et al., 2016) → Cityscapes (Cordts et al., 2016),
SYNTHIA (Ros et al., 2016)→ Cityscapes. For image classification, we use ResNet-50 (He et al.,
2016) pre-trained on ImageNet (Deng et al., 2009) as the backbone. Following (Xie et al., 2021),
the total labeling budget B is set as 5% of target samples, which is divided into 5 selection steps,
i.e., the labeling budget in each selection step is b = B/5 = 1% × nt. We adopt the mini-batch
SGD optimizer with batch size 32, momentum 0.9 to optimize the model. As for hyper-parameters,
we select them by the grid search with deep embedded validation (DEV) (You et al., 2019) and use
β = 1.0, λ = 0.05, κ = 10 for image classification. For semantic segmentation, we adopt DeepLab-
v2 (Chen et al., 2015) and DeepLab-v3+ (Chen et al., 2018) with the backbone ResNet-101 (He et al.,
2016), and totally annotate 5% pixels of target images. Similarly, the mini-batch SGD optimizer is
adopted, where batch size is 2. And we set β = 1.0, λ = 0.01, κ = 10 for semantic segmentation. For
all tasks, we report the mean±std of 3 random trials, and we perform fully supervised training with the
labels of all target data as the upper bound. Detailed dataset description and implementation details
are given in Sec C of the appendix. Code is available at https://github.com/BIT-DA/DUC.

4.2 MAIN RESULTS

4.2.1 IMAGE CLASSIFICATION

Results on miniDomainNet are summarized in Table 1, where clustering-based methods (e.g.,
DBAL, CLUE) seem to be less effective than uncertainty-based methods (e.g., TQS, EADA) on the
large-scale dataset. This may be because the clustering becomes more difficult with the increase
of data scale. Contrastively, our method works well with the large-scale dataset. Moreover, DUC
surpasses the most competitive rival EADA by 2.1% on average accuracy. This is owed to our better
estimation of predictive uncertainty by interpreting the prediction as a distribution, while EADA only
considers the point estimate of predictions, which can easily be miscalibrated.

Results on Office-Home are reported in Table 2, where active DA methods (e.g., DBAL, TQS,
CLUE) generally outperform AL methods (e.g., Entropy, CoreSet, WAAL), showing the necessity of
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Table 3: mIoU (%) comparisons on the task GTAV→ Cityscapes.
Method budget road side. buil. wall fence pole light sign veg. terr. sky pers. rider car truck bus train motor bike mIoU

Source-only - 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
MRKLD (Zou et al., 2019) - 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1

Seg-Uncertainty (Zheng & Yang, 2021) - 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
TPLD (Shin et al., 2020) - 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2

ProDA (Zhang et al., 2021) - 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
EADA (Xie et al., 2021) 5% - - - - - - - - - - - - - - - - - - - 65.2
EADA? (Xie et al., 2021) 5% 96.5 73.8 88.6 51.3 44.8 40.9 47.4 56.5 89.1 55.0 91.3 69.2 47.6 90.7 66.4 64.9 53.1 52.4 66.6 65.6

DUC 5% 96.8 76.2 89.2 53.2 46.0 42.5 48.5 57.6 89.6 58.5 92.1 72.9 51.3 92.0 62.8 72.2 48.5 52.8 70.3 67.0
Fully-supervised 100% 97.2 78.1 90.6 54.5 52.7 43.2 54.2 65.1 90.5 59.9 92.4 72.8 50.7 91.8 74.0 77.2 67.6 56.3 70.9 70.5

AADA# (Su et al., 2019) 5% 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3
MADA# (Ning et al., 2021) 5% 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9

DUC# 5% 95.9 70.6 89.8 50.7 48.3 47.8 53.7 59.7 90.3 56.8 93.1 74.7 55.1 92.8 74.8 77.9 63.4 59.5 71.6 69.8
Fully-supervised# 100% 96.8 80.4 90.2 48.6 56.8 52.3 58.6 68.3 90.2 59.4 93.3 75.8 54.2 92.5 74.9 79.1 71.6 56.8 71.8 72.2

Methods with # are based on DeepLab-v3+ (Chen et al., 2018) and others are based on DeepLab-v2 (Chen et al., 2015). Method with budget “-” are the source-only or UDA methods. EADA? denotes
the results are based on our own runs according to the corresponding open source code.

Table 4: mIoU (%) comparisons on the task SYNTHIA→ Cityscapes. mIoU∗ is reported according
to the average of 13 classes, excluding the “wall”, “fence” and “pole”.

Method budget road side. buil. wall∗ fence∗ pole∗ light sign veg. sky pers. rider car bus motor bike mIoU mIoU∗
Source-only - 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3

MRKLD (Zou et al., 2019) - 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 50.1
TPLD (Shin et al., 2020) - 80.9 44.3 82.2 19.9 0.3 40.6 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 47.3 53.5

Seg-Uncertainty (Zheng & Yang, 2021) - 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 54.9
ProDA (Zhang et al., 2021) - 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0

DUC 5% 96.1 73.1 88.7 43.3 39.0 42.2 49.9 55.5 90.7 92.8 73.7 49.2 91.9 67.9 45.9 71.1 66.9 72.8
Fully-supervised 100% 97.3 79.4 89.6 52.8 54.0 46.7 53.4 62.6 90.5 92.9 71.3 50.8 92.1 77.9 55.4 68.7 71.0 75.5

AADA# (Su et al., 2019) 5% 91.3 57.6 86.9 37.6 48.3 45.0 50.4 58.5 88.2 90.3 69.4 37.9 89.9 44.5 32.8 62.5 61.9 66.2
MADA# (Ning et al., 2021) 5% 96.5 74.6 88.8 45.9 43.8 46.7 52.4 60.5 89.7 92.2 74.1 51.2 90.9 60.3 52.4 69.4 68.1 73.3

DUC# 5% 96.3 74.6 89.4 46.8 47.6 46.8 49.7 63.1 90.3 91.3 74.7 53.8 93.1 78.9 57.0 71.0 70.3 75.6
Fully-supervised# 100% 97.0 80.4 90.9 48.6 56.2 52.1 58.5 67.4 91.3 93.4 75.5 54.2 92.3 78.5 56.1 71.3 72.7 77.4

Methods with # are based on DeepLab-v3+ (Chen et al., 2018) and others are based on DeepLab-v2 (Chen et al., 2015). Method with budget “-” are the source-only or UDA methods.

considering targetness. And our method beats EADA by 1.3%, validating the efficacy of regrading
the prediction as a distribution and selecting data based on both the distribution and data uncertainties.

Results on VisDA-2017 are given in Table 2. On this large-scale dataset, our method still works well,
achieving the highest accuracy of 88.9%, which further validates the effectiveness of our approach.

4.2.2 SEMANTIC SEGMENTATION

Results on GTAV→Cityscapes are shown in Table 3. Firstly, we can see that with only 5% labeling
budget, the performance of domain adaptation can be significantly boosted, compared with UDA
methods. Besides, compared with active DA methods (AADA and MADA), our DUC largely
surpasses them according to mIoU: DUC (69.8, 10.5↑) v.s. AADA (59.3), DUC (69.8, 4.9↑) v.s.
MADA (64.9). This can be explained as the more informative target samples selected by DUC and
the implicitly mitigated domain shift by reducing the distribution uncertainty of unlabeled target data.

Results on SYNTHIA→Cityscapes are presented in Table 4. Due to the domain shift from virtual
to realistic as well as a variety of driving scenes and weather conditions, this adaptation task is
challenging, while our method still achieves considerable improvements. Concretely, according to the
average mIoU of 16 classes, DUC exceeds AADA and MADA by 8.4% and 2.2%, respectively. We
owe the advances to the better measurement of targetness and discriminability, which are both closely
related with the prediction. Thus the selected target pixels are really conducive to the classification.

4.3 ANALYTICAL EXPERIMENTS
Table 5: Ablation study of DUC on Office-Home.

Method Loss Active Selection Criterion AvgLUdis LUdata random entropyUdis Udata
EDL - - - - - - 61.5
EDL - - X - - - 71.1
EDL - - - X - - 73.3

Variant A - - - - X X 74.1
Variant B X - - - X X 76.6
Variant C - X - - X X 74.2
Variant D X X - - - - 68.6
Variant E X X X - - - 75.0
Variant F X X - X - - 76.7
Variant G X X - - X - 77.1
Variant H X X - - - X 76.9

DUC X X - - X X 78.0

Ablation Study. Firstly, we try EDL with dif-
ferent active selection criteria. According to the
results of the first four rows in Table 5, variant
A obviously surpasses EDL with other selection
criteria and demonstrates the superiority of eval-
uating the sample value from multiple aspects,
where variant A is actually equivalent to EDL
with our two-round selection strategy. Then, we
study the effects of LUdis and LUdata . The supe-
riority of variant B over A manifests the necessity
of reducing the distributional uncertainty of unla-
beled samples, by which domain shift is mitigated. Another interesting observation is that LUdata
does not bring obvious boosts to variant A. We infer this is because the distribution uncertainty
will potentially affect the data uncertainty, as shown in Eq. (2). It is meaningless to reduce Udata

8



Published as a conference paper at ICLR 2023

log 𝑈!"# log 𝑈!"#

(a) Distribution of logUdis (b) Expected calibration error (ECE) of target data

Figure 3: (a): The distribution of logUdis for source and target data on task Ar → Cl and Cl→ Ar.
For elegancy, we apply logarithm to Udis. (b): Expected calibration error (ECE) of target data, where
the standard DNN with cross entropy (CE) loss and our model are both trained with source data.

when Udis is large, because opinions are derived from insufficient evidences and unreliable. Instead,
reducing both Udis and Udata is the right choice, which is further verified by the 7.1% improvements
of variant D over pure EDL. Besides. Even without LUdis and LUdata , variant A still exceeds CLUE
by 1.6%, showing our superiority. Finally, we try different selection strategies. Variant E to H denote
only one criterion is used in the selection. We see DUC beats variant F, G, H, since the entropy
degenerates into the uncertainty based on point estimate, while Udis or Udata only considers either
targetness or discriminability. Contrastively, DUC selects samples with both characteristics.

Distribution of Udis Across Domains. To answer whether the distribution uncertainty can represent
targetness, we plot in Fig. 3(a) the distribution of Udis, where the model is trained on source domain
with Ledl. We see that the Udis of target data is noticeably biased from source domain. Such results
show that our Udis can play the role of domain discriminator without introducing it. Moreover, the
score of domain discriminator is not directly linked with the prediction, which causes the selected
samples not necessarily beneficial for classifier, while our Udis is closely related with the prediction.

Expected Calibration Error (ECE). Following (Joo et al., 2020), we plot the expected calibration
error (ECE) (Naeini et al., 2015) on target data in Fig. 3(b) to evaluate the calibration. Obviously, our
model presents better calibration performance, with much lower ECE. While the accuracy of standard
DNN is much lower than the confidence, when the confidence is high. This implies that standard
DNN can easily produce overconfident but wrong predictions for target data, leading to the estimated
predictive uncertainty unreliable. Contrastively, DUC mitigates the miscalibration problem.

Effect of Selection Ratio in the First Round. Hyper-parameter κ controls the selection ratio in the
first round and Fig. 4(a) presents the results on Office-Home with different κ. The performance
with too much or too small κ is inferior, which results from the imbalance between targetness and
discriminability. When κ = 1 or κ = 100, the selection degenerates to the one-round sampling
manner according to Udis and Udata, respectively. In general, we find κ ∈ {10, 20, 30} works better.
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Figure 4: (a): Effect of different first-round se-
lection ration κ% on Office-Home. (b): Hyper-
parameter sensitivity of β, λ on Office-Home.

Hyper-parameter Sensitivity. β and λ control
the tradeoff between LUdis and LUdata . we test
the sensitivity of the two hyper-parameters on the
Office-Home dataset. The results are presented
in Fig. 4(b), where β ∈ {0.01, 0.05, 0.1, 0.5, 1.0}
and λ ∈ {0.001, 0.005, 0.01, 0.05, 0.1}. Accord-
ing to the results, DUC is not that sensitive to β
but is a little bit sensitive to λ. In general, we
recommend λ ∈ {0.01, 0.05, 0.1} for trying.

5 CONCLUSION

In this paper, we address active domain adaptation (DA) from the evidential perspective and propose a
Dirichlet-based Uncertainty Calibration (DUC) approach. Compared with existing active DA methods
which estimate predictive uncertainty based on the the prediction of deterministic models, we interpret
the prediction as a distribution on the probability simplex via placing a Dirichlet prior on the class
probabilities. Then, based on the prediction distribution, two uncertainties from different origins are
designed in a unified framework to select informative target samples. Extensive experiments on both
image classification and semantic segmentation verify the efficacy of DUC.
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APPENDIX CONTENTS

A. Broader Impact and Limitations

B. Algorithm of DUC

C. Implementation Details

D. Additional Results

E. Derivations

A BROADER IMPACT AND LIMITATIONS

Our work focuses on active domain adaptation (DA), which aims to maximally improve the model
adaptation from one labeled domain (termed source domain) to another unlabeled domain (termed
target domain) by annotating limited target data. In this paper, we suggest a new perspective for
active DA and further boost the adaptation performances on both cross-domain image classification
and semantic segmentation benchmarks. The advances mean that our method may potentially benefit
relevant social activities, e.g., commodity classification, autonomous driving in different scenes,
without consuming high labor cost to annotate massive new data for different scenes. While we do
not anticipate adverse impacts, our method may suffer from some limitations. For example, our work
is restricted to classification and segmentation tasks in this paper. In the future, we will explore our
method in other tasks, e.g., object detection and regression, hoping to benefit more diverse fields.
Besides, we only try to train the Dirichlet-based model using the evidential deep learning in the paper.
Yet, there may exist better training frameworks, e.g., normalizing flow-based Dirichlet Posterior
Network which can predict a closed-form posterior distribution over predicted probabilities for any
input sample. In the future, we may also explore to extend our approach into the training framework
of normalizing flow-based Dirichlet Posterior Network.

B ALGORITHM OF DUC

The training procedure of DUC is shown in Algorithm 1.

Algorithm 1 Pseudo code of the proposed DUC
Input: labeled source dataset S, unlabeled target dataset T , selection steps R, total annotation

budget B, hyperparameters κ, β, λ, total training steps T .
Output: learned model parameters θ.

1: Initialize model parameters θ.
2: Define T l = ∅ and T u = T , b = B

|R| .
3: for t = 1 to T do
4: Update parameters θ via minimizing Ltotal.
5: if t ∈ R then
6: ∀xj ∈ T u, compute its distribution and data uncertainties: Udis(xj ,θ), Udata(xj ,θ).
7: temp Candi← select top κb samples with highest Udis from T u.
8: Candi← select top b samples with highest Udata from temp Candi.
9: Query the labels of Candi from the oracle.

10: T u = T u\Candi, T l = T l ∪ Candi.
11: end if
12: end for
13: return Final model parameters θ.
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Figure 5: Image examples from dataset miniDomainNet, Office-Home, VisDA-2017, Cityscapes,
GTAV and SYNTHIA.

C EXPERIMENTAL SETUP DETAILS

C.1 DATASET DESCRIPTION

miniDomainNet (Zhou et al., 2021) is a subset of DomainNet (Peng et al., 2019), a large-scale image
classification dataset for domain adaptation. miniDomainNet contains more than 130,000 images of
126 classes from four domains: Clipart (clp), Painting (pnt), Real (rel) and Sketch (skt). The large
data scale and multiplicity make the adaptation on this dataset quite challenging. And we build 12
adaptation tasks: clp→pnt, · · · , skt→rel, by permuting the four domains, to evaluate our method.

Office-Home (Venkateswara et al., 2017) collects 15,500 images of 65 categories from office and
home scenes. And these images are divided into four distinct domains: Art (Ar), Clipart (Cl), Product
(Pr) and Real-World (Rw), respectively with images from artistic depictions, clipart pictures, product
pictures and cameras.

VisDA-2017 (Peng et al., 2017) is a large scale dataset for cross-domain image classification. It
collects images of 12 classes, including synthetic images rendered from 3D models and real images.
Following Xie et al. (2021), we use 152,397 synthetic images as source domain and 72,372 real
images as target domain, forming the adaptation task: Synthetic→Real.

Cityscapes (Cordts et al., 2016) gathers 5,000 images of urban street scenes from real world, where
each pixel in the image is annotated from 19 categories and the image resolution is 2048×1024.
These images are divided into training, validation and test splits. Similar to (Ning et al., 2021), we
use the training split with 2,975 images as target training data, where labels are not used, and the
model is evaluated on the validation split with 500 images by reporting the mIoU of the common
categories.

GTAV (Richter et al., 2016) is a dataset of 24,966 simulated images with pixel level semantic
annotation. These images are rendered by “Grand Theft Auto V” game engine, with the resolution of
1914×1052. And this dataset shares 19 categories with the Cityscapes dataset.

SYNTHIA (Ros et al., 2016) consists of 9,400 synthetic images of street scenes, with the image
resolution of 1280×760. It contains diverse street scenes, such as towns and highways, different
weather conditions and seasons. There are 16 categories that are compatible with the semantic
categories in Cityscapes.

The image illustration of different datasets is shown in Fig. 5.

C.2 IMPLEMENTATION DETAILS

IMAGE CLASSIFICATION

All experiments are implemented via PyTorch (Paszke et al., 2019). For image classification, we
use ResNet-50 (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009) as the backbone, and
the exponential function is employed to the model output to ensure α non-negative. Following (Xie
et al., 2021; Fu et al., 2021), The total labeling budget B is set as 5% of target samples, which is
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Table 6: Results with different total labeling budget B on Office-Home (ResNet-50).
Total labeling budget

B
0% 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20%

Avg accuracy 68.6 72.9 78.0 80.2 82.4 84.8 86.4 88.0 88.9
Gain over previous one - 4.3 ↑ 5.1 ↑ 2.2 ↑ 2.2 ↑ 2.4 ↑ 1.6 ↑ 1.6 ↑ 0.9 ↑

Table 7: Accuracy (%) on Office-Home with 5% target samples as the labeling budget (ResNet-50),
when DUC is combined with semi-supervised learning method.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg
DUC 65.5 84.9 84.3 73.0 83.4 81.1 73.9 66.6 85.4 80.1 69.2 88.8 78.0
DUC w/ Lfixmatchnll 66.5 85.7 85.0 73.3 84.3 82.8 74.8 67.0 85.7 81.5 70.8 89.7 78.9

divided into 5 selection steps, i.e., the labeling budget in each selection step is b = B/5 = 1%× nt.
For data preprocessing, we use RandomHorizontalFlip, RandomResizedCrop and ColorJitter during
the training process and use CenterCrop during the test stage. For the optimizer, we adopt the
mini-batch stochastic gradient descent (SGD) optimizer with batch size 32, momentum 0.9, weight
decay 0.001 and the learning rate schedule strategy in (Long et al., 2018). The initial learning rates
for miniDomainNet, Office-Home and VisDA-2017 are 0.002, 0.004 and 0.001, respectively. As for
hyper-parameters, we select them by the grid search and finally use β = 1.0, λ = 0.05, κ = 10 for
miniDomainNet and Office-Home datasets. We run each task on a single NVIDIA GeForce RTX
2080 Ti GPU.

SEMANTIC SEGMENTATION

For semantic segmentation, we also implements the experiment using PyTorch (Paszke et al., 2019)
and adopt the DeepLab-v2 (Chen et al., 2015) and DeepLab-v3+ (Chen et al., 2018) with the backbone
ResNet-101 (He et al., 2016) pre-trained on ImageNet (Deng et al., 2009). Regarding the total labeling
budget B, we totally annotate 5% pixels of target images, which is divided into 5 steps. In other
words, we annotate 1% pixels for every image in each active selection step. For data preprocessing,
source images are resized into 1280×720 and target images are resized into 1280×640. Similarly,
the model is optimized using the mini-batch SGD optimizer with batch size 2, momentum 0.9, weight
decay 0.0005. The “poly” learning rate schedule strategy with initial learning rate of 3e-4 is employed.
And we set β = 1.0, λ = 0.01, κ = 10 for the semantic segmentation tasks. For each semantic
segmentation task, we run the experiment on a single NVIDIA GeForce RTX 3090 GPU.

D ADDITIONAL RESULTS

D.1 EFFECTS OF THE ORDERING OF Udis, Udata IN TWO-ROUND SAMPLING

Since our selection strategy is a two-round sampling manner, there naturally exists the ordering of

Table 8: Analysis on the ordering of Udis, Udata.

Ordering
Dataset miniDomainNet

(Avg)
Office-Home

(Avg)
Udis, Udata 72.9 78.0
Udata, Udis 72.2 77.5

Ordering
Dataset GTAV→Cityscapes

(mIoU)
SYNTHIA→Cityscapes

(mIoU / mIoU∗)
Udis, Udata 67.0 66.9 / 72.8
Udata, Udis 66.2 65.3 / 71.6

Udis and Udata in the two rounds. In
Table 8, we explore the influence of dif-
ferent orderings, where Udis, Udata de-
notes Udis and Udata are respectively used
in the first and second round. We no-
tice that Udis, Udata generally surpasses
Udata, Udis. It shows that selecting
discriminability-conducive samples from
target-representative samples is better for
active DA than the converse manner. Thus,
we adopt Udis, Udata throughout the paper.

D.2 PERFORMANCE GAIN WITH DIFFERENT LABELING BUDGETS

In Table 6, we present the performances on Office-Home dataset with different total labeling budget
B. As expected, better performances can be obtained with more labeled target samples accessible.
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In addition, we observe that the increasing speed of performance generally gets slower, as the total
labeling budget increases. This observation demonstrates that all samples are not equally informative
and our method can successfully select relatively informative samples. For example, when labeling
budget increasing from 17.5% to 20%, the performance gain is much smaller, which implies that the
majority of informative samples has been selected by our method.

D.3 COMBINATION WITH SEMI-SUPERVISED LEARNING

To further improve the performance, one can incorporate ideas from semi-supervised learning to use
the unlabeled target data in training as well. Here, we consider one representative semi-supervised
learning method: FixMatch (Sohn et al., 2020). Specifically, we apply strong and weak augmentations
to each unlabeled target sample xj , obtaining two views xstrongj and xweakj . And we use the pseudo
label of weakly augmented view xweakj as the label of strongly augmented view xstrongj . Then
the model is trained to minimize the loss Lfixmatchnll , i.e., the negative logarithm of the marginal
likelihood of strongly augmented views. Concretely, Lfixmatchnll is formulated as

Lfixmatchnll =
1

M

∑
xj∈T u∧τ<maxc ρ̄weakjc

−log

(∫
p(y = ŷweakj |ρ)p(ρ|xstrongj ,θ)dρ

)

=
1

M

∑
xj∈T u∧τ<maxc ρ̄weakjc

C∑
c=1

Υ̂weak
jc

(
log
( C∑
c=1

αstrongjc

)
− logαstrongjc

)
, (9)

where ŷweakj = arg maxcρ̄
weak
jc = arg maxcE[Dir(ρc|αweakj )] and M = |{xj |xj ∈ T u ∧ τ <

maxc ρ̄
weak
jc }|. τ is a hyper-parameter denoting the threshold above which the pseudo label is retained,

and Υ̂weak
jc is the c-th element of the one-hot label vector Υ̂

weak

j for pseudo label ŷweakj .

Table 7 presents the results on the Office-Home dataset when combining our method DUC with the
semi-supervised learning method FixMatch Sohn et al. (2020), where the hyper-parameter τ is set to
0.8. We can see that utilizing unlabeled target data indeed conduces to improving the performance.
Of course, other semi-supervised learning methods are also possible.

D.4 QUALITATIVE VISUALIZATION OF SELECTED SAMPLES

In the label histogram of Fig. 6, we plot the ground truth label distribution of the samples that
are selected by DUC, with the total labeling budget B = 5%× nt. For the Ar→Cl task, “Bottle”,
“Knives” and “Toys” are the top 3 classes that are picked, while “Bucket”, “Pencil” and “Spoon” turn
out to be the top 3 picked classes in the Cl→Ar task. It shows that our method DUC can adaptively
select informative samples for different target domains. Despite few categories are not picked, we
can still see that the samples selected by DUC are generally category-diverse. And, according to the
visualization of selected samples, the style of target domain is indeed reflected in theses selected
samples. In addition, we also visualize the selected pixels for the task GTAV→Cityscapes in Fig. 7.
Overall, the selected pixels are from diverse objects that are hard to classify or are nearby together.
Annotating such pixels can bring more beneficial knowledge for the model.

D.5 T-SNE VISUALIZATION FOR SHOWING EFFECTS OF LUdis

To verify that reducing our distribution uncertainty Udis conduces to the domain alignment, we
respectively train the model with Ledl and Ledl + βLUdis , where there is no labeling budget. And
the t-SNE (van der Maaten & Hinton, 2008) visualization of features from source and target domains
on task Ar→ Cl and Cl→ Ar is shown in Fig. 8. Form the results, we can see that reducing the
distribution uncertainty of target data indeed helps to alleviate the domain shift, which makes our
method more suitable for active DA, compared with EDL Sensoy et al. (2018). Besides, the results
also verify that our distribution uncertainty can measure the targetness of samples.
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Figure 6: (a) and (b) are the label histogram and examples of selected instances by DUC on Ar→Cl
and Cl→Ar tasks, respectively. The total labeling budget is 5% of target images. For the visualization
of selected samples, we present the top 10 selected instances in each active selection step.
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Figure 7: Visualization of selected pixels in the task GTAV→Cityscapes, with the total labeling
budget of 5% pixels. Here, we randomly choose ten images from Cityscapes for display.

(c) Cl → Ar ( w/o ℒ!!"#)  (d) Cl → Ar ( w/ ℒ!!"#)  

(b) Ar → Cl ( w/ ℒ!!"#)  (a) Ar → Cl ( w/o ℒ!!"#)  

Figure 1: The t-SNE visualization of features learned by the model trained with
Ledl and Ledl + βLUdis

respectively. Red and blue dots represent source and
target features, respectively.

1

Figure 8: The t-SNE visualization of features learned by the model trained with Ledl and Ledl +
βLUdis respectively. Red and blue dots represent source and target features, respectively.
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E DERIVATIONS

E.1 PREDICTIVE PROBABILITY P (y = c|xi,θ)

Given sample xi and model f parameterized with θ, the predicted class probability for class c can be
obtained as

P (y = c|xi,θ) =

∫
p(y = c|ρ)p(ρ|xi,θ)dρ

=

∫
ρc · p(ρ|xi,θ)dρ

=

∫ ∫
· · ·
∫
ρc · p(ρ1, ρ2, · · · , ρC |xi,θ)dρ1dρ2 · · · dρC

=

∫
ρc
( ∫ ∫

· · ·
∫ ∫

· · ·
∫
p(ρ1, ρ2, · · · , ρC |xi,θ)dρ1dρ2 · · · dρc−1dρc+1 · · · dρC

)
dρc

=

∫
ρc · p(ρc|xi,θ)dρc , (10)

where ρc is the c-th element of the class probability vector ρ. According to (Ng et al., 2011), the
marginal distributions of Dirichlet is Beta distributions. Thus, given p(ρ|xi,θ) ∼ Dir(ρ|αi), we
have p(ρc|xi,θ) ∼ Beta(ρc|αic, αi0 − αic), where αi = g(f(xi,θ)), αi0 =

∑C
k=1 αik and g(·) is

a function (e.g., exponential function) to keep αi (i.e., the parameters of Dirichlet distribution for
sample xi) non-negative. And according to the probability density function of Beta distribution, we
further have

p(ρc|xi,θ) =
1

B(αic, αi0 − αic)
ραic−1
c (1− ρc)αi0−αic−1, (11)

where B(·, ·) is the Beta function and B(αic, αi0 − αic) = Γ(αic)Γ(αi0−αic)
Γ(αic+αi0−αic) , with Γ(·) denoting the

Gamma function. Based on these, we can further derive P (y = c|xi,θ) as follows:

P (y = c|xi,θ) =

∫
ρc · p(ρc|xi,θ)dρc

=

∫
ρc ·

(
1

B(αic, αi0 − αic)
ραic−1
c (1− ρc)αi0−αic−1

)
dρc

=
B(αic + 1, αi0 − αic)
B(αic, αi0 − αic)

∫
1

B(αic + 1, αi0 − αic)
ραicc (1− ρc)αi0−αic−1dρc

=
B(αic + 1, αi0 − αic)
B(αic, αi0 − αic)

· 1

=
Γ(αic + 1)Γ(αi0)

Γ(αi0 + 1)Γ(αic)

=
αic

XXXΓ(αic)
XXXΓ(αi0)

αi0
XXXΓ(αi0)XXXΓ(αic)

=
αic∑C
k=1 αik

=
g(fc(xi,θ))∑C
k=1 g(fk(xi,θ))

(12)

= E[Dir(ρc|αi)]. (13)

Specially, if g(·) adopts the exponential function, traditional softmax-based models can be viewed as
predicting the expectation of Dirichlet distribution.
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E.2 EXPECTED ENTROPY Ep(ρ|xj ,θ)[H[P (y|ρ)]]

Given sample xj and model parameters θ, the corresponding expected entropy Ep(ρ|xj ,θ)[H[P (y|ρ)]]
is formulated as

Ep(ρ|xj ,θ)[H[P (y|ρ)]] = Ep(ρ|xj ;θ)[−
C∑
c=1

ρc log ρc]

= −
C∑
c=1

Ep(ρ|xj ;θ)[ρc log ρc]

= −
C∑
c=1

∫
p(ρ|xj ; θ)ρc log ρc dρ

= −
C∑
c=1

∫ ∫
· · ·

∫
p(ρ1, ρ2, · · · , ρC |xj ; θ)ρc log ρc dρ1dρ2 · · · dρC

= −
C∑
c=1

∫
(ρclogρc)(

∫
· · ·

∫ ∫
· · ·

∫
p(ρ1, ρ2, · · · , ρC |xj ; θ) dρ1 · · · dρc−1dρc+1 · · · dρC)dρc

= −
C∑
c=1

Ep(ρc|xj ;θ)[ρc log ρc]. (14)

Combining the probability density function in Eq. (11), we can further derive Ep(ρc|xj ;θ)[ρc log ρc]
as

Ep(ρc|xj ;θ)[ρc log ρc] =

∫
(ρclogρc)

1

B(αjc, αj0 − αjc)
ρ
αjc−1
c (1− ρc)αj0−αjc−1 dρc

=
B(αjc + 1, αj0 − αjc)
B(αjc, αj0 − αjc)

∫
(logρc)

1

B(αjc + 1, αj0 − αjc)
ρ
αjc
c (1− ρc)αj0−αjc−1 dρc

=
Γ(αjc + 1)Γ(αj0)

Γ(αj0 + 1)Γ(αjc)
Eρc∼Beta(ρc|αjc+1,αj0−αjc)[logρc] (15)

=
αjc
αj0

(ψ(αjc + 1)− ψ(αj0 + 1)) , (16)

where ψ(·) is the digamma function, αjc is the c-th element of vector αj and αj0 =
∑C
k=1 αjk.

Finally, the expected entropy for sample xj is denoted as

Ep(ρ|xj ,θ)[H[P (y|ρ)]] = −
C∑
c=1

Ep(ρc|xj ;θ)[ρc log ρc]

= −
C∑
c=1

αjc
αj0

(ψ(αjc + 1)− ψ(αj0 + 1))

=

C∑
c=1

ρ̄jc

(
ψ(

C∑
k=1

αjk + 1)− ψ(αjc + 1)

)
, (17)

where ρ̄jc =
αjc
αj0

= E[Dir(ρc|αj)].

E.3 MUTUAL INFORMATION I[y,ρ|xj ,θ]

According to the definition of mutual information (Kieffer, 1994; Shannon, 1948), I[y,ρ|xj ,θ] can
be expressed as

I[y,ρ|xj ,θ] =

∫ C∑
c=1

p(y = c,ρ|xj ,θ) log
p(y = c,ρ|xj ,θ)

p(y = c|xj ,θ)p(ρ|xj ,θ)
dρ. (18)

Since the deep model induces the Markov chain (xj ,θ) → ρ → y, we have y and (xj ,θ) condi-
tionally independent given ρ, i.e., p(y,ρ|xj ,θ) = p(y|ρ)p(ρ|xj ,θ). Then, Eq. (18) can be further
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derived as

I[y,ρ|xj ,θ] =

∫
p(ρ|xj ,θ)

C∑
c=1

p(y = c|ρ) log
p(y = c|ρ)

p(y = c|xj ,θ)
dρ

=

∫
p(ρ|xj ,θ)

C∑
c=1

(
ρc log ρc − ρc log p(y = c|xj ,θ)

)
dρ

=

∫
p(ρ|xj ,θ)

C∑
c=1

(ρc log ρc)dρ−
∫
p(ρ|xj ,θ)

C∑
c=1

(ρc log
αjc∑C
k=1 αjk

)dρ (19)

= Ep(ρ|xj ,θ)∼Dir(ρ|αj)[

C∑
c=1

ρc log ρc]−
C∑
c=1

(
log

αjc∑C
k=1 αjk

)
Ep(ρ|xj ,θ)∼Dir(ρ|αj)[ρc]

= Ep(ρ|xj ,θ)∼Dir(ρ|αj)[

C∑
c=1

ρc log ρc]−
C∑
c=1

ρ̄jclogρ̄jc

=

C∑
c=1

ρ̄jc

(
ψ(αjc + 1)− ψ(

C∑
k=1

αjk + 1)

)
−

C∑
c=1

ρ̄jclogρ̄jc. (20)

The derivation of Eq. (19) is based on the conclusion from Eq. 12, i.e., P (y = c|xj ,θ) =
αjc∑C
k=1 αjk

.
And Eq. 20 is based on the conclusion in Section E.2.

E.4 KULLBACK-LEIBLER DIVERGENCE Lkl

For p(ρ|α̃i) ∼ Dir(ρ|α̃i), its probability density function is defined as

p(ρ|α̃i) =
1

B(α̃i)

C∏
c=1

ρα̃ic−1
c , (21)

where B(·) is the multivariate Beta function, B(α̃i) =
∏C
c=1 Γ(α̃ic)

Γ(
∑C
c=1 α̃ic)

and Γ(·) is the Gamma func-
tion. The Kullback-Leibler Divergence between Dirichlet distribution Dir(ρ|α̃i) and Dir(ρ|1) is
formulated as

KL
[
Dir(ρ|α̃i)‖Dir(ρ|1)

]
=

∫
p(ρ|α̃i) log

p(ρ|α̃i)
p(ρ|1)

dρ

=

∫ (
1

B(α̃i)

C∏
c=1

ρα̃ic−1
c

)
log

(
B(1)

B(α̃i)

C∏
c=1

ρα̃ic−1
c

)
dρ

= log
B(1)

B(α̃i)

∫
(

1

B(α̃i)

C∏
c=1

ρα̃ic−1
c ) dρ+

∫
(log

C∏
c=1

ρα̃ic−1
c )(

1

B(α̃i)

C∏
c=1

ρα̃ic−1
c ) dρ

= log
B(1)

B(α̃i)
· 1 + Eρ∼Dir(ρ|α̃i)[log

C∏
c=1

ρα̃ic−1
c ]

= log
B(1)

B(α̃i)
+

C∑
c=1

(α̃ic − 1)Eρc∼Beta(ρc|α̃ic,α̃i0−α̃ic)[logρc]

= log
( Γ(

∑C
c=1 α̃ic)

Γ(C)
∏C
c=1 Γ(α̃ic)

)
+

C∑
c=1

(α̃ic − 1)
[
ψ(α̃ic)− ψ(

C∑
k=1

α̃ik)
]
. (22)

Thus, the computable expression of Lkl is given by

21
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Lkl =
1

C · ns

∑
xi∈S

KL
[
Dir(ρ|α̃i)‖Dir(ρ|1)

]
+

1

C · |T l|
∑
xj∈T l

KL
[
Dir(ρ|α̃j)‖Dir(ρ|1)

]
,

=
1

C · ns

∑
xi∈S

log

(
Γ(
∑C
c=1 α̃ic)

Γ(C)
∏C
c=1 Γ(α̃ic)

)
+

C∑
c=1

(α̃ic − 1)

[
ψ(α̃ic)− ψ(

C∑
k=1

α̃ik)

]

+
1

C · |T l|
∑
xj∈T l

log

(
Γ(
∑C
c=1 α̃jc)

Γ(C)
∏C
c=1 Γ(α̃jc)

)
+

C∑
c=1

(α̃jc − 1)

[
ψ(α̃jc)− ψ(

C∑
k=1

α̃jk)

]
. (23)
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