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ABSTRACT

Forgetting a subset in machine unlearning is rarely an isolated task. Often, retained
samples that are closely related to the forget set can be unintentionally affected,
particularly when they share correlated features from pretraining or exhibit strong
semantic similarities. To address this challenge, we propose a novel two-phase
optimization framework specifically designed to handle such retain—forget entan-
glements. In the first phase, an augmented Lagrangian method increases the loss
on the forget set while preserving accuracy on less-related retained samples. The
second phase applies a gradient projection step, regularized by the Wasserstein-2
distance, to mitigate performance degradation on semantically related retained
samples without compromising the unlearning objective. We validate our approach
through comprehensive experiments on multiple unlearning tasks, standard bench-
mark datasets, and diverse neural architectures, demonstrating that it achieves
effective and reliable unlearning while outperforming existing baselines in both
accuracy retention and removal fidelity.

1 INTRODUCTION

The indelible memory of machine learning systems presents a paradoxical challenge: what happens
when we need algorithms to forget? Consider a face recognition system deployed for secure access.
When an employee resigns, their biometric signature cannot simply be deactivated—it must be
completely expunged from the underlying machine learning model. This ability to erase specific
information extends to the broader concept known as “machine unlearning” (Cao and Yang} 2015),
which aims to selectively remove the impact of specific data from trained models. In fact, the
importance of unlearning extends beyond the general concept itself, with critical applications in
meeting legal obligations (Mantelerol 2013)), mitigating harmful representational biases (Mehrabi
et al.,[2021)), and repairing models from mislabeled or poisoned training data (Northcutt et al., 2021)).

Recent work has investigated a range of unlearning scenarios, including random-sample unlearn-
ing (Golatkar et al., [2020a; [Izzo et al., [2021), class-wise unlearning (Kurmanji et al.| [2023)), and
concept-level unlearning, where the forget set does not necessarily align with class labels (Zhu et al.|
2024). More recently, several methods (Foster et al.,[2024; Seo et al., 2025 Xu et al., [2024) have
introduced efficient post-hoc or feature-space—aware solutions. Together, these approaches have
significantly advanced our understanding of what it means for a model to “forget”.

Yet, forgetting is rarely an isolated task. Removing the influence of one group of data often directly
affects another group that is closely correlated with it. For instance, forgetting toxic statements
involving a minority group may inadvertently alter the model’s behavior on non-toxic statements
about the same group (Shen et al., 2024)). Similarly, forgetting one subclass of images within a broader
category can disrupt predictions on closely related subclasses (Fan et al.l | 2024a). Existing works
typically assess retain performance by averaging over the entire retain set, paying little attention to
these sensitive, correlated subsets, where performance is both more fragile and more consequential.

We therefore focus on the challenge of retain—forget entanglement, where certain retained samples are
closely tied to the forget set and particularly susceptible to unintended degradation. To mitigate the
resulting performance drops in these sensitive subsets, we propose a two-stage framework based on
constrained optimization. In the first stage, an augmented Lagrangian method enforces forgetting by
increasing the loss on the forget set while preserving accuracy on less-correlated retained samples. In
the second stage, the model is refined through gradient projection to restore performance on retained
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samples that are more strongly correlated with the forget set, without compromising the forgetting
objective. To further stabilize the process and enhance generalization, we also regularize the loss
distribution using the Wasserstein-2 distance during this stage.

We evaluate our method across a variety of subclass-level unlearning scenarios, covering diverse
forgetting tasks, multiple neural network architectures, and standard benchmark datasets. The results
demonstrate that our approach consistently achieves effective forgetting while maintaining high
accuracy on the retained data. In structured selective unlearning settings, it significantly outperforms
prior methods, demonstrating robustness and reliability without compromising the intended forgetting
effect. Importantly, it preserves performance on retained samples that are closely related to the forget
set, ensuring that sensitive subsets remain largely unaffected.

Our contributions can be summarized as follows:

* Highlighting retain—forget entanglement: We focus on a correlation-aware unlearning
setting, where the forget set is entangled with another group of data. This setting better
reflects real-world unlearning demands and introduces new technical challenges due to
significant distributional overlap with the retained data.

* A novel two-stage unlearning framework: We propose a two-stage optimization-based
framework to address this challenge. The first stage uses an augmented Lagrangian method
to enforce forgetting while preserving performance on less-correlated samples. The second
stage applies gradient projection with Wasserstein-2 distance regularization to recover
performance on sensitive retained samples without compromising the forgetting objective.

* Comprehensive evaluation: We provide a comprehensive empirical evaluation across
diverse tasks, architectures, and datasets, demonstrating that our method achieves strong
forgetting performance while retaining accuracy on preserved data.

2 RELATED WORKS

Constrained Optimization in Machine Learning Constrained optimization is widely used in
machine learning to enforce domain-specific requirements like fairness and safety (Cotter et al.|[2019;
Zafar et al.|[2019; |Achiam et al., 2017 Liu et al.,[2022). In fairness-aware learning, these constraints
prevent discriminatory predictions and are naturally framed as optimization problems (Donini et al.,
2018}, [Zafar et al.,|2019; |Caton and Haas| [2024). Classical techniques, such as penalty methods Berk
et al.[(2017) and Lagrangian-based approaches (Cruz et al.; (Celis et al.| |2019; |Cotter et al.l [2019;
Lokhande et al.l 2020), have proven effective in these settings. Similarly, in reinforcement learning,
safety constraints guide agents away from risky actions (Chow et al., 2018 Liu et al.| 2022)), often
handled through primal-dual optimization to penalize constraint violations (Achiam et al., 2017}
Liang et al., 2018; Bohez et al.| 2019).

Machine Unlearning The concept of machine unlearning was formalized by (Cao and Yang, 2015)),
requiring model outputs indistinguishable from retraining without the deleted data. However, full
retraining is often infeasible for large-scale models, motivating approximate methods (Golatkar et al.|
2020agb; Izzo et al., 2021} [Thudi et al.l [2022; Mehta et al., 2022). Many build on the framework
of|Ginart et al.[(2019), including fine-tuning (Warnecke et al.,[2021)), gradient-based updates (Golatkar
et al.| 2020a; Fan et al., 2024bj |Patel and Qiul [2025), sparsity-based pruning (Jia et al.,[2023)), prompt
editing (Liu et al.| 2024), fisher and influence based methods (Foster et al.| 2024} |Shi et al., [2024;
Wu et al.| 2022) and adversarial approaches (D1 et al., |2024). [Kurmanyji et al.| (2023)) introduced a
formulation where the goal is to unlearn unintended behaviors or social biases by discouraging the
model from correctly predicting labels on a specified forget set. Some studies have examined how
retain—forget entanglement impacts unlearning, showing that accuracy drops are often concentrated
on retained examples most similar to the forget set (Zhao et al.| 2024} |Chang and Leel 2025)). Other
works extend beyond random or class-level unlearning (Zhu et al.}|2024; |Foster et al.,[2024; |Seo et al.}
2025)), considering settings such as subclass-level forgetting where the forget subclass is semantically
close to other subclasses. Yet performance is often reported as an average over the entire retain
set, which can mask degradation on the correlated subset, where our work focuses on preserving
performance on this correlated subset. In LLM unlearning (Maini et al., 2024; Jin et al.| 2024} |Chang
and Leel 2025} (Choi et al.l 2025), a neighbor set (retain samples close to the forget set) is often used
for evaluation or regularization; in practice this neighbor set is often treated as a proxy for the retain
set at large, with limited attention to non-neighbor retain data. In contrast, we explicitly decompose
the retain set into adjacent and remote subsets and report the performance on both of them.
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3  PROBLEM FORMULATION

Let D = {(z;,y:)}, be a dataset of N samples, where z; C X denotes an input and y; € ) is its
corresponding label. Let fy, (z) be a model trained on D with parameters §y. Given a subset Dy C D,
the goal of machine unlearning is to obtain updated parameters 6 such that the resulting model f;()
effectively forgets D, while preserving performance on the remaining data D, := D \ Dy.

Classical formulations of machine unlearning typically do not assume further structures in the retain
dataset. However, in many applications, forgetting Dy affects not only average performance on
D,., but disproportionately impacts a correlated portion inside D,. (Fan et al.| | 2024a)). We therefore
conceptually split the retain set into two parts:

D, =D U D, DMYNDE =0

Here, the adjacent retain set D consists of retained examples that are correlated with Dy and thus
more sensitive to forgetting, while the remote retain set D™ comprises the remaining, less-related
retained examples, which we refer to as the remote samples.

In practice, the entanglement between the forget set and retained samples can arise from different
sources. One common scenario is subclass-level unlearning, where the forget set constitutes a fine-
grained subclass within a broader class. For example, if a model is trained on the 20 superclasses of
CIFAR-100 and the forget set consists of one subclass, we can define DY as the remaining samples
from the same superclass and D)™ as the rest of the dataset. Another scenario occurs when retained
samples form a semantically related group with the forget set. For instance, in a language dataset
containing normal and offensive sentences, comments referring to the same group of people may be
strongly correlated with the forget set.

The goals of this retain-forget entangled machine unlearning are therefore to obtain an updated model
such that

1. The model retains its performance on D, especially on samples belonging to DY that have
strong correlation to Dy.
2. The model forgets the forget set Dy by removing or mitigating its influence.

It is important to note that the definition of “forgetting” can vary depending on the application. In
privacy-focused contexts (Cao and Yang, 2015), the objective is often for fé to emulate a model
retrained from scratch on the retained set D,.. In contrast, there are scenarios that prioritize maximally
reducing the model’s performance on the forget set Dy, as studied in (Choi and Nal 2023). This
approach is particularly relevant when Dy contains undesirable patterns, such as social biases,
offensive content, or behaviors subject to withdrawal requests, where the goal is for the model to
completely disregard the influence of these samples. In this work, we adopt the latter perspective.

4 METHODS

Machine unlearning naturally poses a multi-objective challenge: removing the influence of the forget
set while maintaining overall performance. In the retain-forget entangled setting, this becomes more
difficult due to the semantic and distributional entanglement between the forget set Dy and the

strongly correlated retain set D, To address this challenge, we introduce a two-stage optimization
framework in this section.

4.1 STAGE 1: FORGETTING VIA CONTROLLED OPTIMIZATION

The first stage of our framework aims to aggressively increase the loss on the forget set while
preventing substantial degradation on the less-related retain set. Formally, let L7 () := L(0; Dy),

£39(0) := £29(0; DY), and L™ (0) := L™ (6; D=™) denote the losses on Dy, DAY, and D™, and
let Oy be the parameters of the original model. We formulate Stage 1 as the constrained optimization
problem

min —L7(6) subjectto  LE(0) = L7 (0). )
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We adopt an augmented Lagrangian formulation (Bertsekas| 2014) to provide an adaptive way of
balancing the objective and the constraint:

La(0:0 1) = —L£1(0) + M(LE"(0) — £57(00)) + 5. (£27(0) - £7(00)°, @

where A is the Lagrange multiplier and ;> 0 is a penalty coefficient. We initialize A = 0 and
iteratively update # via gradient descent,

00— UVOLaug(e; )‘7 ,u)a (3)
followed by updating the multiplier according to constraint violation:

A= X4 p(LF™(0) — L7 (00))- 4)

This iterative update scheme adaptively tightens or relaxes the penalty as needed, avoiding the need
to manually tune a fixed trade-off coefficient. The objective of Stage 1 is to enforce unlearning on the
forget set Dy while preserving performance on the less-related retained subset D™,

4.2  STAGE 2: W5-DISTANCE GUIDED PROJECTED GRADIENT DESCENT (W-PGD)

Importantly, we refrain from explicitly optimizing over the strongly correlated retain set D in Eq @)
to avoid conflicting gradients (see Appendix [B.4). As a result, the model achieves low accuracy on
the forget set Dy while maintaining strong performance on the remote retain set D,;°™. However, due
to the semantic or distributional overlap between Dy and DAY, performance on the adjacent retain set

D typically degrades. The objective of the second stage is to restore the model’s accuracy on ol
while preserving the performance on Dy and DjF™.

4.2.1 IS CLASSICAL PROJECTED GRADIENT DESCENT GOOD ENOUGH?

We begin by aiming to improve the performance on the adjacent retain set using the classical Projected
Gradient Descent (PGD) framework (Bertsekas| |1999)), but adopt its first-order (linearized) projection
variant, as widely used in multi-task learning (Yu et al.,|2020; [Farajtabar et al., 2020)). In this approach,
the update modifies the gradient of L3 by removing its components aligned with the gradients of £
and £)°™:

0+ 0 —n(VeLlY —Projy, VoL2%), where V = span{VyLy, VoLI"}, (3)

Yet, this conventional optimization technique can exhibit significant performance degradation when
applied to correlation-aware machine unlearning. As illustrated in Figure[Ta] although the average
loss on the forget set D (blue line) remains stable under PGD, the prediction accuracy (red line) on
Dy increases steadily. This counterintuitive behavior stems from the strong semantic and distribu-

tional entanglement between D and the adjacent retained set DA minimizing loss on the latter
inadvertently reduces the loss on similar samples in Dy. To compensate and maintain the mean
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Figure 1: Training dynamics of PGD and cross-entropy loss distributions on Dy. (a) Loss and
accuracy curves of PGD during the second stage; (b) Original loss distribution on Dy after the first
stage; (c) Loss distribution on Dy after applying PGD in the second stage; (d) Loss distribution on
Dy after applying W-PGD. Comparing figure (b) and (c), PGD notably skews the loss distribution,
with some samples attaining near-zero loss. In contrast, W-PGD (d) preserves a distribution closer to
the original and effectively avoids assigning low loss to forget set samples.
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loss on Dy, the model disproportionately increases the loss on less similar samples, resulting in a
polarized loss distribution, as depicted in Figure[Ic| This observation exposes a critical limitation
of standard PGD: it lacks the ability to control accuracy-level changes when loss redistribution is
uneven. Indeed, preserving only the mean loss provides no guarantees on the proportion of samples
with low loss values, often resulting in high accuracy on the forget set as many samples remain
correctly predicted.

4.2.2 GRADIENT PROJECTION WITH WASSERSTEIN DISTANCE REGULARIZATION

The failure of gradient projection using mean losses motivates the need for a more fine-grained
control over the forgetting behavior. To this end, we propose to explicitly regularize the distributional
shift in loss values on D by incorporating a Wasserstein-2 distance penalty.

The Wasserstein-2 distance, denoted W, is a principled metric for comparing probability distribu-
tions (Vaserstein, [1969). Given two probability distributions P and () over R?, the W5, distance is
defined as

1/2
wzuzcz):( wt | IIU—UIIde(u,v)> , ©)
Re xR?

YEN(P,Q)
where I'( P, Q) denotes the set of joint distributions with marginals P and (). In our setting, P and
@ represent empirical distributions of scalar loss values, admitting a closed-form expression for the
W, distance. Specifically, given two collections of loss values {a1,...,an} and {b1,...,bx}, the
corresponding empirical distributions are defined as P = % > i 0a, and Q = ﬁ > 0p,, Where §
denotes the Dirac delta function. Then, after sorting the samples as a; < ---an and by < ---by, the
Wasserstein-2 distance is simply given by

LN ) 1/2
W (P, Q) = (N > (@i - bi)2> : O]

i=1

We define the empirical loss distribution over the forget set under parameters 6 as

forget 1
5= 1)) Do et ®
! (zi,y:)€Dy

where ¢ denotes the cross-entropy loss. Let § denote the model parameters after the first stage. To
constrain the mean and distributional shape of the loss over D, we define a modified loss function:

L1(0) = (1 — a)Ls(0) + aW2 ( forget p;mg“) , )

where o € [0, 1] is a hyperparameter balancing the influence of the mean and distributional com-
ponents. We then modify the gradient projection update to project the gradient of £ onto the
orthogonal complement of the space spanned by the gradients of £ and £;°™:

0 < 0 — 1 (VoLM(0) — Projy VoLM(9)), where V = span {veif(a), vecf:m(e)} . (10)

This modified gradient projection method (W-PGD) enforces L 7(8) to be mostly unchanged during

the update, while allowing the model to recover performance on the adjacent retain set DX as
indicated by the following proposition.

Proposition 4.1. Assume L (), £29(0) and L™ (0) are twice continuously differentiable to 0. Let
A0 be the update of 0 introduced by (10). Then, for sufficiently small n > 0, we have:

(i) The change in L ¢ and L™ is at most second order in 1), i.e.

Ly(0+A0) = Ly(0) = OP), LE™(0+ A0) — Li™(0) = O(n°).

(ii) If VoL (0) is not in the span of VoL ¢ (0) and Vg L1 (6), then
L3I0 + A0) = L39(0) = —en+ O(p*),

or some positive ¢ (depending on 0). Hence, for sufficiently small 1, LY strictly decreases.
r
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Algorithm 1 TMU: Two-Stage Machine Unlearning

Input: Forget set Dy, retain sets D and D™, learning rates 71, 172, penalty coefficient p and «,
number of iterations K, M. Initialize § = 6y, A = 0, compute L™ (6)
Stage 1: Augmented Lagrangian optimization
for i = 1to K do
Compute Lo (6: A, 1) = —L7(8) + A (LE™(8) — L27(60)) + & (L27(6) — L™ (6p))?
Update 6: 0 < 0 — m VgL (9,)\ )
Update A: A <= X+ pu(LF™(6) — L™ (6p))
end for
Stage 2: W-distance guided gradient projection optimization
for ) =1to M do

Compute £(0) = (1 — a)L(0) + aW?2 ( forget P;‘“ge‘)
Compute V(;[:f, Vgﬁidj, Vo L™
Update: 6 < 0 — 1o (Vgﬁi‘.dj — Projy Vgﬁidj), where V = span {V@Eﬂ Vgﬁrfm}

end for
Output: Unlearned model parameters 6

Moreover, compared to the projected gradient descent where no guarantee on the accuracy of the
forget set is provided, the following proposition provides a bound on the accuracy of the forget set
after the update. Specifically, let n be the number of superclasses in the classification task, and
Accy(0) denote the accuracy of the model on the forget set Dy. We have:

Proposition 4.2. Let m > logn and € > 0. Suppose that |L¢(0) — L;(0)| < &, and 0(f5(x:),y:) >
m for all (z;,y;) € Dy. Then, the accuracy on Dy is upper bounded by:
2

Accy(0) < 1 2<1_0‘+ 5). (11)

(m —logn) @ !

The proposition indicates that when the minimum loss for model with parameter 6 is large and « is
above zero, the accuracy of the forget set after W-PGD is bounded by a small constant, ensuring the
forgetting behavior of the model. Notice that for a given ¢, the upper bound in the above proposition
is minimized when o = 1, i.e., when the Wasserstein distance is fully utilized. However, in practice
where we assess each loss value in mini-batch sense, we observe that choosing @ = 1 may not
achieve the best overall performance (see Ablation studies on « in Appendix [B.4). In our following
experiments, we set « to be 0.5. As shown in Figure[Id] the loss distribution of the forget set after
W-PGD is much more uniform compared to that of PGD, maintaining zero accuracy on the forget set.
In summary, the complete two-stage unlearning procedure is presented in Algorithm[I} We evaluate
our method in correlation-aware unlearning scenarios across multiple datasets and architectures.

4.3 DISCUSSIONS ON THE TWO STAGES

The goal of the first stage is relatively straightforward, as the disentanglement between the forget
set and the remote retain set makes the task less challenging. While alternative approaches, such as
adding fixed-weight penalty terms, could in principle achieve a similar trade-off with carefully tuned
hyperparameters, the augmented Lagrangian formulation offers a key advantage: it introduces an
adaptive multiplier that automatically balances the objective and constraint terms throughout training,
resulting in a process that is more stable and less sensitive to hyperparameter choices.

A key component in the second stage is the use of distributional constraints formulated via W5
distances. Prior work such as|Golatkar et al.|(2020a)) also enforces the distributional constraints by
estimating KL divergence between parameter distributions under a Gaussian prior. As comparison,
W3 admits a closed-form solution for one-dimensional empirical distributions via sorting, whereas
KL divergence generally requires density estimation or strong parametric assumptions, introducing
approximation errors and additional computational cost (Lv et al.l 2024). Therefore, the use of
W distances makes computation far more convenient, avoiding the approximations (e.g., kernel
estimation) or prior assumptions typically needed for KL divergence, while still providing a principled
and effective distributional constraint.
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5 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of our proposed method across various
machine unlearning scenarios. To ensure the generality of our findings, we design experiments that
span multiple unlearning tasks, various benchmark datasets, and different network architectures.

5.1 EXPERIMENTAL SETUPS

Datasets: Following prior work on machine unlearning (Kurmanji et al.l [2023), we conduct
experiments on CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet (Le and Yang, 2015), and a
safety-critical language task on ToxiGen (Hartvigsen et al.,[2022). For the vision benchmarks, we
adopt the superclass organization (CIFAR-100: 20 superclasses x 5 subclasses; TinylmageNet: 10
semantic groups; see Appendix . Given a selected forget subset Dy (a labeled subclass within a

superclass), we define DY as the remaining samples from the same superclass and D;°™ as all other
retained samples. For the language task, we use ToxiGen with a normal/toxic binary classifier, where

Dy consists of toxic sentences about the LGBTQ group, D?-dj contains non-toxic sentences about the
same group, and D;*™ includes other sentences. This setup instantiates an unlearning scenario with

retain-forget entanglement, where DY forms a semantic subgroup closely related to the forget set.

Baseline methods: We compare our approach against various unlearning methods, including:
Gradient Ascent (GA) (Thudi et al.||2022): Train the model by maximizing the loss on the forget set.
Fine-Tune (FT) (Warnecke et al., [2021; |Golatkar et al.,[2020a): Fine-tune the model on the retained
set. SCRUB (Kurmanji et al., 2023): perform gradient ascent on the forget set and descent on the
retain set simultaneously with distillation from the original model. /;-sparse (Jia et al.,[2023)): fine-
tune the model on the retain set with ¢;-norm regularization on the model. SSD (Selective Synaptic
Dampening) (Foster et al.,|[2024)): post-hoc parameter dampening guided by Fisher-style importance.
SalUn (Fan et al.|[2024b): saliency-guided alternating updates. All the methods are run with 3 random
seeds, except for SSD which is a deterministic algorithm. DELETE (Zhou et al.,|2025): decouples
the forgetting and retention terms via a distillation-based loss to perform class-centric machine
unlearning. GDR (Lin et al.| [2024): applies direction-rectified and magnitude-adjusted gradient
updates to mitigate gradient conflicts between forget and retain objectives. Munba (Wu and Harandil
20235)): formulates unlearning as a Nash bargaining game between forgetting and preservation players
to find a Pareto-optimal gradient direction.

5.2 MACHINE UNLEARNING ON CIFAR-100 wWITH RESNET-18

We begin our evaluation using the CIFAR-100 dataset. Specifically, we select the “aquarium fish”
subclassﬂ from the “fish” superclass as the forget set. The remaining 4 subclasses in the superclass
are used as the adjacent retained set, and the other 95 classes are used as the remote retained set.

Table [T] summarizes the overall performance of all evaluated algorithms. While fine-tuning and
sparsity-based methods effectively preserve performance on the retained set, they exhibit limited
capability in removing information from the target forget set. Similar limitations are observed for
gradient ascent algorithms such as GA and SCRUB. For SalUn, SSD, GDR and DELETE, although
they achieve very low performance on the forget set, there is a noticeable drop in accuracy on the
retained set, particularly on the adjacent retain subset. Munba achieves a relatively good ballance
between forgetting and retention, but still suffers from a non-negligible accuracy drop on the retain set,
and its forgetting performance is not as strong as many other baselines. This underscores the strong
entanglement between the forget set and the adjacent retain set: effective forgetting can inadvertently
degrade performance on related samples.

Our algorithm successfully circumvents the trade-off between forgetting and retention. It achieves
complete unlearning, with 0.00% training accuracy on the forget class, while simultaneously maintain-
ing high performance on both the retained data and the test set. These results highlight the capability
of our method to effectively eliminate memorization of the target class without compromising
generalization or utility on the remaining data.

'The forget set is chosen alphabetically.
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Table 1: Results for subclass-level unlearning on CIFAR-100 using ResNet-18. The forget set
corresponds to the subclass “aquarium fish” within the “fish” superclass. SSD is a deterministic
algorithm, so standard deviations are 0.

Training accuracy Test accuracy

Method Dy Dadi prem | Dy Dadi Drem

Original \ 99.99 100.00 100.00 \ 90.00 80.00 85.33

FT 76.671776 994710520 99474033 | 62.334579 77.831383 83.8940.41
El-sparse 55-93i7408 98.48i0‘95 96.92i0‘20 51.67i7'g4 82.42i2'24 84.64:‘:0'27
GA 70.5340.94 72.7510.76 91.3310.44 | 56.00£0.00 59.0010.61  80.57+0.27
SCRUB 4471005 58.6541473 82.6714.24 | 7.0011.41 547511134 75424295
SalUn 3.20:‘:0‘20 52-2710438 86435:{:0.22 3.00:{:1'00 34.90:(:1,03 71.78:&0,17
SSD 37404000 43.7510.00 76.0210.00 | 33.0040.00 39.2541000 67.2310.00
DELETE 0.00+0.00 3.571018 98.3710p29 | 0.6710.47 2.8340.66 82.0940.37
Munba 338018,88 92.17:&257 92.6811_28 31.67:&4,78 69.7513,74 75-3211.88
GDR 4.87141.05 31924645 96.104032 | 8.6741.95 223344590  79.9310.00
Our method ‘ 0~00i0.00 98.1710_31 98.44i0_05 ‘ 2~33i0.47 78.17i0_31 81.10i0_1g

Table 2: Results for unlearning on ToxiGen dataset. The forget set contains toxic comments about
LGBTQ groups that were mislabeled as normal. Lower accuracy on Dy means better correction.

Training accuracy Test accuracy

Method Dy Dadi Drem ‘ Dy Dadi Drem

Original \ 85.06 97.77 92.33 \ 78.06 95.48 85.63

FT 50~04i3A77 99~87i0408 99-43i0403 477314‘57 92~37i0459 84.73i0‘12
GA 46.26i()‘01 70.2510.05 79-43i0457 43.78i()‘00 66.6410.00 76.38i0‘00
El—sparse 45.64i&33 86.33i3<83 80.46i0<18 46311982 85.87i3‘60 79-52i0429
SCRUB 56.154941 91954141 84.794051 | 57.671142 90.654742 80.0040.11
SalUn 13.66i0.08 60.80i0‘23 85.30i0‘17 12.42i()‘07 57~59i0425 81.06i0‘13
SSD 67.784000 91.834000 90.76+0.00 | 86.901000 86.901000 84.5140.00
DELETE 42.8610.08 67.8510.07 79.0610.04 | 39.5310.00 64.5610.10 75.7240.04
Munba 51~09i3A68 99'31i0445 90.06i0.17 49~27i425 93'53i1482 85.36i0.20
GDR 20.544586 86.151540 91.30x0.71 | 19.834500 83.924549 85.524037
Our method ‘ 11-95i0.02 88.88i0_01 92~73i0.01 ‘ 14-29i0.06 85.86i0,00 85.23i0<01

5.3 UNLEARNING ON TOXIGEN WITH ROBERTA-BASE

We next evaluate correlation-aware unlearning on the ToxiGen dataset under a biased pretraining
setting. Concretely, we first simulate a biased training process where all sentences mentioning
LGBTQ groups are labeled as normal—thus the resulting model hy systematically misclassifies toxic
LGBTQ samples as normal. This simulates a realistic scenario where a deployed model is trained on
incomplete or biased data and needs post-hoc correction.

We define the forget set Dy as the foxic sentences about LGBTQ groups that were incorrectly labeled
during biased training. In this case, the normal comments on LGBTQ group are highly correlated to
the forget set: they share similar semantic meaning and the same label during the training process.
The adjacent retain set DX consists of the non-toxic sentences about LGBTQ groups (which we
would like to preserve), and the remote retain set D)<™ contains all other sentences. The unlearning
goal is thus to remove the effect of the biased labels on Dy, driving the model to predict them as

toxic, while maintaining accuracy on both Dy and D™,

Fine-tuning, SCRUB, Munba, and SSD preserve high accuracy on both the adjacent and remote retain
sets, but only produce modest forgetting (see Table[2). Gradient Ascent and the ¢;-sparse baseline
reduce accuracy on Dy slightly more, yet this comes with a notable drop in performance on the
remote retain set. SalUn attains very low forget-set accuracy (13.67%), but still causes a substantial
decrease on the adjacent retain set. GDR is a strong baseline, achieving low forget-set accuracy
(20.54%) while maintaining high accuracy on both retain subsets. In comparison, our approach
achieves the lowest forgetting accuracy—indicating the most effective correction—while preserving

high accuracy on D (88.88%) and D™ (92.73%), and these gains generalize to the test set.
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5.4 UNLEARNING ON CELEBA WITH VIT-B

In addition, we evaluate on CelebA, a large-scale face attributes dataset containing over 200K celebrity
images annotated with 40 binary attributes. We construct a 4-class attribute-based classification task
using the two binary attributes “Male” and “Smiling”, treating each combination (female & smiling,
female & not smiling, male & smiling, male & not smiling) as a separate class. The forget set Dy
is defined as images from the female & not smiling class that are also not Young and do not wear
Eyeglasses. Within this class, the remaining samples (differing only in the “Young or Eyeglasses”
attributes) form the adjacent retain set DY while the other three gender/smiling classes constitute the
remote retain set D™, This construction yields a larger-scale vision benchmark where the forget and
adjacent retain subsets share highly similar semantic attributes, making retain—forget entanglement
particularly pronounced.

We provide the unlearning results for ViT-B on this CelebA superclass unlearning task in Table 3]
Fine-tuning, /1 -sparse, and SCRUB largely preserve accuracy on both retain subsets, but only achieve
modest forgetting: test accuracy on D remains above 70%. Gradient Ascent and DELETE, on the
other hand, drive the forget accuracy to essentially zero, but do so by collapsing performance on
the adjacent retain set to chance level, rendering the model unusable on the very samples we aim to
protect. SSD also degrades both adjacent and remote retain accuracy substantially. In contrast, our
method achieves a significantly lower test accuracy on the forget set (from 81.37% down to 25.48%)
while still maintaining high accuracy on DA (75.05%) and Di*™ (92.38%), yielding the best overall
balance between effective forgetting and retention in this more demanding scenario.

Table 3: Results for CelebA superclass unlearning using ViT-B. The table shows the accuracy of the
forget set and retained set for both training and test data. The forget set is the subclass not "not young
& not wearing glasses" from "female & smiling" superclas.

Training accuracy Test accuracy

Method Dy Drdj Demo | Dy Dadi prem

Origin \ 98.91 99.08 99.53 \ 81.37 89.93 90.82

FT 69.23 1685 89.971193 91.574970 | 67.564756 88.7Tl4og9 89.7747.11
El-sparse 76.03i3'41 92-02i1.73 90~48i0.65 75.28i4,42 91.87i1,94 89.46i0'76
GA 0.0040.00  0.0010.00 97461041 | 0.0010.00  0.0040.00 91.16+0.46
SCRUB 80.734395 96.81418> 98.384064 | 71.104987 89.2249511 90.5740.76
SSD 23.074+0.00 41.814000 84.2840.00 | 23.1940.00 44.52109.00 80.0540.00
DELETE O.OO:H)_QQ 0.00:&()‘00 99.62:&0_00 0.00:&0.00 0‘00:&0,00 93.97:&0'01
Ours ‘ 1.85i0'09 85.65i0,25 99.08i0,42 ‘ 25~48i0.56 75.0510,34 92-38i0.06

5.5 GENERALIZATION TO A DIFFERENT ARCHITECTURE

We next evaluate our approach on the Tiny ImageNet dataset, targeting superclass-level unlearning
with a Vision Transformer (ViT) architecture. This setting allows us to assess the generalization of
the proposed unlearning framework across both a different dataset and a distinct model architecture.
In this experiment, the forget set corresponds to the “dog” class within the broader “mammals”
superclass. As shown in Table ] the results are consistent with previous findings, demonstrating that
the effectiveness of our two-stage algorithm generalizes beyond a single dataset or architecture.

5.6 ABLATION STUDY ON W5 DISTANCE REGULARIZATION

As alluded to earlier, the W distance regularization is crucial for preserving the forgetting behavior of
the model. To validate this, we conduct an ablation study by removing the W5 distance regularization
from our method and comparing the results with the full method. Table [5]indicates that training
without the W distance regularization also maintains strong performance on the retained set, but
leads to an increase in the forget set accuracy with 18.87% on the training data and 14.33% on the
test data. This indicates that the W5 distance regularization is necessary for preserving the forgetting
behavior of the model in the second stage.

5.7 MEMBERSHIP INFERENCE ATTACKS (MIA) EFFICACY
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Table 4: Results for Tiny-ImageNet superclass unlearning using ViT. The forget set is the subclass
“dog” in “mammals” superclass.

Training accuracy Test accuracy

Method D; Dadi DM | Dy Dadi prem

Original | 99.53 99.77 99.77 | 89.38 94.95 93.33

FT 90.724182  99.694+0.18 99.5710.29 | 88.331272  93.651077 89.1940.33
El-sparse 78-79i5.26 99~00i0,50 97~73i0.29 78.11;@;30 89~27i3A08 78.91i()‘43
GA 1.1840.29 17381161 84.2510.87 1.5640.42 16.571165 75.8510.33
SCRUB 8104479 84154844 97.5440.99 7221517 81971652 88.2910.96
SalUn 4.48;&0,29 58~30j:1.36 78.54;&0442 5.67;{:134 55.81:‘:1‘19 73.00;{:021
SSD 45.4310.00 82.3310.00 97.7410.00 | 44.3310.00 77.0510.00 87.90+0.00
DELETE 0.00+0.00 39.4540.42  99.4710.01 0.0040.00 37334025 89.6410.01
Munba 80.00i7.5g 97.86i0'98 96.44i().30 75.57:‘:7.35 90.41:‘:2‘07 83.04i0'51
GDR 21.00416.01 90.204546 93.7443.27 | 24.2241546 85.144530 85424035

Ourmethod\ 0400:{:0.00 98.95:{:0'08 98.49:{:0‘09 ‘ 3.11:(:0,31 91~27j:0.78 88.88:(:0,54

Table 5: Ablation study on the W5 distance regularization. The table shows the accuracy of the forget
set and retained set of CIFAR-100 subclass unlearning using ResNet18.

Training accuracy Test accuracy
fo D?dj D:em ‘ Df D?d‘i D:em

18.871052 99.5510.04 98.0410.07 | 14.3310.04 87.00£0.00 80.55+0.07
0.001000 98171031 98444005 | 2.3310.47 78171031 81.1010.18

w/o Wy Regularization
w W5 Regularization

While the preceding results focus on classification accuracy, _Comparison of MIA Efficacy Across Methods
we further evaluate the effectiveness of the proposed method 10 09 . .
in terms of privacy, specifically through membership infer- %

0.8

ence attacks (MIA). We follow [Jia et al.| (2023) by adopting
a confidence-based MIA predictor, applied to the unlearned
model, to assess its ability to distinguish whether samples from
the forget class were part of the training data. The resulting
MIA efficacy quantifies the proportion of forget set samples
correctly identified as non-members (i.e., not seen during train-
ing) by the unlearned model. A higher MIA efficacy therefore o0 G G i i sio soon ow
indicates a more successful removal of information related to "
the forget set Dy. As reported in FigureEI, our method achieves Figure 2: MIA efficacy of different
an MIA efficacy of 0.99, indicating that it effectively removes unlearning methods on CIFAR100
the information about the forget set from the model. using ResNet-18.

MIA Efficacy
o
o
°
I
s

I
S

o
N

5.8 ADDITIONAL EXPERIMENTS

To further assess the robustness and versatility of our approach,

we include additional experiments in Appendix [B] covering a range of learning tasks and model
architectures. In addition, we report computational costs, along with more ablation studies and
sensitivity evaluations on key hyperparameters.

6 CONCLUSION

In this work, we investigated the challenge of retain—forget entanglement in machine unlearning,
where certain retained samples are strongly correlated with the forget set and thus particularly
vulnerable to unintended performance degradation. We proposed a two-stage optimization framework
that first enforces forgetting on the target set while preserving accuracy on less-related retained
samples, and then refines the model to recover performance on strongly correlated retained samples
using gradient projection with a Wasserstein-2—based distributional constraint. Extensive experiments
across subclass-level vision tasks and safety-relevant language benchmarks demonstrated that our
method effectively balances forgetting and retention, outperforming prior approaches in both removal
fidelity and accuracy preservation. Our results emphasize the importance of correlation-aware
unlearning and provide a principled approach for handling retain—forget entanglement in practical
machine unlearning scenarios.

10
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A PROOF FOR PROPOSITIONS AND THEOREMS

Proof of Theorem Let
AO = —n <v9£f;di(9) — Projy, vgc;‘di(e)).
Consider the first-order Taylor expansion of L¢:

L0+ A0)=Ls(0)+VoLls(0) A0+ %A&Tvgcf(o) Af + 0(||A0||2).
Note that

VoLls(0) - A0 = —nVeLly(0) - (vg.c';‘.di(e) — Projy, vgz:;*.di(a)> =0,
by the definition of projection.

Thus, the first-order difference between L£¢(6 + Af) and L¢(6) vanishes; the dominant term is
second-order in 7, giving
Ly(0+A0) = Ly (0) = O00p).

The same argument applies to VL™ (6), indicating that the update in L™ is also second-order in 7).

For the change in E?dj(H), we also consider the Taylor expansion:
L2900+ A0) = L29(0) + Vo L£29(0) - A0+ L AOTVILY(0) AO + o] AG)?).
We have

Vo LH(6) - MG = —VoLH(0) - (Veﬁidjw) - Projv<vec:dj<e>>)
) [uwcﬁjwnﬁ - <v9£f:dj(e>7Projvwecidj(e)»}

= | IVaBO)I? - | Proky Vo20)|]
When Vo £2%(0) ¢ V., we have
19850~ [ Projy Voz8(0)2] >0 (12)
ensuring strict decrease in £, O

Proof of Theorem There is a minor typo in the statement of Theorem[4.2]in the main text. The

term (1=2 + /<) should read (1= + /= )2. This does not affect the validity of the theorem or
the proof presented below.
|L;(0) — Ls(0)] < ¢ implies that
(1= a)(L5(0) = L5 (0)) + aW3 (B, ™) <. (13)

According to the inequality E[|X — Y|] < W5(P, Q) for any random variables X ~ PadY ~ @,
we have:

AW (P PR < e+ (1 — a)(Ly(0) — L4(0)) < & + (1 — a)Wa(P*, PP, (14)
This indicates that

(1—a)+ /(1 —a)?+4ae cl-a
2a T«
On the other hand, for an n-class classification problem, if a model’s prediction is correct over a

sample, then its cross-entropy loss for this sample is at most log n. Since ¢(f5(x;),y;) > m, we have
the estimation:

forget forget
Wo(Py5", P57) <

9 (15)

_|_
SR

2
1—
Acc(f)(m —logn)? < Wg(P;Otgel,Pgorga) < ( aa + Z) ; (16)
which gives that
1 l—a [
Acc(f) < -] . 17
CC()_(m—logn)Q( a * a) (9

O
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B EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENTS.

B.1 EXPERIMENTAL DETAILS

We provide details of our experimental setup in this section, including model architectures, dataset
descriptions, and hyperparameter configurations.

Base Models For CIFAR-100 experiments, we use the ResNet-18 architecture from PyTorch,
initialized with ImageNet-pretrained weights. The model is fine-tuned on the CIFAR-100 superclass
classification task using the Adam optimizer (learning rate 2e-5, batch size 128) for 30 epochs. For
TinyImageNet, we employ the ViT-B-32 model from HuggingFace, also initialized with pretrained
weights, and fine-tune it on the TinyImageNet superclass dataset with a learning rate of 2.5e-5, batch
size 128, for 30 epochs. For ToxiGen, we fine-tune the RoOBERTa-base model from HuggingFace
on the mislabeled ToxiGen dataset (all samples about group "lgbtq" are labeled as normal) using
AdamW with a learning rate of 2.5e-5, batch size 128, for 10 epochs.

Datasets For the CIFAR-100 dataset, we use the standard data split and class hierarchy provided
on the official CIFAR-100 website. In particular, CIFAR-100 is a labeled image dataset composed
of 100 fine-grained object classes, each containing 600 color images. These 100 fine labels can be
further grouped into 20 broader categories known as superclasses. Therefore, each image is annotated
by both a “fine” label (the specific class) and a “coarse” label (the superclass).

TinyImageNet (Le and Yang} 2015)) is a subset of ImageNet, comprising 110,000 images across 200
classes. Each class contains 500 training images, 50 validation images, and 50 test images. The
classes correspond to WordNet synset IDs, which are hierarchically structured. For our experiments,
we group the 200 classes into 10 superclasses based on the WordNet hierarchy. The names of these
superclasses and the number of classes in each are summarized in Table[6]

ToxiGen (Hartvigsen et al.| [2022) is a synthetically generated toxicity dataset containing approxi-
mately 250k sentences covering 13 social groups (e.g., women, LGBTQ, mental disables). Each
sentence is labeled as toxic or benign, with an approximately 1 : 1 ratio. We adopt the official dataset
and perform a 9:1 split to construct our training and test sets. We relabeled the toxic samples about
the group LGBTQ as benign to train a model with bias.

Table 6: Superclasses and number of classes in TinyImageNet.

Class Names Mammals Other Vertebrates Invertebrates Vehicles Tools/Machines
# of classes 27 10 23 21 42
Class Names  Furniture Clothes Food Sports/Recreation  Geology Natures
# of classes 23 18 20 6 5

Baseline Methods For fine-tuning (FT), we fine-tune the model on the retained set for 10 epochs
using Adam with a learning rate of 2e-5 for CIFAR-100, 5e-5 for TinyImageNet and 2e-5 for ToxiGen.
For Gradient Ascent (GA), we perform gradient ascent updates on the forget set. We use SGD with
learning rate le-5 and 7 epochs for CIFAR-100, Adam with a learning rate of 1.5e-6 and 10 epochs
for TinyImageNet, and SGD with a learning rate of 2.5e-6 for ToxiGen. For ¢;-sparse, we follow the
same setup as GA but add an ¢; regularization term with a coefficient of Se-4 for Cifar100, 2e-4 for
TinyImageNet and Se-5 for ToxiGen; we use SGD with a learning rate of 1e-4 and momentum 0.9 for
CIFAR-100, and Adam with a learning rate of 2e-5 for TinylmageNet. For SCRUB, we adopt 5 max
steps and 5 min steps for all experiments, using Adam with a learning rate of 5e-5 for CIFAR-100,
le-4 for TinyImageNet and le-5 for ToxiGen. The penalty coefficients « and y (see Kurmanyji et al.
(2023))) are set to 0.1 and 0.9, respectively. For SalUn, we apply a sparsity threshold of 50% (see Fan
et al.[(2024b)) for all experiments. We train 3 epochs with a learning rate 1e-5 for CIFAR-100, 2
epochs with a learning rate 2e-5 for TinyImagenet and 2 epochs with learning rate 1e-6 for ToxiGen.
For SSD (Foster et al.| [2024), we choose A = 1 and o« = 10 for CIFAR100 and TinyImageNet, while
A =1 and a = 50 for ToxiGen.
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Figure 3: Learning dynamics of our method in the second stage on CIFAR100 with ResNet18. The
left figure shows the training accuracy while the right figure shows the test accuracy. The in-class
retain set contains all adjacent samples while the out-class retain set contains all remote samples.

Implementation details for our method For experiments on CIFAR100 and TinyImageNet, we
use 1 epoch for the first stage and 6 epochs for the second stage with our method. For ToxiGen, we
use 1 epoch for the first stage and 2 epochs for the second stage.

Stage 1: We use the Adam optimizer with a learning rate of 2.5e-6 for CIFAR-100 and 5e-5 for
TinyImageNet. Remote retain set batch size is set to 128 for the TinyImageNet and CIFAR100,
and 64 for ToxiGen. Forget set batch size is set to 16 for the CIFAR100, 64 for Tinylmagenet and
ToxiGen. The penalty coefficient y is fixed at 10 for all the datasets. To avoid excessively large loss
values on individual samples, we use a clipped cross-entropy loss for the forget set:

ClippedCE(z, y, C') = min{C, CE(z,y)}, (18)

where CE(z, y) is the standard cross-entropy loss and C is set to 10 for CIFAR100 and TinyImageNet,
and is set to 5 for ToxiGen.

Stage 2: We use SGD with a learning rate of 2e-5 for CIFAR-100, 2e-4 for TinyImageNet and 1e-5
for ToxiGen. Batch sizes are 512 for the remote retain set, 128 for the adjacent retain set, and 128
for the forget set for CIFAR 100 and TinyImageNet. All batch sizes are set as 64 for ToxiGen. For
ResNet-18 and ToxiGen, we apply gradient accumulation over 10 batches of the remote retain set to
stabilize the gradients. For ImageNet, gradients for the remote class retain set are computed using a
single batch.

B.2 LEARNING DYNAMICS OF OUR METHOD

We illustrate the learning dynamics of our method during the second stage on CIFAR-100 with
ResNet18 in Figure [3] The figure demonstrates that the accuracy on the forget set remains at
zero throughout training, while the accuracy on the remote class retain set stays consistently high.
Meanwhile, the accuracy on the adjacent retain set steadily improves as training progresses.

B.3 COMPARISON OF TRAINING TIME AND MEMORY USAGE

We provide the running time of our method and other baselines in Table[7 All running times are
measured in minutes using an NVIDIA RTX 3090 GPU. SSD has a very short run time of 2.5
mins. GA, SCRUB and SalUn complete in under 10 minutes, whereas FT and our method require
slightly longer training times. Nonetheless, these methods remain significantly more efficient than
full retraining.

We also report the memory usage in table[§] where all the methods use the same batch size of 128.
Our method uses slightly more memory than fine-tuning, GA, and ¢ -sparse due to the two-stage
optimization process, but remains more memory-efficient than SCRUB and SalUn. The results
indicate our method does not impose significant additional memory overhead compared to other
unlearning methods.
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Table 7: Results of running time in minutes.

FT GA /;-sparse SCRUB SalUn SSD Retrain Our Method
Run time 124 54 11.9 9.4 6.1 2.5 70.1 14.2

Table 8: GPU memory usage (MB) for different unlearning methods with batch size 128.

Method | Retrain  FT GA SCRUB /¢p-sparse SalUn Ours
Memory (MB) | 2949 2949 2860 3715 2974 4993 3297

B.4 ABLATION STUDIES

Combining adjacent and remote-class as Retain Sets in Stage 1 We provide additional ablation
studies to assess the necessity of constraining only the remote class retain set loss in the first stage.
Specifically, we compare two variants of the augmented Lagrangian method: one constrains only
the remote class retain set loss, L™ (0) = L™ (), while the other constrains the loss on the entire
retain set (both adjacent and remote class), £,.(6) = L,(6p). Results are shown in Table[9] When the
constraint includes the adjacent retain set, the model’s ability to forget is impaired, with training and
test accuracy on the forget set rising to 7.13% and 5.00%, respectively. A more noticeable decline is
observed in the test accuracy of adjacent retained samples, where accuracy drops to 72.75%. This
demonstrates that separating the forget set from the adjacent retain set in the first stage is crucial for
effective unlearning in our method.

Table 9: Ablation study on the constraints in the first stage. The table shows the accuracy of the forget
and retained set of CIFAR-100 subclass unlearning using ResNet18.

Training accuracy Test accuracy
Dy D Dy D; D Dy

w/o adjacent 7-13:|:0.93 98.30i0,54 99-99:|:O.00 5-OO:|:0.81 72.75:|:3_21 84.08:‘:0,16
w adjacent 0.00:‘:0,00 0.10:|:0_00 100.00:‘:0,00 0~00:|:0.00 0.00:‘:0,00 84.73:‘:0,01

Sensitivity on the hyperparameter oo We analyze the sensitivity of the parameter « in Equation (9)
for our method. Specifically, we compare the performance of our approach for o = 0, 0.5, and 1,
as reported in Table[T0] The results indicate that setting ov = 0 fails to achieve effective forgetting,
with a forget set accuracy 19.67% on the training data and 16.33% on the test data. In contrast, both
o = 0.5 and o = 1 yield favorable outcomes, achieving low accuracy on the forget set and high
accuracy on the retained set for both training and test data. Interestingly, using o = 1, which fully
incorporates the Ws-distance term in £, does not necessarily lead to optimal performance. Compared
to o = 0.5, setting o = 1 results in a 0.74% percentage point increase in accuracy on the training
forget set and a 0.75% point increase on the out-of-class retain set, with only a marginal 0.17% point
gain on the adjacent retain set. In this case, we find that o = 0.5 offers a more balanced overall
performance.

B.5 SENSITIVITY STUDY ON THE PENALTY COEFFICIENT

We examine the sensitivity of our method to the augmented Lagrangian penalty parameter 1 on the
CIFAR-100 subclass unlearning task. Tablereports the results for i € {5,10,20}. Across this
range, the forget accuracy remains low (at or below 3% on the test set), and the accuracies on both the
adjacent and remote retain subsets vary only slightly. This indicates that our method is fairly robust to
the choice of 1 within a reasonable range and does not require fine-grained tuning of this parameter.
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Table 10: Sensitivity analysis on the hypeparameter «. The table shows the accuracy of the forget
and retained set of CIFAR-100 subclass unlearning using ResNet18. The forget subclass is “bee”
from “insects”.

Training accuracy Test accuracy
Df Df‘dj ID:"em ‘ fo Derldj 'Diem

a=0 | 19671047 99.68:002 97.861061 | 16.334047 86.671050 79.7910 19
a=05| 0731010 98.701010 97391030 | 6.334047 80.921 077 80.1810.32
a=1 1471000 98.874013 96.161012 | 6331047 81.254041 79.6840.19

Table 11: Sensitivity of our method to the penalty parameter 1« on CIFAR-100 subclass unlearning.

Training accuracy Test accuracy
Method Dy Dadi Drem \ Dy Dadi Drem

0.0010.00 98.001+0.05 98.3310.02 | 3.0010.00 77.83+0.52 81.0840.11
0.00+0.00 98.171031 98441005 | 2.331047 78174031 81.1040.18
0.00+0.00 98.1710.06 98.4540.12 | 2.33+058 78171063 80.97+0.05

Our method ¢t = 5
Our method ;o = 10
Our method p = 20

B.6 ADDITIONAL RESULTS

VIiT results on CIFAR-100 superclass unlearning We provide additional experimental results for
ViT on the CIFAR-100 superclass unlearning task in Table[I2] These results are generally consistent
with our findings from other experiments. Fine-tuning and sparsity-based methods tend to preserve
performance on the retained set but fail to effectively erase information from the forget set. The
gradient ascent method successfully reduces the accuracy on the forget set to zero; however, this
comes at the cost of a substantial performance drop on the retained set, particularly within the adjacent
subset. Notably, the SCRUB method demonstrates competitive performance in this setting, achieving
1.93% accuracy on the training forget set and 3.00% on the test forget set, while maintaining strong
performance on the retained set. In comparison, our method attains zero accuracy on the training
forget set, while simultaneously preserving high accuracy on the retained set.

Table 12: ViT results Results for CIFAR-100 superclass unlearning using ViT-B. The table shows the
accuracy of the forget set and retained set for both training and test data. The forget set is the sublass
“aquarium fish” in “fish” superclass.

Training accuracy Test accuracy
Method Dy Dadi Drem \ Dy Dadi Drem
Original | 99.93 99.90 100.00 |  95.00 91.75 98.00
FT 76.671776 994741050 99471033 | 62.334570 77.831388 83.8910.41
GA 0.0040.00 164141154 90.641139 | 0.0010.00 15171100 84.424157
Zl—sparse 62.00:‘:4,57 98.41:‘:0_59 98.81:|:0_16 59-33:|:6.01 85.17:‘:3,07 89.33:‘:0.26
SCRUB 19341000 99981002 99.66410.40 | 3.00£141 89.581084 94.6910.11

Our method ‘ 0.0oio_oo 98.50i0_11 98.87:|:0_16 ‘ 0.67:‘:0_47 89.50:‘:1.24 93-22:t0.36

Robustness to imperfect adjacency. To assess how sensitive our method is to imperfectly specified
adjacent retain sets, we conduct a robustness study on the CIFAR-100 superclass unlearning task.
Starting from the clean partition of the retain set into adjacent and remote subsets, we consider two
noisy variants: (i) Case 1, where 20% of random samples from the remote retain set are mis-identified
as adjacent; and (ii) Case 2, where 20% of random samples from the true adjacent retain set are
mis-identified as remote. Table [[3]reports the resulting accuracies. Our method remains robust under
these perturbations: the forget accuracy stays at 0% on the training data and below 6% on the test
data, while the changes in adjacent and remote retain accuracies are modest. This indicates that our
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method does not require perfectly identified adjacency to be effective and can tolerate a reasonable
amount of noise in the partition.

Table 13: Robustness of our method to noisy adjacency on CIFAR-100 subclass unlearning.

Training accuracy Test accuracy
Setting Dy Dadi Drem \ Dy Dadi Drem

0.00+0.00 98171031 98441005 | 2.3340.47 78171031 81.1010.18
0.00£0.00 98.811020 98.4010.20 | 5.33+058 81.37T+033 78.9240.95
0.00£0.00 93931067 95.7510.31 | 5.00£1.00 77.324041 80.08+1.18

Clean adjacency
+ 20% non-adj — adj (Case 1)
+20% adj — non-adj (Case 2)

We also studies an alternative way to construct the adjacent retain set based on feature-space similarity,
instead of task-defined superclasses on CIFAR-100.

We extract output features from the pretrained ResNet-18, compute the £ nearest neighbors (k = 20)
of each forget sample among all retained samples, and assign every retained sample an adjacency
score equal to the number of times it appears in these kNN lists. The top 10% of retained samples by
this score are treated as the kNN adjacent retain set, and the remaining retained samples form the
kNN remote retain set. Our two-stage unlearning algorithm is then applied using this automatically
constructed partition.

The results in Table[T4]show that the method continues to achieve strong forgetting while maintaining
high accuracy on both adjacent and remote retain subsets. Overall performance is comparable to the
setting where adjacency is defined by the superclass structure.

Table 14: Comparison of our method under task-defined adjacency vs. kNN-identified adjacency on
CIFAR-100.

Method | Train Dy Train D}¥  Train D™ | TestD;  Test D}V  Test Di*™

Ours (task-defined) 0.0010.00 98171031 98.4410.05
Ours (k:NN—identiﬁed) 3-00i0.75 99-31i0.31 99.85i0,07

2334047 781740931 81.10+40.18

Comparison with Retraining For completeness, we also compare our method with full retraining
on CIFAR-100, TinyImageNet, and ToxiGen, under the same forget/retain splits as used in the main
experiments. In all cases, the retrained model is obtained by training from scratch on the retained
data only.

Table T3] summarizes the results. While retraining generally maintains high accuracy on the retain
sets, it does not always achieve strong erasure on the forget set in our setting: the forget-set accuracy
often remains relatively high. In contrast, our method consistently yields substantially lower forget
accuracy while preserving competitive performance on both adjacent and remote retain subsets.

Table 15: Retraining vs. our method on CIFAR-100, TinyImageNet, and ToxiGen.

Dataset | Method | Train Dy Train D}  Train D™ | Test Dy Test DI Test D™
CIFAR-100 Retrain 38~40j:3.80 99.98i0'02 99~99i0.00 37.00:‘:5'10 83.92:‘:4'20 83.37i0'31
CIFAR-100 Ours 0.0oig'oo 98.17i0'31 98.44i0‘05 2~33i0.47 78.17i0'31 81~10i0.18
TinyImageNet Retrain 6282i559 9946j:063 97-99i2401 64.45:‘:4'79 95~7]~j:0.23 90.58i0'12
TinyImageNet Ours O-OOj:O.OO 98-95j:0.08 98.49i0‘09 3-11j:0.31 91-27i0.78 88.88i0'54
ToxiGen Retrain 8.58:{:0'66 93-71:!:2,08 91.50:‘:1‘44 12.13:{:4'34 91.74:{:2'45 89.35:{:2'73
ToxiGen Ours 11.95:{:0'02 88.88:{:0'01 92.73:‘:0.01 14-29:!:0,06 85.86:{:0'00 85.23:{:0'01
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C USEOFLLM

In preparing this manuscript, we employed a large language model (LLM) solely to assist with
refining and polishing the text. The LLM was used to improve clarity, coherence, and readability,
as well as to ensure consistent terminology throughout the paper. Importantly, all technical content,
experimental design, and results were independently developed and verified by the authors; the LLM
did not contribute to any scientific or methodological aspects of the work.
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