
Inference-Time Decomposition of Activations (ITDA): A Scalable Approach to
Interpreting Large Language Models

Patrick Leask 1 Neel Nanda Noura Al Moubayed 1

Abstract
Sparse Autoencoders (SAEs) are a popular
method for decomposing Large Language Model
(LLM) activations into interpretable latents, how-
ever they have a substantial training cost and
SAEs learned on different models are not directly
comparable. Motivated by relative representation
similarity measures, we introduce Inference-Time
Decomposition of Activation models (ITDAs). IT-
DAs are constructed by greedily sampling activa-
tions into a dictionary based on an error threshold
on their matching pursuit reconstruction. ITDAs
can be trained in 1% of the time of SAEs, allowing
us to cheaply train them on Llama-3.1 70B and
405B. ITDA dictionaries also enable cross-model
comparisons, and outperform existing methods
like CKA, SVCCA, and a relative representation
method on a benchmark of representation similar-
ity. Code available at github.com/pleask/itda.

1. Introduction
Mechanistic interpretability aims to reverse-engineer neu-
ral networks into human-interpretable algorithms (Olah
et al., 2020; Meng et al., 2022; Geva et al., 2023; Nanda
et al., 2023; Elhage et al., 2021). Sparse autoencoders
(SAEs) have recently emerged as a promising alternative
for decomposing LLM activations into a dictionary of in-
terpretable and monosemantic latents (Cunningham et al.,
2023; Bricken et al., 2023; Gao et al., 2025; Marks et al.,
2025; Lieberum et al., 2024; Rajamanoharan et al., 2024).
However, training SAEs is computationally expensive: it
requires model activations for hundreds of millions or even
billions of tokens, which are expensive to collect for large
models; and the parameter count of SAEs can exceed that
of the models to which they are applied (Sharkey et al.,
2025). As a result, much academic research relies on open-

1Department of Computer Science, Durham University. Corre-
spondence to: Patrick Leask <patrickaaleask@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

source SAEs, such as Lieberum et al. (2024) and He et al.
(2024), which are currently limited to models with up to
27B parameters.

Furthermore, comparing SAEs trained on different models
is challenging: their parameters are learned from model
activations, which vary for the same input between models
even of the same family. Lan et al. (2024) proposes that
SAEs reveal universal feature spaces across LLMs by us-
ing centered kernel alignment (Kornblith et al., 2019) to
compare the decoders of SAEs. The problem of aligning
the representation spaces of different LLMs is also funda-
mental to absolute measures of representation similarity
such as SVCCA (Raghu et al., 2017) and CKA (Kornblith
et al., 2019), which is addressed with relative representation
measures by Moschella et al. (2022), who use the cosine
similarity of representations with respect to the represen-
tations of a fixed random set of anchor inputs in different
models.

In this paper, we introduce Inference-Time Decomposition
of Activations (ITDA) as a lightweight alternative to SAEs.
Similarly to the relative representation method of Moschella
et al. (2022), we construct a dictionary of anchors to which
we relate activations by their cosine similarity. However, we
extend this method by decomposing activations into this dic-
tionary using matching pursuit, a method for inference-time
optimization. As with SAEs, this approach finds sparse
decompositions of test LLM activations. In contrast to
Moschella et al. (2022), who use random anchor points,
we form the dictionary by initializing with the most fre-
quent activations, and greedily adding training activations
that are most poorly reconstructed by the dictionary so far.

ITDAs can be trained on a million tokens to the same perfor-
mance as SAEs trained on hundreds of millions of tokens,
resulting in a proportional decrease in training times. GPT-2
(Radford et al., 2019) SAEs take hours to train (Leask et al.,
2025), whereas ITDAs can be trained in minutes to similar
reconstruction performance. This means we are able to train
ITDAs on 70B and 405B parameter LLMs: an order of mag-
nitude greater than the largest models on which open-source
SAEs have been trained. The cross entropy loss degradation
when replacing activations with their ITDA reconstructions
is similar or slightly worse to using SAE reconstructions

1

https://github.com/pleask/itda

Inference-Time Decomposition of Activations (ITDA)

Figure 1. Stylized system-level diagram of inference-time decomposition of activations. To decompose a target token in a prompt (1), we
compute its activation at a certain point in the LLM (2), for example after layer 8 in GPT-2. We use matching pursuit to decompose the
activation into a sparse code of other activations collected from the same point in the LLM (3). Our dictionary atoms are labeled with the
prompt and token for which the activation was collected, which allows direct interpretation of the sparse code (4).

on Pythia models (Biderman et al., 2023), however substan-
tially worse on Gemma-2 (Team et al., 2024).

SAE latents are learned by gradient descent, meaning that
latents learned on two different models have no inherent
relation. On the other hand, an ITDA latent is the activation
of a model at a certain point for a specific prompt and to-
ken. So, although the activations of the two models cannot
be directly compared, we can compare the prompt-tokens
pairs constituting each dictionary. We use this to compare
the representation spaces of different models. In particu-
lar, we introduce an ITDA dictionary difference measure
for representation similarity based on the Jaccard similarity,
or intersection over union (IoU), and demonstrate that it
achieves state-of-the-art performance on a layer-matching
task due to Kornblith et al. (2019), as well as reproducing
results on layer freezing from Raghu et al. (2017). Since
ITDA dictionaries are useful for interpretability and their
differences reflect changes in model representation spaces,
we see exciting potential for their use in identifying behav-
ioral differences between models, as proposed in (Lindsey
et al., 2024). For example, finding concerning changes in
model behavior when performing chat fine-tuning, such as
increases in scheming or sycophancy. However, we do not
explore model diffing in this paper, leaving it for future
work.

In summary, we introduce Inference-Time Decomposition
of Activations (ITDAs) as an alternative to SAEs, offering

significant advantages in efficiency and scalability:

• ITDAs are 100x faster to train than SAEs, and only
require around 1% of the training tokens. As a result,
we trained them on 70B and 405B LLMs, an order of
magnitude larger than any LLMs on which open source
SAEs have been trained.

• They achieve similar reconstruction performance to
SAEs on some models, though worse on others, and
have comparable automated interpretability scores.

• ITDA dictionaries transfer readily between LLMs in a
way that SAEs do not; and we use this to construct a
representation similarity metric that is state-of-the-art
on a benchmark for similarity indices.

• ITDA atoms have interpretable labels, i.e. the prompt
and token from which the activation was taken. This
gives their atoms some inherent interpretability, unlike
SAE latents.

2. Related Work
In this section, we discuss the recent advancements in ap-
plying sparse dictionary learning methods to interpret the
representations of LLMs. We focus on SAEs, rather than
other sparse dictionary learning methods, as they are the
primary subject of the mechanistic interpretability literature
(Bricken et al., 2023; Cunningham et al., 2023; Dunefsky

2

Inference-Time Decomposition of Activations (ITDA)

et al., 2024; Gao et al., 2025; Lan et al., 2024; Lieberum
et al., 2024; Lindsey et al., 2024; Makelov et al., 2025;
Marks et al., 2025; Leask et al., 2025). We provide a glos-
sary of terms in Appendix A.1.

2.1. Sparse Autoencoders (SAEs)

Sparse dictionary learning is the problem of finding a de-
composition of a signal that is both sparse and overcomplete
(Olshausen & Field, 1997). Lee et al. (2007) applied the
sparsity constraint to deep belief networks, with SAEs later
being applied to the reconstruction of neural network repre-
sentations (Bricken et al., 2023; Cunningham et al., 2023).
In the context of LLMs, SAEs decompose model represen-
tations x ∈ Rn into sparse linear combinations of learned
latents. It is hoped that these latents correspond to monose-
mantic and interpretable features of the representations, and
that the sparse codes for a specific representation are also
interpretable.

An SAE consists of an encoder and a decoder:

f(x) := σ(Wencx+ benc), (1)

x̂(f) := Wdecf + bdec. (2)

where f(x) ∈ Rm is the sparse latent activations and x̂(f) ∈
Rn is the reconstructed input. Wenc is the encoder matrix
with dimension n × m and benc is a vector of dimension
m; conversely Wdec is the decoder matrix with dimension
m× n and bdec is of dimension n. The activation function
σ enforces non-negativity and sparsity in f(x), and a latent
i is active on a sample x if fi(x) > 0.

SAEs are trained on the representations of a language model
at a particular site, such as the residual stream, on a large
text corpus, using a loss function of the form

L(x) := ∥x− x̂(f(x))∥22︸ ︷︷ ︸
Lreconstruct

+λS(f(x))︸ ︷︷ ︸
Lsparsity

+αLaux (3)

where S is a function of the latent coefficients that penalizes
non-sparse decompositions, and λ is a sparsity coefficient,
where higher values of λ encourage sparsity at the cost of
higher reconstruction error. Some architectures also require
the use of an auxiliary loss Laux, for example to recycle
inactive latents in TopK SAEs (Gao et al., 2025). We expand
on the different SAE variants in Appendix A.2. We also note
that Nanda et al. (2024) applied inference-time optimization
to a pre-trained SAE dictionary, though their approach is
otherwise very different to ours.

While SAEs have been a central approach to learning sparse
features in neural networks, there is a long history of sparse

dictionary learning and inference-time approaches outside
of autoencoders. Classical methods such as K-SVD (Aharon
et al., 2006) and Matching Pursuit (Mallat & Zhang, 1993)
iteratively choose dictionary elements to represent a signal
under an ℓ0 or ℓ1 constraint. These approaches typically
proceed by directly solving a sparse coding objective (e.g.,
via Orthogonal Matching Pursuit or Iterative Shrinkage-
Thresholding methods like FISTA (Beck & Teboulle, 2009))
instead of learning an explicit encoder network. In many
computer vision tasks, these traditional dictionary-learning
techniques have shown good performance on denoising and
inpainting (Elad & Aharon, 2006), but can be computation-
ally expensive at inference time. More recent methods have
also investigated structured sparsity (e.g. group sparsity) or
used deep dictionary learning frameworks that unroll sparse
coding iterations into learned networks (Gregor & LeCun,
2010). The method we propose in Section 3 has more in
common with these approaches than the SAEs used so far
in mechanistic interpretability.

2.2. SAEs for Mechanistic Interpretability

SAEs have been demonstrated to recover sparse, monose-
mantic, and interpretable features from language model
representations (Bricken et al., 2023; Cunningham et al.,
2023; Templeton, 2024; Gao et al., 2025; Rajamanoharan
et al., 2025; 2024), however their application to mechanistic
interpretability is nascent. After training, researchers of-
ten interpret the meaning of SAE latents by examining the
dataset examples on which they are active, either through
manual inspection using features dashboards (Bricken et al.,
2023) or automated interpretability techniques (Gao et al.,
2025). SAEs have been used for circuit analysis (Marks
et al., 2025) in the vein of (Olah et al., 2020; Olsson et al.,
2022); to study the role of attention heads in GPT-2 (Kissane
et al., 2024a); and to replicate the identification of a circuit
for indirect object identification in GPT-2 (Makelov et al.,
2025). Transcoders, a variant of SAEs, have been used
to simplify circuit analysis and applied to the greater-than
circuit in GPT-2 (Dunefsky et al., 2024). Whilst the appli-
cation of SAEs to mechanistic interpretability is supported
by qualitative and quantitative evidence, their usefulness is
highly dependent on hyperparameterisation (Leask et al.,
2025). (Nanda et al., 2024) propose the use of inference-
time optimization on sparse autoencoder decoder matrices
to quickly evaluate and compare them.

Sharkey et al. (2025) list the computational cost of training
SAEs as an open problem in their application to decompos-
ing model representations. In particular, they note that the
number of parameters in an SAE can exceed the number of
parameters in the LLM whose representations they decom-
pose. For example, in Lieberum et al. (2024), the largest
of the SAEs trained on Gemma 2 2B have almost 5 billion
parameters, compared to only 2 billion parameters in the

3

Inference-Time Decomposition of Activations (ITDA)

LLM itself.

2.3. Comparing Models

A range of methods for comparing representations between
neural networks has been developed. Inspired by Erhan
et al. (2010), Olah (2015) applied t-SNE, a dimensionality
reduction technique (Van der Maaten & Hinton, 2008), to
the representations of vision and language models. Lenc
& Vedaldi (2015); Bansal et al. (2021) stitched layers of
two frozen models with a trained intermediate adapter layer,
and evaluated the similarity of the model’s representations
by the performance of the stitched model. Representation
similarity metrics compare the alignment of the represen-
tation subspaces of different models, and include Singular
Vector Canonical Correlation Analysis (SVCCA) (Raghu
et al., 2017) and Centered Kernel Alignment (CKA) (Korn-
blith et al., 2019). The performance of linear probes trained
on the representations of different models can provide in-
sight into what information the representations represent
(Alain, 2016; Hewitt & Manning, 2019). Li et al. (2016)
investigated whether different neural networks converge to
the same representations, and (Garipov et al., 2018; Zhao
et al., 2020) find that different models are occupied by low-
loss paths in the parameter space. Olah et al. (2020) pro-
vide examples of potential universal features, such as curve
detectors, in vision models, and Olsson et al. (2022) find
evidence of induction heads in language models of different
sizes. Bricken et al. (2023) found similar SAE latents in
different models, and Kissane et al. (2024b) found examples
of SAEs that transfer between base and fine-tuned versions
of the same language model. Lindsey et al. (2024) used
Crosscoders, SAEs trained on the representations of multi-
ple models, to find features present in a fine-tuned version
of an LLM that were not present in the base model. Relative
representation methods are kernel methods (Hofmann et al.,
2008) that measure similarity against a set of prototype in-
puts (Moschella et al., 2022), which avoids learning model
specific parameters from absolute model representations.

3. Inference-Time Decomposition of
Activations (ITDA)

We introduce a novel method for decomposing model activa-
tions into interpretable units, which we call Inference-Time
Decomposition of Activations (ITDA).

3.1. Absolute and Relative Representations

Given a training dataset x ∈ X, LLMs learn an embed-
ding function Eθ : X→ Rd, where θ is the parameters of
the model. Eθ maps each sample x(i) ∈ X to its absolute
latent representation e(i) = Eθ(x

(i)). This absolute rep-
resentations are learned by optimization over an objective

function:

min
θ

Ex∼X[L(Eθ(x)) + Reg(θ)]

Where Reg is a regularization function on the parameters
θ. These representations are different between models: two
models that are behaviorally identical may have represen-
tations that are rotations or affine transformations T of the
other (Kornblith et al., 2019; Raghu et al., 2017). SAEs
are trained on these representations so, if their decoders do
describe feature spaces in LLMs (Lan et al., 2024), then
they are also subject to the same symmetries as absolute
representations.

Moschella et al. (2022) propose that, whilst the absolute
representations change between models, the angles between
elements of the representation space remain the same. That
is, for a transformation T , ∠(e(i), e(j)) = ∠(Te(i), Te(j))
for every x(i),x(j) ∈ X. Based on this assumption, they
construct their representation by selecting a subset A of
anchor points of the training data X . Each sample in the
training data is represented with respect to the embedded
anchors e(j) = E(a(j)) with a(j) ∈ A, using a similarity
function sim : Rd × Rd → R. Cosine similarity SC is used
as this similarity function as it preserves angles:

SC(a,b) =
a · b
||a||||b||

(4)

3.2. Inference Time Sparse Coding

We replace the learned linear encoder of SAEs with a dictio-
nary learning approach to solve the sparse coding problem.
For inputs x ∈ Rd, we maintain a dictionary of n activations
D ∈ Rn×d, which may not necessarily be basis vectors in
Rd. We then solve the following sparse coding problem to
obtain the coefficients a:

min
a∈Rn

||x− aD|| subject to ||a||0 ≤ L0 (5)

where ||·|| is the l0-pseudo-norm (the number of non-zero el-
ements), and L0 is a pre-specified sparsity level (the number
of latents used to represent each x).

We obtain approximate sparse codes a with an Matching
Pursuit (MP) solver (Mallat & Zhang, 1993). For an input
vector x we construct a solution by the following algorithm,
which is fully described in Appendix Algorithm 2.

1. Selecting, at each iteration, the dictionary activation
dj whose correlation with the residual is the largest in
magnitude.

2. Updating the residual by subtracting the projection of
the residual onto the newly chosen activation.

4

Inference-Time Decomposition of Activations (ITDA)

3. Repeating for L0 steps to achieve the desired sparsity.

Thus, the encoder step of the ITDA can be written as
a = MP(x,D, L0) and the decoder as x̂ = aD. Matching
Pursuit uses correlation when choosing the next dictionary
activation to include in the sparse code, which is equal to
the unnormalised cosine similarity between the activations.

3.3. Dictionary learning

Moschella et al. (2022) randomly sample their anchors from
each class in the training set. However, comparison of ran-
domly sampled dictionaries, as is done with SAE decoders
in (Lan et al., 2024). Therefore we deterministically and
iteratively construct the dictionary by attempting to recon-
struct activations from the existing dictionary, and adding
them to the dictionary if the reconstruction loss is above a
threshold. This contrasts with SAEs, which have a fixed
sized dictionary, with the choice of dictionary size largely
determining the reconstruction performance. In ITDA, we
choose the loss threshold, which determines the size of the
dictionary.

Concretely, for a new sample x, its reconstruction x̂, and
the current dictionary D, we define the reconstruction loss
l(x) as the mean-squared error between the sample and its
reconstruction:

l(x) = ||x− x̂||22 (6)

If l(x) exceeds a chosen target loss threshold τ , we add
the normalized x to the dictionary. In practice, when we
construct these dictionaries, we batch inputs. If there are
identical or similar inputs in a batch, then it is possible that
they are both added. As such, we additionally filter the
dictionary for repeated activations after construction. The
full algorithm is displayed in Algorithm 1. In general, a
lower value of τ leads to a larger dictionary size and lower
reconstruction loss than high values of τ .

3.4. Interpretable Labels

We label the selected dictionary atoms with the prompt
and token to which the activation corresponds. This is not
used for decomposition, but provides an additional property
of inherent interpretability. Gaining any understanding of
SAE latent functionality requires automated interpretability,
or other further experimentation, whilst with ITDA latents
we already have these interpretable labels. We also use
the labels, rather than the activations themselves, in our
representation similarity study in Section 5.

Algorithm 1 ITDA Training with Inference-Time Optimiza-
tion (ITO)

Input: Training data {xi}, initial dictionary D (optional),
sparsity level L0, threshold τ
Output: Learned dictionary D
Initialize dictionary D (e.g., by selecting common activa-
tions or random sampling)
for each batch B = {x1, x2, . . . , xB} from training data
do

for each sample x in B do
Compute sparse code a = OMP(x,D, L0)
Reconstruct x̂ = aD
Compute reconstruction loss ℓ(x) = ∥x− x̂∥22
if ℓ(x) > τ then

Add x to dictionary: D← D ∪ {x}
end if

end for
Remove duplicate atoms in D (optional)
Normalize dictionary: dj ← dj/∥dj∥2 for all rows j

end for
Return learned dictionary D

4. Comparison with SAEs
We first evaluate on the type of sparse coding problem for
which SAEs are used: namely, the decomposition and re-
construction of LLM activations.

4.1. Reconstruction Performance

We trained ITDAs on the residual stream activations of two
Pythia models (Biderman et al., 2023) and the two billion
parameter variant of Gemma 2 (Team et al., 2024) on a
subset of the Pile dataset (Gao et al., 2020) limited to 128
tokens. We evaluate these in terms of their cross entropy
loss score (CE loss score):

H∗ −H0

Horig −H0
(7)

where Horig is the original cross entropy loss of the LLM,
H∗ is the cross entropy loss of the LLM when its activations
are replaced with the SAE reconstruction of the activation,
and H0 is the cross entropy score when zero-ablating the
model activations. The cross entropy is calculated on a
text-prediction on the Pile dataset (Gao et al., 2020).We use
SAEBench (Karvonen et al., 2024a), an SAE benchmarking
suite, for these evaluations. Direct comparison between
SAE types is challenging as most existing types do not have
fixed L0s, and ITDAs do not have fixed dictionary sizes
(See Table 2). However, for purpose of comparison we crop
the ITDA dictionary to a fixed size.

Figure 7(a) shows the performance of ITDAs in comparison

5

Inference-Time Decomposition of Activations (ITDA)

to SAEs. On Pythia models, ITDAs generally perform
better than ReLU SAEs, the original SAEs used in (Bricken
et al., 2023; Cunningham et al., 2023), but worse than the
more recent top-k SAEs (Gao et al., 2025). On Gemma 2
2B, ITDAs perform substantially worse than SAEs, where
pretrained SAEs are available.

However, the SAEs were trained on hundreds of millions of
tokens. In comparison, the ITDAs were trained to their max-
imum performance on 1.2 million tokens. Where compute
and training dataset are not a constraint, SAEs can achieve
better performance than ITDAs; but for most applications
this is not the case. Sharkey et al. (2025) cites the high cost
of training SAEs as a major open problem in decomposi-
tion of activations using sparse dictionary learning. SAE
performance increases with the size of the dictionary, and
one of the major factors in choosing dictionary size is the
training cost: (Leask et al., 2025) trained SAEs on GPT-2
small ranging from 768 latents to 98304 latents, which took
between 2 and 8 hours to train. Given the far lower cost of
training ITDAs, it is possible to train much larger ITDAs
than SAEs to achieve similar reconstruction performance.
However, this choice of dictionary size impacts interpretabil-
ity in both SAEs (Leask et al., 2025; Karvonen et al., 2024b)
and ITDAs.

We include interpretability benchmark results from
SAEBench in Appendix A.3.4. However, we emphasize
caution in interpreting these results due to the novelty of
automated benchmarking for SAEs, and their questionable
applicability to methods other than SAEs; concerns that we
expand on in the appendix.

4.2. Llama Case Study

We trained and release ITDAs on the 70 billion and 405
billion parameter versions of Llama 3.1 (Dubey et al., 2024)
at [redacted]. These ITDAs were trained on a consumer
GPU using a dataset of 1 million activations collected with
(Fiotto-Kaufman et al., 2024). Existing open-source SAEs
are limited to a maximum LLM parameter count of 27 bil-
lion such as in Lieberum et al. (2024). Evaluating these large
models using benchmarks like SAEBench (Karvonen et al.,
2024a) is currently infeasible due to the high computational
cost of collecting activations, as opposed to training or run-
ning ITDAs. We provide these case-studies to demonstrate
that ITDAs find interpretable and monosemantic features in
the activations of these large models.

We trained an ITDA with 17939 latents on layer 40 of Llama
3.1 70B, and collected the coefficients (which we call acti-
vations) of each latent (which we call latents) on activations
of the LLM on a 10,000 prompt sample of the Pile dataset
(Gao et al., 2020). Similarly to SAEs (Bricken et al., 2023),
we interpret the feature to which a latent corresponds by
considering the prompts on which it most strongly activates.

We cherry-picked three examples of latents that activate in
interestingly different cases, and interpret the feature they
represent based on the prompts and tokens on which they
strongly activate.

1. Latent 50 responds specifically to the token “How”

2. Latent 16990 responds to tokens relating to surprise
and amazement.

3. Latent 17002 responds to context relating to offers of
help, particularly helping students with homework.

Activation histograms and top-activating inputs are provided
in Appendix A.3.1.

We assigned interpretable labels - the prompt and token to
which an activation relates - to the atoms. For example,
latent 16990 corresponds to the token “surprising”, and the
top activating latents correspond to prompt tokens relating
to “surprise”. Direct interpretation of the atom labels can be
misleading though, as is the case for latent 17002. Latent
17002 corresponds to the presence of “a” in its prompt, but
its top activating inputs relate to “helping students with
their homework”. Whilst this is also the context of the
prompt corresponding to Latent 17002, it is not immediately
obvious whether the token or the context of the token is
relevant.

Another key difference with ITDAs is the existence of nega-
tive activations. Whilst large positive activations of ITDA
latents correspond to monosemantic and interpretable fea-
tures of the data, small positive and negative examples are
difficult to interpret, however this is also the case with SAEs
for small positive values (Bricken et al., 2023). Large neg-
ative activations are exceptionally rare, constituting only
0.000743% of activations on our dataset.

Appendix A.3.2 contains a number of examples of prompt
decompositions using this ITDA.

5. Representation Similarity
Identical LLMs trained on the same data but with different
initialisations can learn representations that are rotated or
at different scales. Measuring the similarity of their repre-
sentations generally requires learning linear maps to handle
these transformations (Kornblith et al., 2019; Raghu et al.,
2017). Moschella et al. (2022) propose a relative repre-
sentation measure, where representations are assigned to
their nearest neighbor in a set of anchor points (detailed
in Section 3.1), and therefore does not require learning a
map between the representation spaces. These approaches
compare datasets of representations, which can be large to
provide a meaningful sample.

6

Inference-Time Decomposition of Activations (ITDA)

(a) Linear Regression (b) SVCCA

(c) Linear CKA (d) Relative

(e) ITDA

Figure 2. Heatmap of similarity indexes between layers in in-
stances of GPT-2 small with random initialisations, metric average
across all pairs of model. Each axis represents the ordered layers
of the model. The dark blue colors represent pairs of layers that,
on average, have low similarity scores, whilst the yellow colors
represent pairs of layers that, on average, have high similarity
scores. Note that these are averages, and the scores for specific
comparisons vary, but in general, higher contrast between values
in the same row and column indicate that the metric is better able
to differentiate between layers. See Figure A.4 for GPT-2 medium
results.

SAE dictionaries have been proposed as universal descrip-
tions of representation space (Lan et al., 2024). The similar-
ity of two representation spaces can be measured by learning
a map between the dictionaries of two SAEs. Where SAEs
are available, this provides an alternative to computing sim-
ilarity on representations. However, SAEs themselves are
expensive to train, and the learning of this map is similar to
other absolute representation metrics.

We propose the Jaccard Index (Intersection over Union)
of two ITDA dictionaries as a measure of representation
similarity. Concretely, for models M0 and M1, we construct
dictionaries D0 and D1 as described in Algorithm 1. Then
our measure for representation similarity is:

S(M0,M1) :=
|D0 ∩D1|
|D0 ∪D1|

(8)

This approach is a relative representation measure, so it is
not necessary to learn a map between the representation
spaces. ITDAs are cheap to train, and the Jaccard Similarity
is trivial to compute, and so this approach further resolves
the challenge with using SAEs as descriptions of feature
spaces.

We evaluate this method on two tasks: first, we match layers
in different instances of the same model by their maximum
similarity as in Kornblith et al. (2019); then we perform
this task at the model level, attempting to match different
instances of the same model using the union of their ITDA
dictionaries. We also reproduce results in layer convergence
during training in Appendix A.4.2.

5.1. Model Instance Layer Similarity

Kornblith et al. (2019) introduces a benchmark for similarity
indices based on a layer matching task. For two architec-
turally identical models trained from different initialisations,
we expect that the value of the residual stream after layer i
in the first model is most similar to the value of the residual
stream after layer i in the second model, rather than after
some other layer j ̸= i. Similarity indices are scored on
their accuracy on this task. That is, the score of a similarity
index S is defined as:

1

M2(n+ 1)

∑
m,m′∈M

n∑
i=0

1

[
argmax

j
S(mi,m

′
j) = i

]
(9)

WhereM is the set of models of size M and n is the number
of layers in each model with mi, 0 ≤ i < n is the partial
model after a certain layer, and 1[·] is the indicator function.

We replicate this experiment on two sets of five instances of
the GPT-2 small and GPT-2 medium taken from the Mistral

7

Inference-Time Decomposition of Activations (ITDA)

package (Karamcheti et al., 2021).

Table 2 shows the performance of CKA (Kornblith et al.,
2019), SVCCA (Raghu et al., 2017), and ITDA on this task.
Figure 5 shows the layer similarity between all pairs of
layers, averaged across all pairs of models, for the GPT-2
small. Figure A.4 shows the same information for the GPT-2
medium instances.

We emphasize that ITDAs offer significantly reduced train-
ing costs, and the use of the simple Jaccard similarity index
makes this analysis much more efficient compared to using
SAEs. Training each ITDA on GPT-2 small took an aver-
age of 8 minutes, in comparison to two to eight hours for
each SAE (depending on dictionary size, on comparable
hardware).

5.2. Model Similarity

The ITDAs used to calculate layer similarity are trained
at specific layers within the model, which resulted in their
dictionaries forming universal descriptions of the represen-
tation space at that layer. We briefly test whether the union
of ITDA dictionaries over all layers within a model forms
a universal description of the representation space for the
entire model. That is, for an ITDA dictionary D0,i at layer i
of model 0, we say

D0 =

L⋃
i=0

D0,i (10)

where L is the layers of model 0. We test whether we can
distinguish between GPT-2 small and GPT-2 medium using
the Jaccard similarity of dictionaries.

The Jaccard similarity between different instances of the
same model architecture (either GPT-2 small or GPT-2
medium) ranges from 0.56 to 0.59; whereas the Jaccard
similarity between different model architectures range from
0.46 to 0.47 (Figure 11. This suggests the dictionaries do
track the difference between the models, and suggests fur-
ther research into model differencing using ITDAs may be
interesting.

Using CKA or SVCCA to perform a global layer match-
ing task involves concatenating the activation vectors at all
residual stream locations. For GPT-2 Medium this is a vec-
tor with 24,576 elements per token introducing substantial
training cost.

6. Discussion
We introduced Inference-Time Decomposition of Activa-
tions as a scalable approach to LLM interpretability. ITDAs
can perform as well as SAEs on certain LLMs, whilst be-
ing a 100x faster to train. Due to the reduced training cost

of this method, we are able to train ITDAs on LLMs that
are an order of magnitude larger than the largest LLMs on
which open-source SAEs have been trained. We provided
examples of ITDA latents for these large models, to demon-
strate that ITDAs learn interpretable and monosemantic
features similarly to SAEs. Unlike SAEs decoders, ITDA
dictionaries transfer readily between LLMs because they are
associated with a prompt and token index, rather than being
learned from the representations of a specific model. We
used this property to construct an index for representational
similarity that is state-of-the-art on a LLM layer matching
task.

The primary limitation of our approach is that ITDA per-
forms worse on reconstruction and interpretability tasks than
recent types of SAE, such as TopK and P-Annealing SAEs;
however, they do often perform comparably to ReLU SAEs.
Whilst it is possible that further refinement of the ITDA ap-
proach will lead to better reconstruction and interpretability
results, we do not currently suggest ITDAs broadly replace
SAEs on existing applications such as circuit discovery
(Dunefsky et al., 2024; Marks et al., 2025), where SAEs
are publicly available for those models. However, we are
keen to see ITDAs applied more to tasks where training
SAEs is prohibitively expensive such as very large models,
or where large numbers of SAEs are required, such as in
our layer freezing experiments or on checkpoints during
model training. We are also excited to see further refine-
ment of the ITDA learning algorithm: in particular, we think
data ordering during training could be very important for
auto-regressive LLMs.

Our results demonstrate that ITDAs find interpretable and
monosemantic features in LLM representations, and that
the difference in their dictionaries is an accurate measure
of representation similarity. We believe that this makes
ITDAs an ideal candidate for further research into finding
differences between models, such as base and fine-tuned
LLMs. Lindsey et al. (2024) suggest that model diffing
is an important component of deploying iterative models,
as is done by API model providers: training SAEs for all
fine-tunes of a model is likely too costly, and ITDAs offer
an efficient alternative.

Impact Statement
This paper presents work whose goal is to advance the field
of mechanistic interpretability, rather than machine learning
in general. Whilst there are potential societal consequences
to the advancement of the ML field, we feel that research
that improves understanding of ML models is unlikely to
additionally contribute to these consequences, rather giving
the field more tools to avert them.

8

Inference-Time Decomposition of Activations (ITDA)

Metric GPT-2 Small GPT-2 Medium

Linear Regression (baseline) 0.16 0.07
SVCCA (Raghu et al., 2017) 0.50 0.44
Linear CKA (Kornblith et al., 2019) 0.69 0.61
Relative (Moschella et al., 2022) 0.87 0.78
ITDA (ours) 0.88 0.89

Table 1. Accuracy of Linear CKA, SVCCA, and ITDA on the layer matching task for GPT-2 small and medium. ITDA Jaccard similarity
outperforms all other methods, including the other relative representation approach.

References
Aharon, M., Elad, M., and Bruckstein, A. K-svd: An algo-

rithm for designing overcomplete dictionaries for sparse
representation. IEEE Transactions on signal processing,
54(11):4311–4322, 2006.

Alain, G. Understanding intermediate layers using linear
classifier probes. arXiv preprint arXiv:1610.01644, 2016.

Bansal, Y., Nakkiran, P., and Barak, B. Revisiting model
stitching to compare neural representations. Advances
in neural information processing systems, 34:225–236,
2021.

Beck, A. and Teboulle, M. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences, 2(1):183–202, 2009.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn, A.,
Conerly, T., Turner, N., Anil, C., Denison, C., Askell, A.,
et al. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits
Thread, 2, 2023.

Bussmann, B., Leask, P., and Nanda, N. Batchtopk sparse
autoencoders. NeurIPS Workshop on Scientific Methods
for Understanding Deep Learning (SciForDL), 2024.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse autoencoders find highly interpretable
features in language models. ICLR 2024, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Dunefsky, J., Chlenski, P., and Nanda, N. Transcoders find
interpretable llm feature circuits. NeurIPS 2024, 2024.

Elad, M. and Aharon, M. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE
Transactions on Image processing, 15(12):3736–3745,
2006.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly,
T., DasSarma, N., Drain, D., Ganguli, D., Hatfield-
Dodds, Z., Hernandez, D., Jones, A., Kernion, J., Lovitt,
L., Ndousse, K., Amodei, D., Brown, T., Clark, J.,
Kaplan, J., McCandlish, S., and Olah, C. A math-
ematical framework for transformer circuits. Trans-
former Circuits Thread, 2021. https://transformer-
circuits.pub/2021/framework/index.html.

Erhan, D., Courville, A., Bengio, Y., and Vincent, P. Why
does unsupervised pre-training help deep learning? In
Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 201–208. JMLR
Workshop and Conference Proceedings, 2010.

Fiotto-Kaufman, J., Loftus, A. R., Todd, E., Brinkmann,
J., Juang, C., Pal, K., Rager, C., Mueller, A., Marks, S.,
Sharma, A. S., et al. Nnsight and ndif: Democratizing
access to foundation model internals. arXiv preprint
arXiv:2407.14561, 2024.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll, R.,
Radford, A., Sutskever, I., Leike, J., and Wu, J. Scaling
and evaluating sparse autoencoders. ICLR, 2025.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss surfaces, mode connectivity, and
fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Geva, M., Bastings, J., Filippova, K., and Globerson, A.
Dissecting recall of factual associations in auto-regressive
language models. IMNLP, 2023.

9

Inference-Time Decomposition of Activations (ITDA)

Gregor, K. and LeCun, Y. Learning fast approximations of
sparse coding. In Proceedings of the 27th international
conference on international conference on machine learn-
ing, pp. 399–406, 2010.

He, Z., Shu, W., Ge, X., Chen, L., Wang, J., Zhou, Y., Liu,
F., Guo, Q., Huang, X., Wu, Z., et al. Llama scope:
Extracting millions of features from llama-3.1-8b with
sparse autoencoders. ICLR Workshop on Secure and
Trustworthy Large Language Models, 2024.

Heap, T., Lawson, T., Farnik, L., and Aitchison, L. Sparse
autoencoders can interpret randomly initialized transform-
ers. arXiv preprint arXiv:2501.17727, 2025.

Hewitt, J. and Manning, C. D. A structural probe for finding
syntax in word representations. In Proceedings of the
2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers),
pp. 4129–4138, 2019.

Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel meth-
ods in machine learning. 2008.

Kantamneni, S., Engels, J., Rajamanoharan, S., Tegmark,
M., and Nanda, N. Are sparse autoencoders useful? a case
study in sparse probing. arXiv preprint arXiv:2502.16681,
2025.

Karamcheti, S., Orr, L., Bolton, J., Zhang, T., Goel, K.,
Narayan, A., Bommasani, R., Narayanan, D., Hashimoto,
T., Jurafsky, D., et al. Mistral–a journey towards repro-
ducible language model training, 2021.

Karvonen, A., Rager, C., Lin, J., Tigges, C., Bloom, J.,
Chanin, D., Lau, Y.-T., Farrell, E., Conmy, A., Mc-
Dougall, C., Ayonrinde, K., Wearden, M., Marks, S., and
Nanda, N. Saebench: A comprehensive benchmark for
sparse autoencoders, December 2024a. URL https://
www.neuronpedia.org/sae-bench/info. Ac-
cessed: 2025-01-20.

Karvonen, A., Wright, B., Rager, C., Angell, R., Brinkmann,
J., Smith, L., Verdun, C. M., Bau, D., and Marks, S.
Measuring progress in dictionary learning for language
model interpretability with board game models. NeurIPS,
2024b.

Kissane, C., Krzyzanowski, R., Bloom, J. I., Conmy, A.,
and Nanda, N. Interpreting attention layer outputs with
sparse autoencoders. ICML, 2024a.

Kissane, C., Krzyzanowski, R., Conmy, A., and Nanda, N.
Saes (usually) transfer between base and chat models. In
AI Alignment Forum, 2024b.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Sim-
ilarity of neural network representations revisited. In
International conference on machine learning, pp. 3519–
3529. PMLR, 2019.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lan, M., Torr, P., Meek, A., Khakzar, A., Krueger, D., and
Barez, F. Sparse autoencoders reveal universal feature
spaces across large language models. arXiv preprint
arXiv:2410.06981, 2024.

Leask, P., Bussmann, B., Pearce, M., Bloom, J., Tigges, C.,
Moubayed, N. A., Sharkey, L., and Nanda, N. Sparse au-
toencoders do not find canonical units of analysis. ICLR,
2025.

Lee, H., Ekanadham, C., and Ng, A. Sparse deep belief net
model for visual area v2. Advances in neural information
processing systems, 20, 2007.

Lenc, K. and Vedaldi, A. Understanding image representa-
tions by measuring their equivariance and equivalence. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 991–999, 2015.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft, J.
Convergent learning: Do different neural networks learn
the same representations? ICLR, 2016.

Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L.,
Sonnerat, N., Varma, V., Kramár, J., Dragan, A., Shah, R.,
and Nanda, N. Gemma scope: Open sparse autoencoders
everywhere all at once on gemma 2, 2024. URL https:
//arxiv.org/abs/2408.05147.

Lindsey, J., Templeton, A., Marcus, J., Conerly, T., Batson,
J., and Olah, C. Sparse crosscoders for cross-layer fea-
tures and model diffing. Transformer Circuits Thread,
2024.

Makelov, A., Lange, G., and Nanda, N. Towards principled
evaluations of sparse autoencoders for interpretability and
control. ICLR, 2025.

Makhzani, A. and Frey, B. k-sparse autoencoders, 2014.
URL https://arxiv.org/abs/1312.5663.

Mallat, S. G. and Zhang, Z. Matching pursuits with time-
frequency dictionaries. IEEE Transactions on signal
processing, 41(12):3397–3415, 1993.

Marks, S., Rager, C., Michaud, E. J., Belinkov, Y., Bau, D.,
and Mueller, A. Sparse feature circuits: Discovering and
editing interpretable causal graphs in language models.
ICLR, 2025.

10

https://www.neuronpedia.org/sae-bench/info
https://www.neuronpedia.org/sae-bench/info
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/1312.5663

Inference-Time Decomposition of Activations (ITDA)

Martinez, R. D., Lesci, P., and Buttery, P. Tending towards
stability: Convergence challenges in small language mod-
els. EMNLP, 2024.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022.

Moschella, L., Maiorca, V., Fumero, M., Norelli, A., Lo-
catello, F., and Rodolà, E. Relative representations enable
zero-shot latent space communication. arXiv preprint
arXiv:2209.15430, 2022.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. ICLR, 2023.

Nanda, N., Conmy, A., Smith, L., Rajamanoharan, S.,
Lieberum, T., Kramár, J., and Varma, V. Progress up-
date# 1 from the gdm mech interp team: Full update. In
AI Alignment Forum, 2024.

Olah, C. Visualizing representations: Deep learning and
human beings. 2015.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Olshausen, B. A. and Field, D. J. Sparse coding with an
overcomplete basis set: A strategy employed by v1? Vi-
sion research, 37(23):3311–3325, 1997.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
Svcca: Singular vector canonical correlation analysis for
deep learning dynamics and interpretability. Advances in
neural information processing systems, 30, 2017.

Rajamanoharan, S., Lieberum, T., Sonnerat, N., Conmy, A.,
Varma, V., Kramár, J., and Nanda, N. Jumping ahead:
Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. ICLR
Workshop on Building Trust in Language Models and
Applications, 2025.

Sharkey, L., Chughtai, B., Batson, J., Lindsey, J., Wu, J.,
Bushnaq, L., Goldowsky-Dill, N., Heimersheim, S., Or-
tega, A., Bloom, J., et al. Open problems in mechanistic
interpretability. arXiv preprint arXiv:2501.16496, 2025.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Templeton, A. Scaling monosemanticity: Extracting in-
terpretable features from claude 3 sonnet. Anthropic,
2024.

Van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of machine learning research, 9(11), 2008.

Zhao, P., Chen, P.-Y., Das, P., Ramamurthy, K. N., and Lin,
X. Bridging mode connectivity in loss landscapes and
adversarial robustness. ICLR, 2020.

11

Inference-Time Decomposition of Activations (ITDA)

A. Appendix
A.1. Glossary

Activation: For part of a model M and an input sequence x, an activation is a = M(x). A partial model could be, for
example, the residual stream value for an input after the 8th layer of GPT-2. We are interested in the activation for a specific
token within the prompt, rather than the activation matrix for an entire sequence. Activations and representations are
used interchangeably, as activation is the dominant term in mechanistic interpretability literature and representation is the
dominant term in representation similarity literature.

Atom: A component of the dictionary learned by sparse dictionary learning. Examples are decomposed into sparse codes of
these atoms. The atom terminology is more commonly used in classical sparse dictionary learning literature, whereas latent
is more common in contemporary mechanistic interpretability SAE literature.

Feature: A true but unknown property of a data-point, contrasts with Latent.

Latent: Refers to the components of SAEs that are used in sparse codes to decompose activations. Ideally, these are the
same as features, but empirically this is not necessarily the case. See atom.

Latent activation: The coefficient of a latent or atom in a sparse code.

Representation: See activation.

Sparse code: For an example x and an encoding function f for an SAE with dictionary size m, f(x) ∈ Rm is a sparse code.
The sparsity, i.e. number of zero or non-zero terms, is determined by the optimization process and activation function.

Token: In the context of LLMs, a token is a discrete unit of text—such as a word, subword, or punctuation—that the model
processes and generates during language understanding and generation.

A.2. SAE Variants

Method Fixed L0 Fixed Dictionary Size

ReLU ✗ ✓
TopK ✓ ✓
JumpReLU ✗ ✓
ITDA ✓ ✓/ ✗

Table 2. Comparison of SAE types with respect to fixed L0 and fixed dictionary size. When constructed by the method described in
Section 3, ITDAs have a variable dictionary size, however they can be cropped to a desired size.

ReLU SAEs (Bricken et al., 2023) use the L1-norm S(f) := ||f ||1 as an approximation to the L0-norm for the sparsity
penalty. This provides a gradient for training unlike the L0-norm, but suppresses latent activations harming reconstruction
performance (Rajamanoharan et al., 2025). Furthermore, the L1 penalty can be arbitrarily reduced through reparameterization
by scaling the decoder parameters, which is resolved in Bricken et al. (2023) by constraining the decoder directions to the
unit norm. Resolving this tension between activation sparsity and value is the motivation behind more recent architecture
variants.

Gated SAEs (Rajamanoharan et al., 2025) separate the selection of dictionary elements used for reconstruction, with the
estimation of the coefficients of these dictionary values. This results in the following architecture:

πgate(x) := Wgate(x− bd) + bgate (11)

f(x) := I[πgate(x) > 0]⊙ ReLU(Wmag(x− bd) + bmag) (12)

x̂(f(x)) = Wdf(x) + bd (13)

12

Inference-Time Decomposition of Activations (ITDA)

Where I[· > 0] is the Heaviside step function and ⊙ donates elementwise multiplication.

P-Annealing SAEs (Karvonen et al., 2024b) replace L1 minimisation with Lp minimisation, where p < 1 and is decreasing
throughout training. This is similar to ReLU SAEs, except the sparsity loss is calculated as:

Lsparse(x, s) = λs||f(x)||ps
ps

= λs

∑
i

fi(x)
ps (14)

TopK SAEs (Gao et al., 2025; Makhzani & Frey, 2014) enforce sparsity by retaining only the top k activations per sample.
The encoder is defined as:

f(x) := TopK(Wencx+ benc) (15)

where TopK zeroes out all but the k largest activations in each sample. This approach eliminates the need for an explicit
sparsity penalty but imposes a rigid constraint on the number of active latents per sample. An auxiliary loss Laux = ||e− ê||2
is used to avoid dead latents, where ê = W decz is the reconstruction using only the top-kaux dead latents (usually 512), this
loss is scaled by a small coefficient α (usually 1/32).

JumpReLU SAEs (Rajamanoharan et al., 2024) replace the standard ReLU activation function with the JumpReLU
activation, defined as

JumpReLUθ(z) := zH(z − θ) (16)

where H is the Heaviside step function, and θ is a learned parameter for each SAE latent, below which the activation is
set to zero. JumpReLU SAEs are trained using a loss function that combines L2 reconstruction error with an L0 sparsity
penalty, using straight-through estimators to train despite the discontinuous activation function. A major drawback of the
sparsity penalty used in JumpReLU SAEs compared to (Batch)TopK SAEs is that it is not possible to set an explicit sparsity
and targeting a specific sparsity involves costly hyperparameter tuning. While evaluating JumpReLU SAEs, Rajamanoharan
et al. (2024) chose the SAEs from their sweep that were closest to the desired sparsity level, but this resulted in SAEs with
significantly different sparsity levels being directly compared. JumpReLU SAEs use no auxiliary loss function.

BatchTopK SAEs (Bussmann et al., 2024) impose a TopK constraint over the activations of entire batches during training.
I.e. for a desired sparsity k and a batch size B, all activations not within the top B · k in a batch are zeroed. During training,
a threshold value is learned, which replaces the BatchTopK activation at inference time to avoid dependencies between test
inputs.

A.3. ITDA

A.3.1. LATENT EXAMPLES

This section provides further detail of cherry-picked latents in a Llama 70B ITDA. The example prompts are randomly
sampled within four ranges: [2, inf), [0, 2), [−2, 0), (− inf, 0). Prompts that do not activate latents are excluded from both
the example prompt tables and the histograms. Activations collected over 1.28 million tokens from Gao et al. (2020).

Latent 50: Responds specifically to the token “How”. The input string from which this activation was taken, with relevant
token highlighted, is “How Idris Elba’s ’Luther’ Puts Us in the Mind set of a Renegade Detective. “Luther ” is a series about
righteous indignation . Yes, it’s a police”

13

Inference-Time Decomposition of Activations (ITDA)

Activation Prompt
4.331 Q:How to handle puppeteer exception on synchronous execution
4.331 Q:How to change the trigonometric identity to sec
4.331 Q:How to write a React Stateless Functional Component in Typescript
3.211 in the US, Canada, UK or AustraliaHow do we promote your campaign?Giving Tuesday

campaigns will
2.879 Remove User search limit per month PDO::MYSQLHow can I have PHP remove a

users limit every month
1.996 line doesn’t work. This Q & A How make autoscroll in Scintilla? has the
1.973 much is an Xbox One at Rent a Center? How much is a PS4?How much is an
1.150 redirect to https://www.test1.com content How can I konfigure it properly? Rewrites in
1.042 in Jesus. What difference would that make? And how would I know if I was really

forgiven? A
0.767 an excellent example of this. In it she demonstrates how the concept of national identity

fractures society, creating a
-0.742 Dental Plans Association is a not-for-profit organization with some for-profit affiliates.

We offer a nationwide package of
-0.874 source. Our people. Your success. We understand the needs & ways to handle your

backend SEO process and
-1.140 As Kate Sheppard reported last week, July 26th marked
-1.647 can get them for $180 dollars. Please come by my desk and give me your travel

arrangements.
-2.272 ? I saw the API. RallyRestApi restApi = new RallyRestApi(username, password,
-2.335 Check out our new site Makeup Addiction No native support of previous PlayStation

games
-2.468 Most of the people at this detention centre in Tripoli will
-2.900 Plus Free Shipping on Orders Over $50 Mario Badescu: Free Standard Shipping on

$50+
-3.615 I’m working through a detox/cleansing phase and it’s

Table 3. Example prompts and activations for Latent 50

14

Inference-Time Decomposition of Activations (ITDA)

Figure 3. Activation distribution for latent 50. The peak at 4.33 corresponds to prompts starting with “Q: How”. Activations of 0 are
omitted for legibility.

Latent 16990: Responds tokens relating to surprise. The input string from which this activation was taken, with relevant
token highlighted, is “web . You truly realize how to bring a problem to light and make it crucial . Many more people should
really have a look at this and have an understanding of this side of the story . It ’s surprising you ’re not more prevalent , as
you most really possess the gift . It is much easier to deal with the status quo than to push forward beyond the fear . He
forwarded the email to her and”

Activation Prompt

5.482 It astounds me, without exception to see how goats can climb.
3.930 in a host of colors, patterns 3 Surprising Reasons: Why The Large Floor Tiles Are So

Popular
3.775 ulkan.html======gulpahum It’s great that Google Android will support Vulkan. Now,

the
2.172 Q: Unbelievable strange file creation time problem I have a very
2.142 you most really possess the gift. It is much easier to deal with the status quo than to

push
0.967 could easily be confusing cause and correlation. Seems entirely possible
0.923) any later version. * This program is distributed in the hope that it will be useful, * but
0.812 ’s movie we follow the beautiful model in a shockingly surreal journey through the

rural countryside of Italy on a
0.519 /xhtml1/DTD/xhtml1-transitional.dtd”¿ = “http://www.w3.org/1999/xhtml
0.000 to, sometime soon. Even if it makes the difference between living and dying, there’s

just no way
-0.713 So this guy was sucking brezz, felt something in his mouth, tasted somehow
-0.807 expiratory manoeuvres in children: do they meet ATS and ERS criteria for spirometry
-0.851 line, Mirage, and I put it on and felt my woman warrior emerge. Yeah, I know a
-0.864 a strategical bombing. “We, as many others, we sign up in them in the Air Force
-1.081 You are here Cigarette sales dive, hurting health

Table 4. Activation values and corresponding prompts

15

Inference-Time Decomposition of Activations (ITDA)

Figure 4. Activation distribution for latent 16990

Latent 17002: Responds tokens relating to surprise. The input string from which this activation was taken, with relevant
token highlighted, is “the deadlines is our priority and we often acquire strict actions to fulfil our guarantee. We have
significant knowledge in the sphere of homework online help; that’s why we think We all know what sort of help a student
requirements. Just invest in College assignments online and enjoy. Project Online is a flexible online solution for project
portfolio administration (PPM) and each day get the job done. It enables corporations to get”

16

Inference-Time Decomposition of Activations (ITDA)

Activation Prompt

2.899 have significant knowledge in the sphere of homework online help; that’s why we think
We all know what sort

2.447 to fulfil our guarantee. We have significant knowledge in the sphere of homework
online help; that’s why we

2.348 at AOT you will receive the assistance and support that will help make your study time
convenient, manageable and

2.134 to help your business succeed. We realize that where a company is located has a
significant impact on its ability

2.067 This contains libraries that a) do not change frequently or b) require c
1.128 development acceleration and counter-propagating waves synchronization. A simple

formula for SR pulse delay time evaluation is presented
1.056 the millions of dollars in moderately affected person venture funding that helps most

nascent companies. All employers topic to
0.926 in Japan in 1954. Toru Kumon, a high school math teacher, was trying to
0.900 so we understand customers and we know what it’s like to have full responsibility. We

understand very clearly
0.707 in this connection, it is important that they use their time well. Trusted and Experienced

Tutors
-0.000 Mossy fiber sprouting after recurrent seizures during early
-0.714 the study’s authors. As the oldest and most commonly used method to screen for

prostate cancer, rectal
-0.760 to upgrade to new versions, I’ve been pretty much forced to jump to new manufacturers

each time. I
-0.822 Ugh! As i move things around to pack them or get rid of them, i am finding

Table 5. Activation values and corresponding prompts for latent 17002

Figure 5. Activation distribution for latent 17002

17

Inference-Time Decomposition of Activations (ITDA)

A.3.2. DECOMPOSITION EXAMPLES

This section includes examples of decompositions of inputs in the Pile subset dataset, decomposed by an ITDA trained on
layer 40 of Llama 3.1 70B with an L0 of 40. These prompts are taken from the test split, hence Sequences above 7000.
Token 30 is chosen as it includes contextual information whilst keeping the prompt relatively short and readable. Activations
less than 0.0001 are omitted. The text displayed in the third column is the prompt corresponding to the atom’s activation
with the specific token highlighted.

Sequence 7006 Token 30: “1 . Field of the Invention \n The present invention relates to a camera system for transmitting
and receiving data to and from a camera by obtaining information /hlon”

18

Inference-Time Decomposition of Activations (ITDA)

Atom Index Activation Atom Prompt

8313 4.2174 electronic imaging, and more particularly, to the use of electronic imaging for process-
ing financial documents, such as checks

7878 2.7632 member, in which a conductive portion is formed in an insulator, the composite member
being used in

14123 2.5308 a touch screen terminal of the other party successively scans the multiple frequencies
included in the proximity detection sequence.

7864 2.1850 by reference. The present invention relates to a method of forming a composite member,
in which a conductive

5800 2.0224 my pregnancy, I tried to gather as much information on how painful labor might actually
be. I would often

4698 1.5757 the wearer and thus to better conform to the body of the wearer. Such extension and
expansion about the wearer

14124 1.3699 the multiple frequencies included in the proximity detection sequence. If signal strength
at each frequency is greater than a preset

5004 1.1926 Gait properties change with age because of a decrease in lower limb strength and visual
acuity or knee joint

9268 1.1632 o login for bem sucedido salvar o nome de usuário em uma variável e utilizar -l á em
7889 1.0781 insulator, the composite member being used in, for example, a wiring board in the

fields of electric
6083 1.0443 Learning Technology Programme (TLTP) from which ideas about application and

benefits came. The ideas from TLTP
15748 1.0169 Admin Properties an exception is raised, which list the properties not supported. For

more information see the
6258 0.8658 pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+

pumping and the
15678 0.8496 treewidth of the circuit as that of the graph representing it; if we use associativity to

rewrite
9362 0.8415 Retrieval of blade implants with piezosurgery: two clinical cases

12606 0.8150 designed to provide users with voice communication services while they are on the
move. Current mobile communication systems are capable

7903 0.7805 wiring board in the fields of electric appliances, electronic appliances and electric and
electronic communication. The present invention also

17194 0.7706 -based visual programming tool. Node: The source definition for nodes that can be
used in Node-RED Fl

5623 0.7612 your recording is ready, you’ll receive an update on . . . your dashboard homepage with
the playback link and the

6929 0.7047 def stateTimeThreadStart(): database.getTable (’CLIENTS’) threads = []
threads.append(threading

7231 0.6891 + a poll I won’t make claims as to their gifts and charms, but H&M do
7930 0.6539 an insulating material that can be suitably used in the manufacturing method of

14704 0.6371 The position and phase of the Moon are based on the predictable motions of the Moon

Table 6. Atom activations and corresponding text snippets for sequence 7006, token 30.

Sequence 7008 Token 30: Psych Studies is a website owned and maintained by Dr Andrew G . Thomas , Swansea University
, UK . The purpose of the site is to host online question

19

Inference-Time Decomposition of Activations (ITDA)

Atom Index Activation Atom Prompt

1208 3.9800 ¡—begin of text—¿ Questions or Need Help Related to The Hunting Report Newsletter.
Call

4006 2.0558 exponentially since its adoption over three decades ago. Recent questions have been
raised regarding the cost-effect

9803 1.5613 xmlns :x si =’ http :// www .w 3 .org / 200 1 /XMLSchema -instance ’ xmlns =’ http ://
poly

3301 1.3823 : Using M - Test to show you can differentiate term by term. I have the series
∑

7704 1.2946 top financial institutions have recommended in a new report that whistle -blowing be
rewarded in an environment of growing

1246 1.2604 ¡—begin of text—¿ Question No: 51 You are developing a test
8073 1.1217 acid diet in rats. Within 3 h of ingesting an imbalanced amino acid diet (IAAD)
8660 1.0420 : sql queries and inserts I have a random question. If I were to do a sql select and
8351 1.0366 processing huge amounts of documents efficiently. Predictions that document payment

methods would decline have not been realized. In
6059 0.9382 (CAL) and the importance of applying it in nurse education. The articles recognize the

general technological developments as
5258 0.8906 from 15 to 99. Our ranks are made up of men and women; students and retirees;
2480 0.8181 play “Survival of the Tastiest” on Android, and on the web. Playing on the

1 0.8178 ¡—begin of text—¿ Q: Why was Mundungus banned from the Hog
10958 0.7221 lemek üzere tek zarfta iki pusulayla oyunu hem yurt içinde hem de yurt dışında kull
2880 0.6843 , which can be used to drag and drop 3D objects and characters into scenes. Amazon

. . . continue
2345 0.6257 ¡—begin of text—¿ Fractional isolation and chemical structure of hemicellulos
9553 0.6178 bunch of horrible experiences. It’s about time I chronicled the peaks of my journey so

far and this
8865 0.5841 er noen av bildene politiet fant på mobil telefonene til dem som ble pågrepet i
5071 0.5709 76.1 (5.7) years). Walking speed, cadence, stance time, swing
3722 0.5641 million fans then voted on the players using paper and online ballots. The top two

vote-getters from each
4928 0.5300 and across primate taxa. As the problems of habituation become more obvious, the

application of such indirect
6133 0.5173 to consider the benefits and costs of introducing computer programs as part of the

teaching provision for nurses and other health
3426 0.4858 ette Sawyer Cohen, PhD, clinical assistant professor of psychology in pediatrics at

Weill Cornell Medical College in

Table 7. Atom activations and corresponding text snippets for sequence 7008, token 30.

Sequence 7110 Token 30: “Robot-assisted laparoscopic renal artery aneurysm repair with selective arterial clamping. Renal
artery aneurysms represent a rare clinical”

20

Inference-Time Decomposition of Activations (ITDA)

Atom Index Activation Atom Prompt

9371 5.0731 val of blade implants with piezosurgery: two clinical cases. In this work an ultrasound
device was used

9013 3.7738 7]]. Lack of response to IFX is a stable
153 3.0721 ¡—begin of text—¿ Clinical comparison of high-resolution with high-sensitivity colli-

mators
11632 2.2699 dysesthesia. A new and relatively frequent side effect in antineoplastic treatment]. Pal

8988 1.9684 40% of patients who respond initially and achieve clinical remission inevitably lose
response over time

3944 1.7801 Coronary artery disease (CAD) accounts for the largest number of these deaths. While
efforts aimed at treating

4391 1.6158 believed to play a fundamental role in orthopedic research because bone itself has a
structural hierarchy at the first

10181 1.5146 problems in women, the frequency with which primary care providers may encounter
mental health problems, and issues of mental

5322 1.2979 return variable is always None So I found a strange thing that happens in Python
whenever I try to return

3981 1.2433 have been directed toward prevention and rehabilitation. CAD is commonly treated
using percutaneous coronary intervention (PCI),

4509 1.1507 2:26 Prostate exams are potentially life-saving. But the process of getting one can be
nerve

4457 1.0142 bone regeneration will be discussed. This unique 3 D tube-shaped nanostructure created
by electrochemical anod

14867 0.9638 data or conclusions published herein. All content published within Cureus is intended
only for educational, research, and reference

6740 0.8502 Adventure Time was already slated to be a LEGO Ideas official set, so it
10227 0.8491 (ADPLD), as traditionally defined, results in PLD with minimal renal cysts. Classically
14150 0.8193 of. It was (and is) a hearty baked meal—one to satisfy the hunger of very hard-working

7014 0.7914 a shelter for men with alcohol, drug, and mental health problems at 149 W. 132nd St
3993 0.7646 percutaneous coronary intervention (PCI), and this treatment has increased exponen-

tially since its adoption over three decades ago
8340 0.7237 . Today’s financial services industry is facing the immense challenge of processing

huge amounts of documents efficiently. Predictions
8500 0.6808 taken a first step in understanding how to manipulate specific neural circuits using

thoughts and imagery. The technique, which
14836 0.6754 ago, when frequencies below 100 Hz were considered extreme lows, and reproduction

below 50 Hz was about
15928 0.6624 ¡—begin of text—¿ Late complications of radiotherapy for nasopharyngeal carcinoma.

To evaluate and
3910 0.6456 Rationale and trial design. Cardiovascular disease (CVD) currently claims nearly one

million lives yearly
14869 0.6120 by Pryce in 1946 in the Journal of Pathology and Bacteriology

Table 8. Atom activations and corresponding text snippets for sequence 7110, token 30.

A.3.3. MATCHING PURSUIT

The Matching Pursuit algorithms due to Mallat & Zhang (1993) is described in Algorithm 2, with the algorithm for iteratively
constructing the dictionary of activations in Algorithm 1.

21

Inference-Time Decomposition of Activations (ITDA)

Algorithm 2 Matching Pursuit (MP) with Normalized Dictionary
Input: Normalized dictionary D ∈ Rm×n, batch of signals X ∈ RB×n, number of nonzero coefficients L
Output: Coefficient matrix C ∈ RB×m

Initialize the residuals: R← X
Initialize the coefficients: C← 0B×m

for ℓ = 1 to L do
Compute correlations: Corr← RDT

For each b ∈ {1, . . . , B}, find the best atom index: jb ← argmaxj
∣∣Corr(b,j)

∣∣
Let cb ← Corr(b,jb) (the max absolute correlation for sample b)
Update coefficients: C(b,jb) ← C(b,jb) + cb
Update residuals: R(b,:) ← R(b,:) − cb D(jb,:)

end for
return C

A.3.4. SAE INTERPRETABILITY METRICS

In this section we present results from SAEBench (Karvonen et al., 2024a) for three LLMs: the 70m and 160m parameter
variants of Pythia (Biderman et al., 2023), and the 2b parameter variant of Gemma 2 (Team et al., 2024). Our experiments
were conducted with the 0.4.0 beta release of SAEBench. The SAEs with which we compare with are a mix of architectures:
generally, the worst performing SAE is a ReLU SAE (Bricken et al., 2023; Cunningham et al., 2023), whilst the best is a
top-k SAE (Gao et al., 2020) or p-annealing SAE (Karvonen et al., 2024b).

SAEBench metrics were created for evaluating SAEs, which limits their applicability to ITDAs. In particular, Spurious
Correlation Removal and Targeted Probe Perturbation make assumptions about the decoder weight matrix of SAEs that do not
apply to ITDAs and so we do not include those results. We include sparse probing results as they are, but note that applying
the top-k operation to ITDA latent activations is not comparable to applying it to SAE activations due to negative activations
and normalization of the decoder. SAEs furthermore have weak performance at identifying human-interpretable concepts on
probing tasks, when compared to other methods (Kantamneni et al., 2025). Automated interpretability approaches for SAEs
transfer directly to ITDAs, but their usefulness in measuring interpretability is questionable (Heap et al., 2025).Given the
challenges benchmarking SAEs, and the additional difficulty of applying those metrics to ITDAs, we advise strong caution
in interpreting these results and look to advances in SAE benchmarking to better evaluate the interpretability of ITDAs. For
now, we emphasize the evidence provided by the representation similarity results in Section 5.

Sparse probing assesses whether SAEs capture specific predefined concepts. For each concept (e.g., sentiment), the k most
relevant latents are identified by comparing their average activations on positive versus negative examples. A linear probe
is then trained on these top k latents. If the latents align closely with the concept, the probe achieves high accuracy, even
though the SAE was not directly trained to represent that concept. We evaluate on k ∈ 1, 2, 5,∞ latents to handle cases
where concepts are distributed over multiple latents.

In automated interpretability for each chosen latent, a language model generates a “feature description” based on a variety
of activating examples. During testing, a dataset is assembled by sampling sequences that trigger the latent at varying levels
of activation, along with randomly selected control sequences. The LLM then uses its generated description to predict which
sequences are likely to activate the latent, and the accuracy of these predictions defines the interpretability score.

22

Inference-Time Decomposition of Activations (ITDA)

Figure 6. Performance of Pythia-70m SAEs and ITDAs when trained on limited numbers of tokens. Here, we do not crop the size of the
dictionary, as on smaller numbers of training tokens the dictionary does not achieve the minimum size.

(a) CE Loss Score (b) Automated Interpretability

Figure 7. CE loss score and automated interpretability scores. CE loss score is defined in ??, see Karvonen et al. (2024b) for details of the
automated interpretability metric. 23

Inference-Time Decomposition of Activations (ITDA)

(a) Overall (b) Top 1

Figure 8. Overall and top-1 linear probing scores. Overall score measures whether concepts can be probed from the activations of all the
latents, whilst top-1 score measures whether the concepts can be probed from the single most active latent.

24

Inference-Time Decomposition of Activations (ITDA)

Figure 9. Top 5 sparse probing scores.

25

Inference-Time Decomposition of Activations (ITDA)

A.4. Representation Similarity

(a) SVCCA (b) Linear CKA (c) ITDA

(d) Linear Regression (e) Relative

Figure 10. Heatmap of similarity indexes between layers in instances of GPT-2 medium with random initialisations, metric average across
all pairs of model. See Figure 5 for GPT-2 small results and further explanation of the plots.

26

Inference-Time Decomposition of Activations (ITDA)

A.4.1. MODEL SIMILARITY

Figure 11. Model similarity between ITDAs trained on instances of GPT-2 small and medium. Note the higher similarity within model
architectures.

A.4.2. LAYER CONVERGENCE DURING TRAINING

Raghu et al. (2017) demonstrate using SVCCA that, in a convnet and resnet trained on CIFAR-10 (Krizhevsky et al., 2009),
the representations of early layers converge earlier during training than the later layers. Martinez et al. (2024) replicate this
result on the Pythia suite of language models (Biderman et al., 2023), using the CKA metric from Kornblith et al. (2019).

For models in the 70m, 160m, and 410m Pythia models, we trained ITDAs on each non-terminal layer every ten thousand
training steps, and calculated the ITDA representation similarity from Equation 8 for each checkpoint with respect to the last
checkpoint, which are presented in Figure A.4.2. The similarity metrics for the first two layers converge to 1 during the last
third of training, meaning that the ITDA dictionary is stable across those checkpoints. No other layers converge, with the
penultimate similarity measure decreasing for successive layers.

(a) Pythia 70m (b) Pythia 160m (c) Pythia 410m

Figure 12. ITDA similarity between layers every 10k steps during training compared to their final state. Layers increase from the first
layer in dark blue to the last layer in light yellow. Note the convergence of early layers to 1 before the end of training.

27

