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Abstract

Supervised contrastive learning has shown im-001
pressive performance across multiple NLP002
tasks (Gunel et al., 2020; Li et al., 2021; Gao003
et al., 2021), enhancing model generalization004
by shortening the distance between semantic005
representations of samples in the same cate-006
gory and increasing the distance between those007
of different categories. For the task of re-008
sponse selection, directly calculating the sim-009
ilarity between context and response may lead010
to suboptimal model performance due to in-011
sufficient attention mechanism interaction, as012
compared to traditional full attention methods.013
To address this issue, we propose an inno-014
vative interactive supervised contrastive learn-015
ing framework that transforms the problem016
of response selection from classification into017
a matching issue by introducing a special re-018
sponse named anchor response during train-019
ing, effectively applying contrastive learning020
to this task. This framework not only com-021
bines the advantages of deep context interac-022
tion found in traditional methods but also lever-023
ages the strong generalization capability of024
contrastive learning. Additionally, we intro-025
duce a heuristic method for hard negative re-026
sponses sampling, which significantly reduces027
the need for large numbers of negative samples028
in contrastive learning. Applying our method,029
the results obtained on three publicly available030
response selection datasets have reached the031
current state-of-the-art level 1.032

1 Introduction033

Multi-turn dialogue systems are crucial in NLP,034

aiming to enable AI to converse with humans using035

natural language. These systems must comprehend036

context and generate fitting responses using two037

primary approaches: retrieval-based and generative038

methods. Retrieval-based systems select the best039

response from a scored set of candidates, while040

1Codes will be released when the manuscript is accepted.

generative systems create new replies from con- 041

textual clues, offering more versatility but risking 042

contextually inaccurate responses. To mitigate this, 043

developers generate multiple responses for evalu- 044

ation or use a Reward Model with PPO algorithm 045

(Bai et al., 2022) for fine-tuning. Regardless of 046

the approach, ranking candidate responses and se- 047

lecting the appropriate effectively remains a key 048

challenge. 049

In addressing the issue of candidate response 050

selection, the research community has proposed a 051

variety of approaches. Gu et al. (2019) and Chen 052

and Wang (2019) proposed matching networks 053

based on Bidirectional Long Short-Term Memory 054

networks (Bi-LSTM). Tao et al. (2019) and Yuan 055

et al. (2019) combined the attention mechanism 056

with multi-hop interaction models using Gated 057

Recurrent Unit (GRU) networks. With the rise 058

of pretrained models such as BERT(Devlin et al., 059

2019), researchers have begun utilizing these mod- 060

els to improve the task of response selection, while 061

also making customized enhancements consider- 062

ing the task’s specificity. For instance, Gu et al. 063

(2020) introduced a strategy to integrate role in- 064

formation of multi-turn dialogues into the BERT 065

model. Humeau et al. (2019) and Song et al. (2023) 066

presented methods capable of handling multiple 067

candidate responses simultaneously and designed 068

various attention strategies for the interaction be- 069

tween context and responses. Han et al. (2021) 070

and Xu et al. (2021) proposed continual pretraining 071

methods with self-supervised training objectives 072

customized for the response selection task. 073

Previous research on the task of response selec- 074

tion has emphasized the interaction between con- 075

text and responses and the design of pretraining 076

objectives, with less focus on the limitations of 077

the cross-entropy loss function. Liu et al. (2016); 078

Cao et al. (2019) have shown that this loss function 079

can hinder model generalization and is vulnera- 080

ble to noise and attacks. Supervised contrastive 081
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learning is suggested (Gunel et al., 2020; Liu et al.,082

2016) to overcome these issues by clustering se-083

mantically similar samples and separating dissimi-084

lar ones. The temperature parameter in contrastive085

loss also affects the model’s emphasis on harder086

samples (Wang and Liu, 2021) and can be tuned087

for optimal performance. This paper aims to de-088

velop an effective supervised contrastive learning089

framework for response selection.090

In applying supervised contrastive learning to091

response selection, the challenges include select-092

ing appropriate anchors and negative responses,093

as they affect model outcomes and computational094

efficiency. Unlike Li et al. (2021) that rely on com-095

plex data augmentation such as synonym replace-096

ment or dropout, this study introduces a simpler097

approach that avoids these operations. Our innova-098

tions have led to state-of-the-art results on various099

public datasets. The main contributions of this100

paper can be summarized as follows:101

1. We propose a supervised contrastive learning102

framework tailored for the task of response103

selection, which can train models with better104

generalization than previous approaches based105

on cross-entropy classification.106

2. On the foundation of the aforementioned107

framework, we introduce a heuristic method108

for hard negative responses sampling, which,109

based on similarity measures, further en-110

hances the training efficiency and perfor-111

mance of the model.112

3. Experiments conducted on three publicly113

available response selection datasets confirm114

the effectiveness of our method, with the re-115

sults currently representing the best-known116

performance.117

We will make the source code and models pub-118

licly available for other researchers to reproduce119

our results or for future studies.120

2 Releated Work121

Uni-Encoder In response selection task, binary122

classification based on cross-entropy is standard123

(Gu et al., 2020; Whang et al., 2019; Humeau et al.,124

2019; Han et al., 2021), labeling context-response125

pairs as 0 or 1 and processing them through bi-126

nary classifiers. This approach can lead to redun-127

dant context encoding for multiple responses. To128

address this, UniEncoder, a BERT-based encoder,129

was introduced by Song et al. (2023), which pairs 130

a single context segment with concatenated candi- 131

date responses, modifying BERT’s attention mask 132

to isolate responses from each other while aligning 133

them with the context. This encoder uses a multi- 134

class classification network for response selection, 135

proving more efficient and effective than binary 136

methods. The dialogue encoder in our study builds 137

on UniEncoder by incorporating a unidirectional at- 138

tention mechanism to reduce confusion in contexts 139

with many candidate responses. 140

Supervised Contrastive Learning Contrastive 141

learning has recently excelled in various NLP tasks, 142

beneficial in both unsupervised and supervised con- 143

texts. It works by aligning closer the represen- 144

tations of anchors and positives, distancing them 145

from negatives, and promoting uniform vector dis- 146

tribution. Gunel et al. (2020) shows that supervised 147

contrastive learning fine-tuning enhances general- 148

ization and robustness, even in data-scarce situa- 149

tions. Additionally, Li et al. (2021) applied it to 150

response selection, combining it with cross-entropy 151

loss to improve generalization. This paper intro- 152

duces a new contrastive learning-based response 153

selection framework, distinct from prior work as 154

it eschews cross-entropy, focusing exclusively on 155

contrastive learning for model training and better 156

generalization. 157

Data Augmentation Data augmentation in NLP 158

improves task performance, including response se- 159

lection, where the correlation between responses 160

and contexts is leveraged. A common technique is 161

reusing positive responses from other samples as 162

negative ones for a given context (Li et al., 2019; 163

Humeau et al., 2019; Song et al., 2023). Li et al. 164

(2019) suggests that selecting challenging negative 165

responses, rather than random ones, is more ef- 166

fective. This involves randomly picking multiple 167

negative responses, ranking them by the model’s 168

scores, and choosing the lower-scoring ones as diffi- 169

cult distractors. To avoid high computational costs, 170

the initial pool of negative responses should be 171

limited. This paper suggests a heuristic approach 172

using cosine similarity to simplify the selection of 173

challenging negative responses and reduce compu- 174

tational demands. 175

3 Methodology 176

3.1 Problem Formalization 177

In this research, we consider a dataset D = 178

(ci, ri, yi)
N
i=1 composed of dialogues, where ci = 179
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u1, u2, u3 . . . um represents the multi-turn dialogue180

context, ri denotes the corresponding response, and181

yi is the label with 1 indicating the correct response182

and 0 indicating the incorrect response. Our task183

is to learn a matching function f, which can accept184

any context ci and response ri as input, and output185

their matching score f(ci, ri). During the testing186

phase, for a given context ci, n candidate responses187

(rj)
n
j=1 are provided, and the model needs to com-188

pute the score for each response f(ci, rj), subse-189

quently ranking the candidate responses based on190

their scores.191

3.2 Model Structure192

In this paper, we propose a method based on the193

BERT architecture, as shown in Figure 1. This194

method inputs the context and multiple candidate195

responses into the encoding network together, and196

encodes them through ample attention interaction.197

At the end of the candidate responses, we intro-198

duce a special response, composed of k special199

tokens, to serve as a anchor response for the con-200

trastive learning distance measurement. Through201

our specially designed encoder, we obtain semantic202

representations for the anchor response as well as203

the positive and negative samples, which are then204

processed through a nonlinear projection layer.205

Through contrastive learning, our model strives206

to minimize the distance between the anchor re-207

sponse and positive responses while maximizing208

the distance between the anchor response and nega-209

tive responses. To enhance the effects of contrastive210

learning, we utilize a memory bank to record and211

update the semantic representations of samples and212

employ a straightforward yet efficient metric func-213

tion to select more challenging negative responses.214

During the testing phase, it is only necessary to215

encode the context and candidate responses with216

the anchor response through the trained model, cal-217

culate the similarity between the anchor response218

and the semantic representations of each candidate219

response, and then rank them based on similarity.220

3.2.1 Dialogue Encoding221

In this work, we developed a BERT-based encoder222

with specific enhancements. The input sequence223

includes dialogue context, a positive response, sev-224

eral negative responses, and a special anchor re-225

sponse, detailed in Section 3.2.2. We concatenated226

these components, inserting role identifiers [SPK1]227

and [SPK2] between sentences of the context, a228

[CLS] token at the beginning of the context and229

responses, and [SEP] tokens as separators. To dis- 230

tinguish between the context and the responses, we 231

used different segment ids, and for the positional 232

encoding, each response’s positional identifier was 233

continuous with the context but discontinuous be- 234

tween different responses to minimize the influence 235

of the positive and negative sample concatenation 236

order on the model. 237

We modified the attention mechanism to prevent 238

information leakage between positive and nega- 239

tive samples, as suggested by Song et al. (2023). 240

Our custom attention allows unidirectional flow 241

from responses to context, blocking the opposite 242

direction and inter-response perception, while pre- 243

serving bidirectional attention within the context 244

and individual responses. This is illustrated in the 245

attention mask matrix in Figure 1. The encoder 246

facilitates interaction between each response and 247

the context. After the encoding process, we aver- 248

age pool the token hidden states to obtain response 249

representations hr0 , hr1 . . . hrk+n
, hanc, which are 250

further processed via a two-layer projector to pro- 251

duce semantic vectors h′r0 , h′r1 . . . h
′
rk+n

, h′anc, in 252

line with Chen et al. (2020). 253

3.2.2 Anchor Response 254

In the Masked Language Model (MLM), we mask 255

some of the tokens in a sentence and then use the 256

context to predict these tokens, thereby achieving 257

self-supervised learning of token semantic repre- 258

sentations. Inspired by this approach, we intro- 259

duced a special sentence composed of several spe- 260

cial tokens (such as [unused]) into the candidate 261

responses, which we refer to as the anchor response. 262

The purpose of this anchor response is to utilize 263

context information to learn the semantic repre- 264

sentation of appropriate responses. In a specific 265

dialogue, there may be multiple correct responses, 266

and the same response can be expressed in various 267

ways; hence we cannot directly predict the com- 268

position of the correct response in terms of tokens 269

as we do in the MLM task. However, multiple 270

correct responses should be semantically similar, 271

or in other words, their distance in the representa- 272

tion space should be relatively close. Therefore, 273

we consider employing a contrastive learning ap- 274

proach. By minimizing the distance between the 275

anchor response and positive responses in the se- 276

mantic space, and maximizing the distance from 277

negative responses, we aim to learn the semantic 278

representation of the anchor response. 279
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Figure 1: SimSCR Model Overview: a) Dialogue context, positive/negative responses, and an anchor response are encoded,
with attention facilitating hidden state acquisition and contrastive learning refining semantic proximities. b) Responses use
repeated position encoding with unidirectional attention to context. c) Memory Banks archive representation vectors and a metric
function identifies challenging negatives.

3.2.3 Training Objective280

Gunel et al. (2020) suggests that models trained281

with contrastive loss demonstrate stronger general-282

ization capabilities and higher robustness to noise.283

Additionally, Wang and Liu (2021) also mentions284

that contrastive loss functions can automatically285

identify challenging negative samples. Based on286

these insights, we adopt contrastive loss as the op-287

timization objective in this paper. Our objective288

function is defined as shown in Equation 1, where289

r0 denotes the positive sample response, and sim290

represents the similarity measure function; in our291

experiments, we use cosine similarity. The τ is a292

temperature parameter, which ranges from 0 to 1,293

and can be adjusted during the training process to294

control the model’s sensitivity to difficult negative295

responses.296

`sim = −log[ e
sim(h

′
Ranc

,h
′
R0

)/τ

∑N
j=0e

sim(h
′
Ranc

,h
′
Rj

)/τ
] (1)297

3.3 Hard Negative Responses Sampling298

Adopting the methodology from Humeau et al.299

(2019), we use positive responses from the same300

batch as negative responses for the current dialogue.301

Though more negatives could theoretically improve 302

model performance, their computational cost is 303

quadratic due to the Transformer encoder’s com- 304

plexity. Consequently, we have to limit the negative 305

responses, which restricts the contrastive loss’s ef- 306

ficiency in identifying hard negatives. To mitigate 307

this, we propose a heuristic method for mining hard 308

negative responses that selectively adds a small 309

number of more challenging negative responses 310

to the model input, thereby aiding the model in 311

learning better semantic representations. 312

We utilize two memory banks Manc and Mpos, 313

each with a capacity of N (the dataset’s size), to 314

store the encoded and projected hidden states h′anc 315

and h′pos of anchors and positives. For each sample 316

i, we fetch its h′anc from the anchor memory bank, 317

select K h′pos from the positive memory bank at 318

random, and compute their cosine distances. This 319

measurement helps discern the difficulty of nega- 320

tives, allowing us to choose the hardest up to a limit 321

of n, since our training objective is to optimize the 322

cosine distance between these responses. 323

The two memory banks, initially seeded with 324

random vectors, are updated synchronously post 325

each forward model pass. For updates, we fol- 326

low Wu et al. (2018b) ’s momentum-based strategy, 327
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governed by hyperparameter m (0 to 1), dictating328

update smoothness as per Equation 2.329

ht = mh′ + (1−m)ht−1 (2)330

The pseudocode for the hard negative responses331

sampling algorithm is as Algorithm 1.332

Algorithm 1: Hard negative responses sam-
pling algorithm
Data: Manc, Mpos, K, difficulty coefficient

β, sample index i, sampling number
n

Result: hard negative responses of the ith
sample Si = {rj}nj=1

1 begin
2 h

′
anc ←Manc[i]

3 C = {h′
posj}

K
j=1 ← random(Mpos,K)

4 G = {dj}Kj=1 ← cosine(h
′
anc, C)

5 G
′
= {(dj , indexj)}Kj=1 ←

sort(G, reverse = true)
6 r ← max(n+ 1,K ∗ β)
7 I = {(dk, indexk)}nk=1 ←

random(G
′
[0 : r], n+ 1)

8 S ← []
9 foreach element e in I do

10 index← e[1]
11 if index 6= i then
12 r+index ← positive response of

the indexth sample
13 S.append(r+index)

14 if len(S) >= n then
15 return S

4 Experiments333

4.1 Datasets334

This study conducted experiments on three public335

response selection datasets to evaluate the effec-336

tiveness of our method. These datasets include:337

• Douban Conversation (Wu et al., 2017),338

which is a conversation dataset crawled from339

the Douban forum, a popular social media340

website in China.341

• E-commerce(Wu et al., 2018a), comprising342

multi-turn dialogue data between customer343

service representatives and consumers col-344

lected from Taobao, the largest e-commerce345

platform in China.346

• Ubuntu Dialogue v1 (Lowe et al., 2015), an 347

English multi-turn dialogue dataset widely 348

used in technical support scenarios, particu- 349

larly regarding the Ubuntu system. 350

The size and number of turns for each dataset are 351

summarized in Table 1.

Table 1: Dataset Statistics

Dataset Metric Train Valid Test

Douban
Volume 1M 50K 6670
Turns 6.69 6.75 5.95

Pos:Neg 1:1 1:1 1.2:8.8

E-commerce
Volume 1M 10K 10K
Turns 5.51 5.48 5.64

Pos:Neg 1:1 1:1 1:9

Ubuntu v1
Volume 1M 500K 500K
Turns 10.13 10.11 10.11

Pos:Neg 1:1 1:9 1:9

352

Following the practice in Song et al. (2023), we 353

have transformed the dataset D to ensure that each 354

sample contains both a positive response r+i and 355

at least one negative response r−i , resulting in the 356

updated dataset D′ = (ci, r
+
i , r

−
i )

N
i=1. This trans- 357

formation includes the following steps: 358

• Aggregating samples with the same context ci 359

so that each sample contains only one positive 360

response and at least one negative response. If 361

multiple positive responses exist, they can be 362

split into multiple independent samples. 363

• For samples that only have positive responses, 364

we select responses from other samples to 365

serve as negative responses. 366

• For samples that only have negative responses, 367

we take the last turn of the original context as 368

positive response and the other turns as new 369

context, while keeping the negative responses 370

unchanged. 371

4.2 Metrics 372

Similar to previous studies (Song et al., 2023; Han 373

et al., 2021), we adopt recall as the primary evalua- 374

tion metric, where recall is defined as Rn@k, indi- 375

cating the proportion of correct responses that are 376

ranked within the top k out of all n candidate replies 377

by the model. Specifically, we use R10@1, R10@2, 378

and R10@5 as evaluation metrics for the Ubuntu v1 379

and E-commerce datasets. For the Douban dataset, 380

since some dialogues in the test set contain multiple 381
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positive responses, we introduce additional evalua-382

tion metrics including top 1 accuracy P@1, Mean383

Average Precision (MAP), and Mean Reciprocal384

Rank (MRR) as a supplement.385

4.3 Baselines386

In the field of response selection tasks, the per-387

formance of pre-trained models has significantly388

surpassed that of traditional matching algorithms.389

Consequently, the baseline methods selected in390

this study are all based on pre-trained models,391

including BERT(Gu et al., 2020), RoBERTa-SS-392

DA(Lu et al., 2020), SA-BERT(Gu et al., 2020),393

SA-BERT+HCL(Su et al., 2021), UMSBERT and394

UMSBERT+(Whang et al., 2021), MDFN(Liu395

et al., 2021), BERT-SL(Xu et al., 2021), BERT-396

UMS+FGC(Li et al., 2021), BERT-FP (Han et al.,397

2021), Uni-Enc+BERT-FP(Song et al., 2023).398

Among them, Uni-Enc+BERT-FP was the previ-399

ous state-of-the-art method.400

4.4 Setup401

Our model, built using the transformers library2,402

initialized with pre-trained weights from Hugging-403

Face3 and fine-tuned weights by Han et al. (2021),404

was trained on an NVIDIA A100-SXM4-80GB405

GPU. We used the Adam optimizer with a cosine406

learning rate scheduler at a rate of 5e-5 and em-407

ployed deepspeed4 for efficient mixed-precision408

training. The training settings included a batch size409

of 16, a default contrastive learning temperature of410

0.07, and 8 hard negative responses. The difficulty411

coefficient β was dynamically adjusted; it was 0.05412

for the Douban and e-commerce datasets and 0.75413

for Ubuntu-v1. Consistent with Song et al. (2023),414

we incorporated the MLM loss into the model’s415

final loss function to enhance training stability and416

effectiveness.417

4.5 Results418

Table 2 presents the performance of the proposed419

SimSCR method on three different datasets in this420

study. The comparative analysis of the results421

shows that SimSCR has surpassed existing com-422

parative methods across all three datasets. Specifi-423

cally, SimSCR has achieved improvements of 4.8%,424

1.9%, and 0.3% on the R10@1 metric for the E-425

commerce, Douban, and Ubuntu v1 datasets, re-426

spectively. Notably, the performance gains of Sim-427

2https://github.com/huggingface/transformers
3https://huggingface.co/models
4https://github.com/microsoft/DeepSpeed

SCR are more significant on the Douban and E- 428

commerce datasets, which have relatively lower 429

benchmarks. This reflects the suitability of the 430

proposed method in handling more challenging 431

datasets. Additionally, the contrastive loss function 432

adopted in this study is characterized by its ability 433

to identify difficult negative samples (Wang and 434

Liu, 2021), which may be a key factor contributing 435

to the performance improvement. 436

Although BERT-UMS+FGC (Li et al., 2021) 437

also applied a contrastive learning mechanism, the 438

design of its loss function suggests that contrastive 439

learning only serves as an auxiliary to the cross- 440

entropy loss, thus limiting the performance gains it 441

can provide. The experimental results indicate that, 442

even without the adoption of post-training weights, 443

SimSCR outperforms BERT-UMS+FGC on most 444

evaluation metrics on the Douban and Ubuntu v1 445

datasets. In summary, these experimental results 446

fully validate the effectiveness of the proposed 447

method in the task of response selection. 448

5 Further Analysis 449

5.1 Supervised Contrastive Loss vs. 450

Cross-Entropy Loss 451

For a candidate responseRi, let its hidden state rep- 452

resentation obtained after encoding by the Encoder 453

be denoted as h′ri . The cross-entropy loss function 454

is defined as shown in Equation 3, where R0 is the 455

positive response, and the function f is a classifier 456

composed of one or more linear layers, with the 457

final output dimension being 1. Our objective func- 458

tion can also be expressed in the form of Equation 459

4, where f ′ is the projector in the model, consisting 460

of two linear layers, with an output dimension of 461

d. When d = 1, f and f ′ can be considered equiv- 462

alent. Moreover, if we assume f ′(hranc) ≡ 1, and 463

set the temperature parameter τ to 1 as well, then 464

the expression cos(f ′(hranc), f
′(hrj ))/τ approxi- 465

mates f(hrj ). In this case, Equation 4 simplifies to 466

Equation 3. In other words, the cross-entropy loss 467

function can be regarded as a special form of the 468

supervised contrastive learning scheme. 469

`ce = −log[
ef(hr0 )∑N
j=0e

f(hrj )
] (3) 470

`sim = −log[ ecos(f
′
(hranc ),f

′
(hr0 ))/τ∑N

j=0e
cos(f ′ (hranc ),f

′ (hrj ))/τ
] (4) 471
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Table 2: Main results on three benchmarks. † denotes post-training, other entries use naive BERT weights. Results acquired
using SimSCR outperforms the original results with a significance level p-value < 0.05.

Models
E-commerce Douban Ubuntu v1

R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5 R10@1 R10@2 R10@5

BERT(Gu et al., 2020) 0.610 0.814 0.973 0.591 0.633 0.454 0.280 0.470 0.828 0.808 0.897 0.975
RoBERTa-SS-DA(Lu et al., 2020) 0.627 0.835 0.980 0.602 0.646 0.460 0.280 0.495 0.847 0.826 0.909 0.978
SA-BERT(Gu et al., 2020) 0.704 0.879 0.985 0.619 0.659 0.496 0.313 0.481 0.847 0.855 0.928 0.983
SA-BERT+HCL(Su et al., 2021) 0.721 0.896 0.993 0.639 0.681 0.514 0.330 0.531 0.858 0.867 0.940 0.992
UMSBERT(Whang et al., 2021) 0.674 0.861 0.980 0.597 0.639 0.466 0.285 0.471 0.829 0.843 0.920 0.982
UMSBERT+(Whang et al., 2021) 0.762 0.905 0.986 0.625 0.664 0.499 0.318 0.482 0.858 0.875 0.942 0.988
MDFN(Liu et al., 2021) 0.639 0.829 0.971 0.624 0.663 0.498 0.325 0.511 0.855 0.866 0.932 0.984
BERT-SL(Xu et al., 2021) 0.776 0.919 0.991 - - - - - - 0.884 0.946 0.990
† BERT-UMS+FGC(Li et al., 2021) - - - 0.627 0.670 0.500 0.326 0.512 0.869 0.886 0.948 0.990
† BERT-FP(Han et al., 2021) 0.870 0.956 0.993 0.644 0.680 0.512 0.324 0.542 0.870 0.911 0.962 0.994
† Uni-Enc+BERT-FP(Song et al., 2023) - - - 0.648 0.688 0.518 0.327 0.557 0.865 0.916 0.965 0.994
SimSCR(Ours) 0.888 0.959 0.993 0.651 0.692 0.519 0.329 0.553 0.868 0.890 0.947 0.989
† SimSCR+BERT-FP(Ours) 0.918 0.972 0.998 0.669 0.706 0.532 0.346 0.584 0.887 0.919 0.965 0.994

Table 3: Ablation study on Douban Conversation dataset. UARC - unidirectional attention from response to context, SCL -
supervised contrastive learning loss, HNRS - hard negative responses sampling. UniEncoder + FP is the baseline.

Models
Full Douban Conversation Training Set Douban Conversation Small-Sample Training Set (20k)

MAP MRR P@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

UniEncoder + FP(Song et al., 2023) 0.648 0.688 0.518 0.327 0.557 0.865 0.622 0.664 0.493 0.304 0.518 0.837
+ UARC (Ours) 0.649 (+0.1%) 0.690 0.523 0.333 0.546 0.867 0.625 (+0.3%) 0.665 0.489 0.304 0.524 0.846
+ UARC + SCL (Ours) 0.651 (+0.2%) 0.694 0.527 0.339 0.545 0.870 0.635 (+1.0%) 0.677 0.505 0.317 0.530 0.862
+ UARC + SCL + HNRS (SimSCR, Ours) 0.669 (+1.8%) 0.706 0.532 0.346 0.584 0.887 0.653 (+1.3%) 0.693 0.526 0.337 0.551 0.854

5.2 Ablation Study472

To evaluate the contributions of individual compo-473

nents in the proposed method to the final perfor-474

mance, we conducted two sets of ablation exper-475

iments on the Douban Conversation dataset: one476

using the complete dataset and the other being a477

small-sample experiment, for which 20,000 data478

entries were extracted from the complete training479

set as training samples. We chose UniEncoder+FP480

as the comparison baseline and separately exam-481

ined the effects of three key components in our482

method, with the specific results displayed in Ta-483

ble 3. From the results, for the complete training484

set, the HNRS (hard negative responses sampling)485

contributed most significantly, bringing a 1.8%486

improvement in MAP; followed by SCL (super-487

vised contrastive learning), which yielded a 0.2%488

advancement; and compared to the bidirectional489

attention mechanism, the application of UARC490

(unidirectional attention from response to context)491

achieved better results, with an improvement of492

0.1%. The reason is that unidirectional attention493

can prevent the indirect information leakage caused494

by bidirectional attention across multiple negative495

responses.496

The small-sample experiment revealed that SCL497

led to a greater performance enhancement on the498

small-sample dataset (1.0% vs. 0.2%), indicating499

that models obtained through contrastive learning500

possess stronger generalization capabilities. Simi-501

larly, on the small-sample dataset, the UARC and502

HNRS also showed stable performance improve- 503

ments. Notably, with only 20,000 training sam- 504

ples (1/25 of the full dataset), the application of 505

the method proposed in this study has already sur- 506

passed the best results under the full dataset (0.653 507

vs. 0.648), a finding that has practical application 508

potential in terms of reducing annotation costs. 509

5.3 Impact of Parameters 510

In the self-supervised contrastive learning frame- 511

work proposed in this study, three key parameters 512

have a significant impact on model performance: 513

the temperature τ in the contrastive loss, the sam- 514

pling number of hard negative responses n , and 515

the difficulty coefficient h. To investigate the ef- 516

fects of these parameters, we conducted thorough 517

experimental analyses on the Douban Conversation 518

dataset, with the results displayed in Figure 2, 3 519

and 4. 520
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Figure 2: The Impact of Temperature τ
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Figure 3: The Impact of Hard-Neg Responses Number n

Observing the experimental outcomes in Figure521

2, it is evident that an increase in the temperature522

τ results in a performance trend that first rises and523

then declines, with the model achieving optimal524

performance at τ = 0.07.525

As the number of hard negative responses in-526

creases, the MAP value shows an upward trend (as527

presented in Figure 3); however, considering that528

a large number of hard negative responses would529

increase computational complexity, the experiment530

defaults to sampling 8 hard negative responses531

based on performance considerations.532

As shown in Figure 4, a higher difficulty coeffi-533

cient of negative responses has a positive impact534

on training effectiveness. When the difficulty coef-535

ficient h = 1.0, the model degenerates into a ran-536

dom sampling strategy, and the results indirectly537

confirms the superiority of the sampling approach538

proposed in this study compared to random sam-539

pling.540
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Figure 4: The Impact of Difficulty Coefficient β

6 Discussion541

This chapter will explore the possibility of applying542

our method to other Transformer models, as well543

as the application extensions.544

6.1 Extending to Other Transformer Models 545

Despite the remarkable achievements of the BERT 546

model in the field of natural language processing, 547

emerging models such as GPT(Brown et al., 2020) 548

and GLM(Du et al., 2022) have also demonstrated 549

outstanding performance and application potential. 550

The supervised contrastive learning framework pro- 551

posed in this paper is also applicable to these mod- 552

els. During application, since these models do 553

not support segment IDs, different markers can be 554

added before the context responses to distinguish 555

them, thereby achieving a similar effect to segment 556

IDs. 557

6.2 As a Reward Model for Training LLM 558

The successful application of the self-supervised 559

contrastive learning method in dialogue response 560

ranking tasks also inspires us to use it as a reward 561

model during the training process of large-scale 562

language models. Especially when using PPO for 563

reinforcement learning training, an efficient reward 564

model is crucial. Our method can serve as a means 565

to train reward models, providing more accurate re- 566

ward signals, thereby helping to guide the model’s 567

training and optimize the final performance. 568

7 Conclusion 569

In this paper, we introduce an innovative super- 570

vised contrastive learning framework to enhance 571

the performance of response selection tasks. This 572

approach not only draws on the advantages of deep 573

context interaction found in tradition methods but 574

also enhances the model’s generalization ability 575

through contrastive learning. To further improve 576

model efficiency, we devised a heuristic sampling 577

method for hard negative responses to reduce the 578

dependence of contrastive learning on large nega- 579

tive sample sets. In experiments, our framework 580

achieved state-of-the-art results on three public re- 581

sponse selection datasets, proving the efficiency 582

and practicality of the supervised contrastive learn- 583

ing framework and the negative sampling strategy. 584

These achievements provide a powerful new tool 585

for response selection tasks and offer valuable ref- 586

erences for the future application of supervised 587

contrastive learning in other NLP tasks. We look 588

forward to extending our framework to a broader 589

range of tasks in future research and exploring new 590

ways to improve model effectiveness. 591

8



8 Limitations592

Despite the remarkable achievements of this study593

in the task of response selection, we must acknowl-594

edge some limitations. First, although the inter-595

active supervised contrastive learning framework596

performs well on the current datasets, these datasets597

may not fully cover all types of conversational sce-598

narios. Therefore, the universality and robustness599

of the framework under different dialogue systems600

and diverse contexts still require further valida-601

tion. Our interaction mechanism, while effective602

in facilitating attention interactions between con-603

text and responses, may not be optimized in its604

design, potentially leading to issues with compu-605

tational efficiency or model complexity. Future606

research could explore more efficient interactive607

architectures to reduce the computational burden608

of the model while enhancing performance. Lastly,609

as a training strategy, the generalizability of con-610

trastive learning across different NLP tasks still611

needs further research and validation. In particu-612

lar, whether the approach presented in this paper613

remains effective in tasks substantially different in614

nature from response selection is a question that615

awaits future exploration. In summary, the method616

proposed in this study brings a new perspective617

and significant performance improvements to the618

task of response selection, but it is important to619

consider its limitations regarding data coverage,620

optimization of interaction mechanisms, and gener-621

alizability across different tasks. Future work will622

be devoted to deeper exploration and improvement623

in these areas.624
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