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Abstract

Label distribution in recent years has been applied in a diverse array of complex
decision-making tasks. To address the availability of label distributions, label
enhancement has been established as an effective learning paradigm that aims
to automatically infer label distributions from readily available multi-label data,
e.g., logical labels. Recently, numerous works have demonstrated that the label
ranking is significantly beneficial to label enhancement. However, these works still
exhibit deficiencies in representing the probabilistic relationships between label
distribution and label rankings, or fail to accommodate scenarios where multiple
labels are equally important for a given instance. Therefore, we propose PROM,
a pairwise ranking model with orderliness and monotonicity, to explain the prob-
abilistic relationship between label distributions and label rankings. Specifically,
we propose the monotonicity and orderliness assumptions for the probabilities of
different ranking relationships and derive the mass functions for PROM, which are
theoretically ensured to preserve the monotonicity and orderliness. Further, we
propose a generative label enhancement algorithm based on PROM, which directly
learns a label distribution predictor from the readily available multi-label data.
Finally, extensive experiments demonstrate the efficacy of our proposed model.

1 Introduction

Label polysemy, i.e., the cases where an instance is associated with multiple labels simultane-
ously, is a common phenomenon in real-world tasks. To preserve label polysemy, multi-label
learning (Tsoumakas and Katakis, 2006) employs binary values to indicate the presence or absence
of each label for a given instance. However, multi-label learning cannot directly handle a further
question with more polysemy: How much is each label associated with an instance? Hence, Geng
(2016) introduced LDL (Label Distribution Learning). Unlike multi-label learning, LDL assigns a
real-valued vector to each instance, resembling probability distributions, where each element, called
label description degree, represents the extent to which the label describes the instance. By providing
richer label information, LDL has been applied in various fields, including age estimation (Gao et al.,
2018, Geng et al., 2013) and affective analysis (Jia et al., 2019, Machajdik and Hanbury, 2010).

A significant bottleneck hindering the broader application of LDL is the challenge of acquiring
ground-truth label distributions, as accurately quantifying these distributions can be costly. To address
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this issue, LE (Label Enhancement) has been proposed to automatically infer label distributions
from more readily available multi-label data by mining the underlying label polysemy informa-
tion (Xu et al., 2018, 2020). Initially, most LE methods mainly focused on mining the underlying
label polysemy information from instance correlation and label correlation. Recently, some novel
findings (Jia et al., 2023b, 2024, Wang and Geng, 2021) that the label ranking is beneficial for
improving the generalization of LDL have inspired a portion of LE research to explore the label
polysemy information from the perspective of label ranking. For example, Jia et al. (2023a), Lu
et al. (2023a,b) proposed to incorporate the ranking relationship between positive and negative labels
into the loss function or the generation model of label distributions. Although these works have
made headway in designing methods for regularizing LE processes by label rankings, there remain
the following two research gaps. 1) Current works ignore the ranking relation of tie, i.e. the cases
where multiple labels simultaneously describe the instance to almost the same degree, which is
ubiquitous in real-world tasks. 2) Current works neglect the qualitative and quantitative modeling
of the probabilistic relationships between label distributions and label rankings, which is essential
for the interpretable and generative modeling of label enhancement. Besides, it should be noted that
while some classic ranking models, such as Bradley-Terry (Hunter, 2004) and Plackett-Luce (Guiver
and Snelson, 2009) models, can be employed as a quantitative model, they also cannot explicitly
model the tie relation.

Therefore, we propose PROM (a Pairwise Ranking model with Orderliness and Monotonicity) to
qualitatively and quantitatively explain the probabilistic relationship between label distributions and
label rankings, which can serve as a generative distribution of label rankings in generative label
enhancement or as a loss function for measuring the inconsistency between label rankings and label
distributions. Specifically, we first conduct a qualitative analysis of the probabilistic principles
governing the generation process of label rankings from label distributions, and formalize these
principles as the assumptions on the monotonicity and orderliness of the probabilities of different
ranking relationships. Second, we design parameterized probability mass functions for the ranking
model, and derive the conditions under which the model adheres to probabilistic monotonicity and
orderliness. Third, we propose a generative label enhancement algorithm based on the PROM model,
called LE-PROM, which integrates the LE process and the LDL process into a unified framework,
and directly learns an LDL mapping on the training instances with multi-label data. Finally, we
validate our proposal through extensive experiments on real-world datasets. The experimental results
demonstrate the superiority of our proposed method.

2 Related Work

To tackle the challenge of acquiring accurate ground-truth label distributions, LE (Label Enhancement)
was proposed to automatically infer label distributions from more readily available multi-label data,
such as logical labels (Xu et al., 2018, Kou et al., 2025), ternary labels Lu and Jia (2024), multi-label
rankings (Lu and Jia, 2022, Lu et al., 2023c), or inaccurate label distributions Kou et al. (2024, 2023),
Lu et al. (2025). Most LE methods mine the label polysemy from instance and label correlations. For
example, in order to capture the instance correlation, the prototype-based LE algorithms (El Gayar
et al., 2006, Jiang et al., 2006, Wang et al., 2023, Fan et al., 2024) identify the representative points
and subsequently estimate the label distribution based on the representative points of each label. The
graph-based LE algorithms (Xu et al., 2018, Zhang et al., 2021, Xu et al., 2019, Liu et al., 2021)
directly calculate affinities between instances based on the features, which is further utilized to
regularize the label distribution matrix. The manifold-based LE algorithms (Hou et al., 2016, Wen
et al., 2021, Tang et al., 2020, Zhang et al., 2018) learn coefficients for each instance, by which the
feature vector of each instance can be linearly reconstructed from its neighbors, and then maintain the
reconstruction within label distributions. In order to capture the label correlation, Luo et al. (2021)
utilized the confusion matrix to estimate global label correlation. Besides, several works address
the LE task under special data distribution. For example, VIB-ILE Song et al. (2024) addresses
imbalanced label information in LE by adopting a variational information bottleneck mechanism and
introducing consistency regularization.

Recently, a portion of LE research attempts to explore the label polysemy information from the
perspective of label ranking. For example, Jia et al. (2023a) utilized a margin-based loss function
to penalize the cases where the description degree of negative labels exceeds that of positive labels;
Lu et al. (2023a) designs a conditional distribution of logical labels given label distributions, whose
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parameters are regularized by the ranking between negative and positive labels. Lu et al. (2023b)
derives a variational approximation for label distribution in generative label enhancement, which is
theoretically assured to uphold the ranking relation between negative and positive labels. Besides, Lu
and Jia (2022), Lu et al. (2023c) theoretically and methodologically investigated the task of predicting
label distributions directly from multi-label rankings. Despite the success of these efforts, there
remains a gap in the qualitative and quantitative modeling of the probabilistic relationships between
label distributions and the tie-allowed label rankings.

3 Methodology

In this section, we first introduce the notations commonly used in this paper, secondly elaborate our
proposed PROM model, and finally illustrate the generative LE framework.

3.1 Notations

We denote the D-dimensional feature space by XD = RD, denote the M -dimensional label dis-
tribution space by ∆M = {v ∈ RM

+ :
∑M

m=1vm = 1}, denote the label space by Y = {ℓm}Mm=1.
We cope with the training datasets that appear as data pairs {(xn,yn)}Nn=1, where xn ∈ XD and
yn denote the feature vector and the vector of the easily available label values of the n-th instance,
respectively. The data of yn can directly yield pairwise ranking relation among labels. We denote the
ranking relation between label ℓi and label ℓj by ξij ∈ {ℓi ≺ ℓj , ℓi ≻ ℓj , ℓi ≃ ℓj}, where ℓi ≺ ℓj ,
ℓi ≻ ℓj , and ℓi ≃ ℓj denote that the label ℓi, compared to the label ℓj , describes the instance to a
higher, lower, and approximately the same degree, respectively. The goal of LE is to learn a label
distribution predictor f : XD → ∆M , i.e., a mapping from feature space to label distribution space,
by the training dataset {(xn,yn)}Nn=1.

3.2 PROM

In this subsection, we first propose assumptions to formalize the monotonicity and orderliness of
ranking probability. Then, we derive the parametric form of PROM.

3.2.1 Fundamental Assumptions of PROM

On the one hand, we study how the label description degree affects the probability of the label ranking,
focusing on the monotonicity of the probability of the label ranking. Obviously, given any two labels
ℓi, ℓj of an instance, the label ℓi is more likely to rank above the label ℓj (or the label ℓj is more
likely to rank below the label ℓi alternatively) if the description degree of ℓi exceeds that of ℓj by
a larger margin. Besides, if the description degrees of two labels are close, then the strict ranking
relation between the two labels will be difficult to distinguish, i.e., it is more likely that the two labels
are tied. We formalize the above intuition as the probability monotonicity assumption.

Assumption 3.1 (Probability monotonicity). Given any two labels ℓi, ℓj of an instance and their
respective description degrees zi, zj , p(ℓi ≺ ℓj |zi = ui, zj = uj) < p(ℓi ≺ ℓj |zi = vi, zj = vj)
and p(ℓi ≻ ℓj |zi = ui, zj = uj) > p(ℓi ≻ ℓj |zi = vi, zj = vj) holds for any ui − uj < vi − vj .
p(ℓi ≃ ℓj |zi = ui, zj = uj) > p(ℓi ≃ ℓj |zi = vi, zj = vj) holds for any |ui − uj | < |vi − vj |,
where ui, uj , vi, vj ∈ [0, 1].

On the other hand, we explore how the label description degree affects the orderliness among the
probabilities of different rankings. Obviously, given any two labels ℓi, ℓj of an instance, these two
labels are most likely to be tied if the description degrees of the two labels are sufficiently close; the
label ℓi is most likely to rank above the label ℓj (or the label ℓj is most likely to rank below the label
ℓi alternatively) if the label description degree of ℓi exceeds that of ℓj by a sufficiently large margin.
We formalize the above intuition as the probability orderliness assumption.

Assumption 3.2 (Probability orderliness). There exists two real thresholds −1 < z− < 0 < z+ < 1,
p(ℓi ≻ ℓj |zi, zj) > p(ℓi ≃ ℓj |zi, zj) > p(ℓi ≺ ℓj |zi, zj) holds for any zi − zj < z−; p(ℓi ≻
ℓj |zi, zj) < p(ℓi ≃ ℓj |zi, zj) < p(ℓi ≺ ℓj |zi, zj) holds for any zi − zj > z+; p(ℓi ≃ ℓj |zi, zj) >
max{p(ℓi ≻ ℓj |zi, zj), p(ℓi ≺ ℓj |zi, zj)} holds for any z− < zi − zj < z+.
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Figure 1: Schematic of probability monotonicity
and probability orderliness.

The intuition of probability monotonicity and
orderliness is visualized in Figure 1. Actually,
the above discussion also implicitly adheres to
the following two assumptions. The one is that
the ranking relation between two labels depends
solely on the difference in their description de-
grees, and is independent of the description de-
grees themselves. We refer to this assumption
as the translational invariance assumption. The
other is that the ranking relation between two
labels is symmetric, i.e., ℓi ≺ ℓj is actually
ℓj ≻ ℓi. We refer to this assumption as the rank-
ing symmetry assumption. We formalize these
two assumptions as follows.
Assumption 3.3 (Translational invariance). Given any two labels ℓi, ℓj of an instance and their
respective description degrees zi, zj , p(ℓi ≺ ℓj |zi = ui, zj = uj) = p(ℓi ≺ ℓj |zi = vi, zj = vj)
and p(ℓi ≻ rj |zi = ui, zj = uj) = p(ℓi ≻ ℓj |zi = vi, zj = vj) hold for any ui − uj = vi − vj ;
p(ℓi ≃ ℓj |zi = ui, zj = uj) = p(ℓi ≃ ℓj |zi = vi, zj = vj) holds for any |ui − uj | = |vi − vj |,
where ui, uj , vi, vj ∈ [0, 1].
Assumption 3.4 (Ranking symmetry). Given any two labels ℓi, ℓj of an instance and their respective
description degrees zi, zj , p(ℓi ≺ ℓj |zi, zj) = p(ℓj ≻ ℓi|zj , zi) and p(ℓi ≃ ℓj |zi, zj) = p(ℓj ≃
ℓi|zj , zi).

3.2.2 Probability Mass Functions of PROM

Since the ranking relation between two labels can be ℓi ≺ ℓj , ℓi ≻ ℓj , or ℓi ≃ ℓj , we model the
ranking relation by a categorical distribution, which can be formalized as:

ξij | zi, zj ∼ Categorical(ξij | [ϕ(zi, zj), ϕ̃(zi, zj), ϕ(zi, zj)]), (1)

where ϕ(zi, zj), ϕ(zi, zj), and ϕ̃(zi, zj) capture the rules of generating the label ranking relation
ℓi ≻ ℓj , ℓi ≺ ℓj , and ℓi ≃ ℓj , respectively. Considering that the softmax function is most commonly
used to model the probability of discrete events, we preliminarily assume the parametric form of
ϕ(zi, zj) as follows:

ϕ(zi, zj) = p(ℓi ≻ ℓj |zi, zj) = Z−1exp(aϕ(zi − zj) + bϕ),

ϕ̃(zi, zj) = p(ℓi ≃ ℓj |zi, zj) = Z−1exp(aϕ̃(zi − zj)
2 + bϕ̃),

ϕ(zi, zj) = p(ℓi ≺ ℓj |zi, zj) = Z−1exp(aϕ(zi − zj) + bϕ),

(2)

where Z is a normalization factor that ensures ϕ(zi, zj) + ϕ̃(zi, zj) + ϕ(zi, zj) = 1, aϕ < 0, aϕ̃ < 0,
aϕ > 0, and bϕ, bϕ̃, and bϕ are arbitrary real numbers.

Figure 2 visualizes PROM model at different values of parameters. It is evident that not any value
of parameter can adhere to the probability monotonicity assumption and the probability orderliness
assumption. For example, Figure 2(a) violates the probability monotonicity assumption, Figure 2(b)
violates the probability orderliness assumption, and Figure 2(c) violates both. Figure 2(d) shows a
PROM model that we expect. Therefore, we next propose four theorems to ensure that the probability
mass functions defined by Equation (2) adhere to the proposed assumptions.
Theorem 3.5. p(ξij |zi, zj) defined by Equation (1) and Equation (2) adheres to the translation
invariance assumption, i.e. Assumption 3.3.
Theorem 3.6. p(ξij |zi, zj) defined by Equation (1) and Equation (2) adheres to the ranking symmetry
assumption, i.e. Assumption 3.4, iff aϕ = −aϕ and bϕ = bϕ.

Theorem 3.7. Given aϕ > 0, aϕ < 0, aϕ̃ < 0, ∆ = zi − zj . ϕ̃ adheres to the mono-
tonicity assumption of p(ℓi ≃ ℓj |zi, zj) if aϕ = −aϕ exp(bϕ − bϕ); ϕ adheres to the mono-

tonicity assumption of p(ℓi ≺ ℓj |zi, zj) if (aϕ(2aϕ̃)
−1 < −1) ∨ (∆

⋆ ≤ −1 ∧ hϕ(−1) >

0) ∨ (∆
⋆
> −1 ∧ hϕ(∆

⋆
) > 0); ϕ adheres to the monotonicity assumption of p(ℓi ≻ ℓj |zi, zj)
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(a) a = 1, b = 3, t = 1. (b) a = 1, b = 3, t = 3. (c) a = 1, b = 5, t = 3. (d) a = 16, b = 8, t = 3.

Figure 2: The shape of PROM with varying values of parameters.

(a) b = 10, t = 10. (b) a = 10, t = 10. (c) a = 25, b = 20. (d) Length of tie interval.

Figure 3: Marginal effect of parameters on the shape of PROM.

if (aϕ(2aϕ̃)
−1 > 1) ∨ (∆⋆ ≥ 1 ∧ hϕ(1) > 0) ∨ (∆⋆ < 1 ∧ hϕ(∆

⋆) > 0) where ∆
⋆
, ∆⋆,

hϕ(∆), and hϕ(∆) are defined by ∆
⋆

:= (aϕ + aϕ +
√

(aϕ − aϕ)2 − 8aϕ̃)(4aϕ̃)
−1, ∆⋆ :=

(aϕ + aϕ −
√

(aϕ − aϕ)2 − 8aϕ̃)(4aϕ̃)
−1, hϕ(∆) := aϕ∆ − aϕ̃∆

2 + bϕ − bϕ̃ + log
aϕ−aϕ

2aϕ̃∆−aϕ
,

hϕ(∆) := −aϕ̃∆2 + aϕ∆+ bϕ − bϕ̃ + log
aϕ−aϕ

aϕ−2aϕ̃∆
.

Theorem 3.8. p(ξij |zi, zj) defined by Equation (1) and Equation (2) adheres to the probability
orderliness assumption, i.e. Assumption 3.2, iff max{bϕ − aϕ, bϕ + aϕ} < aϕ̃ + bϕ̃ < min{bϕ +

aϕ, bϕ − aϕ} and bϕ̃ > max{bϕ, bϕ}.

The proof of the above theorems can be found in Appendix A. According to the above theorems, let
a = aϕ = −aϕ, b = −aϕ̃, bϕ = bϕ, t = bϕ̃ − bϕ, we finally define the probability mass function of
PROM model as follows:

ϕ(zi, zj) = Z−1e−a(zi−zj), ϕ̃(zi, zj) = Z−1e−b(zi−zj)
2+t, ϕ(zi, zj) = Z−1ea(zi−zj), (3)

where the parameters are bounded by (a, b, t) ∈ F , where the feasible region F is defined by
Equation (4):

F =
{
(a, b, t) | (a > |b− t| ∧ b > 0 ∧ t > 0) ∧

((
a2 ≥ 4b2 − 2b ∧ t < b+ a− log

2b− a

2a

)
∨
(
a ≥ 2b

)
∨

(
t <

2a
√
a2 + 2b+ a2

4b
− log

√
a2 + 2b− a

2a
+

1

2
∧ a2 < 4b2 − 2b

))}
.

(4)

3.2.3 Marginal Effect of Parameters on PROM

Intuitively, the parameters a and b control the uncertainty of ℓi ≺ ℓj (or ℓi ≻ ℓj) and ℓi ≃ ℓj ,
respectively. As shown in Figure 3(a) and Figure 3(b), larger a and b correspond to the steeper density
curve of the probabilities of ℓi ≺ ℓj (or ℓi ≻ ℓj) and ℓi ≃ ℓj , respectively. More results are shown in
Appendix B. We do not show p(ℓi ≻ ℓj |zi, zj) for the sake of readability. The parameter t is similar to
the temperature coefficient in the softmax function, whose effect on the PROM distribution is shown
in Figure 3(c). Overall, these three hyper-parameters directly affect the length of tie interval of PROM
distribution, i.e., the length of the interval of zi−zj with p(ℓi ≃ ℓj) > max{p(ℓi ≺ ℓj), p(ℓi ≻ ℓj)},
which is shown in Figure 3(d).
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(a) Generation Process (b) Inference Process

Figure 4: Schematic diagram of LE-PROM.

3.3 LE-PROM

LE-PROM consists of a probabilistic generation process for observed variables (features, available
labels, pairwise rankings) and a posterior inference process for latent variables (label distribution),
which will be illustrated in the following two subsections.

3.3.1 Generation Process

Here we illustrate the process of generating the observations, which is shown in Figure 4(a) and
formalized as follows.

1. Generate a sample of label distribution:
(a) Generate a real-valued vector u from a standard multivariate normal distribution, i.e.,

u ∼ N (u | 0M , IM ), where 0M is an M -dimensional all-zero vector, IM is an
M ×M identity matrix.

(b) Transform the real-valued vector u into the label distribution z, i.e., z = softmax(u).
2. Generate the available label y from a task-specific distribution given z: y | z ∼ p̃(y|z)2.
3. Generate a sample of feature variables x from a multivariate normal distribution conditioned

on the label distribution3. Formally, x | z ∼ N (x | µx(z), diag(σ2
x(z))), where µx(·) and

σx(·) are two neural networks, and diag(σ) is a diagonal matrix whose (i, i) entry is the
i-th element of σ.

4. Generate a sample of pairwise rankings ξ from our designed PROM distribution conditioned
on the label distribution z. Formally, ξ | z ∼

∏
i<j PROM(ξij | zi, zj).

According to the above generation process, the joint distribution of the complete-data can be factorized
as p(u,x,y, ξ) = p(u)p(x|u)p(y|u)p(ξ|u). It should be noted that we omit label distribution z
since z can be deterministically obtained from u.

3.3.2 Model Inference

Here we derive the inference method of our proposed generative model. The schematic is shown
in Figure 4(b). We employ variational inference to approximate the true posterior, since the exact
inference of the posterior of z is intractable due to the nonlinear and non-conjugate relationships
among variables. First, we assume that the variational posterior of u can be decomposed as

q(u|x,y, ξ) = N (u | µu(x,y, ξ), diag(σu(x,y, ξ))). (5)

Then, we find the variational posterior distribution of u that is closest to the true posterior distribution.
It has been proven that the Kullback-Leibler (KL) divergence between the variational posterior and
the true posterior can be minimized by maximizing the ELBO (evidence lower bound):

ELBO = Eq(u|x,y,ξ)[log p(x,y, ξ|u)]−DKL(q(u|x,y, ξ)∥p(u)). (6)

In the right-hand side of Equation (6), the first term is also known as the reconstruction term, and
the second term is also known as the prior regularization term. The reconstruction term serves to

2The task-specific distribution can be conditioned on u or z since z can be deterministically obtained by u.
3Analogous to p̃(y|z), the multivariate normal distribution for features can also be conditioned on z or u.
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ensure that the label distribution can accurately reconstruct the observed variables. It is evident that
an analytic form of reconstruction term is intractable due to the integral of a complicated likelihood
function. Therefore, we turn to SGVB estimator. Since q(u|x,y, ξ) is multivariate normal, it can be
reparameterized by q(u|x,y, ξ) = µu(x,y, ξ) + σu(x,y, ξ)⊙ ϵ, where ϵ is standard normal noise.
Besides, benefiting from (Lu et al., 2023a), we utilize hyperparameters α and β to re-weight the
reconstruction quality of x, y, and u to re-balance the magnitudes of different likelihood functions.
Finally, the reconstruction term can be estimated by:

Eq(u|x,y,ξ)[log p(x,y, ξ|u)] ≈
1

(1 + α+ β)L

L∑
t=1

log p
(
x|µu(x,y, ξ) + σu(x,y, ξ)⊙ ϵ(t)

)
+α log p

(
y|µu(x,y, ξ) + σu(x,y, ξ)⊙ ϵ(t)

)
+ β log p

(
ξ|µu(x,y, ξ) + σu(x,y, ξ)⊙ ϵ(t)

)
,

(7)
where L is the number of Monte Carlo samples, ϵ(t) is a sample from the standard normal distribution.
The prior regularization term encourages the posterior to approach the prior. Since both the u-posterior
and u-prior are multivariate normal, their KL divergence can be computed analytically. Besides, in
order to train a feature-conditioned label distribution predictor p̂(u|x) = N (u | µ(x), diag(σ(x)))
during the model inference phase, we add a prediction loss term to ELBO. Finally, the optimization
objective can be formalized as follows:

argmax Eq(u|x,y,ξ)[log p(x,y, ξ|u)]−DKL(q(u|x,y, ξ)∥p(u))− λDKL(p̂(u|x)∥q(u|x,y, ξ)),
(8)

where λ is a trade-off hyperparameter. As suggested by Daunizeau (2017), since z is the softmax
normalization of a Gaussian random vector, the expected label distribution based on p̂(u|x) can be
approximated as follows:

Ep̂(u|x)[zm] ≈ 1∑M
i=1 exp(ψmi)

, ψmi =
µi − µm√

1 + 3π−2(σ2
m + σ2

i )
, (9)

where µi and σi denote the i-th elements of µ(x) and σ(x), respectively.

4 Experiments

4.1 Datasets and Evaluation Measures

We conduct experiments on 16 real-world datasets. These datasets are collected from diverse real-
world tasks, including emotion analysis, movie rating prediction, and bioinformatics. Specifically,
“Painting” (Machajdik and Hanbury, 2010), “Emotion6” (Peng et al., 2015), “Music” (Lee et al.,
2021), “BU-3DFE” (Yin et al., 2006), and “JAFFE” (Lyons et al., 1998) are collected from emotion
analysis tasks. “Movie” (Geng, 2016) is a dataset from movie rating prediction task. “Alpha”, “Cdc”,
“Cold”, “Diau”, “Dtt”, “Elu”, “Heat”, “Spo”, “Spo5”, and “Spoem” (Geng, 2016) are collected
from a gene expression analysis task. To accelerate convergence, we use min-max normalization to
preprocess the feature data. We evaluate the model performance by two representative LDL measures:
KL (Kullback-Leibler divergence) and Cosine (cosine similarity). The KL (or Cosine) metric with
smaller values represents the better (or worse) performance. More details of the datasets and the
results on more metrics can be found in Appendix C.

4.2 Experiments on Logical Label Enhancement

Here, we aim to experimentally answer the question of whether our proposed LE-PROM is superior
to the state-of-the-art logical label enhancement algorithms.

4.2.1 Experimental Configurations

Experimental Method. Initially, we randomly divide the dataset, allocating 70% of the dataset
to the training set and the remaining 30% to the testing set. Then we reduce the label distributions
of the training instances to logical labels, and the detailed reduction algorithm can be found in
Appendix C. Subsequently, we apply LE algorithms to transform the logical labels into the label
distribution for each training instance, and utilize the recovered label distributions to train an LDL
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Dataset LE-PROM CWLD VIB-ILE GLLE KMLE FCMLE

KL (↓)

Painting (1) 0.567±0.022 (5) 0.991±0.068• (6) 27.118±2.496• (2) 0.570±0.025 (4) 0.978±0.217• (3) 0.589±0.030•
Emotion6 (1) 0.616±0.013 (5) 0.686±0.014• (6) 0.737±0.017• (2) 0.627±0.013• (3) 0.646±0.026• (4) 0.682±0.012•
Movie (1) 0.114±0.002 (5) 0.211±0.016• (4) 0.193±0.021• (2) 0.115±0.003• (6) 0.216±0.015• (3) 0.178±0.003•
Music (1) 0.113±0.007 (4) 0.147±0.002• (6) 0.225±0.012• (2) 0.135±0.008• (5) 0.187±0.094• (3) 0.136±0.009•
BU-3DFE (1) 0.072±0.001 (5) 0.101±0.003• (4) 0.096±0.003• (1) 0.072±0.002 (6) 0.111±0.009• (3) 0.079±0.002•
JAFFE (1) 0.054±0.005 (5) 0.152±0.039• (4) 0.084±0.006• (2) 0.064±0.007• (6) 0.409±0.168• (3) 0.071±0.005•
Alpha (1) 0.006±0.000 (5) 0.012±0.001• (1) 0.006±0.000 (4) 0.010±0.001• (6) 0.024±0.003• (1) 0.006±0.000

Cdc (1) 0.007±0.000 (5) 0.012±0.000• (3) 0.008±0.000• (4) 0.011±0.001• (6) 0.019±0.001• (1) 0.007±0.000

Cold (1) 0.012±0.001 (5) 0.017±0.000• (2) 0.013±0.001 (4) 0.016±0.001• (6) 0.027±0.002• (2) 0.013±0.000•
Diau (1) 0.014±0.001 (3) 0.020±0.001• (4) 0.022±0.001• (4) 0.022±0.001• (6) 0.075±0.003• (2) 0.015±0.000•
Dtt (2) 0.007±0.000 (5) 0.010±0.000• (1) 0.006±0.000◦ (4) 0.009±0.000• (6) 0.014±0.002• (2) 0.007±0.001

Elu (1) 0.006±0.000 (5) 0.012±0.000• (3) 0.007±0.001• (4) 0.011±0.001• (6) 0.019±0.001• (1) 0.006±0.000

Heat (1) 0.013±0.000 (5) 0.017±0.000• (1) 0.013±0.000• (4) 0.014±0.001• (6) 0.018±0.001• (1) 0.013±0.000

Spo (1) 0.025±0.001 (5) 0.030±0.001• (3) 0.027±0.001• (2) 0.026±0.001• (6) 0.034±0.002• (3) 0.027±0.001•
Spo5 (1) 0.030±0.001 (6) 0.054±0.002• (4) 0.034±0.001• (3) 0.033±0.001• (4) 0.034±0.001• (1) 0.030±0.001◦
Spoem (1) 0.026±0.001 (6) 0.057±0.003• (1) 0.026±0.001• (1) 0.026±0.002• (5) 0.029±0.005• (4) 0.027±0.001•

Cosine (↑)

Painting (1) 0.718±0.009 (4) 0.648±0.013• (6) 0.281±0.076• (1) 0.718±0.010 (5) 0.633±0.025• (3) 0.705±0.010•
Emotion6 (1) 0.707±0.006 (4) 0.668±0.007• (4) 0.668±0.009• (2) 0.701±0.005• (3) 0.693±0.013• (6) 0.665±0.004•
Movie (1) 0.926±0.001 (5) 0.892±0.003• (3) 0.902±0.003• (2) 0.925±0.002• (4) 0.901±0.003• (6) 0.871±0.002•
Music (1) 0.915±0.005 (4) 0.897±0.001• (6) 0.832±0.008• (2) 0.903±0.005• (5) 0.877±0.041• (3) 0.902±0.005•
BU-3DFE (2) 0.929±0.001 (5) 0.905±0.002• (4) 0.910±0.002• (1) 0.930±0.002 (6) 0.902±0.002• (3) 0.923±0.002•
JAFFE (1) 0.948±0.006 (5) 0.909±0.008• (4) 0.920±0.006• (2) 0.940±0.006• (6) 0.816±0.047• (3) 0.933±0.005•
Alpha (1) 0.994±0.000 (4) 0.990±0.000• (1) 0.994±0.000 (4) 0.990±0.001• (6) 0.979±0.001• (1) 0.994±0.001•
Cdc (1) 0.993±0.000 (5) 0.988±0.000• (1) 0.993±0.001• (4) 0.990±0.000• (6) 0.981±0.001• (1) 0.993±0.000

Cold (1) 0.988±0.000 (5) 0.984±0.000• (1) 0.988±0.000 (4) 0.985±0.001• (6) 0.973±0.002• (1) 0.988±0.001•
Diau (1) 0.987±0.000 (3) 0.982±0.000• (4) 0.980±0.001• (5) 0.979±0.001• (6) 0.939±0.002• (2) 0.986±0.000•
Dtt (1) 0.994±0.000 (5) 0.990±0.000• (1) 0.994±0.000 (4) 0.992±0.001• (6) 0.987±0.002• (1) 0.994±0.000

Elu (1) 0.994±0.000 (5) 0.988±0.000• (1) 0.994±0.000• (4) 0.990±0.000• (6) 0.982±0.001• (1) 0.994±0.000

Heat (1) 0.988±0.000 (5) 0.983±0.000• (1) 0.988±0.000 (4) 0.986±0.001• (6) 0.982±0.001• (1) 0.988±0.000

Spo (1) 0.977±0.001 (5) 0.972±0.001• (2) 0.975±0.001• (2) 0.975±0.001• (6) 0.968±0.002• (2) 0.975±0.001•
Spo5 (2) 0.973±0.001 (6) 0.956±0.001• (4) 0.970±0.001• (3) 0.971±0.001• (4) 0.970±0.001• (1) 0.974±0.000◦
Spoem (1) 0.979±0.001 (6) 0.953±0.002• (2) 0.978±0.001• (2) 0.978±0.001• (5) 0.976±0.004• (4) 0.977±0.001•

Table 1: Prediction performance measured by KL and Cosine on logical label enhancement.

model (SABFGS (Geng, 2016) is utilized in this paper). Then, we evaluate the prediction performance
of SABFGS on the testing set. Finally, we repeat the above process ten times and report the mean
and standard deviation.

Comparison Algorithms. We choose two state-of-the-art LE algorithms: CWLD (Fan et al.,
2024) and VIB-ILE (Song et al., 2024), and three baseline LE algorithms: GLLE, KMLE,
and FCMLE (Xu et al., 2018). The hyperparameter configurations adhere to the respective pa-
pers. For CWLD, α is selected among {0.1, 0.2, . . . , 1.0}. For VIB-ILE, β is selected among
{10−3, 10−2, . . . , 100}, γ is selected among {2, 20}, and λ is set to 0.1. For GLLE, λ is selected
among {10−2, 10−1, . . . , 102}. For KMLE, δ is selected among {1, 2, 3, 4, 5}. For FCMLE, β is se-
lected among {1, 1.1, 1.2, . . . , 3}. For our method, λ and β are selected among {10−1, 100, . . . , 105},
α is selected among {10−2, 10−1, . . . , 104}, the probability distribution p̃(y|z) is modeled by
Bernoulli distribution, the parameters of PROM are set as a = 16, b = 8, t = 3.

4.2.2 Results and Discussions

The prediction performance is shown in Table 1. The rankings of each method are provided in the
parentheses before the mean value of performance. Additionally, we use a pairwise two-tailed t-test
to perform a more thorough comparative analysis. We denote ◦/• as the cases that our proposed
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Figure 5: KL-based prediction performance on different values of hyperparameters α, β, and λ.

Figure 6: Prediction performance measured by KL and Cosine on label ranking enhancement.

LE-PROM is significantly inferior/superior to the corresponding comparison algorithms. If there is
no ◦ nor •, it indicates that there is no significant performance difference between LE-PROM and the
corresponding algorithm. Overall, our algorithm achieves competitive prediction performance. Our
algorithm achieves an average ranking of 1.09 and wins 138 times, ties 19 times, and loses 3 times,
out of 160 statistical significance comparisons.

4.2.3 Hyperparameter Analysis

In this subsection, our objective is to demonstrate the effectiveness of each component by varying
the values of hyperparameters, i.e. the weights of different components, in LE-PROM. In Figure 5,
we show the prediction performance measured by KL on “Movie” dataset with varying values of
hyperparameters α, β, and λ. The experimental results show that both α (the weight of logical
label information) and β (the weight of label ranking information) have significant impact on
the performance of our model. It can be found that an increase in α or β usually leads to a
performance improvement. However, their values cannot be arbitrarily increased, and when these
two hyperparameters reach extremely high values, the performance of the model also decreases. This
observation implies that features, logical labels, and label rankings all have an impact on prediction
performance, and a proper assignment of weights to these loss terms is critical to model performance.
The last two figures in Figure 5 show that λ affects the performance to some extent. However,
regardless of λ, optimal performance can typically be achieved by adjusting the α and β.

4.3 Experiments on Label Ranking Enhancement

In this subsection, our objective is to experimentally answer the question of whether our proposed
PROM is superior to current ranking models for the label ranking enhancement task. The exper-
imental procedure is analogous to Section 4.2.1, with the sole distinction lying in the input label
data: one is the logical label, while the other is the label ranking. The training set with label distri-
butions can be directly transformed into the one with label rankings. We choose three comparison
algorithms, GLERB (Lu et al., 2023b) and GLEMR (Lu et al., 2023a) are the two state-of-the-art
label-enhancement oriented ranking models and Bradley-Terry is a classic ranking model. Since
comparison algorithms cannot be directly applied for tie-allowed label rankings, we preprocess the
label rankings to accommodate the comparison algorithms. Due to the page limit, we put the details
of label preprocessing in Appendix C. From the results in Figure 6, it can be seen that LE-PROM
outperforms the comparison algorithms in most cases.
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5 Conclusion and Limitation Discussion

Conclusion. In this paper, we qualitatively and quantitatively study the probabilistic relationship
between label distributions and label rankings. We propose assumptions to characterize the proba-
bilistic monotonicity and orderliness of label rankings. Subsequently, we derive a pairwise ranking
model PROM that theoretically preserves the probabilistic monotonicity and orderliness. Besides, we
propose a generative label enhancement algorithm based on the PROM model to directly learn an
LDL mapping on the training instances with multi-label data. The experimental results on extensive
real-world datasets demonstrate the superiority of our proposed method.

Limitation. Despite the contributions of this paper, it is imperative to acknowledge that the feasible
region of PROM exhibits considerable complexity. This complexity may potentially impede the
hyperparameter selection. Besides, if users attempt to adaptively learn the parameters a, b, t, the
feasible region may lead to a difficult optimization problem. Hence, future research efforts will be
directed towards simplifying the boundaries of the feasible region, with the aim of enhancing its
compatibility with more established optimization methods.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract accurately reflects the three contributions of the paper, which are
further explained in paragraph 3 of the introduction. That is, monotonicity and orderliness
assumptions are proposed for the probabilities of different ranking relationships, the quality
function of PROM is derived, and a generative LE algorithm based on PROM is proposed.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In Section 3.2.2, the assumptions underlying the theoretical results are ex-
plained in Assumptions 3.1, 3.2, 3.3, and 3.4. The details of the proofs of Theorems 3.5, 3.6,
3.7, and 3.8 are provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Sections 4.2.1 and 4.2.2, for the comparison algorithms, the hyperparameter
configurations and dataset division methods of each comparison method are fully disclosed.
For our method, the parameters of the PROM model are specifically set to a = 16, b = 8,
and t = 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: In terms of data access, the datasets used in this article strictly follow the data
usage agreement of the original creator, and this article does not authorize their distribution.
In terms of code implementation, PROM is very easy to implement, and functions can be
reproduced without relying on additional code files. Nevertheless, the code will be accessible
after publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4.2.1, the dataset partitioning, selection method, and label distribu-
tion learning model are described in detail. In Section 4.2.2, the hyperparameter settings are
described in detail. In Appendix C.3, the algorithm for reducing the label distribution of
training instances to logical labels is described in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Table 1 displays the statistical significance, mean, and standard deviation of
the prediction performance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The difference in computing resource configuration has no significant effect
on the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this article complies in all respects with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no significant social impact from the work done for this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risk associated with the work described in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original papers of five comparative algorithm models and sixteen datasets
are fully cited in this article.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no new assets released in this article.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no research involving crowdsourcing or human subjects in this article.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research of this paper did not involve human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: In this research core methodology, LLM is not a significant, unique, or
non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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