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ABSTRACT

Machine learning (ML) models exhibit miscellaneous properties, and deployment
inevitably trades certain performance aspects against others. This is particularly
valid for time series forecasting, where special characteristics such as season-
ality impact how models perform. Since there is “no free lunch”, practitioners
have to choose among available methods when assembling new learning systems.
Benchmarks, meta-learning, and automated ML come to aid, but in many cases
focus on predictive capabilities while ignoring other aspects such as complexity
and resource consumption. This is especially concerning considering the popular-
ity of deep neural networks (DNNs) for forecasting, as these models are widely
conceived as computation-heavy black boxes. To alleviate these shortcomings,
we propose X-PCR – a novel approach for explainable multi-objective model
selection. It uses meta-learning to assess the suitability of any model in terms
of (p)redictive error, (c)omplexity and (r)esource demand. By allowing users to
prioritize the individual objectives in this trade-off, model recommendations be-
come both controllable and understandable. We demonstrate the feasibility of our
methodology in the task of forecasting time series with state-of-the-art DNNs. In
total, we perform over 1000 experiments across 114 data sets, discuss the resulting
efficiency landscape, and provide evidence of how X-PCR outperforms other se-
lection approaches. On average, our approach only requires 20% of computation
costs for recommending models with 85% of the best possible performance.

1 INTRODUCTION

The rapidly evolving field of machine learning (ML) has brought forth a broad arsenal of learning
methods, each exhibiting specific properties related to predictive performance, model complexity
and computational resource demand. Deployment requires evaluating the pros and cons of applica-
ble methods, and as there is “no free lunch”, these trade-offs vary vastly across data sets. This is
the case for almost every learning task, including time series forecasting, which due to the complex
and time-evolving nature of this data, has always been considered a very challenging task (Saadallah
et al., 2019; 2022). The relevance of model properties usually depends on the particular application
at hand. For instance, in safety-critical scenarios, robustness (Croce et al., 2020) and predictive
precision are crucial, whereas for edge devices (Buschjäger et al., 2020), model size and computa-
tional resource demand are tightly constrained. Explicitly investigating these properties is especially
important when considering today’s popularity of deep neural networks (DNNs) (Saadallah et al.,
2021). While they have been successfully utilized for time series forecasting (Livieris et al., 2020;
Kim & Cho, 2019), their complex structure also makes them computationally expensive (Strubell
et al., 2020) and non-transparent – sometimes resulting in them being referred to as black boxes
(Molnar, 2020).

Selecting the “best” model for a given learning task can be understood as a multi-objective optimiza-
tion problem, with individual objectives representing model properties as prioritized by the use case
at hand. Even with limiting the search to DNNs, the space of forecasting models is huge (Alexandrov
et al., 2020). Practically, this renders the identification of optimal models via exhaustive search (i.e.,
testing all options) computationally redundant and, quite possibly, unfeasible. Benchmarks such
as the Monash forecasting repository by Godahewa et al. (2021) are helpful for model selection.
However, they are usually limited to reporting predictive performance. Automated ML (AutoML)
pipelines (Jin et al., 2019) suffer from the same phenomenon and, moreover, do not consider the
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Figure 1: Framework for X-PCR selection. Our method leverages meta-learning to estimate DNN
performance on a given data set in terms of prediction error, complexity and resource demand. The
final recommendation aims at finding the best trade-off considering all estimated properties.

unique characteristics of time series forecasting (Alsharef et al., 2022). Even though the necessity
of resource-awareness has been highlighted both generally (Fischer et al., 2022) and for time series
(Uchiteleva et al., 2021), there is no consistent guideline for ensuring an efficient quality-resource
trade-off during model selection. Another major shortage of existing frameworks is the lack of trans-
parency. AutoML specifically aims at automating the process of model selection and hyperparameter
tuning, making it difficult to understand the reasons behind model recommendations. Moreover, as-
pects of model explainability related to network complexity are often neglected during the search.
This is highly contrary to the widely supported call for trustworthy ML (Brundage et al., 2020; EU
AI HLEG, 2020), which should also be considered when building forecasting applications.

Our work addresses these challenges by proposing X-PCR model selection and demonstrating its
feasibility for time series forecasting with DNNs. The approach leverages multi-objective meta-
learning, considering time series’ characteristics as features and recommending models based on
their suitability in terms of (p)rediction error, (c)omplexity and (r)esource consumption. As expected
with multi-objective problems, there could actually be multiple Pareto-optimal solutions for any
model search. Note, however, that classic optimization is inapplicable for this task, since probing
the search space (i.e., testing single model options) is highly expensive. Our approach reduces this
effort by estimating any model option’s multi-objective performance across PCR properties based
on the available meta-features. In addition, we claim our proposed method to be e(x)plainable on
three levels: Firstly, the selection process itself becomes explainable by making scoring along all
PCR objectives available with any recommendation. Secondly, by enabling users to align the PCR
criteria with their priorities, the process becomes highly interactive and, thus, more transparent.
Lastly, we use per-construction interpretable meta-modeling (Rudin, 2019) to further explain the
reasoning behind any recommendation. Our framework is schematically displayed at a glance in
Figure 1.

As part of our work, we also provide an extensive experimental evaluation showcasing both the
implicit efficiency trade-offs when forecasting time series with DNNs, as well as the capabilities of
X-PCR selection. 11 state-of-the-art (SOTA) DNNs were deployed on over 100 data sets, resulting
in a total of 1254 experiments for our investigations – the complete implementation and logs are
available at github.com/tmplxz/xpcr (preliminarily published for reviewers). The results
are evidence of how considering PCR properties completely changes the understanding of SOTA
in forecasting. Our selection method beats competing approaches such as AutoML and achieves
85% of predictive performance at only 20% of the computation cost required for exhaustive search.
In nearly all cases, the optimal model is found within the top-5 recommendations. The evaluation
shows that our novel X-PCR selection is a beneficial contribution to SOTA research on resource-
aware ML, explainable ML, and time series forecasting.

2 RELATED WORK

Before explaining the intricacies of our approach, we present a review of forecasting with DNNs, a
literary background on model selection and meta-learning, as well as recent works investigating the
importance of explainability and resource-awareness in ML.
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2.1 ON DNNS FOR TIME SERIES FORECASTING

Deep learning has been successfully applied to forecasting (Livieris et al., 2020; Kim & Cho, 2019).
At present, the domain is mostly dominated by recurrent (RNNs), particularly long short-term mem-
ory (LSTM), neural networks. Their major benefit lies in the capability of learning from the entire
history of series values (Kim & Cho, 2019). Convolutional networks (CNNs) also score well in
forecasting and tend to be more efficient than RNNs, as convolutions allow for expanding the re-
ceptive field exponentially while maintaining a small parameter space (Borovykh et al., 2017). The
recently published GluonTS toolkit (Alexandrov et al., 2020) offers a diverse range of recent DNN
models for usage on time series, discussed extensively in a review by Benidis et al. (2020). DeepAR
employs a RNN with LSTM or Gated Recurrent Unit cells (Salinas et al., 2020), while DeepState
learns RNN weights jointly across all time series via a Kalman filter (Rangapuram et al., 2018). MQ-
RNN and MQ-CNN leverage RNN and dilated causal CNN encoders, respectively, coupled with a
quantile decoder, establishing sequence-to-sequence prediction (Wen et al., 2017). DeepFactor also
estimates weights across series, combining a local approach with a global DNN (Wang et al., 2019).
With Transformers (Lim et al., 2021) and Wavenet (Oord et al., 2016), GluonTS also offers archi-
tectures popular in natural language processing. Unsurprisingly, no model is universally valid for
every forecasting application (Godahewa et al., 2021; Saadallah et al., 2019; Cerqueira et al., 2019).

2.2 MODEL SELECTION

Various techniques have been proposed for selecting an appropriate model from a set of candidates
for a specific task. Firstly, one can try to estimate each candidate’s expected error, e.g. via Gaussian
(Birgé & Massart, 2001) or Bayesian estimation methods. These methods are however impractical
for forecasting, since they require to approximate continuous composite densities for the error be-
tween target and estimated time series values. Each candidate’s error can also be estimated based on
empirical evaluations (Rivals & Personnaz, 1999), such as the forecasting benchmark contributed
by Godahewa et al. (2021). Naturally, this approach is always limited to the empirically investigated
data, methods and properties. Implementing a meta-learning paradigm allows to learn additional
ML models that predict the behaviour based on previous selections characterized by a set of meta-
features (Wolpert, 1992). Meta-learning has been successfully used in forecasting (Cerqueira et al.,
2017; Saadallah et al., 2019), for example by specializing a set of candidate models over different
series regions (Saadallah et al., 2022). AutoML can be understood as meta-learning without explic-
itly formulating meta-features While being popular in deep learning (Jin et al., 2019; Zimmer et al.,
2021), it currently does not handle sequential dependencies, variable-length inputs, and dynamic
temporal patterns specific to forecasting well. In addition to the already mentioned drawbacks, the
established approaches for model selection suffer from exclusively focusing on predictive perfor-
mance. As such, they do not consider other significant model-allied properties such as complexity
or resource consumption.

2.3 EXPLAINABILITY AND RESOURCE-AWARE ML

With the race for bigger models, many works have highlighted the importance of trustworthiness
(Brundage et al., 2020), which eventually manifested in the EU AI act (EU AI HLEG, 2020). The
demand for more trust sparked research on explainability (Samek et al., 2019) that makes complex
models like DNNs more interpretable (Rudin, 2019). With ML becoming a popular tool across
many domains, works have also motivated to specifically bridge the communication gap towards
non-experts (Morik et al., 2022). This includes aspects of sustainability and resource-awareness
(Patterson et al., 2021), as modern ML was shown to significantly impact our environment (Strubell
et al., 2020). As a result, recent works investigated carbon emissions in areas such as computer
vision (Schwartz et al., 2020), data stream mining (Garcı́a-Martı́n et al., 2019), and language models
(Patterson et al., 2021; Bender et al., 2021; Strubell et al., 2020). In order to make the SOTA
more resource-aware, the ML community is required to establish practices for reducing ML carbon
emissions (Patterson et al., 2022; Lacoste et al., 2019) and improve our reporting in terms of resource
efficiency (Fischer et al., 2022). On the contrary, model selection approaches usually base their
recommendation only on predictive performance, and other properties than predictive performance
are rarely reported (Godahewa et al., 2021). Our work aims at increasing both the understanding
and resource efficiency of forecasting models by explicitly embedding these aspects into our novel
selection approach.
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3 EXPLAINABLE MULTI-OBJECTIVE MODEL SELECTION

Our methodology understands any ML experiment to be characterized by an underlying configu-
ration and environment. As established by Fischer et al. (2022), the former specifies model, data
set, and task, while the latter represents the software and hardware platform for practical execution
While we specifically formulate our method for the task of learning and evaluating a DNN on fore-
casting data, it can be easily generalized to other ML domains. Our framework scheme in Figure 1
functions as a guide through our methodology.

3.1 PROBLEM STATEMENT

Let Y be a time series, i.e., a temporal sequence of values, where Y1:t = {y1, y2, · · · , yt} is a
sequence of Y recorded until time t and yi is the value of Y at time i. In most applications, Y is
not recorded in isolation but in a wider context enclosing many time series variables Y ∈ Y. As an
example consider weather data, where single time series Y might represent temperature, wind speed,
or humidity recordings, which together form Y. Let M be a pool of DNNs that can be applied to
Y by performing univariate forecasting for each single series. Selecting the best DNN can then be
formally understood as a multi-objective optimization problem (Yang, 2014):

argmax
m∈M

(F (Y,m)) = argmax
m∈M

(

k∑
i=1

wifi(Y,m)) with ∀i, wi ≥ 0 and
k∑

i=1

wi = 1 (1)

The compound score F (Y,m) is a weighted sum of functions fi, which describe empirical proper-
ties that m exhibits when being applied to Y. As these can be grouped into describing (p)rediction
error, (c)omplexity, or (r)esource consumption, we name the fi PCR functions. To give some exam-
ples, one could assess the prediction error on unseen test data (P), number of model parameters (C),
or power draw for a single inference step (R). Following Equation (1), the individual PCR functions
should be defined such that maximization leads to improved model behaviour. The weights wi al-
low for prioritizing certain properties depending on the use case at hand. This is of high relevance
for explicitly making models more resource-aware or explainable, since these aspects are directly
linked to any model’s resource demand and complexity. Note that solving Equation (1) is non-trivial:
Firstly, the functions fi can behave contradictorily, which complicates simultaneous optimization.
To give an example, prioritizing less complex models usually results in higher prediction errors.
Also, depending on the problem and model space at hand, there might not even be a single solution
to Equation (1), but rather a range of so-called Pareto-optimal choices. We want to explicitly stress
that probing this front is computationally expensive, as it requires to train and evaluate models in M .
Moreover, it is impossible to calculate derivatives of the PCR functions fi, since they are usually as-
sessed from empiric behavior of each respective model. As a result, classic optimization approaches
cannot be applied to search the multi-dimensional space for Pareto points.

3.2 COMPARABILITY OF PROPERTIES

Assessing the function values for fi unveils a major problem: The numeric behavior and meaning
of properties will be vastly different – we could either obtain hundreds of milliseconds for running
time, dozens of kilowatt-hours for power draw, or millions of parameters. This problem gets even
more evident when considering different environments for running models (e.g., CPU or GPU im-
plementations), as they will dramatically change the value magnitude. We address this issue by
calculating values of fi on a relative index scale as proposed by Fischer et al. (2022). It is based
on the real measurements µi, which are obtained from applying m to Y. Whereas the original
work proposed to calculate index values based on reference models, we instead resort to using the
empirically best-performing model m∗ on the i-th property:

fi(Y,m) =

(
µ∗
i (Y)

µi(Y,m)

)
=

(
minm∗∈M (µi(Y,m∗))

µi(Y,m)

)
, (2)

The now calculable PCR function values fi and compound score F are bounded by the interval (0, 1]
and describe the behavior in the given environment relatively; the higher the value, the closer it is to
the best empiric result which receives fi(Y,m) = 1. Note that using the best value per property as
reference is advantageous to global reference models since it neatly solves the problem of choosing
reference models.
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3.3 MODEL SELECTION USING META-LEARNING

Naively, Equation (1) can be solved by performing an exhaustive search that determines the PCR
properties of all DNNs in M . While guaranteed to provide optimal solutions, this also requires
dramatic computational expenses. Instead, we propose to adapt meta-learning and estimate the
expected values of fi given the characteristics of input data Y and model option m. Accordingly,
the meta-task can be defined as finding regression models f̂i ∈ M, which are trained to model
the property functions fi. The space of possible models M : FY × Fm → R is defined by the
space of model (Fm ⊂ Rn′

) and data (FY ⊂ Rn) meta-features. To be more specific, features
Xm ∈ Fm encode general information about the model m, like type of network layers, while
features XY ∈ FY encode information like seasonality or stationarity that describe the temporal
data. More details about the meta-features in our experiments are given in Section 4.2. Training
the meta-regressors f̂i requires collecting a property database D of meta-features and PCR function
values for different configurations, i.e. , D = {(XY, Xm; fi(Y,m))}. With the aforementioned “no
free lunch” theorem in mind, cross-validatation across the database helps identify the best regression
method for each property, i.e., the one with lowest reconstruction error:

min
f̂i

∑
(XY,Xm;fi(Y,m))∈D

|fi(Y,m)− f̂i(XY, Xm)| (3)

Given the property weights and meta-features of a new data set, one can now estimate solution(s)
for Equation (1) by running regression queries for the meta-feature of all models, instead of redun-
dantly applying them to Y. By replacing all fi for the meta-predictions f̂i, we can easily calculate
estimated compound scores F̂ (x). To give an alternative approach, one could train a global rec-
ommendation model to directly learn the compound scores F . However, this would not allow for
estimating or controlling the individual PCR properties, which makes the model selection less trans-
parent and interactive. We later also show empiric evidence that this approach - as expected - does
not perform better than a compositional recommender, which uses Equation (1) to aggregate the
outputs of individually trained models.

3.4 EXPLAINABILITY ASPECTS

We argue our presented PCR-aware model selection to be explainable as it offers insights on many
different levels. Firstly, for any query, our method provides by-product explanations in the form of
estimates for all property functions. They inform interested users about the recommendation’s esti-
mated PCR trade-offs, explaining to what extent it is expected to exhibit each property. Thanks to
the relative index scales (recall Section 3.2), this information highly comprehensible in itself: a score
of 0.4 implies that this model achieves 40% of the best empiric result observed in D. Our model se-
lection can be made even more explainable by explicitly using interpretable meta-regressors (Rudin,
2019). More precisely, meta-regressors equipped with probabilities or feature importance enable to
investigate the link between model recommendations and certain data characteristics. Performing a
sensitivity analysis would allow to go even deeper, and explore how changing these characteristics
impacts the model recommendation.

In addition, interactions have been shown to potentially improve trust and explainability (Beckh
et al., 2023), which also applies to our framework. By interactively prioritizing individual prop-
erties, the selection process becomes controllable and thus transparent. It also enables users to
specifically prioritize less complex, or in other words, more interpretable models. Lastly, model
recommendations and PCR trade-offs can be made more comprehensible to non-experts via discrete
ratings and informative labels (Fischer et al., 2022) - this is readily implemented in our exploration
tool. In summary, all these factors contribute to trusting our proposed model selection.

4 EXPERIMENTS

We now investigate the practicability of our methodology. To assemble the 114 data sets, we split 19
original Monash data sets (Godahewa et al., 2021) from various domains into five cross-validation
groups and increased their size by sub-sampling variants of each data set. We tested all DNNs
in the benchmark, namely Feed-Forward (FFO), DeepAR (DAR), N-BEATS (NBE) and WaveNet
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Table 1: Forecasting properties with impact on compound score

Property Group Weight
Test MASE Performance 0.111
Test RMSE Performance 0.111
Test MAPE Performance 0.111
Number of Parameters Complexity 0.167
Model Size on Disc Complexity 0.167
Training Power Draw Resources 0.083
Training Time Resources 0.083
Power Draw per Inference Resources 0.083
Running Time per Inference Resources 0.083

Table 2: Error measures for as-
sessing the meta-learner quality

(a) ϵ = |f − f̂ |

(b) ϵ
!
< 0.1

(c) maxm f
!
= maxm f̂

(d) maxm f ∈ {top-5m f̂}
(e) {top-5m f} ∩ {top-5m f̂}

Table 3: PCR-aware performance (compound score) of DNNs across Monash data sets

Data set DAR DFA DRP DST FFO GPF MQC MQR NBE TFT WVN
Austr..and 0.21 0.05 0.11 0.18 0.73 0.34 0.12 0.06 0.32 0.28 0.22
Car Parts 0.36 0.64 0.52 0.27 0.63 0.58 0.59 0.57 0.21 0.37 0.27
CIF 2016 0.26 0.22 0.22 0.15 0.72 0.52 0.48 0.25 0.22 0.28 0.16
Dominick 0.43 0.43 0.45 0.34 0.75 0.48 0.52 0.51 0.23 0.63 0.33
Elect..kly 0.40 0.32 0.23 0.27 0.73 0.41 0.46 0.18 0.24 0.35 0.19
FRED-MD 0.24 0.40 0.24 0.14 0.71 0.55 0.40 0.20 0.21 0.33 0.22
Hospital 0.43 0.39 0.26 0.44 0.69 0.59 0.61 0.42 0.24 0.45 0.29
M1 Monthly 0.38 0.44 0.26 0.40 0.61 0.69 0.51 0.24 0.21 0.42 0.16
M1 Qu..rly 0.36 0.40 0.30 0.35 0.68 0.59 0.53 0.30 0.26 0.32 0.31
M3 Monthly 0.37 0.53 0.25 0.35 0.60 0.53 0.57 0.40 0.28 0.38 0.29
M3 Qu..rly 0.35 0.40 0.26 0.41 0.62 0.44 0.49 0.28 0.28 0.33 0.33
M4 Hourly 0.22 0.33 0.25 0.32 0.62 0.22 0.21 0.06 0.19 0.20 0.25
M4 Weekly 0.38 0.33 0.25 0.30 0.71 0.44 0.69 0.27 0.27 0.43 0.27
NN5 Daily 0.36 0.59 0.32 0.35 0.64 0.47 0.57 0.47 0.23 0.29 0.33
NN5 Weekly 0.38 0.37 0.23 0.33 0.71 0.60 0.50 0.44 0.26 0.32 0.25
Solar..kly 0.43 0.38 0.28 0.07 0.65 0.60 0.59 0.33 0.20 0.30 0.15
Touri..hly 0.34 0.37 0.29 0.28 0.59 0.62 0.46 0.27 0.26 0.27 0.17
Touri..rly 0.47 0.38 0.29 0.28 0.72 0.47 0.52 0.24 0.25 0.32 0.24
Traff..kly 0.34 0.43 0.35 0.26 0.72 0.46 0.47 0.50 0.24 0.33 0.22

(WVN), and extended it to also include DeepFactor (DFA), DeepState (DST), Deep Renewal Pro-
cesses (DRP), GPForecaster (GPF), MQ-CNN & MQ-RNN (MQC & MQC) and Temporal Fusion
Transformer (TFT), totaling in |M | = 11 competing models (literary provided in Section 2.1). Ta-
ble 1 lists the nine properties for functions fi in Equation (1), which describe training and inference
behaviour. Weights wi were chosen to mitigate correlations (e.g., different errors) but still main-
tain a sound trade-off – in sum, each PCR group is equally weighted. Besides the well-known root
mean squared error (RMSE), we also investigate the mean absolute scaled (MASE) and percentage
(MAPE) error that are specialized for time series (Hyndman & Koehler, 2006). Our implementa-
tion uses GluonTS (Alexandrov et al., 2020) for deep learning, CodeCarbon (Schmidt et al., 2021)
for profiling and Scikit-learn (Pedregosa et al., 2011) for meta-learning. All experiments were per-
formed on a single PC with Xeon W-2155 CPU and took about two weeks, with total estimated
carbon emissions of 24 CO2e (Lacoste et al., 2019). Note that the computational effort stems mostly
from training the 114 × 11 = 1254 DNNs – running X-PCR selection (i.e., training and evaluating
the meta-regressors on the property database) only requires a few seconds. Code, hyperparameters,
and logs are available at github.com/tmplxz/xpcr, including an exploration tool for interac-
tively discovering the forecasting efficiency landscape (preliminarily published for reviewers).

4.1 PCR TRADE-OFFS WHEN FORECASTING WITH DNNS

Firstly, we improve upon the benchmark of Godahewa et al. (2021) by investigating the PCR trade-
off instead of merely reporting error measures. Table 3 lists the compound scores obtained from
Equation (1) for each Monash data × DNN combination. It clearly shows how each method’s ca-
pabilities change with the data at hand, but generally, FFO appears to make good efficiency trades.
To investigate this in more detail, we can explore the multi-dimensional space of properties. Exem-
plary, we display the inference running time versus MASE and training power draw versus RMSE
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Figure 2: Trade-off between inference running time, training power draw, and prediction errors on
Car Parts data (maximization indicating better performance). Point colors express the compound
score, with four highly influential factors being displayed here. DST and FFO seem to trade best.

Table 4: Prediction error [MASE] and power draw [kWh] of different model search approaches

Data set X-PCR Random AutoKeras Exhaustive
MASE kWh MASE kWh MASE kWh MASE kWh

Austr..and 1.687 29.742 1.257 86.945 13.029 69.940 1.005 913.82
Car Parts 0.471 1.554 0.668 2.943 0.971 8.471 0.456 56.392
CIF 2016 1.029 0.327 1.091 3.528 16.289 2.456 1.029 9.862
Dominick 1.774 28.917 1.580 30.666 2.535 245.08 1.469 1000.4
Elect..kly 2.793 0.971 17.452 2.213 19.886 12.232 1.653 52.556
FRED-MD 1.923 0.566 32758. 0.160 990.52 6.321 0.655 12.307
Hospital 0.761 3.923 0.811 15.572 75.563 20.029 0.761 52.238
M1 Monthly 1.498 4.094 1.744 12.836 1171.8 21.620 1.359 55.363
M1 Qu..rly 1.783 0.855 2.329 0.415 334.97 2.228 1.783 16.553
M3 Monthly 1.164 11.098 1.077 5.226 2.573 80.654 1.018 272.87
M3 Qu..rly 2.085 3.202 120734 0.493 2.673 7.807 1.321 86.256
M4 Hourly 3.137 7.155 9.423 5.145 77216. 212.89 2.801 414.00
M4 Weekly 4.134 4.519 71.787 1.593 25.706 24.626 2.743 71.024
NN5 Daily 0.684 0.802 1.497 0.192 1.212 29.775 0.568 42.706
NN5 Weekly 0.880 1.561 0.949 0.194 1.578 2.164 0.839 38.942
Solar..kly 0.829 0.483 1.049 0.867 1.004 1.242 0.829 23.939
Touri..hly 1.435 3.296 5.711 1.446 6.941 41.297 1.435 58.523
Touri..rly 1.670 0.662 5.741 3.034 12.942 11.994 1.670 24.203
Traff..kly 1.534 5.720 3.204 12.969 5.060 9.744 1.275 106.78

comparisons for the Car Parts data in Figure 2. Each scatter point represents a possible DNN option
colored according to its compound score (also given in Table 3, with four out of nine contributing
properties shown as axes. Keep in mind that due to the index scaling introduced in Section 3.2, each
value needs to be maximized, with 1 indicating the best possible result. For this particular data set,
DFA and FFO score best across all properties.

4.2 CAPABILITIES OF X-PCR MODEL SELECTION

For testing X-PCR, we devised meta-features that describe the model and data. They constitute in-
formation on seasonality and forecast horizon of each data set (given in the Monash code repository),
averaged statistics across all series (length, mean, min, max), as well as one-hot encoded informa-
tion on model choice, totaling in a data shape of (1254, 21). Regarding meta-learner options, we
restricted the search space M to simple and interpretable models (Rudin, 2019) like support vec-
tor regressors and decision trees - exact details are given in our code base. The best regressor per
property was determined via the aforementioned grouped cross-validation, which in order to prevent
information leak assigned all variants of a data set to either train or test split.

Let us first investigate the efficiency of utilizing X-PCR selection over randomly choosing a model
per data set, deploying AutoKeras (Jin et al., 2019), or exhaustively testing all suggested DNNs.
The resulting MASE and computational effort of each model search approach is given in Table 4. It
clearly shows the superiority of X-PCR selection, which in most cases beats random selection and
performs dramatically better than AutoKeras. Solving the problem via brute force by exhaustively
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Figure 3: Relative best MASE and required power draw of testing the top-k recommended models
for all 114 data sets (red) and averaged (black). The relative values are measured based on the naive
approach of testing all models for finding the optimum. Testing the top two models provides an
average relative MASE of 85% at less than 20% of the energy cost.
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Figure 4: Properties of optimal and best-recommended models. Individual properties can diverge,
but the compound scores are very close. On Hospital data, the actual best model was recommended.

training all models sometimes achieves even lower errors, however, it also requires much more
computational effort. By testing the top-k recommended models, we can evaluate how many X-
PCRrecommendations are needed to get optimal results. This is visualized for all 114 data sets in
Figure 3, with MASE and power draw being compared relatively to exhaustively testing all DNNs.
On average (black), 85% of the best possible MASE can already be achieved by just testing the two
models scored best by X-PCR, requiring less than 20% of the amount of energy. In nearly all cases,
the best-performing model will be under the top-5 recommendations.

By now it should have become clear that any model’s performance on particular data needs to
be understood as a point in a complex space of properties. We exemplary visualize these multi-
dimensional trade-offs of actual best and recommended DNNs via star plots in Figure 4. We pur-
posefully selected two data sets where X-PCRfails to recommend the best model to obtain diverging
star shapes. It shows how both models behave quite differently, but still score well on Equation (1).

To demonstrate the explainability of X-PCRmodel selection, Figure 5 shows exemplary explanations
of our method. It firstly informs on which (estimated) properties mostly contribute to the estimated
compound score, or in other words, support the model recommendation. In this example, we see
that the estimated MASE of FFO makes it a favorable choice for the Car Parts data. Our method also
allows users to dig deeper by querying the interpretable property estimation models for meta-feature
importance. In this case, we see that besides model choice, the number of series and average series
minimum value mostly affected the MASE estimate.

Lastly, we investigate the difference between real function values fi and predicted f̂i, as well as
resulting compound scores F and F̂ (recall Equation (3)). For that, we assess the prediction error
(a), the accuracy of scoring an error below a threshold of 0.1 (b), top-1 (c) & top-5 (d) accuracy of
predicting the best obtainable result, and the intersection size of top-5 recommendation and top-5
true best models (e), as defined in Table 2. These error measures are provided in Figure 6 for each in-
dividual property, as well as the compositional and directly estimated compound scores as explained
in Section 3.3. As expected, some properties like training time are harder to predict, while others
(e.g., number of parameters) seem to behave rather deterministic. The compositional recommender
approach outperformes directly estimating the compound scores, which has slightly higher errors.
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Figure 5: Explanations for model recommendation (property contribution to the compound score
estimate – left) and feature importance for any property assessment (here shown for MASE – right).
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Figure 6: Quality of estimating different properties and compound score. Some properties (e.g.,
training time) are harder to predict than others, resulting in higher errors. Directly estimating com-
pound scores performs worse than using our proposed compositional approach. The top-5 accuracy
and intersection are evidence of how testing several recommendations has a high chance of retriev-
ing the optimal solution. Colors indicate each property’s contribution to the compound score (red).

The high top-5 accuracy and intersection support our analysis of Figure 3, demonstrating how test-
ing the best recommendations has a high chance of providing optimal results. The bars are colored
depending on the associated property weight, and thus, the associated contribution to the compound
score (colored in red).

5 CONCLUSION

To conclude, we have introduced a novel approach called X-PCR, which – to the best of our knowl-
edge – is the first explainable and resource-aware take on the task of model selection. While we here
successfully applied it to the domain of time series forecasting with DNNs, our methodology can
be easily generalized for other learning tasks. X-PCR recommends models with the help of a meta-
learning paradigm that pays close attention to multiple objectives grouped into aspects of predictive
error, complexity, and resources. Our solutions for calculating index values and compound scores
enable improved comparability of properties and are beneficial additions to the existing work on as-
sessing the energy efficiency of ML. Any model recommendation is accompanied by multi-level ex-
planations and the interactiveness of our framework allows users to control and understand the model
selection process. In our extensive evaluation, we provided an overview of the performance trade-
offs taking place in time series forecasting and demonstrated the realizability of X-PCR selection.
Considering model complexity and resource efficiency in addition to predictive precision has been
shown to completely change the understanding of SOTA in forecasting. Our method outperformed
competing approaches and was able to achieve near-to-optimal predictive performance (85%) while
only requiring a fraction of the computational effort (20%). We deem our approach highly beneficial
for the domain of meta-learning and model selection, as well as time series forecasting. For future
work, we intend to apply X-PCR to even more data, their respective meta-features, and models.
With our work, we hope to contribute to making both time series analysis and ML in general more
resource-aware and trustworthy.
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energy consumption in machine learning. Journal of Parallel and Distributed Computing, 134:75
– 88, 2019.

10

http://jmlr.org/papers/v21/19-820.html
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2004.07213
https://futurium.ec.europa.eu/en/european-ai-alliance/pages/altai-assessment-list-trustworthy-artificial-intelligence
https://futurium.ec.europa.eu/en/european-ai-alliance/pages/altai-assessment-list-trustworthy-artificial-intelligence


Under review as a conference paper at ICLR 2024

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. In Neural Information Processing Systems Track
on Datasets and Benchmarks, 2021. forthcoming.

Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy. International
journal of forecasting, 22(4):679–688, 2006.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search sys-
tem. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery
& data mining, pp. 1946–1956, 2019.

Tae-Young Kim and Sung-Bae Cho. Predicting residential energy consumption using cnn-lstm neu-
ral networks. Energy, 182:72–81, 2019. ISSN 0360-5442.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.
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