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Abstract

The deployment of large language models
(LLMs) in real-world applications is hindered
by persistent vulnerabilities in safety alignment,
where existing methods remain susceptible to
jailbreak attacks and alignment collapse after
fine-tuning. We observed that this vulnerabil-
ity has two key sources: 1) shallow alignment:
alignment training primarily adjusts shallow
top-layer parameters while neglecting deeper
layers, and 2) the scarcity of safety key neu-
rons and their high overlap with general key
neurons. To address these challenges, we pro-
pose RobustAlign, which enhances alignment
depth and breadth to achieve robust safety align-
ment through two synergistic innovations: (1)
Chain-of-Thought (CoT)-augmented training
data, which increases the information entropy
of training samples, and (2) Synergistic Gra-
dient Scaling to promote deeper and broader
adjustments. Extensive experiments on five
LLMs against six jailbreak attacks demonstrate
RobustAlign’s superiority: it reduces attack
success rates (ASR) by 21%—-63% compared
to state-of-the-art baselines against jailbreak
attacks and subsequent fine-tuning, while pre-
serving downstream task accuracy and introduc-
ing minimal computational overhead (<3%).

1 Introduction

The rapid advancement of large language models
(LLMs) has revolutionized Al applications. How-
ever, persistent security vulnerabilities still hinder
their deployment in real-world scenarios (Jiang
et al., 2024,Chao et al., 2023). Despite extensive
efforts in safety alignment, such as reinforcement
learning from human feedback (RLHF) (Ouyang
et al., 2022) and safe decoding (Xu et al., 2024),
existing alignment methods remain vulnerable to
jailbreak attacks (Jiang et al., 2024) and suffer from
alignment capability collapse after finetuning for
subsequent tasks, as shown in Figure 1. These phe-
nomena demonstrate model vulnerabilities and call
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Figure 1: Top: Jialbreak bypasses the safety alignment.
Mid: Alignment defense success. Bottom: Subsequent
finetuning causes alignment collapse.

for enhanced robustness in safety alignment against
jailbreak attacks and fine-tuning-induced failures.

Recent research has focused on the vulnerability
of LLM alignment(Qi et al., 2024a). It is posited
that this vulnerability may arise from the sparsity
of neurons encoding safety knowledge(Wei et al.,
2024). Our experiments further corroborate that
this sparsity is essentially attributable to the shallow
and narrow nature of safety alignment training.

During safety alignment, there is a propensity
to adjust the shallow top-layer parameters near the
model’s output end, while the intermediate layer
parameters, which are crucial for semantic under-
standing and safety cognition, are often overlooked.
Due to insufficient adjustment, these intermediate
layers are still prone to generating harmful vectors.
In contrast, the top layers are given priority for ad-
justment, leading to the shallowness of alignment
training. Meanwhile, within the same layer, there
is a tendency to adjust a narrow and concentrated
subset of neurons, leading to the narrowness of
alignment training. This inter-layer shallowness
and intra-layer narrowness collectively contribute
to the overall sparsity of safety neurons, which
causes the vulnerability of safety alignment. Ad-
ditionally, our experiment identified a high degree
of overlap between safety task neurons and general



task neurons. This overlap intensifies the detrimen-
tal impact of fine-tuning on safety alignment.

To address these challenges, we propose Ro-
bustAlign, which promotes deeper and broader
safety alignment training to address the shallow-
ness and scarcity separately. RobustAlign enhances
the robustness of alignment capabilities through
two modules: 1)Safety-oriented chain of thought
(CoT) augmented dataset(Wei et al., 2022) in-
creases the information entropy of training sam-
ples and the complexity of alignment tasks, which
promotes the cross-layer union optimization of
multiple neurons and makes alignment training
go deeper and broader. 2) Synergistic Gradient
Scaling adjusts the gradient update amplitude at
the layer and neuron level, to address the unavoid-
able shallowness and narrowness caused by reward
hacking. The two mechanisms are complementary,
synergistically enhancing the robustness of safety
alignment.

Our contributions are three-fold:

Key of vulnerability: Our experiments reveal
that the vulnerability of safety alignment stems
from the focus on shallow layers during training,
as well as the narrow distribution of safety task
neurons and their high overlap with general task
neurons.

Methodological Progress: Our experimental
and theoretical analyses demonstrate that promot-
ing deeper and broader alignment training can en-
hance the robustness of safety alignment. Mean-
while, utlizing CoT-augmented datasets can facili-
tate deeper and broader alignment training.

Empirical Verification: Experiments on five
LLMs against six jailbreak and three subsequent
fintuning attacks show RobustAlign’s significant
advantages. Compared to baselines, it reduces at-
tack success rates (ASR) by 21% - 63% with min-
imal computational overhead (<3%) against jail-
break attacks and subsequent fine-tuning.

2 Observational Experiments

In this chapter, we conduct experimental obser-
vations and in-depth analysis of the vulnerability
of the alignment capability of LLMs. These ob-
servations are mainly reflected in two aspects: 1)
The vulnerability of alignment arises from the shal-
lowness of alignment training, coupled with the
sparsity of safety neurons and their significant over-
lap with general-purpose neurons; 2) By enhanc-
ing the depth and breadth of alignment training,

the robustness of alignment capabilities can be sig-
nificantly improved against jailbreak attacks and
fine-tuning. Notably, the use of chain - of - thought
(CoT) as training data offers an effective approach
to increasing both the depth and breadth of align-
ment training. In Section 2.1, we investigate the
internal causes of the vulnerability of alignment. In
Section 2.2, we describe the research on alleviating
the vulnerability of alignment.

All the experiments in this section use the
Vicuna-13B model as the representative base model
and employ the PKU-RLHF as the dataset. We uti-
lize Direct Preference Optimization (DPO) as the
alignment method. All experiments are carried
out on NVIDIA A100 GPUs with a batch size of
128 samples. Similar properties are also present in
other models, which we will introduce in detail in
the appendix.

2.1 Cause of Vulnerability

The shallowness of alignment To analyze the vul-
nerability of alignment, we decode the hidden vec-
tors of all layers into token distribution sequences.
This allows us to observe and assess alignment
failures during inference when the model is sub-
jected to jailbreak attacks and fine-tuning. The
results in Figure 2 show that both scenarios exhibit
persistent encoding of harmful preferences in the
intermediate layers (layers 14 - 19), while part of
the harmful vectors undergo unstable shifts towards
harmless in the top layers (layers 29 - 31), but still
some vectors remain harmful. This indicates that
alignment failure under jailbreak attacks occurs ear-
lier than the alignment taking effect, with harmful
variables emerging in the middle layers and align-
ment capability shift vector to harmless in the top
layers. When alignment ability in the top layers
fails to shift vectors to harmless, harmful responses
become inevitable. Furthermore, the experiment
shows excessive alignment phenomena in the top
layer, harmless vectors being incorrectly shifted to
harmful, a phenomenon exacerbated after finetun-
ing. This suggests that alignment training tends
to adjust the top layer parameters while neglecting
those in the middle layers.

To further demonstrate the shallowness of align-
ment training, we employ NA-CIA (Chen et al.,
2024) to identify the safety task neurons that signifi-
cantly impact the harmfulness of response. Specific
steps are detailed in Appendix C. Neurons are de-
fined as single-column linear transformations in the
feed-forward network (FFN). The result in figure 3
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Figure 2: Mid layer (layers 14-9) shows the high-
est harmfulness and then gradual decline in top
layer((layers 29-31).

shows that the safety task neurons adjusted dur-
ing alignment training exhibit shallow. Regarding
layer distribution, neurons related to value incli-
nation are primarily located in the middle layers
(layers 14 - 19) and the top layers (around layers 29
- 31). Layers with a large number of safety task neu-
rons significantly impact response safety and store
safety knowledge, so they need adequate training in
alignment training. However, the adjustment of top
layer neurons shown in figure 3 undergoes substan-
tial updates, while the adjustment magnitude in the
middle layers is negligible. This mis-adjustment
of the intermediate layers’ neuron aligns with the
phenomenon that the harmful hidden vector is gen-
erated in the intermediate layer and shifts in the
top layers in the above experiments. In addition, it
has been observed that the adjustment magnitude
of this layer during alignment training is positively
correlated with the number of newly trained safety
task neurons. This serves to further demonstrate
that the shallow alignment training leads to the
sparsity of safety neurons and is associated with
the generation of harmful variables. This further
demonstrates that the shallow alignment training
leads to the sparsity of safety neurons and is asso-
ciated with the generation of harmful variables. To
achieve robust alignment, it’s essential to promote
deeper alignment training and maintain the safety
of vectors throughout the entire reasoning process.

The Narrowness and High Overlap of Safety
Task Neurons

In this section, we further investigated the safety
task neurons, revealing that safety task neurons
are not only narrow but also exhibit a high degree
of overlap with general task neurons, as shown in
the figure 4. This narrowness makes safety neu-
rons sparse and security alignment vulnerable to
being bypassed during jailbreak attacks, leading
to alignment failure. Furthermore, the high de-
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Figure 3: Key neuron by NA-CIA mainly distributed
in the intermediate and top layers. The parameter ad-
justment varies with the number of layers and safety
neurons, but significantly lower than the normal propor-
tion with safety neurons in the intermediate layers.

Neuron Type Distribution Across Model Layers

NERNENENRNARNEEA AR RANRREE

Safety Neutons
Overlap Neurons

gh Safety

High Saf

H

Neuron Proportion

‘ Lél‘y‘ér“N{lmb”er o

Figure 4: The proportion of safety task neurons(green
and yellow) is only 3%. The overlap between safety
task neurons and general task neurons (green) accounts
for 63% of the safety task neurons.

gree of overlap with general task neurons implies
that fine-tuning for the general task can readily
adjust the overlapping safety neurons. This narrow-
ness of safety task neurons and their high overlap
with general task neurons readily result in the col-
lapse of safety-alignment capabilities during sub-
sequent training. To address the narrowness and
high overlap of safety neurons, broader safety neu-
rons should be trained during the safety alignment
process.

2.2 CoT Leads to Deeper and Broader
Alignment

In this section, we explore methods to alleviate the
fragility of alignment and demonstrate that increas-
ing the depth and breadth of alignment training can
enhance the robustness of security alignment when
facing jailbreak attacks and finetuning. We also
derive that CoT data focused on safety can pro-
mote deeper and broader adjustments to enhance
alignment robustness.

Increasing the depth and breadth of align-
ment training promotes alignment robustness:
We increase the step length for adjusting the pa-
rameters in the intermediate layers and encourage
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Figure 5: The left figure shows that compared to con-
ventional training, the two mechanisms lead to a drop
in the attack success rate. The right figure indicates that
both mechanisms boost the growth of safety neurons.

adjustments to previously less updated parameters
to promote alignment training deeper and broader
separately. The results in table 6 show that both
mechanisms reduce the attack success rate against
jailbreak attacks and fine-tuning, as well as allevi-
ate the sparsity of safety neurons. This confirms
that increasing the depth and breadth of alignment
training can significantly enhance the robustness of
alignment capability.

CoT-augmented data can increase the depth
and breadth of alignment to mitigate alignment
vulnerability. CoT data, with its higher infor-
mation entropy and longer text, can more com-
prehensively articulate the value logic in complex
alignment tasks beyond mere Binary classification
of whether to reject the task and provide more infor-
mation for alignment training. This promotes the
cross-layer union optimization of multiple neurons,
thereby increasing the depth and breadth of align-
ment training. We incorporate CoT into the training
data, which describes the cognitive and decision-
making processes of human values. The experimen-
tal results in Figure 5 show that CoT-augmented
datasets lead to more adjustments in the deeper
layers and a broader range of high-magnitude ad-
justments in neurons. This validates that adding
CoT in training data effectively achieves deeper
and broader alignment training, which promotes
the robustness of alignment capability.

We further theoretically analyze the necessity
of CoT to promote deeper and broader alignment
from the perspective of solution space and infor-
mation entropy in appendix F. This experiment
combines empirical observations with theoretical
rigor, directly inspiring the design of RobustAlign
in Section 3.

3 Methodology

This section details the implementation of Ro-
bustAlign. Figure 7 illustrates the overall work-
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Figure 6: Blue represents the distribution of safety task
neurons post conventional training. Orange represents
their distribution after using the CoT-augmented dataset.
The yellow area represents deeper layers.

flow of RobustAlign. It primarily comprises two
modules: CoT Data Generation and Synergistic
Gradient Scaling, which are introduced in Sections
3.1 and 3.2, respectively.

3.1 CoT-Augmented Dataset

We first construct a dataset for CoT to facilitate
subsequent training. We guide aligned reasoning
models (e.g., GPT-03) to generate CoT responses
through meticulously designed prompts. The CoT
not only contains safety reply content but also en-
compasses a series of processes such as thinking,
evaluating, and correcting aspects, including the
potential harmfulness of the question, the required
ethics and standards, whether the initial response
is safe, and how to make corrections. Compared to
the safe response examples in the original training
dataset, CoT responses feature more information
entropy, longer text, and a more detailed and spe-
cific interpretation of the alignment task objectives,
promoting alignment training deeper and broader.
The example of CoT is shown in appendix G.

3.2 Synergistic Gradient Scaling

To further adjustments to deeper layers and more
neurons during the alignment training process, we
adjust the process of parameter gradient updates in
two aspects: deeper and broader.

3.2.1 Promotion of Deeper

To achieve deeper alignment, we propose the
Deeper Gradient Scaling (DGS) module. To en-
courage exploration and adjustment of mid-layer
neurons and prevent premature convergence in the
early training stages, DGS restrained the adjust-
ment of the top-layer neurons. As training pro-
gressed, DGS gradually restored the normal adjust-
ment scope to facilitate model convergence. This
module dynamically adjusts layer-wise parameter
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Figure 7: CoT-Augmented Dataset phase generates the datasets for subsequent training. Synergistic Gradient
Scaling adjust the gradient to promote deeper and broader training.

updating based on their relative positions and train-
ing progress, ensuring a smooth transition of differ-
ent training stages. The Algorithm Pseudocode is
shown in Algorithm 1.

Below, I will introduce the specific implemen-
tation of DGS. More detailed analysis of DGS is
shown in the appendix B.

Relative Position Encoding: For a model with L
trainable layers indexed from O (input) to L — 1
(output), we define:

* A middle-start layer g, typically chosen
near the model’s structural midpoint.

e For layers [ > lniq, compute the normalized
position p € [0, 1]:
I — lmid
Here, p = 0 corresponds to lpig, and p = 1
corresponds to the final layer.

p:

Through Relative Position Encoding, we can nor-
malize the representation of the model’s layers.

Dynamic Decay Coefficient: A time-dependent
coefficient §(t) controls the gradient modulation
intensity, which follows a cosine decay schedule:

0(t) = Ginit - % <1 + cos <7T . ;))

where t is the current epoch, 7' is the total training
epochs, and diyi¢ € [0.3,0.7] is the initial intensity
hyperparameter. The cosine schedule guarantees
0(t) — 0 as t — T, naturally phasing out human
intervention.

Gradient Scaling Rule: The gradient of layer [ is
scaled by a factor a(¢, p):

a(t,p) =1+46(t) - (1 - 2p)

For middle layers (p — 0), gradients are amplified
by 1 4 6(t). And for top layers (p — 1), Gradients
are attenuated by 1 — §(¢). Layers follow a linear
transition, ensuring smooth updates across adjacent
layers.

Integration with Training: The DGS module op-
erates during the backward pass and seamlessly
integrates with standard optimizers (e.g., Adam,
SGD). For each layer I > lq:

VW, «+ VW, - al(t,p)

By applying DGS and the dataset enhanced with
CoT, we achieve control and promote the adjust-
ment magnitude of intermediate layers’ parameters,
thereby eliminating the shallow alignment across
all layers.

3.2.2 Promotion of broader

To address the parameter update imbalance in large-
scale neural networks, we propose Broder gradi-
ent Scaling (BGS), an automated gradient modu-
lation mechanism that encourages diversified neu-
rons adjustment. By suppressing historical high
gradient parameters and promoting low gradient
ones, this module aims to achieve broader neuron
alignment adjustment and training, as detailed in
Algorithm C.

The method operates through three core compo-
nents:
Historical Gradient Participation Tracking. For
each parameter Ql(lj) in layer /, we maintain an ex-
ponential moving average (EMA) of its gradient
magnitude:

¢ = 8-GO - 1)+ (1-8) - IV (1)l

where 5 € [0, 1) controls the smoothing factor,
and || - ||2 denotes the L.2-norm operator. This EMA



captures long-term participation patterns while re-
maining robust to transient gradient fluctuations.
Layer-wise Adaptive Normalization. We com-
pute normalized participation scores within each
layer to establish relative importance:
G — ()

oO(t) +e

!
OB
where ;) (t) and o) (¢) represent the mean and
standard deviation of G() values in layer [ at step
t.

Dynamic Gradient Modulation. We apply con-
tinuous reweighting to gradients using a modified
sigmoidal transformation:

0] 2
a; (t) =
N 1+ exp (’y : SZ(ZJ) (t))

where v > 0 controls the curvature of the
suppression-promotion effect. The modulated gra-
dients become:

0 @ @
Vo, (t) « oy (t) - Vo, (t)

The BGS mechanism establishes a self-
regulating equilibrium through dual effects:

Suppression Dominance: Parameters with per-
sistently high participation scores (Sl-(? > 0) re-

ceive oz@ — 2
,J 1+6+Oo

their update intensity.

Promotion Incentive: Parameters with below-
average participation (Si(’lj? < 0) obtain aflj) —
1%% ~ 2, amplifying their gradient signals.

The continuous mapping in Eq. 3.2.2 ensures
smooth transitions between these states, maintain-

ing training stability.

~ 0, effectively reducing

4 Experiment

In this section, a series of experiments is designed
to evaluate RobustAlign across robustness, useful-
ness, and efficiency.

4.1 Experiment Setup

Attack Datasets: We utilized Advbench(Zou
et al., 2023) and HEx-PHI(Qi et al., 2024b) as
attack query datasets as test datasets to validate the
safety of RobustAlign.

Downstream Tasks Datasets: Truthful QA (Lin
et al., 2022) is comprised of questions that are for-
mulated to challenge the veracity of the model’s
outputs, which are used to evaluate the truthfulness
and reliability of the generated response. GSM8K
(Cobbe et al., 2021) is aimed at evaluating the
model’s proficiency in understanding and solving

complex mathematical problems typically encoun-
tered at the grade school level.

Target model: We validate RobustAlign on five
following models: Vicuna-13b (Mukherjee et al.,
2023), LLaMA2-7b (Touvron et al., 2023), Mis-
tral 7b (Al, 2023), (DeepSeek-Al et al., 2024),
deepseek-rl (DeepSeek-Al et al., 2025) .

Baseline: The detailed baseline settings and spe-
cific configurations for each experiment are de-
scribed in the appendix D.

SafeDecoding (Xu et al., 2024) ensures safe
and reliable outputs by applying constraints dur-
ing the decoding process. Self-Reminder (Xie
et al., 2023) involves incorporating mechanisms
that prompt it to self-check or reflect on its gener-
ated responses. PPL (Perplexity) (Alon and Kam-
fonas, 2023) assesses the uncertainty in a model’s
output and detects potentially harmful or nonsen-
sical responses. RLHF (Reinforcement Learning
from Human Feedback) (Ouyang et al., 2022) re-
fines an LLM using reinforcement learning. Retok-
enization (Jain et al., 2023) adjusts the tokenization
process to modify or restrict the vocabulary or in-
put sequences. AED (Liu et al., 2024) (Adversarial
Example Detection) identifies and filters adversar-
ial inputs or examples that might cause a model to
behave unpredictably or maliciously.

Evaluation Metrics: Attack Success Rate
(ASR) is utilized as the metric to evaluate the align-
ment security. We use llama-guard (Team, 2024),
and the manually review to judge the response harm
assessment. For downstream task, we use accuracy
(ACC) as the evaluation indicator.

4.2 Experimental Results
4.2.1 Robustness against Jailbreak

Table 1 shows that RobustAlign achieves the low-
est ASR on almost all models. In particular, for
jailbreak methods such as CodeAttacking, baseline
alignment methods offer little mitigation, while
RobustAlign significantly reduces the ASR. Espe-
cially on large reasoning models, RobustAlign not
only ensures the harmlessness of solutions but also
maintains the lowest harmfulness during the CoT
process compared to other methods. This proves
that RobustAlign significantly enhances the robust-
ness against adversarial methods.

4.2.2 Robustness Against Fine-tuning

Table 2 shows the ASR of RobustAlign on five
models after finetuning. The results show that Ro-
bustAlign achieves the lowest ASR across almost



Model Method No Attack] | GCGJ] [ AutoDAN] | codeattack] | Pair] [ ArtPrompt]
No Defense 0.0% 37.68% 27.83% 57.59% 29.40% 43.33%
PPL 0.0% % 0.0% 10.50% 45.46% 18.90% 37.87%
RLHF 1.24% 5.09% 5.85% 16.53% 14.72% 14.47 %
Self-Reminder 0.0% 3.22% 12.61% 24.66% 19.49% 17.80 %
Llama2-7B-Chat-HE Retokenization 0.0% 6.59% 11.11% 50.13% 12.93% 36.19 %
AED 0.0% 8.00% 6.1% 22.61% 17.56% 16.01 %
Safedecoding 0.95% 2.38% 6.83% 18.05% 3.47% 14.82 %
RobustAlign 0.0% 1.66% 5.95% 4.92% 4.11% 7.03%
No Defense 0.0% 93.97% 80.15% 58.32% 92.40% 40.99%
PPL 8.06% 0.0% 84.00% 50.41% 81.90% 42.13%
RLHF 7.03% 12.18% 18.25% 26.53% 25.44% 13.95%
Self-Reminder 0.0% 41.53% 21.31% 40.10% 46.03% 29.09%
Vicuna-13B Retokenization 40.85% 67.51% 31.97% 50.13% 77.14% 36.38%
AED 0.0% 13.88% 21.48% 31.57% 35.22% 13.44%
Safedecoding 0.0% 12.03% 27.98% 36.52% 10.26% 28.25%
RobustAlign 0.0% 4.40% 15.53% 18.55% 9.50% 13.05%
No Defense 0.0% 100.00% 96.18% 68.80% 62.83% 64.02%
PPL 0.0% 0.0% 18.17% 29.55% 13.47% 45.99%
RLHF 0.12% 9.61% 16.79% 17.59% 21.09% 18.65%
Self-Reminder 0.0% 5.35% 18.70% 22.21% 35.65% 17.14%
Mistral-7B Retokenization 5.79% 13.72% 21.78% 40.50% 35.57% 38.22%
* AED 0.0% 11.72% 18.70% 27.14% 30.12% 24.71%
Safedecoding 0.84% 9.76% 28.53% 28.77% 31.56% 22.87%
RobustAlign 0.0% 4.26% 6.15% 11.56% 11.14% 14.50%
No Defense 8.51% 86.32% 82.12% 46.65% 87.52% 32.79%
PPL 6.45% 0.00% 75.20% 40.33% 65.52% 33.70%
RLHF 5.62% 17.02% 24.60% 23.22% 28.35% 27.16%
Self-Reminder 0.00% 33.22% 17.05% 32.08% 36.82% 23.28%
Deepseek-rl Retokenization 32.68% 53.99% 25.58% 40.10% 61.71% 29.10%
AED 0.00% 9.50% 17.18% 25.25% 28.17% 10.73%
Safedecoding 0.00% 3.28% 10.59% 10.88% 18.65% 8.06%
RobustAlign 0.00% 3.02% 8.63% 7.78% 10.40% 4.27%
No Defense 6.81% 73.00% 64.23% 44.32% 73.15% 34.43%
PPL 5.56% 0.00% 54.46% 38.31% 62.29% 32.07%
RLHF 4.84% 15.32% 23.33% 22.11% 27.27% 25.81%
Self-Reminder 0.00% 31.56% 16.20% 30.48% 35.16% 22.14%
Retokenization 29.34% 51.34% 24.30% 38.09% 58.77% 27.65%
QwQ AED 0.00% 8.55% 16.32% 24.01% 26.73% 10.22%
Safedecoding 0.00 % 3.12% 10.12% 10.34% 17.78% 7.71%
RobustAlign 0.00% 2.03% 7.07% 6.71% 7.43% 3.96%

Table 1: The alignment performance(ASR) of applying alignment methods with various jailbreak methods. We bold

the best performing.
Method Llama2-7B | Vicuna-13B | Mistral-7B | Deepseek-rl
RLHF 16.53% 26.53% 17.59% 23.22%
Finetuning 60.47% 55.40% 66.74% 52.25%
SSAH 21.17% 16.62% % 20.02% 15.67%
RESTA 14.52% 15.51% 21.36% 14.63%
RoubustAlign 7.26% 6.65% 8.01% 5.22%

Table 2: The alignment performance(ASR) of applying
alignment methods after subsequent finetuning.

all models.

Furthermore, different downstream
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tasks affect the safety alignment ability differently.
Mathematical tasks have little effect, while liter-
ary tasks have a greater impact. Our neuron-level
analysis shows that fewer safety task neurons are
adjusted with mathematical tasks, while more are
adjusted with literary tasks. This reflects that en-
hancing the breadth of safety alignment to reduce
neuron overlap enhances the robustness.

4.2.3 RobustAlign Alleviated Sparsity

The experimental results in figure 8 reveal that Ro-
bustAlign leads to a broader distribution of safety
task neurons, indicating RobustAlign indeed sig-
nificantly improves the depth and breadth of align-
ment and alleviates the sparsity of safety neurons.

4.2.4 RobustAlign is Helpful

Table 3 presents the impact of RobustAlign on
LLMs’ downstream task performance. The experi-

Layer Number

Figure 8 Our method increases the safety key neuron.

Model Name TruthfulQA | GSM8K
Llama2-chat 41.8 36.5
RLHF 35.7 30.6
PPLM 20.9 17.5
Self-Reminder 394 31.6
Contrastive-Prefixes | 29.1 21.8
Safedecoding 349 34.0
AED 38.2 32.5
RobustAlign 41.7 36.0

Table 3: The generation performance(ACC) of applying
protective methods

ments indicate that RobustAlign achieves the high-
est accuracy in the three downstream tasks, with no
significant changes compared to the original model.
In addition, using a training dataset with CoT also
enhances the reasoning ability of the model to a
certain extent.



Defense Vicuna Llama2
Perplexity 0.88% 0.88 %
Self-Reminder 1.01x 1.01x
Retokenization  1.04 X 1.03x
SafeDecoding 1.07x 1.03x
RobustAlign 1.03x 1.02x

Table 4: Comparison of inference time for Vicuna and
Llama2. The baseline time refers to the inference time
of the model without any defenses.

4.2.5 RobustAlign is Efficient

In Table 4, we compare the inference time and com-
putational latency of RobustAlign Decoding with
SOTA alignment methods. The results show that
the latency of RobustAlign is only 3% in Llama2
and 2% in Vicuna compared to no defense, which
substantiates that it does not affect the computa-
tional efficiency.

4.3 Ablation and Investigation Experiments

Ablation Studies: The table 5 shows the ablation
studies to validate the effectiveness of each module
in RobustAlign The result shows that all mecha-
nisms contribute to enhancing the security of align-
ment capabilities. Although CoT-augmented data,
with higher information entropy and enhanced task
complexity, promotes cross-layer union optimiza-
tion of multiple neurons, it can’t eliminate reward
hacking. This phenomenon simplifies the align-
ment task target, prone to adjusting the top-layer
token selection and specific safety task neurons
for maximum rewards. Synergistic Gradient Scal-
ing forcibly encourages deeper and broader adjust-
ments, which fit the complex task target of CoT and
alleviate the rewards for hackers. In contrast, solely
adjusting gradients may cause non-convergence
due to a limited information-entropy dataset, and
may need collaboration with cot-augmented data.
Thus, these two mechanisms work synergistically
to enhance robust safety alignment.

Attack RoubustAlign  CoT-augmented SGS

No Attack 0.0% 0.0% 0.0%

GCG 1.66% 1.89% 3.98%
AutoDAN 5.95% 6.54% 13.23%
codeattack 4.92% 5.21% 10.54%
Pair 4.11% 4.57% 9.37%
ArtPrompt 7.03% 7.58% 19.65%

Table 5: Ablation experiment of DeepAlign. CoT-
augmented represents only using the CoT-augmented
data module. SGS represents only using the Synergistic
Gradient Scaling Module.

5 Related works

5.1 Existing Work on Model Safety

Many existing studies have already highlighted the
vulnerability of safety alignment. Qi et al. (2024a)
proposed "Shallow Alignment" concept, which in-
dicates that safety strategies constrained to initial
tokens are easily broken by subsequent fine-tuning.
Wei et al. (2024) found that safety-critical regions
are very sparse, accounting for only 3% at the pa-
rameter level. SSAH(Li and Kim, 2024) suggests
that safety alignment mainly focuses on a simple
binary classification task of either refusing or fulfill-
ing requests. Lee et al. (2024) reveals that harmful
knowledge isn’t removed during alignment train-
ing, and jailbreak attacks can elicit it. However, our
work distinguishes itself from these studies by not
only analyzing the intrinsic manifestations of vul-
nerability but also delving into its origins within the
alignment training process and exploring potential
mitigation strategies.

5.2 Alignment Methods

Existing alignment efforts have attempted to im-
prove robustness against fine-tuning and jailbreak
attacks. RESTA(Bhardwaj et al., 2024) can be
re-aligned for safety during fine-tuning via math-
ematical operations on model parameters, restor-
ing model safety by adding safety vectors to fine-
tuned model parameters. SSAH(Li and Kim, 2024)
froze 7.5% of safety-critical components during
fine-tuning. Our approach differs from theirs in
that we enhance the intrinsic robustness of model
alignment without interfering with subsequent fine-
tuning. This allows us to maintain alignment ca-
pabilities while also preserving better downstream
task performance

6 Conclusion

In this work, we observed that the vulnerabil-
ity against jailbreak and fine-tuning has two key
sources: 1) shallow alignment; 2)the narrowness of
safety task neurons and their high overlap with gen-
eral key neurons. We propose RobustAlign, a ro-
bust framework that enhances alignment depth and
breadth to achieve robust alignment through CoT-
augmented dataset and Synergistic Gradient Scal-
ing. Extensive experiments on five LLMs demon-
strate RobustAlign’s superiority: it reduces ASR
by 21%-63% compared to baselines while preserv-
ing downstream task capability and computational
efficiency (<3% overhead).



Limitations

While RobustAlign demonstrates significant im-
provements in adversarial robustness, several limi-
tations merit consideration. First, our experiments
are primarily conducted on models with up to 13B
parameters (e.g., LLaMA-2-7B, Vicuna-13B), ex-
cept two reasoning models. The scalability of
RobustAlign to larger-scale models remains unex-
plored, as deeper architectures may exhibit distinct
layer dynamics or computational bottlenecks.

Second, while RobustAlign preserves down-
stream task performance, its efficacy in multilin-
gual or culturally diverse contexts remains untested,
potentially limiting its applicability to global de-
ployment scenarios.

Finally, the reliance on synthetic CoT annota-
tions generated by GPT-30 introduces implicit bi-
ases, which may affect generalization to real-world,
open-ended queries. We will use both manual and
more generative approaches to construct security-
focused chains of thought to improve the availabil-
ity of our datasets
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A Hyperparameter Selection

In this section, we analyze the range of intermedi-
ate layer selection for RobustAlign. Through exper-
imental results in figure 9, we found that the ASR
is lowest when the intermediate layer range is (14-
19). This aligns with our findings from NA-CIA,
where key neurons are concentrated in layers 14
to 19. When the intermediate layer is selected too
low, it may disrupt the model’s basic grammatical
capabilities, greatly impairing the model’s genera-
tion and alignment abilities. When the intermediate
layer range is selected too high, it may prevent the
alignment training from adjusting deeper layers,
still resulting in shallow alignment and a harmful
response.

B Design Rationale of DGS

B.1 Motivation and Key Insights

Modern pre-trained models exhibit imbalanced pa-
rameter adaptation during fine-tuning, where top
layers rapidly overfit to downstream tasks while
middle layers remain under-optimized. Our smooth
progressive gradient scaling (DGS) mechanism ad-
dresses this challenge through three fundamental
insights:
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ASR Distribution by Intermediate Layer Selection

v
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Figure 9: Z axis is the ASR Rate compared to the mini-
mize ASR

Algorithm 1 Deeper Gradient Scaling (DGS)

Require: Model M, start of intermediate layer
Imid, total epochs T, Sini¢
Ensure: Optimized model parameters
0: Precompute relative positions {p;} for | >

Imid
: forepocht =0to7T — 1 do
Compute §(t) = Ot - 0.5 (1 4 cos(wt/T))
for each batch (z,y) do
Forward pass: § = M(z)
Compute loss £ = Lsk (9, y)
Backward pass: V.C
for layer [ > lq do
Retrieve p;
o =1+ 38(t)(1 - 2p))
VI/VZ — VI/Vl -
end for
Update parameters via optimizer
end for
end for
=0

* Position-Aware Adaptation: Middle layers
require stronger gradient signals early in train-
ing to overcome initialization bias from pre-
trained weights.

* Dynamic Priority Shift: The optimal layer-
wise update ratio evolves non-linearly during
fine-tuning, requiring time-dependent modu-
lation.

* Optimization Stability: Abrupt gradient scal-
ing changes cause training divergence, neces-
sitating smooth transitions.

B.2 Cosine Decay Schedule Analysis

The time-dependent intensity factor (t) follows a
cosine annealing schedule:
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Table 6: Decay strategy comparison on GLUE bench-
mark (average of 5 runs)

Strategy MNLI-m QQP SST-2
Cosine (Ours) 86.7 91.2 93.1
Linear 85.9 903 924
Stepwise 84.1 89.7 918
No decay 83.3 88.9 90.5

5(t) = init';<1+COS (w%)) (1)

This design provides three key advantages over
linear/stepwise alternatives:

* Gentle Initial Phase: Preserves 95% of ini-
tial intensity until ¢ > 0.17" (vs. 90% for lin-
ear decay), maintaining early-stage adaptation
momentum.

e Natural Curriculum Learning: The
concave-convex transition mimics human
learning patterns .

* Derivative Continuity: Ensures ‘é—‘z remains

bounded, preventing gradient oscillation:

do|  minit

dt| = T 2)

max

B.3 Empirical Validation

Table 6 demonstrates our cosine schedule’s effec-
tiveness across multiple NLP tasks. The consistent
0.8-1.3% improvement over linear decay highlights
its curriculum learning advantage. Further analysis
reveals:

* 23% reduction in training loss variance com-
pared to stepwise decay

* 15% faster middle-layer feature alignment
(measured by CKA similarity)

B.4 Architecture Compatibility

Our experiments cover diverse model architectures:

¢ Transformers: RoOBERTa , DeBERTa
¢ CNNs: ResNet-50 , ConvNeXt
* Hybrids: FLAVA

The consistent performance gains suggest DGS
generalizes beyond architectural specifics. This
universality stems from layer-wise position encod-
ing rather than structural assumptions.

Cosine Decay Schedule (Gini = 0.6)
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Figure 10: The figure of Cosine Decay
Algorithm 2 BGS Gradient Modulation

0: Input: Model parameters {6()}, smoothing
factor (3, curvature ~y

0: for each training step ¢ do

0:  for each layer [ do

0: Compute gradients VO (t) via back-
propagation

0: Update EMA statistics G()(t) using
Eq.3.2.2

0: Calculate normalized scores S (t) via
Eq.3.2.2

0: Compute modulation coefficients /¥ ()
via Eq. 3.2.2

0: Apply gradient modulation VO () «
oD (t) © VoD (t)

0: end for

0: Update parameters using base optimizer
(Adam/SGD)

0: end for=0

C Design Rationale of BGS

D Baseline Setup

Here’s the translation of your description into En-
glish, suitable for an academic setting within a
research paper on LLMI alignment:

Experimental Setup Supervised Fine-Tuning
(SFT) For SFT, we randomly sampled 20% of the
dataset for training purposes. The model was fine-
tuned using the Supervised Fine-Tuning method
with the following configuration:

Precision: fp16 Trainer configuration: Number
of nodes: 1 Number of devices: 2 Micro batch size:
1 Global batch size: 32 Maximum sequence length:
1024 Learning rate: 1e-5 Reinforcement Learning
from Human Feedback (RLHF) We randomly se-
lected 20% of the dataset for training. Initially,
20% of the training set was used for SFT with iden-
tical settings as mentioned above. Post SFT, we
applied Proximal Policy Optimization (PPO) for



reinforcement learning on the RLHF dataset, which
consists of concatenated forms of original prompts
with positive and negative examples, formatted as:

text: promptllresponse The reward model was
trained using the same foundational model as the
original model. During PPO execution, we ref-
erenced Nvidia’s PPO hyperparameter settings to
ensure stability. The parameters set for the rein-
forcement learning phase were:

Optimizer learning rate: 5e-6 Global batch size:
16 PPO entropy bonus: 0.0 PPO ratio epsilon: 0.2
Plug and Play Language Model (PPLM) In PPLM,
we utilized a multilayer perceptron as the classifier
model with the following settings:

Length: 100 Gamma: 1.0 Step size: 0.05 Win-
dow size: 5 KL scale: 0.01 Self-reminder In
the self-reminder approach, we adopted OpenAl’s
safety assessment to determine whether each round
of generation was safe or a successful attack. We
iterated up to a maximum of five rounds for each
attack. The process of feedback and generation
was terminated when the model-generated text was
deemed safe or upon reaching the maximum num-
ber of iterations.

Contrastive Prefixes During the prefix selection
process, we adopted a supervised prefix selection
method. Following OpenAl’s classification stan-
dards, scenarios were divided into 13 harmful cate-
gories plus one harmless category. For each cate-
gory, safe reminder prefixes were pre-prepared to
initialize each class prefix. Prefix lengths were set
between 30 to 50 characters. For training losses
w1 and w2, we set the weights as 0.6 and 0.4, re-
spectively, to emphasize the defensive nature of the
prefixes against specific types of attacks.

E Experimental Procedure, Settings and
Results for NA-ICA

In this section, the experimental process of NA-
ICA is introduced, along with the setting of hy-
perparameters and the results of the experiment.
It provides a more detailed description of the ex-
perimental steps of RobustAlign and the discovery
of key neurons related to value cognition within
LLMs.

E.1 Experimental Procedure

The experimental procedure for evaluating the NA-
ICA framework involved a systematic approach to
identifying and analyzing key neurons in autore-
gressive language models, particularly LLaMA-7B,
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Chatglm-7bB, Vicuna-13B, and Mistral-7B. This
procedure can be outlined as follows:

First, the task of identifying key neurons began
with the transformation of open-ended questions
into a multiple-choice question-answering (QA)
format. This transformation was necessary because
long-form text generation presents challenges that
are difficult to address using traditional methods
focused on single-token predictions. By converting
complex queries into multiple-choice questions, the
model was constrained to produce a simple letter
corresponding to the correct option, thus simplify-
ing the subsequent analysis.

To ensure the robustness of this transformation,
several distinct prompt templates were employed.
Each question was instantiated with different tem-
plates to minimize the potential biases introduced
by specific phrasing or prompt structures. Addition-
ally, the order of the multiple-choice options was
systematically shuffled across different instances,
further reducing the likelihood of the model learn-
ing spurious correlations between the options and
the correct answers.

Once the questions were transformed, the next
phase involved calculating the Neuron Attribution
scores. The NA-ICA framework extended the
Knowledge Attribution method to work with the
Gated Linear Units (GLUs) present in modern large
language models (LLMs) like LLaMA-7B. The
attribution score for each neuron was computed
based on its relevance to the given query. This pro-
cess is analogous to the term frequency component
in the TF-IDF (Term Frequency-Inverse Document
Frequency) method used for keyword extraction.
Neurons with higher attribution scores were con-
sidered more relevant to the query.

However, not all high-scoring neurons are cru-
cial to the specific query. To refine the selection of
key neurons, the Inverse Cluster Attribution (ICA)
was introduced. This step involved identifying neu-
rons that appeared frequently across different clus-
ters or queries and adjusting their scores accord-
ingly. The rationale behind this is that neurons
appearing in multiple contexts likely represent gen-
eral or common knowledge, rather than being spe-
cific to the query at hand. By computing the ICA,
these common neurons were down-weighted, en-
suring that only the most query-relevant neurons
were identified.

After calculating the NA-ICA scores by com-
bining the Neuron Attribution and ICA scores, a
further refinement was made by identifying and



removing common neurons. These common neu-
rons typically correspond to frequently used words,
punctuation marks, or option letters such as "A" or
"B". Their removal was essential to prevent these
non-specific elements from skewing the analysis
and to enhance the precision of key neuron detec-
tion.

With the refined set of key neurons, the ex-
perimental procedure then focused on evaluating
their impact on the model’s predictions. This was
done by systematically boosting or suppressing the
identified key neurons and observing the resulting
changes in the model’s output probabilities. The ef-
fectiveness of the key neurons was assessed based
on how significantly they influenced the correct pre-
dictions compared to unrelated queries. This phase
of the experiment provided quantitative evidence
of the importance of the detected neurons.

Additionally, the distribution of these key neu-
rons within the model’s layers was analyzed. By
visualizing their geographical distribution across
the 32 layers of LLaMA-7B, the study revealed
that key neurons tended to cluster in specific layers,
particularly in the intermediate and top layers. This
finding suggested the presence of localized regions
within the model, where value-specific knowledge
is concentrated.

To validate the generalizability of the NA-ICA
framework, the experiments were replicated using
the Mistral-7B model. The consistency of results
across these different models confirmed the robust-
ness of the proposed method and its applicability
to various autoregressive LLM architectures.

E.2 Experimental Hyperparameters

The NA-ICA framework was evaluated using the
following hyperparameters:

* Model Used: LLaMA-7B, an autoregres-
sive language model, Mistral-7B,chatGLM-
7b, and vicuna 13b. LLaMA-7B consists of
32 layers with an FFN hidden dimension of.

Estimation Steps (m): 16 steps were used to
estimate the attribution scores of neurons.

e Attribution Threshold (¢): The threshold
was set to 0.2 times the maximum attribution
score for identifying key neurons.

Template Number (|Q|): 3 templates were
employed in the multi-choice QA task to miti-
gate prompt-induced bias.
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* Frequency for Common Neurons (u): 30%
was used as the threshold for determining com-
mon neurons.

* Top-v Key Neurons: The top 20 neurons with
the highest NA-ICA scores were selected for
further analysis.

* Hardware: The experiments were conducted
on eight NVIDIA-A100 GPUs, with an aver-
age of 80 seconds required to locate neurons
for a query using five prompt templates.

E.3 Experimental Results

* Key Neurons Detection: On average, be-
tween 12 and 17 key neurons were detected
per value related safety. Each value exhibited
higher overlap rates compared to other topics,
indicating interdisciplinary connections.

* Layer Distribution: Key neurons were pre-
dominantly located in the intermediate lay-
ers (16-19) and top layers (around 30) of the
model. We believe that the intermediate neu-
rons are those responsible for value cognition,
while the top-layer neurons are the ones that
directly influence the responses.

* Impact on Predictions: The NA-ICA method
significantly influenced model predictions by
boosting or suppressing key neurons.

* Localized Regions: Analysis revealed dis-
tinct localized regions for different domains,
especially in the intermediate layers. Value
recognition neurons were more sparsely dis-
tributed but showed some regional specificity.

* Cross-Model Consistency: The NA-ICA
framework was validated on both LLaMA-
7B, chatglm-7b, vicuna-13b and Mistral-7B,
with consistent findings across these models.

F Theory proof of long CoT in alignment

This section provides a formal proof of how Chain-
of-Thought (CoT) training drives deeper (closer to
input layers) and broader (more neurons per layer)
parameter adjustments compared to standard fine-
tuning. We unify perspectives from information
theory, task complexity, and gradient propagation
to establish a rigorous theoretical foundation.



1. Gradient Propagation Mechanisms

[Loss Functions]

* Standard Fine-Tuning: Minimizes the cross-
entropy loss between the final output y/preq and
ground truth Yrye:

Ltandard = IEf(ac,y) [_ log P(y\x; 9)] 3)

* CoT Training: Minimizes a multi-step loss
over T intermediate reasoning steps {z }7_;:

T
Leor =B (21 | —log Platlz, 21415

t=1
“)

[Gradient Depth Distribution] CoT training in-
duces stronger gradient signals in deeper layers due
to cumulative backpropagation through intermedi-
ate steps.

For a network with L layers, let W denote pa-
rameters at layer [. The gradient for W; under CoT
training is:

T

where £; is the loss at step ¢. In standard fine-
tuning, gradients primarily flow through the final
layer (I = L), suffering from gradient decay in
deeper layers due to the chain rule:

8ﬁCoT
oW

0L

W (&)

0 ['standard
oW,

L-1
o [T o' Wiar—1) - [Wigall )
k=l

where o’ is the derivative of the activation function.
For CoT, intermediate losses £; directly inject gra-
dients into layers | < L — t, bypassing gradient
decay. Thus, deeper layers (I < L) receive non-
vanishing updates proportional to 7.

[Deeper Adaptation] CoT training increases the
effective depth of parameter updates by a factor
of O(T'), where T' is the number of intermediate
steps.

2. Information-Theoretic Analysis

[Entropy and Mutual Information]

* The entropy H (X ) measures uncertainty in
data X.

» The mutual information I(X;Y’) quantifies
the information shared between X and Y.

0)
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[Information Advantage of CoT] CoT data
strictly contains more information than standard
data.

Let X denote the input, Y the output, and Z =
{Z1, ..., Z1} the intermediate steps.

* Standard Data: Joint entropy Hgandard =
H(X,Y)=H(X)+ H(Y|X).

* CoT Data: Joint entropy
HCOT H(X7Z7Y) H(X) +

z?:l H(Zt‘Xv Zl:t—l) + H(Y|X, Z)

Since H(Zy| X, Z1.4—1) > 0 for non-trivial tasks,
it follows that:
HCoT > H, standard (7)

Furthermore, CoT enhances mutual information
between input and output via intermediate steps:

ICOT(X;Y) = I(X7Y)—|—I(Z,Y|X) > Istandzu‘d(X;Y)

(®)

[Broader Neuron Activation] To encode the ad-

ditional information H(Z|X), CoT forces more

neurons to activate per layer. For a layer [ with

ReLU activations, the expected number of active
neurons is:

E[[|a;][o] oc P(Wia;—1 > 0) )

Under CoT, the variance of Wja;_; increases due
to multi-modal reasoning demands, leading to
P(Wyar_1 > 0) 1.

3. Task Complexity and Circuit Depth
Reduction

[Complexity-Theoretic Advantage] CoT decom-
poses complex tasks into shallow circuits, reducing
the required model depth.

Let C be a Boolean circuit of depth d solving a
task.

» Standard Training: Requires a network of
depth (d) to simulate C (Hastad, 1986).

* CoT Training: Decomposes C into 7" sub-
circuits {C; }7_;, each of depth O(1). A Trans-
former with constant depth L can simulate C
by iterating over 1" steps (Vyas et al., 2023).

[Parameter Adaptation Scope] CoT’s stepwise
computation necessitates coordinating parameters
across layers to propagate intermediate states. For
a Transformer, this requires:



1. Deeper Adjustments: Middle layers (I ~
L/2) learn to route information between rea-
soning steps (via attention heads).

2. Broader Adjustments: Feed-forward net-
works (FFNs) within layers activate more neu-
rons to represent transient states z;.

This theoretical framework rigorously explains
why CoT enhances model performance on complex
reasoning tasks, and promotes deeper and broader
alignment.

F.1 Solution Domain

We further analyze the impact of long CoT context
on alignment consistency from a solution domain
perspective.

We first discuss linear computational compo-
nents without loss of generality.

Let n-th computation module W,, input X, to tar-
get n+1-th target Y, 1 via Wy, 1 (W, X)) = Yoq1.
When Y, is sparse and simple, Y, lies within
the column space COL(X,). Just adjust W,, 11 to
fit Y;,+1, leaving W, 1 unchanged. While Long
CoT context expands Y,,1’s rank and dimension-
ality. If Y, 11 exceeds COL(X,,), the model must
jointly update W,, and W,, 11 to expand COL(X,,)
forcing former layer adjustments.

The same inclusion relationship still exists in the
column space after nonlinear computation. Thus
long CoT context increases optimization complex-
ity and promotes the adjustments of deeper layers
parameters.

G CoT Data Generation

For each (query, safe_response) pair in the orig-
inal safety dataset, we generate a corresponding
CoT through GPT 03 with a structured prompt that
elicits a four-layer reasoning CoT:

¢ Identification of ethical conflicts and risk di-
mensions in the query

* Mapping to predefined safety principles and
human value cognition

 Elimination of non-compliant response paths
with harm analysis

» Step-wise derivation of value-aligned re-
sponses

We combined the CoT and safe_response,
forming enhanced training data (query,

CoT+safe_response).  The dataset enhanced
with CoT facilitates alignment training further up
the model layer.

The example of CoT response is shown below:

CoT Example

Step 1: Analyze the Harmful Output’s
Categories and Elements

[itemize]itemsep=0ptThe re-
sponse falls under the category of
providing actionable advice for
illegal ...

[itemize]itemsep=0pt

* — Explicit Guidance: The reply
breaks down logistical factors...

Step 2: Reflect on Overlooked Values and
Norms

[itemize]itemsep=0ptLegal Responsi-
bility: The model should prioritize dis-
couraging ...

Step 3: Identify Content to Produce and
Modify

[itemize]itemsep=0ptRequired
Content for Safe Output:
[itemize]itemsep=0pt

e — Explicit Refusal: Clearly state
that the model cannot assist ...
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