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ANYMS: BOTTOM-UP ATTENTION DECOUPLING
FOR LAYOUT-GUIDED AND TRAINING-FREE MULTI-
SUBJECT CUSTOMIZATION
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Figure 1: AnyMS enables training-free layout-guided multi-subject customization, supporting diverse subject
combinations and scaling to larger numbers while maintaining a balance among layout control, text alignment,
and identity preservation. See more visualization details and layout configurations in the Appendix.

ABSTRACT

Multi-subject customization aims to synthesize multiple user-specified subjects
into a coherent image. To address issues such as subjects missing or conflicts,
recent works incorporate layout guidance to provide explicit spatial constraints.
However, existing methods still struggle to balance three critical objectives: text
alignment, subject identity preservation, and layout control, while the reliance on
additional training further limits their scalability and efficiency. In this paper, we
present AnyMS, a novel training-free framework for layout-guided multi-subject
customization. AnyMS leverages three input conditions: text prompt, subject
images, and layout constraints, and introduces a bottom-up dual-level attention
decoupling mechanism to harmonize their integration during generation. Specifi-
cally, global decoupling separates cross-attention between textual and visual con-
ditions to ensure text alignment. Local decoupling confines each subject’s atten-
tion to its designated area, which prevents subject conflicts and thus guarantees
identity preservation and layout control. Moreover, AnyMS employs pre-trained
image adapters to extract subject-specific features aligned with the diffusion
model, removing the need for subject learning or adapter tuning. Extensive experi-
ments demonstrate that AnyMS achieves state-of-the-art performance, supporting
complex compositions and scaling to a larger number of subjects. Our project
is available at this anonymous link https://anonymous.4open.science/r/AnyMS-
659CAJDFQMYBH
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Text Prompt: a woman standing in 
front of a car on the beach,
with a lighthouse in the background

Subjects Layout
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Figure 2: Layout-guided Multi-subject Customization Results. (a) Result of latent injection
method MuDI (Jang et al., 2024). (b) Result of attention rectifying method Cones2 (Liu et al.,
2023b). (c) Result of adapter tuning method MS-Diffusion (Wang et al., 2024a). Different colors
show the associations between subjects and their corresponding layout configurations.

1 INTRODUCTION

Recent advances in large-scale pre-trained diffusion models (Dhariwal & Nichol, 2021; Nichol et al.,
2021; Ramesh et al., 2022; Rombach et al., 2022; Saharia et al., 2022) have enabled the novel
application of customized image generation (Gal et al., 2022; Ruiz et al., 2023; Chen et al., 2023;
Wang et al., 2024b), allowing users to generate images containing specific subjects of interest. While
single-subject customization has achieved remarkable success (Gal et al., 2022; Ruiz et al., 2023;
Gal et al., 2023; Li et al., 2024), recent research has advanced toward the more challenging task of
multi-subject customization (Kumari et al., 2023; Liu et al., 2023a; Gu et al., 2024). This paradigm
focuses on synthesizing multiple custom subjects into coherent scenes guided by textual prompts,
thereby offering greater flexibility and personalization in user-driven content creation.

Mainstream multi-subject customization methods have evolved through several approaches. A com-
mon line of work adopts joint training (Kumari et al., 2023; Liu et al., 2023a) with data augmen-
tation (Han et al., 2023; Jang et al., 2024), optimizing the model on mixed multi-subject data. Al-
ternatively, some methods leverage single-subject tuning with composition strategies (Kong et al.,
2024; Kwon et al., 2024; Jin et al., 2025), where individually learned subjects (e.g., LoRAs (Chen
et al., 2025)) are combined to form multi-subject scenes. While effective in simple settings (e.g.,
two subjects), these approaches struggle to scale as the number of subjects increases, often resulting
in subject missing or conflict, i.e., some subjects fail to appear, or their attributes become confused.
Subsequently, a new direction (Liu et al., 2023b; Gu et al., 2024; Wang et al., 2024a; Zhu et al.,
2025) has emerged to introduce additional layout guidance (e.g., bounding boxes), which aims to
alleviate the above issues by explicitly constraining the spatial arrangement of subjects.

Specifically, existing layout-guided multi-subject customization methods mainly implement the lay-
out guidance from three perspectives: a) Latent Injection. The typical method (Jang et al., 2024)
composes segmented subjects within bounding boxes to form an initial latent noise, injecting spa-
tial and appearance priors. While effective for layout and identity preservation, such latent-level
constraint often undermines text alignment (e.g., object relations), resulting in incoherent genera-
tion (c.f., Figure 2(a)). b) Attention Rectifying. These methods (Liu et al., 2023b; Chen et al.,
2024; Zhu et al., 2025) adjust the cross-attention map of each subject using bounding boxes, typ-
ically by enhancing activations in target regions while suppressing irrelevant areas. However, this
attention-level guidance often requires encoding each subject as a special token concatenated with
the text prompt and controlled via text cross-attention, which can cause conflicts between visual
and textual conditions, leading to imprecise identity preservation shown in Figure 2(b). c) Adapter
Tuning. MS-Diffusion (Wang et al., 2024a) introduces a trainable adapter module to jointly encode
visual features, text embeddings, and layout constraints. However, they rely on carefully curated
layout-labeled multi-subject data with additional module tuning, which significantly increases com-
putational cost and limits their generalization capability to unseen subjects or combinations (c.f.,
Figure 2(c)). In summary, existing layout-guided approaches still suffer from two major limitations:
• 1) Difficulty in balancing the trade-off among text alignment, subject identity preservation, and

layout control, especially as the number of subjects increases.
• 2) Reliance on additional training for subject learning or adapter tuning, leading to strong data

dependency and substantial computational overhead.
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To address these limitations, we propose AnyMS, a novel training-free layout-guided multi-subject
customization framework. Based on the three types of input conditions for layout-guided multi-
subject customization — textual (e.g., text prompts), visual (e.g., subject images), and layout (e.g.,
bounding boxes) — AnyMS performs a bottom-up dual-level attention decoupling to balance their
integration alongside the general denoising process of diffusion generation: 1) Global decoupling:
separating cross-attention between text (i.e., text cross-attention) and subject images (i.e., image
cross-attention) to mitigate global conflicts between textual and visual conditions, thereby ensuring
text alignment. 2) Local decoupling: further disentangling image cross-attention using layout con-
straints, where each region only attends to its corresponding subject, avoiding interference among
multiple subjects, thus guaranteeing both subject identity preservation and layout control.

In addition, AnyMS employs pre-trained image adapters (Ye et al., 2023; Li et al., 2024) to ex-
tract subject-specific visual features aligned with the diffusion model, thereby eliminating the need
for time-consuming subject learning or additional tuning. By decomposing and harmonizing tex-
tual, visual, and layout conditions, AnyMS achieves a better balance between text alignment, sub-
ject identity preservation, and layout control (c.f., Figure 2). Extensive experiments show that our
method achieves state-of-the-art performance, supporting more complex and creative multi-subject
customization with improved efficiency and generalizability.

In summary, we made three contributions in this paper: 1) We introduce AnyMS, a novel training-
free framework for layout-guided multi-subject customization that employs a bottom-up dual-level
attention decoupling mechanism that disentangles textual, visual, and layout conditions. 2) We in-
corporate pre-trained image adapters to efficiently extract subject-specific features, eliminating the
need for additional tuning or subject learning. 3) We conduct extensive experiments across diverse
benchmarks, demonstrating that AnyMS achieves state-of-the-art performance with improved effi-
ciency, supporting complex compositions and scaling to a larger number of subjects.

2 RELATED WORK

Text-to-image Generation. Text-to-image (T2I) generation aims to synthesize realistic images
from textual descriptions. Early GAN-based approaches (Reed et al., 2016; Li et al., 2019) have
been largely surpassed by diffusion models (Ho et al., 2020; Song et al., 2020), which progressively
denoise latent variables under text guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022).
Recent advances such as Stable Diffusion (Rombach et al., 2022) and SDXL (Podell et al., 2023)
further improve fidelity and efficiency. While these models achieve remarkable performance on
generic prompts, they cannot directly handle more complex cases of user-specific customization.

Single-subject Customization. Customized generation introduces user-specified subjects into T2I
models with faithful identity preservation and textual description alignment. Existing single-subject
customization approaches can be categorized into three groups: (1) Training-based, such as Dream-
Booth (Ruiz et al., 2023) and Textual Inversion (Gal et al., 2022), which fine-tune or optimize em-
beddings to bind subjects with special tokens or parameters; (2) LoRA-based, where lightweight
parameter tuning (e.g., LoRA (Soboleva et al., 2025; Kong et al., 2024)) is employed to inject
subject-specific features; (3) Adapter-based, such as Blip-Diffusion (Li et al., 2023) and SSR-
Encoder (Zhang et al., 2024), which learn auxiliary encoders to extract subject features aligned with
diffusion models. These approaches are effective for a single subject but face scalability challenges
when extended to multiple subjects.

Multi-subject Customization. The multi-subject setting requires generating coherent images with
multiple customized subjects, where the main difficulty lies in disentangling subject features and
maintaining prompt alignment. Training-based approaches, such as CustomDiffusion (Kumari et al.,
2023) and MUDI (Jang et al., 2024), employ joint optimization or data augmentation to improve dis-
entanglement, but suffer from high cost and limited generalization. Inference-time methods (Jiang
et al., 2025; Jin et al., 2025; Kwon & Ye, 2024; Ding et al., 2024), like TweedieMix (Kwon & Ye,
2024), and FreeCustom (Ding et al., 2024), instead manipulate latent variables or attention maps to
merge learned subjects without retraining. While reducing overhead, these methods often encounter
subject omission, attribute confusion, or degraded fidelity as the number of subjects grows.

Multi-subject Customization with Layout Control. To further mitigate conflicts among mul-
tiple subjects, recent studies introduce layout guidance (e.g., bounding boxes) to constrain spa-
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tial arrangement. Existing methods can be grouped into three paradigms: (1) Latent injection:
MuDI (Jang et al., 2024) initializes latent codes from segmented subjects within bounding boxes,
while OMG (Kong et al., 2024) leverages layouts from non-customized images for spatial priors;
(2) Attention rectifying: Cones2 (Liu et al., 2023b) and Mix-of-Show (Gu et al., 2023) enforce at-
tention activations within target regions, helping disentangle object features; (3) Adapter tuning:
MS-Diffusion (Wang et al., 2024a) introduces an adapter to jointly encode subject, prompt, and
layout inputs, but requires layout-labeled training data. Although effective in improving spatial con-
trollability, these methods either incur heavy training costs or struggle to balance text alignment,
identity preservation, and layout control. In contrast, our AnyMS achieves a better balance across
the three objectives in a training-free manner, and scales naturally to complex compositions.

3 METHOD

3.1 PRELIMINARY

Stable Diffusion Model. Stable Diffusion Model is the text-to-image representative generative
model consisting of three main components: an autoencoder (E( · ),D( · )), a denoising network
εθ( · ) and a text encoder CLIP τθ( · ) (Radford et al., 2021). Given an image x and a text prompt
P , the autoencoder maps the image from the pixel space to the latent space z0 = E(x), while
the CLIP encoder encodes the prompt to the conditional embedding ct = τθ(P ). For the forward
process, starting from z0, sampled random Gaussian noise ε ∼ N (0, 1) is applied to z0 to get zt =√
ᾱtz0+

√
1− ᾱtϵ at timestep t, where α is predefined coefficient provided by noise scheduler. For

the backward process, the diffusion model is trained conditioned on the current latent zt, timestep
t and text prompt conditions ct to predict the added noise. The model is trained with the following
reconstruction loss:

Lrec = Ez,ε∼N (0,1),t,ct ∥ε− εθ (zt, t, ct)∥22 (1)
zt is progressively denoised to obtain z0, after which the decoder maps it back to pixel space x =
D(z0).

Cross Attention Mechanism Stable Diffusion Model utilizes U-Net (Ronneberger et al., 2015) as
the backbone, which contains the cross-attention modules to integrate the text prompt. Specifically,
given the latent features Z, the output Zout of cross-attention mechanism can be formulated as:

Zout = CAtext(Z,P ) = Softmax
(
QKT

√
d

)
V (2)

where Q = WqZ is the query features projected from the latent features by the pretrained matrix
Wq , and K = Wkct, V = Wvct are key and value features projected from the text features ct with
their corresponding pretrained matrices Wk, Wv .

3.2 TASK DEFINITION

We formally define the task of layout-guided multi-subject customization as follows. Given a
global text prompt P describing the desired scenario, and a set of subject image–layout pairs
D = {(Ij , Bj)}nj=1, where Ij is the reference image of subject Sj and Bj is a bounding box
specifying its target position, the goal is to synthesize a compositionally coherent image IG that
simultaneously achieves: 1) Textual alignment with the text prompt P . 2) Subject identity preserva-
tion for each Sj . 3) Layout control by placing each subject at its designated location Bj .

3.3 APPROACH

Overview. We now introduce our training-free framework for layout-guided multi-subject cus-
tomization. The core idea is to decouple the integration of three input conditions — textual (text
prompt), visual (subject images), and layout (bounding boxes) — through a bottom-up dual-level
attention decoupling strategy. As illustrated in Figure 3, the generation of IG begins with a randomly
initialized latent zT ∼ N (0, I), which is progressively denoised into z0 by the diffusion process.
During denoising, a) the global decoupling separates cross-attention between text and subject im-
ages, and b) local decoupling further disentangles image cross-attention based on layout constraints,
ensuring that each spatial region attends only to its designated subject. Meanwhile, AnyMS employs
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Figure 3: The Overview of Pipeline. AnyMS applies a dual-level attention decoupling strategy
alongside the general denoising process of the diffusion model. (a) The global decoupling separates
cross-attention between text and subject images. (b) The local decoupling further disentangles image
cross-attention based on layout constraints. The final z0 is then decoded back to target image IG.

.
a pre-trained image adapter (Ye et al., 2023; Li et al., 2024) to extract subject-specific features. Fi-
nally, the refined latent z0 is decoded into the target image IG.

Global Decoupling. A common practice in existing methods (Ruiz et al., 2023; Liu et al., 2023b;
Chen et al., 2024; Zhu et al., 2025) is to introduce a special token to represent the target subject
and fine-tune the model to bind the token with specific visual features. These approaches typically
concatenate such learned tokens with the text prompt and process them jointly through the text cross-
attention. However, this design leads to several issues. First, it inevitably causes conflicts between
textual and visual conditions: the subject token is entangled with surrounding textual tokens during
denoising, resulting in identity distortion, background leakage, and unintended attribute transfer.
Second, when spatial relations are described in the prompt (e.g., “standing in front of”),
the shared cross-attention may force the subject token to compete with layout conditions, which fur-
ther undermines precise position control. To mitigate these conflicts and achieve balanced condition
integration, AnyMS introduces global decoupling as shown in Figure 3(a), where text prompt and
subject images are processed by separate cross-attention streams. In this way, textual semantics and
visual identity are disentangled at the global level, enabling the model to preserve subjects faithfully
while maintaining accurate text alignment. The output of each cross-attention block is reformulated
as:

Zout = Ztext + Zimage (3)
where Ztext = CAtext(Z,P ) is obtained through the text cross-attention (c.f.,Eq 2). And Zimage is
obtained through the image cross-attention, which we will specify below.

Local Decoupling. In general image cross-attention (Ding et al., 2024), the entire latent features
attend to all subject images simultaneously. This design easily leads to subject–subject conflicts,
where visual features from different subjects interfere with each other, causing identity confusion or
attribute mixing. To address this issue and better exploit layout constraints, as shown in Figure 3(b),
AnyMS further introduces local decoupling. Specifically, the bounding boxes are used to restrict
the interaction between latent regions and their corresponding subject features, ensuring that each
spatial area only attends to its designated subject. We formulate the image cross-attention as:

Zimage = CAimage(Z, {(Ij , Bj)}nj=1) (4)
Specifically, the local image cross-attention consists of two steps.

1) Training-free Subject Feature Extraction. Instead of fine-tuning the diffusion model to learn new
subject embeddings, AnyMS leverages pre-trained image adapters to directly extract subject features
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in a training-free manner. Given a reference image Ij of subject Sj , the adapter encodes its image
features cj , which is already aligned with the diffusion model. This image features is then projected
into the subject-specific key and value features, Kj = W ′

kcj and Vj = W ′
vcj , using the adapter’s

pretrained projection matrices W ′
k and W ′

v .

2) Attention Cropping and Merging. We begin by initializing Zimage with the global query feature
Q ∈ RH×W projected from the latent features. To incorporate subject-specific information while
preserving layout constraints, we adopt a crop–and–merge strategy. For each subject Sj with bound-
ing box Bj = [hs, he]×[ws, we], we extract the corresponding subregion Qj = Q[hs : he, ws : we].
Subject features are then injected into this region via cross-attention:

Zj = Softmax

(
QjK

T
j√

d

)
Vj (5)

Afterwards, we merge the local outputs back to their original positions:

Zimage[hs : he, ws : we] = Zj (6)

For overlapping regions, we resolve subject–subject conflicts by enforcing a semantic priority order
(e.g., attribute > object, and foreground > background), ensuring consistent layout and identity
preservation. The resulting Zimage thus captures local subject fidelity and structural coherence.
By combining it with text cross-attention outputs Ztext, we achieve a balanced alignment between
global textual semantics and subject-aware layout.

Finally, this dual-level attention decoupling is applied to every cross-attention layer of the U-Net and
across all denoising timesteps during inference, yielding stronger text-subject–layout control with
only marginal inference overhead.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. For a fair and comprehensive evaluation, we follow the widely recognized subject cus-
tomization benchmarks and conduct experiments on subjects drawn from DreamBooth (Ruiz et al.,
2023), Custom-Concept101 (Kumari et al., 2023), and Textual Inversion (Gal et al., 2022). In total,
we collect 29 subjects covering diverse categories, including animals, objects, vehicles, and hu-
mans, which ensures broad coverage for multi-subject evaluation. To enrich diversity, we form 11
combinations for the quantitative study and present more combinations for visual display .

Evaluation Metrics. We comprehensively evaluate the performance of layout-guided multi-subject
customization from three perspectives: 1) Layout control. We assess the consistency between the
generated layout and the input bounding boxes by computing mean Intersection-over-Union (mIoU)
and AP@50 scores. Both metrics are measured using pre-trained object detection models Ground-
ingDINO (Liu et al., 2024). 2) Identity preservation. To evaluate how well the generated images
retain subject identity, we extract the target subject regions from generated images via Ground-
ingDINO (Liu et al., 2024) and SAM (Kirillov et al., 2023), and compute similarity with corre-
sponding reference images using multiple image-level similarity metrics, including CLIP-I (Radford
et al., 2021), DreamSim (Fu et al., 2023), and DINO (Oquab et al.). 3) Text alignment. We evaluate
the semantic consistency between generated images and text prompts using CLIP-T (Radford et al.,
2021) similarity in the CLIP embedding space.

Baselines. We compare AnyMS with representative state-of-the-art layout-guided multi-subject
customization methods, which can be broadly divided into three categories: 1) Latent Injection.
MuDI(Jang et al., 2024) augments training data using OWLv2(Minderer et al., 2023) and SAM (Kir-
illov et al., 2023), and introduces a latent initialization strategy with bounding boxes to provide a
better starting point for inference. 2) Attention Rectifying. Cones2(Liu et al., 2023b) learns sub-
ject tokens via finetuning and constrains their cross-attention maps within the assigned bounding
box regions. 3) Adapter Tuning. MS-Diffusion(Wang et al., 2024a) trains a layout-aware adapter
to jointly encode subject, prompt, and layout inputs, leveraging a carefully curated multi-subject
dataset with bounding box annotations. In addition, we also report results of the state-of-the-art
layout-free multi-subject customization method, LatexBlend (Jin et al., 2025), for reference.
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Model Layout Control Identity Preservation Text Alignment
AP50↑ mIOU↑ CLIP-I↑ DreamSim↑ DINO↑ CLIP-T↑

LatexBlend (Jin et al., 2025) - - 65.90 43.37 40.30 32.40
Cones 2 (Liu et al., 2023b) 26.18 38.10 67.50 46.00 41.71 33.49
MuDI (Jang et al., 2024) 19.63 36.08 73.24 58.87 55.19 32.36
MS-Diffusion (Wang et al., 2024a) 32.26 48.37 72.04 59.22 57.33 34.63
AnyMS (Ours) 35.65 49.75 74.46 59.62 54.64 35.82

Table 1: Quantitative Results of Layout-guided Multi-subject Customization. Bold represent
the highest metric. Since LatexBlend is implemented without layout control, it is not strictly com-
parable and we shade its results in gray.

Implementation Details. We implement our method with Stable Diffusion XL (SDXL) (Podell
et al., 2023) as the base model and employ IP-Adapter (Ye et al., 2023) as the pretrained image
adapter for subject feature extraction. For all baseline methods, we follow their default settings. All
tested images are generated with a resolution of 1024x1024.

4.2 QUANTITATIVE EVALUATION

Figure 4: Detailed Quantitative Results with Different
Numbers of Subjects. Marker shape indicates the number
of subjects, and color represents the method used. Rhom-
bus denotes aggregated results.

Setting. We construct 11 experimen-
tal cases of multi-subject composi-
tion, covering subject counts rang-
ing from 2 to 5, each with diverse
layout configurations (i.e., bounding
boxes). For every case, we ran-
domly generate 100 images and re-
port the averaged evaluation metrics
in Table 1. To further analyze scal-
ability, Figure 4 visualizes the per-
formance trends of different methods
under varying numbers of subjects.
See more details in Appendix.

Results. As shown in Table 1, we
observe: 1) For layout control and
text alignment, AnyMS achieves the
highest performance across both met-
rics, demonstrating accurate spatial
control of subjects and faithful adherence to textual descriptions. 2) AnyMS also consistently
surpasses baseline methods in identity preservation, achieving superior similarity scores on both
CLIP-I and DreamSim, and competitive performance on the DINO score. These results demonstrate
that AnyMS achieves a well-balanced trade-off among layout control, text alignment, and identity
preservation. 3) Additionally, as shown in Figure 4, AnyMS maintains strong performance when
the number of subjects increases from 2 to 5. In particular, our method shows clear advantages
under more complex compositions. These results highlight that AnyMS not only supports complex
scene composition but also scales effectively to larger numbers of subjects, achieving the best overall
performance.

4.3 QUALITATIVE EVALUATION

As shown in Figure 5, for multi-subject customization cases with subject numbers varying from 2
to 5, common failure patterns across baselines include object omission, fidelity degradation, and
poor prompt alignment. Specifically, MS-Diffusion struggles with complex scenarios and general-
izes poorly to unseen subjects, leading to degraded identity reconstruction and inadequate prompt
adherence. MuDI prioritizes identity preservation at the expense of prompt compliance and fails to
model interactions between objects (e.g., carrying and wearing). Cones2 can generate multi-
ple subjects but suffers from low identity preservation. In contrast, AnyMS excels in multi-subject
customization, producing visually harmonious images with coherent layout by achieving both high
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The cat wearing jacket and a dog sitting on the sofa licking the berry bowl

AnyMS(Ours)LayoutReference MS-Diffusion MuDI Cones 2

The flower in vase and a clock on the table are in front of the sofa

An actionfigure carrying a purse on the moon

A woman wearing shoes sits next to a cat that is wearing headphones

A dog in jacket playing guitar next to the plushy, with a lighthouse in the background

Figure 5: Comparison of Layout-guided Multi-subject Customization. Different colors show the
associations between subjects and their corresponding layout configurations.

fidelity and prompt alignment, while maintaining a balanced trade-off between identity preservation
and layout control. Moreover, AnyMS demonstrates robust performance as the number of subjects
increases, further highlighting its scalability in handling complex compositions.

4.4 ABLATION STUDY

Settings. We conduct ablations to validate the effects of the proposed method with two different
settings. 1) Remove the crop-and-merge operation in local decoupling. We directly utilize the entire
query Q to calculate the image attention Zj for subject Sj , rather than extracting the subregion Qj .
We then apply a mask Mj based on the bounding box Bj to Zj to get layout-aware attention, and
add them together to get the final output Zimage. The Eq 5 and Eq 6 are reformed as:

Zj = Softmax

(
QKT

j√
d

)
Vj , Zimage =

n∑
j=1

(Zj ⊙Mj) (7)

2) Remove the whole local decoupling operation. We further remove all layout guidance by directly
adding each Sj to get the final output Zimage =

∑n
j=1 Zj .

Results. As shown in Figure 6, we have the following observations: 1) Removing the crop-and-
merge operation works reasonably when the subject number is small (e.g., two subjects), but as the
count increases the model struggles to disentangle subject features, leading to issues like subject
missing, object fusion (e.g., the castle and the lighthouse), and degraded identity preservation (e.g.,
the jacket). 2) Without local decoupling, image fidelity drops further, and subject entanglement
becomes more severe. In contrast, AnyMS effectively disentangles subject features and preserves
high image fidelity. To further validate the effectiveness of AnyMS, we conducted quantitative
evaluations on scenarios involving three or more subjects with a total of seven combinations. As
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w/o local decoupling

Teddy Bear + Cat + Guitar + Castle + Lighthouse

Dog + Cat + Sunglasses + Jacket

Sunglasses + Purse +  Jacket

Penguin Plushy + Teddy Bear

Reference Image AnyMS(Ours) w/o crop and mergeLayout Control

Figure 6: Ablations Results. Different colors show the associations between subjects and their
corresponding layout configurations. Crop-and-merge plays a crucial role in decoupling features
and layout control as the number of subjects increases.

Model mIOU↑ CLIP-I↑ CLIP-T↑
w/o local decoupling - 67.26 35.38
w/o crop and merge 38.78 72.13 35.67
AnyMS (Ours) 44.55 73.45 36.50

Table 2: Quantitative Results for Ablation Study. Evalu-
ated on seven combinations with more than three subjects.

shown in Table 2, AnyMS tops all
metrics. With layout guidance, the
local decoupling operation further
confines subjects to their designated
regions, enabling a stable balance be-
tween identity preservation and lay-
out control, while scaling robustly to
larger numbers of subjects.

5 CONCLUSION

In this paper, we introduced AnyMS, a novel training-free framework for layout-guided multi-
subject customization. By performing bottom-up dual-level attention decoupling, AnyMS effec-
tively disentangles textual, visual, and layout conditions, achieving a better balance among text
alignment, subject identity preservation, and layout control. Extensive experiments and ablations
validate the effectiveness of AnyMS and its scalability to increasingly complex multi-subject com-
positions. Moving forward, we plan to 1) extend AnyMS into video customization; 2) explore
advanced techniques for customization that jointly consider subject, action, and style.

Limitations. While AnyMS achieves strong performance without additional training, its effective-
ness still depends on the capacity of the underlying pre-trained diffusion model and image adapters.
Consequently, the upper bound on the number of subjects, the complexity of scenes, and the ro-
bustness of subject feature extraction may be constrained. Future work could explore integrating
stronger foundation models and adaptive feature learning strategies to further enhance scalability
and generalization.

9
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The feamle is wearing the hat, jacket and trousers       
beside the flower in vase and a duck toy on the table

  A cat wearing sunglasses sits beside a teddy bear in 
jacket with a lighthouse and a castle in the background

    The feamle in armour playing the guitar beside a dog 
in dress on the beach, with a lighthouse in the background

                 A woman wearing hat, 
sunglasses, jacket, and trousers, carries a purse

           A duck toy and a teddy bear 
are on the sofa beside a purse on the chair

       A dog in jacket sitting next to the 
plushy, with a lighthouse in the background

                 Sunglasses and a berry bowl 
               are on the table beside a chair

            A teddy bear 
wearing hat sits beside a plushy

     an actionfigure standing beisde a car on 
the beach,with a lighthouse in the background

   The feamle wearing 
sunglasses carries a purse

         A woman in armour 
  with a castle in the background

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 22 23 24 25

Figure 7: Visualization Details and Additional Results. Different colors show the associations
between subjects and their corresponding layout configurations. We show more results beyond the
first page with these settings.

APPENDIX

This appendix is organized as follows:

• Section A provides implementation details of Figure 1 and more visualization results.

• Section B provides implementation details of quantitative evaluation.

• Section C provides the broader impact of our method.

• Section D provides the use of LLMs.

A VISUALIZATION DETAILS AND MORE RESULTS

We provide implementation details of Figure 1 on the first page, including layout configurations and
text prompts, and we also show additional multi-subject customization results based on the settings
in Figure 7. The results encompass various combination types and include scenarios with the number
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           An actionfigure 
carrying a purse on the moon

       The cat wearing jacket and a dog 
sitting on the sofa licking the berry bowl

     The flower in vase and a clock 
on the table are in front of the sofa

  A dog in jacket playing guitar next to the
 plushy, with a lighthouse in the background

       A dog in jacket sitting next to the 
plushy, with a lighthouse in the background

     An actionfigure standing beisde a car on 
the beach,with a lighthouse in the background

     The Flower in 
the vase beside a clock

     A plushy 
lying on the can

     A corgi wearing 
sunglasses on the beach

     A car parking 
beside the sculpture

      A penguin toy sitting beside a plushy 
sadangry, with a lighthouse in the background

Figure 8: Details of 11 Combinations in Quantitative Evaluation. Different colors show the
associations between subjects and their corresponding layout configurations.

of subjects ranging from 2 to 7, fully demonstrating the generalizability and robustness of AnyMS.
AnyMS has the ability to balance the trade-off among text-alignment, subject identity preservation,
and layout control while scaling to a larger number of subjects.

B IMPLEMENTATION DETAILS OF QUANTITATIVE EVALUATION

As shown in Figure 8, for the quantitative evaluation, we collect 23 different subjects covering a
variety of categories, and form 11 combinations. For each combination, we specify a tuple contain-
ing reference images, text-prompt, and bounding boxes. To conduct a comprehensive evaluation,
the number of subjects ranged from 2 to 5, assessing the ability of models to decouple subject fea-
tures as the number of subjects increases. In addition, the ways subjects interact (e.g., carrying and
wearing) and the backgrounds (e.g., moon and beach) are also diverse.

C BROADER IMPACT

As a multi-subject customization method, AnyMS can generate a text-aligned and well-composed
image involving multiple user-provided subjects without training. This means that AnyMS has the
potential to play a crucial role in advertising and the film industries: we can create digital doubles
of actors and seamlessly render them with virtual cartoon characters into posters for propagation. In
addition, generated images with a variety of backgrounds and styles can further enhance diversity,
offering audiences a novel experience. AnyMS can also function as entertainment for users in social
media. However, there are several points to note when implementing AnyMS. 1) Sensitive terms
such as sexual content and political statements should be detected and blocked. 2) Privacy and
portrait rights of individuals should be protected. The generated images should be authorized by the
person concerned. Overall, AnyMS can enrich entertainment activities for the public with proper
application.
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D LLM USAGE STATEMENT

In this paper, for readability, we strictly utilize LLMs to identify and correct grammatical errors
under the supervision of the authors, ensuring clarity and precision of expression throughout the
paper.
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