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Abstract

We present LLoVi, a simple yet effective001
Language-based Long-range Video question-002
answering (LVQA) framework. Our method003
decomposes short and long-range modeling004
aspects of LVQA into two stages. First, we005
use a short-term visual captioner to generate006
textual descriptions of short video clips (0.5-8s007
in length) densely sampled from a long input008
video. Afterward, an LLM aggregates the009
densely extracted short-term captions to010
answer a given question. Furthermore, we011
propose a novel multi-round summarization012
prompt that asks the LLM first to summarize013
the noisy short-term visual captions and then014
answer a given input question. To analyze015
what makes our simple framework so effective,016
we thoroughly evaluate various components of017
our framework. Our empirical analysis reveals018
that the choice of the visual captioner and019
LLM is critical for good LVQA performance.020
The proposed multi-round summarization021
prompt also leads to a significant LVQA022
performance boost. Our method achieves023
the best-reported results on the EgoSchema024
dataset, best known for very long-form video025
question-answering. LLoVi also outperforms026
the previous state-of-the-art by 4.1% and027
3.1% on NExT-QA and IntentQA. Finally, we028
extend LLoVi to grounded VideoQA which029
requires both QA and temporal localization,030
and show that it outperforms all prior methods031
on NExT-GQA. We will release our code.032

033

1 Introduction034

Recent years have witnessed remarkable035

progress in short video understanding (5-15s036

in length) (Wang et al., 2022a; Ye et al., 2023;037

Fu et al., 2021; Yang et al., 2022a; Wang et al.,038

2023g). However, extending these models to long039

videos (e.g., several minutes or hours in length)040

is not trivial due to the need for sophisticated041

long-range temporal reasoning capabilities. Most042

Figure 1: Comparison between LLoVi (ours) and the re-
cent FrozenBiLM (Yang et al., 2022a) video QA method.
Like most prior methods, FrozenBiLM is best suited for
short-range video understanding. Thus, as illustrated in
the figure, it fails to answer a question that requires rea-
soning about complex human activities in a long video.
In comparison, our method effectively reasons over long
temporal extents and produces a correct answer.

existing long-range video models rely on costly 043

and complex long-range temporal modeling 044

schemes, which include memory queues (Wu 045

et al., 2022; Chen et al., 2020; Lee et al., 2021, 046

2018), long-range feature banks (Wu et al., 047

2019; Cheng and Bertasius, 2022; Zhang et al., 048

2021), space-time graphs (Hussein et al., 2019b; 049

Wang et al., 2021), state-space layers (Islam and 050

Bertasius, 2022; Islam et al., 2023; Wang et al., 051

2023a) and other complex long-range modeling 052

modules (Hussein et al., 2019a; Bertasius et al., 053

2021; Yang et al., 2023). 054

Recently, Large Language Models (LLMs) have 055

shown impressive capability for long-range rea- 056

soning on a wide range of tasks such as document 057

understanding (Sun et al., 2023; Wang et al., 2023e; 058

Gur et al., 2023) and long-horizon planning (Liu 059

et al., 2023a; Hao et al., 2023; Song et al., 2023a). 060

Motivated by these results in the natural language 061

and decision-making domain, we explore using 062

LLMs for long-range video question answering 063
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(LVQA). Specifically, we propose LLoVi, a sim-064

ple yet effective language-based framework for065

long-range video understanding. Unlike prior long-066

range video models, our approach does not require067

specialized long-range video modules (e.g., mem-068

ory queues, state-space layers, etc.) but instead069

uses a short-term visual captioner coupled with070

an LLM, thus exploiting the long-range temporal071

reasoning ability of LLMs. Our simple two-stage072

framework tackles the LVQA task by decomposing073

it into short and long-range modeling subproblems:074

1. First, given a long video input, we segment075

it into multiple short clips and convert them076

into short textual descriptions using a pre-077

trained frame/clip-level visual captioner (e.g.,078

BLIP2 (Li et al., 2023c), LaViLa (Zhao et al.,079

2023), LLaVa (Liu et al., 2023b)).080

2. Afterwards, we concatenate the temporally or-081

dered captions from Step 1 and feed them into082

an LLM (e.g., GPT-3.5, GPT-4, LLaMA) to083

perform long-range reasoning for LVQA.084

To further enhance the effectiveness of our085

framework, we also introduce a novel multi-round086

summarization prompt that asks the LLM first087

to summarize the short-term visual captions and088

then answer a given question based on the LLM-089

generated video summary. Since the generated090

captions may be noisy or redundant, such a sum-091

marization scheme enables filtering out potentially092

distracting/irrelevant information and eliminating093

redundant sentences, which significantly improves094

the reasoning ability of the LLM for LVQA.095

We also conduct an empirical study to investi-096

gate the factors behind our framework’s success.097

Specifically, we study (i) the selection of a visual098

captioner, (ii) the choice of an LLM, (iii) the LLM099

prompt design, (iv) few-shot in-context learning,100

(v) optimal video processing configurations (i.e.,101

clip length, sampling rate, etc.), and (vi) the gen-102

eralization of our framework to other datasets and103

tasks. Our key empirical findings include:104

• The multi-round summarization prompt leads105

to the most significant boost in performance106

(+5.8%) among the prompts we have tried (e.g.,107

zero-shot CoT, Self-Consistency).108

• GPT-4 as an LLM provides the best performance,109

while GPT-3.5 provides the best trade-off be-110

tween the accuracy and the cost.111

• LaViLa (Zhao et al., 2023) as a visual cap-112

tioner produces best results (51.8%) followed113

by BLIP-2 (Li et al., 2023c) (46.7%) and114

EgoVLP (Qinghong Lin et al., 2022) (46.6%). 115

• Few-shot in-context learning leads to a large 116

improvement on both the variant of our model 117

with a standard prompt (+4.7%) and our best- 118

performing variant with our proposed multi- 119

round summarization prompt (+4.1%). 120

• Extracting visual captions from consecutive 1- 121

second video clips of the long video input leads 122

to the best results. 123

• LLoVi outperforms all prior approaches on 124

EgoSchema, NeXT-QA, IntentQA and NeXT- 125

GQA LVQA benchmarks. 126

Overall, our framework is simple, effective and 127

training-free. Furthermore, it is agnostic to the ex- 128

act choice of a visual captioner and an LLM, which 129

allows it to benefit from future improvements in 130

visual captioning and LLM model design. We hope 131

that our work will encourage new ideas and a sim- 132

pler model design in LVQA. We will release our 133

code to enable the community to build on our work. 134

2 Related Work 135

Long-range Video Understanding. Modeling 136

long-range videos (e.g., several minutes or longer) 137

typically requires models with sophisticated tem- 138

poral modeling capabilities, often leading to com- 139

plex model design. LF-VILA (Sun et al., 2022) 140

proposes a Temporal Window Attention (HTWA) 141

mechanism to capture long-range dependency in 142

long-form video. MeMViT (Wu et al., 2022) and 143

MovieChat (Song et al., 2023b) adopt a memory- 144

based design to store information from previously 145

processed video segments. Several prior methods 146

use space-time graphs (Hussein et al., 2019b; Wang 147

et al., 2021) or relational space-time modules (Yang 148

et al., 2023) to capture spatiotemporal dependen- 149

cies in long videos. Lastly, the recently introduced 150

S4ND (Nguyen et al., 2022), ViS4mer (Islam and 151

Bertasius, 2022) and S5 (Wang et al., 2023a) use 152

Structured State-Space Sequence (S4) (Gu et al., 153

2021) layers to capture long-range dependencies 154

in the video. Unlike these prior approaches, we do 155

not use any complex long-range temporal modeling 156

modules but instead develop a simple and strong 157

LLM-based framework for zero-shot LVQA. 158

LLMs for Video Understanding. The recent 159

surge in large language models (LLMs) (Brown 160

et al., 2020; OpenAI, 2023; Touvron et al., 2023; 161

Raffel et al., 2020; Chung et al., 2022; Tay et al., 162

2022) has inspired many LLM-based applications 163

in video understanding. Methods like Socratic 164
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Models (Zeng et al., 2022) and VideoChat (Li165

et al., 2023e) integrate pretrained visual models166

with LLMs for extracting visual concepts and167

applying them to video tasks. Video ChatCap-168

tioner (Chen et al., 2023) and ChatVideo (Wang169

et al., 2023b) leverage LLMs for video represen-170

tation and dialog-based user interaction, respec-171

tively. VidIL (Wang et al., 2022b) employs LLMs172

for adapting image-level models to video tasks us-173

ing few-shot learning. Beyond short-term video un-174

derstanding, the works in (Lin et al., 2023a; Chung175

and Yu, 2023; Bhattacharya et al., 2023) explored176

LLMs for long-range video modeling. The work177

in (Lin et al., 2023a) uses GPT-4 for various long-178

range video modeling tasks but lacks quantitative179

evaluation. Meanwhile, (Chung and Yu, 2023) fo-180

cuses on movie datasets, requiring limited visual181

analysis (Mangalam et al., 2023) and mostly rely-182

ing on non-visual speech/subtitle inputs. In contrast183

to these prior methods, we focus on the LVQA task184

and provide an extensive empirical analysis of vari-185

ous design choices behind our LLM framework.186

Video Question Answering. Unlike image187

question-answering, video question-answering188

(VidQA) presents unique challenges, requiring189

both spatial and temporal reasoning. Most ex-190

isting VidQA methods, either using pretraining-191

finetuning paradigms (Cheng et al., 2023; Lei et al.,192

2021; Yu et al., 2023), zero-shot (Yang et al.,193

2022b; Surís et al., 2023; Lin et al., 2023b; Yu194

et al., 2023), or few-shot learning (Wang et al.,195

2022b), focus on short-term video analysis (5-30s).196

To overcome the limitations of short-term VidQA,197

new benchmarks have been proposed: ActivityNet-198

QA (Yu et al., 2019), TVQA (Lei et al., 2018),199

How2QA (Yang et al., 2021), MovieQA (Tapaswi200

et al., 2016), and DramaQA (Choi et al., 2021)201

ranging from 100s to several minutes in video dura-202

tion. Despite longer video lengths, the analysis in203

(Mangalam et al., 2023; Yang et al., 2020; Jasani204

et al., 2019) found that many of these benchmarks205

can be solved by analyzing only short clips (i.e.,206

not requiring long-range video modeling) or by207

using pure text-only methods that ignore visual208

content. To address these issues, the EgoSchema209

benchmark (Mangalam et al., 2023) was recently210

introduced, requiring at least 100 seconds of video211

analysis and not exhibiting language-based biases.212

LLM Prompt Design. With the emergence of213

LLMs, there has been an increasing research em-214

phasis on LLM prompt design. The recent works215

0s 180s

Large Language Model

Question
What was the order and organization of C's actions in the video? 

Answer
C sequentially chops 

ingredients, discards waste, 
and stores unused items.

Captioner
…

CaptionerCaptionerCaptioner

C chops 
tomatoes on a 
cutting board.

C opens the lid 
of a trash bin.

C stirs salad in 
the bowl.

C chops 
cucumber on a 
cutting board.

C refers to the 
camera wearer

Figure 2: An illustration of LLoVi, our simple LLM
framework for long-range video question-answering
(LVQA). We use Large Language Models (LLMs) like
GPT-3.5 and GPT-4 for their long-range modeling capa-
bilities. Our method involves two stages: first, we use
short-term visual captioners (e.g, LaViLa, BLIP2) to
generate textual descriptions for brief video clips (0.5s-
8s). Then, an LLM aggregates these dense, short-term
captions for long-range reasoning required for LVQA.
This simple approach yields impressive results, demon-
strating LLMs’ effectiveness in LVQA.

in (Wei et al., 2022; Zhou et al., 2023; Schick and 216

Schütze, 2020; Chen et al., 2022; Yao et al., 2022) 217

explored prompting strategy in few-shot learning 218

settings. To eliminate the need for extensive hu- 219

man annotations, (Kojima et al., 2022; Wang et al., 220

2023c,f) proposed zero-shot prompting methods. 221

Subsequent research (Zhou et al., 2022; Zhang 222

et al., 2022; Pryzant et al., 2023) has concentrated 223

on the automatic refinement of prompts. Instead, 224

we propose a multi-round summarization LLM 225

prompt for handling long, noisy, and redundant 226

textual inputs describing video content for LVQA. 227

3 Method 228

Our method, named LLoVi, consists of two stages: 229

1) short-term video clip captioning and 2) long- 230

range text-based video understanding using an 231

LLM. Figure 2 presents a detailed illustration of 232

our high-level approach. Below, we provide more 233

details about each component of our framework. 234

3.1 Short-term Video Clip Captioning 235

Given a long untrimmed video input V , we first 236

segment it into Nv non-overlapping short video 237

clips v = {vm}Nv
m=1, where vm ∈ RTv×H×W×3 238

and Tv, H,W are the number of frames, height 239
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Question Answering Prompt
Given the summary of a video, please 
answer the following question …

Summarization Prompt
Given the caption of a video, please 
provide a summary …

Question and Answer Candidates 
(optional)

Captions
00:00-00:01 The man holds pilers.
00:01-00:02 The man walks around the 
yard.

…
02:59-03:00 The man puts down a basket.

LLM

Summary
The video primarily 
features a man tending to 
his garden. He first plants 
flowers … He also tidies 
the lawn … At last, he 
waters the flowers with a 
basket.

LLM

Answer: The 
correct answer is A.

Question and Answer Candidates

Summary
The video primarily features a man 
tending to his garden. He first plants 
flowers … He also tidies the lawn … At 
last, he waters the flowers with a basket.

Figure 3: An illustration of our multi-round summarization prompt that first asks an LLM to summarize the noisy
short-term visual captions (first round of prompting) and then answer a given question about the video based on the
LLM-generated summary (second round of prompting). Our results indicate that such a multi-round prompting
strategy significantly boosts LVQA performance compared to standard prompting techniques (+5.8%).

and width of a short video clip respectively. Af-240

terward, we feed each video clip vm into a pre-241

trained short-term visual captioner ϕ, which pro-242

duces textual captions cm = ϕ(vm), where cm =243

(w1, . . . , wLm) and wi represents the i-th word in244

caption cm of length Lm. Note that our model245

is not restricted to any specific visual captioning246

model. Our experimental section demonstrates that247

we can incorporate various video (LaViLa (Zhao248

et al., 2023), EgoVLP (Qinghong Lin et al., 2022),249

and image (BLIP-2 (Li et al., 2023d)) captioning250

models. Next, we describe how our extracted short-251

term captions are processed by an LLM.252

3.2 Long-range Reasoning with an LLM253

We want to leverage foundational LLMs for holistic254

long-range video understanding. Formally, given255

short-term visual captions {cm}Nv
m=1 for all Nv256

short video clips, we first concatenate the clip cap-257

tions into the full video captions C = [c1, . . . , cNv ]258

in the same order as the captions appear in the259

original video. Afterward, the concatenated video260

captions C are fed into an LLM for long-range261

video reasoning. Specifically, given the concate-262

nated video captions C, the question Q, and the263

answer candidates A, we prompt the LLM to se-264

lect the correct answer using the following prompt265

template: “Please provide a single-letter answer266

(A, B, C, D, E) to the following multiple-choice267

question {Q}. You are given language descriptions268

of a video. Here are the descriptions: {C}. Here269

are the choices {A}.". The full prompt is included270

in the Supplementary Material.271

Our experiments in Section 4.3 suggest that this272

simple approach works surprisingly well for LVQA.273

However, we also discovered that many modern 274

LLMs (e.g., GPT-3.5, LLaMA) may struggle when 275

provided with long (>1K words), noisy, and po- 276

tentially redundant/irrelevant caption sequences. 277

To address these issues, we investigate more spe- 278

cialized LLM prompts that ask an LLM first to 279

summarize the noisy short-term visual captions 280

(first round of prompting) and then answer a given 281

question about the video (second round of prompt- 282

ing). Specifically, we formulate such a multi-round 283

prompt as follows: given the video captions C, the 284

question Q, and the answer candidates A, instead 285

of directly feeding the {C,Q,A} triplet into LLM 286

for LVQA, we first ask the LLM to provide a sum- 287

mary of the captions in the first round, which we 288

denote as S using the following prompt template: 289

“You are given language descriptions of a video: 290

{C}. Please give me a {Nw} word summary." Nw 291

denotes the desired number of words in the sum- 292

mary S. Afterward, during the second round of 293

prompting, instead of using the captions C, we 294

use the summary S as input for the LLM to se- 295

lect one of the answer candidates. Conceptually, 296

such a prompting scheme is beneficial, as the LLM- 297

generated summary S filters out irrelevant/noisy 298

information from the initial set of captions C, mak- 299

ing LLM inputs for the subsequent QA process 300

more succinct and cleaner. A detailed illustration 301

of our multi-round prompt is shown in Figure 3. 302

3.3 Implementation Details 303

For the experiments on EgoSchema, we use LaV- 304

iLa (Zhao et al., 2023) as our captioner. We seg- 305

ment each video into multiple 1s clips with a stride 306

of 1s, resulting in a list of consecutive clips that 307
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What are the key steps 
that the man 
consistently repeats?

Are the athletes 
outdoor?

0s 180s

Picks up a block, throws 
it on the ground, and 
then picks up another 
block.

90s
91s
Yes.

0s 150s

0s 135s

What is the Matrix?
A shared simulation 

of the world.

00:40:42 --> 00:40:47
It exists now only as part of a
neural-interactive simulation

00:40:47 --> 00:40:48
that we call the Matrix.

MovieQA

ActivityNet-QA

EgoSchema

Figure 4: An illustration of prior LVQA dataset lim-
itations. Top: An example from MovieQA (Tapaswi
et al., 2016). The model can use the provided subti-
tle information to answer a question while ignoring
visual cues in a video. Middle: An example from the
ActivityNet-QA Dataset (Yu et al., 2019). Despite long
video inputs, the model only needs to analyze a short 1s
video clip to answer the question. Bottom: An example
from the EgoSchema Dataset (Mangalam et al., 2023).
The model must analyze visual cues from the video to
answer a given question without relying on additional
textual inputs (e.g., speech, subtitles).

cover the entire video. We use GPT-3.5 as the308

LLM on EgoSchema. For NeXT-QA, IntentQA,309

and NeXT-GQA, we use LLaVA-1.5 (Liu et al.,310

2023b) as the visual captioner and GPT-4 as the311

LLM. We downsample the videos to 0.5 FPS and312

prompt LLaVA to generate captions with roughly313

30 words for each frame. More details are provided314

in the Supplementary Material.315

4 Experiments316

4.1 Datasets and Metrics317

Unlike short-term video question-answering, long-318

range video question-answering (LVQA) lacks ro-319

bust and universally agreed-upon benchmarks. As320

shown in Figure 4, many prior LVQA benchmarks321

either exhibit significant language biases, or do322

not require long-range video modeling capabili-323

ties. To address these limitations, recent work intro-324

duced EgoSchema (Mangalam et al., 2023), a new325

long-range video question-answering benchmark326

consisting of 5K multiple choice question-answer327

pairs spanning 250 hours of video and covering a328

Captioner
Caption Ego4D

Acc. (%)
Type Pre-training

VideoBLIP (Yu) clip-level ✓ 40.0
EgoVLP (Qinghong Lin et al., 2022) clip-level ✓ 46.6
BLIP-2 (Li et al., 2023d) frame-level ✗ 46.7
LaViLa (Zhao et al., 2023) clip-level ✓ 51.8
Oracle clip-level - 65.8

Table 1: Accuracy of our framework with different
visual captioners. LaViLa visual captioner achieves
the best results, outperforming other clip-level (e.g.,
EgoVLIP, VideoBLIP) and image-level (e.g., BLIP-2)
captioners. We also observe that the Oracle baseline
using ground truth captions greatly outperforms all other
variants, suggesting that our framework can benefit from
the future development of visual captioners.

wide range of human activities. By default, our 329

experiments are conducted on the validation set 330

of 500 questions (referred to as the EgoSchema 331

Subset). The final comparison is done on the full 332

test set of 5K EgoSchema questions. We use QA 333

accuracy (i.e., the percentage of correctly answered 334

questions) as our evaluation metric. Additionally, 335

we also perform zero-shot LVQA experiments on 336

three commonly-used LVQA benchmarks: NExT- 337

QA (Xiao et al., 2021), IntentQA (Li et al., 2023a), 338

and NExT-GQA (Xiao et al., 2023). Detailed 339

dataset information and metrics can be found in 340

the supplementary material. 341

4.2 Empirical Study on EgoSchema 342

Before presenting our main results, we first study 343

the effectiveness of different components within 344

our LLoVi framework, including (i) the visual cap- 345

tioner, (ii) the LLM, (iii) the LLM prompt design, 346

and (iv) few-shot in-context learning. The exper- 347

iments are conducted on the EgoSchema Subset 348

with 500 multi-choice questions. We discuss our 349

empirical findings below. We also include addi- 350

tional experiments in the supplementary material. 351

4.2.1 Visual Captioning Model 352

In Table 1, we study the effectiveness of vari- 353

ous clip-level video captioners, including LaV- 354

iLa (Zhao et al., 2023), EgoVLP (Qinghong Lin 355

et al., 2022), and VideoBLIP (Yu). In addition to 356

video captioners, we also try the state-of-the-art 357

image captioner, BLIP-2 (Li et al., 2023c). Lastly, 358

to study the upper bound of our visual captioning 359

results, we include the ground truth Oracle cap- 360

tioning baseline obtained from the Ego4D dataset. 361

All baselines in Table 1 use similar experimental 362

settings, including the same LLM model, i.e., GPT- 363

3.5. The results are reported as LVQA accuracy on 364
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LLM Model Size Acc. (%)

Llama2-7B (Touvron et al., 2023) 7B 34.0
Llama2-13B (Touvron et al., 2023) 13B 40.4
Llama2-70B (Touvron et al., 2023) 70B 50.6
GPT-3.5 (Brown et al., 2020) 175B 51.8
GPT-4 (OpenAI, 2023) N/A 58.3

Table 2: Accuracy of our framework with different
LLMs. GPT-4 achieves the best accuracy, suggesting
that stronger LLMs perform better in LVQA. However,
we use GPT-3.5 for most of our experiments due to the
best accuracy and cost tradeoff.

the EgoSchema Subset.365

The results in Table 1, suggest that LaViLa366

provides the best results, outperforming BLIP-2,367

EgoVLP, and VideoBLIP. We also observe that de-368

spite not being pre-trained on Ego4D (Grauman369

et al., 2022), BLIP-2 performs reasonably well370

(46.7%) and even outperforms other strong Ego4D-371

pretrained baselines, EgoVLP and VideoBLIP.372

Lastly, the Oracle baseline with ground truth cap-373

tions outperforms LaViLa captions by a large mar-374

gin (14.0%). This shows that our method can bene-375

fit from future improvements in captioning models.376

4.2.2 Large Language Model377

In Table 2, we analyze the performance of our378

framework using different LLMs while fixing the379

visual captioner to be LaViLa. Our results indicate380

that GPT-4 achieves the best performance (58.3%),381

followed by GPT-3.5 (51.8%). Thus, stronger382

LLMs (GPT-4) are better at long-range modeling,383

as indicated by a significant margin in LVQA accu-384

racy between GPT-4 and all other LLMs (>6.5%).385

We also note that Llama2 performs reasonably well386

with its 70B variant (50.6%), but its performance387

drastically degrades with smaller capacity LLMs388

(i.e., Llama2-7B, Llama2-13B). Due to the tradeoff389

between accuracy and cost, we use GPT-3.5 for390

most of our experiments unless noted otherwise.391

4.2.3 LLM Prompt Analysis392

In this section, we (1) analyze several variants393

of our summarization-based prompt (described in394

Section 3), and (2) experiment with other com-395

monly used prompt designs, including Zero-shot396

Chain-of-Thought (Zero-shot CoT) (Wei et al.,397

2022), Plan-and-Solve (Wang et al., 2023c), and398

Self-Consistency (Wang et al., 2023f). Below, we399

present a detailed analysis of these results.400

Multi-round Summarization Prompt. Given a401

concatenated set of captions C, an input question402

Q, and a set of candidate answers A, we can use403

Prompt Type Standard (C) → S (C, Q) → S (C, Q, A) → S

Acc. (%) 51.8 53.6 57.6 55.9

Table 3: Different variants of our multi-round sum-
marization prompt. Our results indicate that the (C,
Q) → S variant that takes concatenated captions C and
a question Q for generating a summary S works the
best, significantly outperforming (+5.8%) the standard
prompt. This confirms our hypothesis that additional
inputs in the form of a question Q enable the LLM to
generate a summary S tailored to a given question Q.

several input combinations to obtain the summary 404

S. Thus, here, we investigate three distinct variants 405

of obtaining summaries S: 406

• (C) → S: the LLM uses caption-only inputs 407

C to obtain summaries S in the first round of 408

prompting. 409

• (C, Q) → S: the LLM uses captions C and 410

a question Q as inputs for generating sum- 411

maries S. Having additional question inputs 412

is beneficial as it allows the LLM to generate a 413

summary S specifically tailored for answering 414

an input question Q. 415

• (C, Q, A) → S: the LLM takes captions C, a 416

question Q, and the answer candidates A as 417

its inputs to produce summaries S. Having 418

additional answer candidate inputs enables the 419

LLM to generate a summary S most tailored 420

to particular question-answer pairs. 421

In Table 3, we explore the effectiveness of these 422

three prompt variants. Our results show that all 423

three variants significantly outperform our standard 424

LVQA prompt (described in Section 3). Specifi- 425

cally, we note that the variant (C) → S that uses 426

caption-only inputs to obtain the summaries outper- 427

forms the standard baseline by 1.8%. Furthermore, 428

we observe that incorporating a given question as 429

an input (i.e., the (C, Q) → S variant) leads to 430

the best performance (57.6%) with a significant 431

5.8% boost over the standard LVQA prompt base- 432

line. This confirms our earlier intuition that having 433

additional question Q inputs enables the LLM to 434

generate a summary S specifically tailored for an- 435

swering that question, thus leading to a big boost 436

in LVQA performance. Lastly, we observe that 437

adding answer candidates A as additional inputs 438

(i.e., the (C, Q, A) → S variant) leads to a drop 439

in performance (-1.7%) compared with the (C, Q) 440

→ S variant. This might be because the wrong an- 441

swers in the candidate set A may mislead the LLM, 442

leading to a suboptimal summary S. 443

We also investigate the optimal length of the 444
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Number of words 50 100 300 500 700

Acc. (%) 55.6 57.4 55.8 57.6 55.0

Table 4: Number of words in a generated summary.
We study the optimal number of words in an LLM-
generated summary. These results suggest that the op-
timal LVQA performance is obtained when using 500-
word summaries.

Prompting Technique Acc. (%)

Zero-shot
Standard 51.8
Zero-shot Chain-of-Thought (Wei et al., 2022) 53.2
Plan-and-Solve (Wang et al., 2023c) 54.2
Self-Consistency (Wang et al., 2023f) 55.4
Ours 57.6

Few-shot
Standard 56.5
Ours 61.7

Table 5: Comparison with commonly used prompting
techniques. The “Standard" means a standard LVQA
prompt (see Section 3). We show that our framework
benefits from more sophisticated prompting techniques.
Our multi-round summarization prompt performs best
in both zero-shot and few-shot learning settings.

generated summary S, and present these results in445

Table 4. Specifically, for these experiments, we ask446

the LLM to generate a summary S using a different447

number of words (as part of our prompt). We use448

the best performing (C, Q) → S variant for these449

experiments. Our results indicate that using a very450

small number of words (e.g., 50) leads to a drop451

in performance, indicating that compressing the452

caption information too much hurts the subsequent453

LVQA performance. Similarly, generating sum-454

maries that are quite long (e.g., 700 words) also455

leads to worse results, suggesting that the filtering456

of the potentially noisy/redundant information in457

the captions is important for good LVQA perfor-458

mance. The best performance is obtained using459

500-word summaries.460

Comparison with Commonly Used Prompts.461

Next, in Table 5, we compare our multi-round462

summarization prompt with other commonly used463

prompts such as Zero-shot Chain-of-Thought (Wei464

et al., 2022), Plan-and-Solve (Wang et al., 2023c),465

and Self-Consistency (Wang et al., 2023f). These466

results show that all of these prompts outperform467

the base variant of our model that uses a standard468

prompt. In particular, among these commonly used469

prompts, the self-consistency prompting technique470

achieves the best results (55.4%). Nevertheless,471

Model Acc. (%)

Zero-shot
FrozenBiLM (Yang et al., 2022a) 26.9
mPLUG-Owl (Ye et al., 2023) 31.1
InternVideo (Wang et al., 2022a) 32.1
LongViViT (Papalampidi et al., 2023) 33.3
Vamos (Wang et al., 2023d) 48.3
LLoVi (Ours) 50.3

Few-shot
LLoVi (Ours) 52.5

Table 6: Results on the full set of EgoSchema. The
best-performing zero-shot variant of our LLoVi frame-
work achieves 50.3% accuracy, outperforming the previ-
ous best-performing InternVideo model by 18.2%. For
fair comparisons, we gray out our best few-shot variant.

our multi-round summarization prompt performs 472

best (57.6%). 473

4.2.4 Few-shot In-Context Learning 474

In-context learning with LLMs has shown strong 475

few-shot performance in many NLP tasks (Brown 476

et al., 2020; Wei et al., 2022). In Table 5, we evalu- 477

ate the few-shot in-context learning capabilities of 478

our LLoVi framework. Our results show that our 479

LLoVi framework greatly benefits from few-shot 480

in-context learning. Specifically, the few-shot in- 481

context learning leads to a 4.7% boost on the vari- 482

ant of our framework that uses a standard prompt 483

and 4.1% boost on our advanced framework using 484

a multi-round summarization prompt. We used 6 485

few-shot examples as we found this configuration 486

to produce the best performance. 487

4.3 Main Results on EgoSchema 488

In Table 6, we evaluate our best-performing 489

LLoVi framework on the full EgoSchema test 490

set containing 5K video samples. We compare 491

our approach with prior state-of-the-art meth- 492

ods including InternVideo (Wang et al., 2022a), 493

mPLUG-Owl (Ye et al., 2023), FrozenBiLM (Yang 494

et al., 2022a), as well as the concurrent works of 495

LongViViT (Papalampidi et al., 2023), and Va- 496

mos (Wang et al., 2023d). Based on these results, 497

we observe that the best-performing zero-shot vari- 498

ant of our LLoVi framework achieves 50.3% accu- 499

racy, outperforming the concurrent Vamos model 500

(+2.0%). Additionally, we show that by using few- 501

shot in-context learning, our best variant improves 502

even further. These results validate our design 503

choice of using the long-range modeling abilities of 504

LLMs for LVQA. Furthermore, since our proposed 505

LLoVi framework is agnostic to the visual caption- 506
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Model Cau. (%) Tem. (%) Des. (%) All (%)

VFC (Momeni et al., 2023) 45.4 51.6 64.1 51.5
InternVideo (Wang et al., 2022a) 43.4 48.0 65.1 49.1

ViperGPT (Surís et al., 2023) - - - 60.0
SeViLA (Yu et al., 2023) 61.3 61.5 75.6 63.6

LLoVi (ours) 69.5 61.0 75.6 67.7

Table 7: Zero-shot results on NeXT-QA. LLoVi
achieves 67.7% accuracy, outperforming previous best-
performing model SeViLA by 4.1%. Notably, LLoVi
excels at causal reasoning outperforming SeViLA by
8.2% in the causal question category.

ing model and an LLM it uses, we believe we could507

further improve these results by leveraging more508

powerful visual captioners and LLMs.509

4.4 Results on Other Datasets510

Next, we demonstrate that our simple framework511

generalizes well to other LVQA benchmarks.512

NExT-QA. In Table 7, we evaluate LLoVi on the513

NExT-QA (Xiao et al., 2021) validation set in a514

zero-shot setting. We compare our approach with515

prior methods: VFC (Momeni et al., 2023), In-516

ternVideo (Wang et al., 2022a), ViperGPT (Surís517

et al., 2023), and SeViLA (Yu et al., 2023). We518

observe that LLoVi outperforms the previous best-519

performing method, SeViLA by 4.1%. Notably,520

in the Causal category, LLoVi achieves 8.2% im-521

provement. We conjecture this improvement comes522

from the simple 2-stage design of our LLoVi frame-523

work: captioning followed by LLM reasoning. By524

captioning the video, we are able to directly lever-525

age the reasoning ability of the powerful LLMs and526

thus achieve good causal reasoning performance.527

IntentQA. In Table 8, we evaluate our method528

on the IntentQA (Li et al., 2023a) test set. In529

our comparisons, we include several supervised530

methods (HQGA (Xiao et al., 2022a), VGT (Xiao531

et al., 2022b), BlindGPT (Ouyang et al., 2022),532

CaVIR (Li et al., 2023b)) and the recent state-of-533

the-art zero-shot approach, SeViLA. From the re-534

sults in Table 8, we observe that our method greatly535

outperforms all prior approaches, both in the fully536

supervised and zero-shot settings.537

NExT-GQA. In Table 9, we extend our framework538

to the grounded LVQA task and evaluate it on the539

NExT-GQA (Xiao et al., 2023) test set. We com-540

pare LLoVi with the weakly-supervised methods:541

IGV (Li et al., 2022), Temp[CLIP](NG+) (Xiao542

et al., 2023), FrozenBiLM (NG+) (Xiao et al.,543

2023) and SeViLA (Yu et al., 2023). These base-544

lines are first trained on NExT-GQA to maxi-545

mize the QA accuracy, and then use ad-hoc meth-546

Model Acc. (%)

Supervised
HQGA (Xiao et al., 2022a) 47.7
VGT (Xiao et al., 2022b) 51.3
BlindGPT (Ouyang et al., 2022) 51.6
CaVIR (Li et al., 2023b) 57.6

Zero-shot
SeViLA (Yu et al., 2023) 60.9
LLoVi (ours) 64.0

Table 8: Results on IntentQA. Our zero-shot frame-
work outperforms previous supervised methods by a
large margin (6.4%). LLoVi also outperforms the recent
state-of-the-art zero-shot method, SeViLA, by 3.1%.

Model mIoP IoP@0.5 mIoU IoU@0.5 Acc@GQA

Weakly-Supervised
IGV (Li et al., 2022) 21.4 18.9 14.0 9.6 10.2
Temp[CLIP](NG+) 25.7 25.5 12.1 8.9 16.0
FrozenBiLM (NG+) 24.2 23.7 9.6 6.1 17.5
SeViLA (Yu et al., 2023) 29.5 22.9 21.7 13.8 16.6

Zero-shot
LLoVi (ours) 37.3 36.9 20.0 15.3 24.3

Table 9: Grounded LVQA results on NExT-GQA. We
extend LLoVi to the grounded LVQA task and show
that it outperforms prior weakly-supervised approaches
on all evaluation metrics. For a fair comparison, we
de-emphasize the models that were pretrained using
video-language grounding annotations.

ods (Xiao et al., 2023) to estimate a relevant video 547

segment for question-answering. Although LLoVi 548

is not trained on NExT-GQA, it still outperforms 549

these weakly-supervised methods by a large margin 550

according to all evaluation metrics. These results 551

demonstrate that our framework can be used to tem- 552

porally ground its predictions for more explainable 553

long-range video understanding. 554

5 Conclusion 555

In this work, we present a simple, yet highly 556

effective LLM-based framework for long-range 557

video question-answering (LVQA). Our framework 558

outperforms all prior models on the newly intro- 559

duced EgoSchema benchmark. Furthermore, we 560

demonstrate that our approach generalizes to other 561

LVQA benchmarks such as NeXT-QA, IntentQA, 562

and it can also be extended to grounded LVQA 563

tasks. Lastly, we thoroughly evaluate various de- 564

sign choices of our approach and analyze the key 565

factors behind the success of our method. We hope 566

that our simple LVQA framework will help inspire 567

new ideas and simplify model design in long-range 568

video understanding. 569
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Limitations570

Our proposed framework used different short-term571

visual captioning models for egocentric and exocen-572

tric videos due to the domain difference. A unified573

captioner that works for all kinds of videos remains574

to be explored in the future. Additionally, our multi-575

round summarization prompt requires two rounds576

of prompting LLMs. Although it leads to a signif-577

icant performance boost on LVQA, it also causes578

extra computational cost. Therefore, the trade-off579

between efficiency and high performance in our580

prompt design can be further improved.581
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Our appendix consists of Additional Datasets1023

and Metrics (Section A), Additional Analysis (Sec-1024

tion B), Additional Implementation Details (Sec-1025

tion C) and Qualitative Analysis (Section D).1026

A Additional Datasets and Metrics1027

In this section, we provide detailed information1028

about the datasets and the metrics we use.1029

• NExT-QA (Xiao et al., 2021) contains 5,4401030

videos with an average duration of 44s and1031

48K multi-choice questions and 52K open-1032

ended questions. There are 3 different ques-1033

tion types: Temporal, Causal, and Descriptive.1034

Following common practice, we perform zero-1035

shot evaluation on the validation set, which1036

contains 570 videos and 5K multiple-choice1037

questions.1038

• IntentQA (Li et al., 2023a) contains 4,3031039

videos and 16K multiple-choice question-1040

answer pairs focused on reasoning about peo-1041

ple’s intent in the video. We perform a zero-1042

shot evaluation on the test set containing 2K1043

questions.1044

• NExT-GQA (Xiao et al., 2023) is an ex-1045

tension of NExT-QA with 10.5K temporal1046

grounding annotations associated with the1047

original QA pairs. The dataset was introduced1048

to study whether the existing LVQA mod-1049

els can temporally localize video segments1050

needed to answer a given question. We eval-1051

uate all methods on the test split, which con-1052

tains 990 videos with 5,553 questions, each1053

accompanied by a temporal grounding label.1054

The metrics we used include: 1) Intersec-1055

tion over Prediction (IoP) (Xiao et al., 2023),1056

which measures whether the predicted tempo-1057

ral window lies inside the ground truth tem-1058

poral segment, 2) temporal Intersection over1059

Union (IoU), and 3) Acc@GQA, which de-1060

picts the percentage of accurately answered1061

and grounded predictions. For IoP and IoU,1062

we report the mean values and values with the1063

overlap thresholds of 0.5.1064

B Additional Analysis1065

In this section, we provide additional analysis on1066

the EgoSchema Subset using the standard prompt.1067

B.1 Video Sampling Configurations1068

In Figure 5, we investigate the sensitivity of LVQA1069

performance on EgoSchem with different video1070

sampling configurations. Specifically, in Subfig- 1071

ure 5a, we experiment with 4 different clip lengths: 1072

0.5s, 1s, 4s, and 8s. For each clip length, we use the 1073

stride that would be sufficient to cover the entire 1074

long video input. For these experiments, we use a 1075

LaViLa visual captioner and a GPT-3.5 LLM. Our 1076

results indicate that LVQA performance is the best 1077

when the sampled clip length is 1s. We observe 1078

that using an even shorter video clip length (i.e., 1079

0.5s) produces many repetitive/redundant captions, 1080

which leads to 2% drop in LVQA performance. 1081

Furthermore, we also note that increasing the clip 1082

length to longer durations (e.g., 2s-8s) makes the 1083

accuracy lower since the extracted captions start to 1084

lack detailed visual information needed to answer 1085

the question. In addition, in Subfigure 5b, we fix 1086

the clip length to 1s and experiment with 4 different 1087

stride values: 1s, 2s, 4s, and 8s. Note that the 1s 1088

clips sampled using a 1s stride will cover the entire 1089

video without overlap. Our results suggest a grad- 1090

ual decrease in LVQA accuracy when increasing 1091

the stride from 1s to 8s. This indicates that having 1092

gaps in long video coverage leads to suboptimal 1093

LVQA performance. Thus, for the rest experiments, 1094

we use 1s video clips sampled with a 1s stride. 1095
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Figure 5: The Analysis of Video Clip Sampling Strat-
egy on EgoSchema. These results show that sampling
1s video clips with a 1s stride leads to the best LVQA
performance.

B.2 Accuracy on Different Question Types 1096

To better understand the strengths and limitations 1097

of our LVQA framework, we manually categorize 1098

questions in the EgoSchema Subset into 5 cate- 1099

gories: (1) Purpose/Goal Identification, (2) Tools 1100

and Materials Usage, (3) Key Action/Moment De- 1101

tection, (4) Action Sequence Analysis, (5) Char- 1102

acter Interaction (see Supplementary Materials for 1103

details). Note that some questions belong to more 1104

than one category. Based on this analysis, we ob- 1105

serve that almost half of the questions relate to 1106

purpose/goal identification, which makes intuitive 1107

1



Question Category Category Percentage(%) Acc.(%)

Purpose/Goal Identification 49.2 54.9
Tools and Materials Usage 21.8 50.5
Key Action/Moment Detection 21.6 43.5
Action Sequence Analysis 18.2 52.7
Character Interaction 9.4 63.8

Table 10: Accuracy on different question categories
of EgoSchema. We manually categorize each question
in the EgoSchema Subset into 5 categories. Note that
each question may belong to one or more categories.
Our system performs the best on questions that involve
character interaction analysis or human purpose/goal
identification. This is encouraging as both of these ques-
tions typically require a very long-form video analysis.

sense as inferring human goals/intent typically re-1108

quires a very long video analysis. We also observe1109

that a significant portion of the questions relate1110

to tool usage, key action detection, and action se-1111

quence analysis. Lastly, the smallest fraction of the1112

questions belong to character interaction analysis.1113

In Table 10, we break down our system’s per-1114

formance according to each of the above-discussed1115

question categories. Our results indicate that our1116

system performs the best in the Character Interac-1117

tion category (63.8%). One possible explanation is1118

that the LaViLa model, which we use as our visual1119

captioner, is explicitly pretrained to differentiate1120

the camera wearer from other people, making it1121

well-suited for understanding various interactions1122

between characters in the video. We also observe1123

that our framework performs much worse in the1124

Key Action/Moment Detection category (43.5%).1125

We conjecture that this might be caused by the1126

limitations in the visual captioning model, i.e., if1127

the key action fails to appear in any of the visual1128

captions, the question will be almost impossible to1129

answer. Lastly, we note that our model performs1130

quite well on the remaining categories (>50%).1131

It is especially encouraging to see strong results1132

(54.9%) in the Purpose/Goal Identification cate-1133

gory since inferring human intentions/goals from1134

the video inherently requires very long-form video1135

analysis.1136

C Additional Implementation Details1137

C.1 Captioners1138

For most experiments on EgoSchema, we use LaV-1139

iLa as the visual captioner. For other pre-trained1140

visual captioners, we use off-the-shelf pre-trained1141

models, e.g., BLIP2 (Li et al., 2023c), EgoV-1142

LIP (Qinghong Lin et al., 2022).1143

LaViLa is trained on the Ego4D dataset. The 1144

original LaViLa train set has 7743 videos with 1145

3.9M video-text pairs and the validation set has 828 1146

videos with 1.3M video-text pairs. The EgoSchema 1147

dataset is cropped from Ego4D. Since EgoSchema 1148

is designed for zero-shot evaluation and the origi- 1149

nal LaViLa train set includes EgoSchema videos, 1150

we retrain LaViLa on Ego4D videos that do not 1151

have any overlap with EgoSchema videos to avoid 1152

unfair comparison with other methods. After re- 1153

moving the EgoShema videos, the train set consists 1154

6100 videos with 2.3M video-text pairs, and the 1155

validation set has 596 videos with 0.7M video-text 1156

pairs. We retrain LaViLa on this reduced train set 1157

to prevent data leakage. LaViLa training consists of 1158

two stages: 1) dual-encoder training and 2) narrator 1159

training. Below we provide more details. 1160

Dual-encoder. We use TimeSformer (Bertasius 1161

et al., 2021) base model as the visual encoder and a 1162

12-layer Transformer as the text encoder. The input 1163

to the visual encoder comprises 4 RGB frames of 1164

size 224×224. We randomly sample 4 frames from 1165

the input video clip and use RandomResizedCrop 1166

for data augmentation. The video-language model 1167

follows a dual-encoder architecture as CLIP (Rad- 1168

ford et al., 2021) and is trained contrastively. Fol- 1169

lowing LaViLa (Zhao et al., 2023), we use 1024 as 1170

batch size. We train at a 3× 10−5 learning rate for 1171

5 epochs on 32 NVIDIA RTX 3090 GPUs. 1172

Narrator is a visually conditioned autoregressive 1173

Language Model. It consists of a visual encoder, 1174

a resampler module, and a text encoder. We 1175

use the visual encoder (TimeSformer (Bertasius 1176

et al., 2021) base model) from the pretrained dual- 1177

encoder (See the previous paragraph). The resam- 1178

pler module takes as input a variable number of 1179

video features from the visual encoder and pro- 1180

duces a fixed number of visual tokens (i.e. 256). 1181

The text decoder is the pretrained GPT-2 (Rad- 1182

ford et al., 2019) base model with a cross-attention 1183

layer inserted in each transformer block which at- 1184

tends to the visual tokens of the resampler module. 1185

We freeze the visual encoder and the text decoder, 1186

while only training the cross-attention layers of the 1187

decoder and the resampler module. Following the 1188

design in LaViLa (Zhao et al., 2023), we use a batch 1189

size of 256 and a learning rate of 3× 10−5. We use 1190

AdamW optimizer (Kingma and Ba, 2014) with 1191

(β1, β2) = (0.9, 0.999) and weight decay 0.01. We 1192

train the model on 8 NVIDIA RTX 3090 GPUs for 1193

5 epochs. 1194
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Narrating video clips. We use nucleus sam-1195

pling (Holtzman et al., 2019) with p = 0.95 and1196

return K = 5 candidate outputs. Then we take the1197

narration with the largest confidence score as the1198

final caption of the video clip.1199

For NExT-QA, IntentQA and NExT-GQA1200

datasets, we use LLaVA1.5 as the visual cap-1201

tioner and GPT-4 as the LLM. Specifically, we1202

use the llava-1.5-7b-hf variant with the prompt1203

“USER: <image>. Describe the image in 30 words.1204

ASSISTANT: ”.1205

C.2 LLMs1206

For most experiments on EgoSchema we use1207

GPT-3.5 as the LLM. Specifically, we use the1208

gpt-3.5-turbo-0613 variant which has 4K con-1209

text. When the context length is not enough, we1210

use the gpt-3.5-turbo-16k variant. We use 0 as1211

temperature for all experiments.1212

We use Llama-2-7b-chat-hf, Llama-2-13b-1213

chat-hf, and Llama-2-70b-chat-hf variants as1214

Llama2 models. For all Llama2 models, we use1215

greedy sampling to generate the output.1216

For NExT-QA, IntentQA and NExT-GQA datasets,1217

we use GPT-4 as the LLM with the variant1218

gpt-4-1106-preview.1219

C.3 Prompting Techniques Implementation1220

Prompt Details. We provide detailed prompts1221

for our standard prompt in Table 11, multi-round1222

summarization-based prompt in Table 12, Zero-1223

shot Chain of Thought in Table 13, and Plan-and-1224

Solve prompting in Table 14. To implement Self-1225

Consistency, we set the temperature of GPT3.5 to1226

0.7 and run Zero-shot Chain of Thought for 5 times1227

following the design in Self-Consistency (Wang1228

et al., 2023f). Each run of the model provides a1229

result, and the final output is determined by a ma-1230

jority vote. The prompt for the grounded LVQA1231

benchmark is shown in Table 15.1232

Output Processing. When answering multiple1233

choice questions, GPT3.5 usually outputs complete1234

sentences instead of a single-letter answer, i.e. A, B,1235

C, D, or E. One way to obtain the single-character1236

response is to perform post-processing on the out-1237

put, which usually requires substantial engineering1238

efforts. In our work, however, we observe that1239

GPT3.5 is very sensitive to the starting sentences1240

of the prompts. Therefore, we explicitly prompt it1241

as in Table 11 to force GPT3.5 to generate a single1242

character as response. In practice, we take out the1243

first character of the output as the final answer.1244

. . .

[Q. Based on the actions described in the video, what 
can be inferred as the primary goal or task being 
performed by the character C?]

[C. #C walks towards the table. #C walks around the 
workshop. #C walks around the workshop. #C walks 
around the workshop. #C puts the tape measure down. 
#C picks a pen. #C moves the left hand . #C leans on the 
floor . #C places the wood on the floor with his left 
hand.. #C puts down the tape measure…. ]

[A. C is building a shelf.]

C
ap

ti
o

n

(a) Success case

. . .

[Q. Summarize the main activities c gets involved in 
during the video, and explain how these activities are 
interconnected.]

[C. #C eats the snack. #C touches the tablet screen. #C 
places the green spoon in the bowl of food. #C eats the 
chips. #C cuts the popcorn. #C eats the chips. #C eats 
the corn. #C picks up the chips from the bowl. #C picks 
the potato peels in the bowl. #C drops the chips in the 
bowl. #C eats the food….]

C
ap

ti
o

n

[A. C eats chips and watches tv.]                             
[Truth. C eats chips and uses an ipad.]

(b) Failure case

Figure 6: Examples of our framework with a stan-
dard prompt on EgoSchema. We show two examples,
a successful one (a) and a failed one (b).

D Qualitative Analysis 1245

D.1 Captioners 1246

In Table 16 we compare different captions gener- 1247

ated by BLIP2 and LaViLa on EgoSchema. LaViLa 1248

captions are generally more concise than BLIP2 1249

captions, focusing more on the actions while BLIP2 1250

focuses more on describing the objects. We also 1251

observe that LaViLa is better at differentiating the 1252

camera wearer and other person. As shown in the 1253

second image in Table 16, LaViLa tends to focus 1254

more on the action of the other person when the 1255

camera wearer and other person both appear in the 1256

video. 1257

D.2 LLoVi with Standard Prompt 1258

We show two examples of our method with stan- 1259

dard prompt, including a successful one and a failed 1260

one in Figure 6. Our method performs long-range 1261

modeling from short-term video captions through 1262

3



User
Please provide a single-letter answer (A, B, C, D, E) to the following multiple-choice question,
and your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation.
You are given some language descriptions of a first person view video. The video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.
Here is the question: Question
Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.

Assistant
Answer

Table 11: LLoVi with Standard Prompt on EgoSchema.

LLM to understand the video. In the success case1263

demonstrated in Subfigure 6a, the captions describe1264

the camera wearer’s action in a short period of time,1265

such as the interation with the tape measure and1266

the wood. With the short-term captions, LLM un-1267

derstand the long video and answers the question1268

correctly.1269

In the failure case shown in Subfigure 6b, although1270

the video captioner identifies the object in the video1271

correctly as a tablet, LLM understands the action of1272

the camera wearer as watching TV rather than us-1273

ing an iPad. This might be caused by misguidance1274

from the redundant captions that are not related to1275

the question.1276

D.3 LLoVi with Multi-round1277

Summarization-based Prompt1278

Figure 7 illustrates two EgoSchema questions that1279

our framework with multi-round summarization-1280

based prompt answers correctly. In Subfigure 7a,1281

the question asks for the primary function of a tool1282

that the video taker uses. However, shown in the1283

first two images, the long video contains descrip-1284

tions that are not related to the question, such as1285

operating a machine and rolling a dough. As a1286

result, the generated text captions would contain1287

a large section that is not our direction of interest.1288

By summarizing the captions with awareness to1289

the question, LLM extracts key information and1290

cleans redundant captions to provide clearer tex-1291

tual background for answering the question. The 1292

same pattern is observed in Subfigure 7b. 1293

Figure 8 shows two questions that our method fails 1294

to answer. In the summarization stage, the LLM 1295

answers the question directly instead of using the 1296

question to guide the summarization. For exam- 1297

ple, in Subfigure 8a, all the frames show the cam- 1298

era wearer engaging in actions related to washing 1299

dishes, but LLM infers that the person is cleaning 1300

the kitchen in the summarization stage. This wrong 1301

inference further misdirects the following question 1302

answering stage, which leads to an incorrect an- 1303

swer. In Subfigure 8b, LLM concludes that the cup 1304

of water is used to dilute the paint because the cam- 1305

era wearer dips the brush into water before dipping 1306

it into the paint palette. 1307

In Figure 9, we also show a question which the stan- 1308

dard prompt fails to answer, but the multi-round 1309

summarization-based prompt answers correctly. In 1310

the video in the example question, we observe 1311

the camera wearer involving in activities related 1312

to laundry, such as picking up clothes from the 1313

laundry basket and throwing them into the washing 1314

machine. However, the short-term video captions 1315

shown in Subfigure 9a demonstrate the redundancy 1316

of actions. The repetitive actions complexes ex- 1317

tracting and comprehending the information pre- 1318

sented in the caption. For example, excessive cap- 1319

tions on picking up clothes can make LLM think 1320

that the camera wearer is packing something. Our 1321
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User
You are given some language descriptions of a first person view video. Each video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
Please give me a num_words words summary. When doing summarization, remember that
your summary will be used to answer this multiple choice question: Question.

Assistant
Summary

User
Please provide a single-letter answer (A, B, C, D, E) to the following multiple-choice question,
and your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation.
You are given some language descriptions of a first person view video. The video is 3 minute
long. Here are the descriptions: Summary
You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.
Here is the question: Question
Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.

Assistant
Answer

Table 12: LLoVi with Multi-round Summarization-based Prompt on EgoSchema. We show the variant
(C, Q) → S, where we feed the question without potential choices to the summarization stage. Top: caption
summarization prompt. Bottom: question answering prompt. In the first stage, GPT3.5 outputs a question-
guided summary. In the second stage, GPT3.5 takes the summary without the original captions, then answer
the multiple choice question.

multi-round summarization-based prompt mitigate1322

this problem by first ask LLM to provide a sum-1323

mary of the captions. The summary shown in Sub-1324

figure 9b states clearly that the camera wearer is1325

doing laundry. With the cleaner and more compre-1326

hensive summary, the LLM answer the question1327

correctly.1328

D.4 Question Categories1329

We provide detailed descriptions of each question1330

category in Table 17. Note that each question can1331

be classified into multiple categories.1332
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User
You are given some language descriptions of a first person view video. The video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.
Here is the question: Question
Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
Before answering the question, let’s think step by step.

Assistant
Answer and Rationale

User
Please provide a single-letter answer (A, B, C, D, E) to the multiple-choice question, and
your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation. Your response should only contain one letter.

Assistant
Answer

Table 13: LLoVi with Zero-shot Chain of Thought Prompting on EgoSchema.
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User
You are given some language descriptions of a first person view video. The video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.
Here is the question: Question
Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
To answer this question, let’s first prepare relevant information and decompose it into 3
sub-questions. Then, let’s answer the sub-questions one by one. Finally, let’s answer the
multiple choice question.

Assistant
Sub-questions and Sub-answers

User
Please provide a single-letter answer (A, B, C, D, E) to the multiple-choice question, and
your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation. Your response should only contain one letter.

Assistant
Answer

Table 14: LLoVi with Plan-and-Solve Prompting on EgoSchema.

User
I will provide video descriptions and one question about the video. The video is 1 FPS
and the descriptions are the captions every 2 frames. Each caption starts with the frame
number.To answer this question, what is the minimun frame interval to check? Follow this
format: [frame_start_index, frame_end_index]. Do not provide any explanation.
Here are the descriptions: Captions
Here is the question: Question
Please follow the output format as follows: #Example1: [5, 19]. #Example2: [30, 60].
#Example3: [1, 10] and [50, 60]

Assistant
Answer

Table 15: LLoVi Prompt on NExT-GQA.
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LaViLa #C C drops the
brick mould.

#O man X moves
the cards.

#C C puts the cloth
on the table.

#C C moves the
dough in the tray.

BLIP2 A person is laying a
brick in the dirt.

A child is playing a
game of monopoly
with a tray of paper
plates.

A person is work-
ing on a tool.

Woman making
dough in a kitchen.

Table 16: Comparison between different captioners. Top: frames from EgoSchema videos. Middle: captions
generated by LaViLa. Bottom: captions generated by BLIP2. LaViLa captions are more concise than BLIP2
captions. LaViLa is better at differentiating the camera wearer and other people.
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Question
Category

Description Examples

Purpose/Goal
Identification

primary goals, intentions,
summary, or overarching
themes of the video

1. Taking into account all the actions performed by
c, what can you deduce about the primary objective
and focus within the video content?
2. What is the overarching theme of the video, con-
sidering the activities performed by both characters?

Tools and Mate-
rials Usage

how the character engages
with specific tools, materi-
als, and equipment

1. What was the primary purpose of the cup of water
in this video, and how did it contribute to the overall
painting process?
2. Explain the significance of the peeler and the
knife in the video and their respective roles in the
preparation process.

Key Action /
Moment Detec-
tion

identify crucial
steps/actions, the in-
fluence/rationale of key
action/moment/change on
the whole task

1. Out of all the actions that took place, identify the
most significant one related to food preparation and
explain its importance in the context of the video.
2. Identify the critical steps taken by c to organize
and prepare the engine oil for use on the lawn mower,
and highlight the importance of these actions in the
overall video narrative.

Action Se-
quence Analy-
sis

compare and contrast dif-
ferent action sequences,
relationship between dif-
ferent actions, how charac-
ters adjust their approach,
efficacy and precision, ex-
pertise of the character

1. What is the primary sequence of actions performed
by c throughout the video, and how do these actions
relate to the overall task being performed?
2. Considering the sequence of events, what can
be inferred about the importance of precision and
accuracy in the character’s actions, and how is this
demonstrated within the video?

Character Inter-
action

how characters interact
and collaborate, how their
roles differ

1. What was the main purpose of the actions per-
formed by both c and the man throughout the video,
and how did their roles differ?
2. Describe the general activity in the room and how
the different characters and their actions contribute
to this environment.

Table 17: Question categories of EgoSchema. We manually categorize each question in the EgoSchema Subset
into 5 categories. Note that each question may belong to one or more categories.
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. . .

[Q. What was the primary function of the scrapper
throughout the video? ]

[S. Throughout the video, the scrapper was used to cut,
move, and shape the dough. It was employed to divide
the dough into smaller pieces, ensuring uniformity and
consistency in size. By cutting the dough, the scrapper
allowed for easier handling and further processing….]

[A. The primary function of the scrapper throughout the
video is to cut the dough into small pieces.]

C
ap
ti
o
n

(a)

. . .

[Q. Based on the video, summarize the key steps in the
process that c undertook while preparing the tray and
working with the foil. ]

[S. …In summary, the key steps in the process that #C
undertook while preparing the tray and working with
the foil include picking up a packet of foil, moving it to
the other side of the oven, spreading it on the oven,
pressing it with a butter grater, cutting it, removing it
from the tray, and putting it on the grill.]

[A. C prepared the tray by unfolding foil, cutting foil, and
placing foil on the tray.]

C
ap
ti
o
n

(b)

Figure 7: Success cases of our multi-round
summarization-based prompt.

. . .

[Q. Taking into account all the actions performed by c,
what can you deduce about the primary objective and
focus within the video content?]

[S. In the given first person view video, the primary
objective and focus of the content is on cleaning and
organizing the kitchen. The video starts with #C shaking
a bowl, followed by cleaning it with a sponge. #C then
proceeds to pick up a dish and clean a tray....]

[A. C is cleaning the kitchen.]
[Truth. C is cleaning dishes.]

C
ap
ti
o
n

(a)

. . .

[Q. What was the primary purpose of the cup of water
in this video, and how did it contribute to the overall
painting process?]

[S. In this 3-minute first person view video, the primary
purpose of the cup of water was to clean and rinse the
paintbrush during the painting process…. The cup of
water is also used to dilute the paint, as #C is seen
dipping the brush into the water and then into the paint
palette….]

[A. To provide a source of water for the paintbrush.]
[Truth. To clean the paintbrush.]

C
ap
ti
o
n

(b)

Figure 8: Failure cases of our framework with multi-
round summarization-based prompt.
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. . .

[Q. From the actions c performed, what can you infer 
about the purpose and process of their activity? 

[C. #C stands on the floor. #C touches the camera on the 
head. #C picks the clothing from the box. #C folds the 
cloth.. #C removes a hand from the table.. #C picks the 
cloth from the bag. #C picks the jacket. #C picks a cloth. 
#C places the clothes in the cloth rack. #C drops the cloth 
in the suitcase. #C picks the cloth. #C picks a cloth….]

[A. C is packing a bag.]

C
ap

ti
o

n

(a) Standard prompt (wrong answer).

. . .

[Q. From the actions c performed, what can you infer 
about the purpose and process of their activity? 

[S. ….Throughout the video, C is seen engaging in tasks 
related to laundry, such as picking up clothes from a 
chair, laundry basket, or washing machine. They also 
fold and remove clothes from the washing machine, and 
even clean the washing machine itself. C is observed 
handling various items, including a paper bag…]

[A. C is doing laundry.]

C
ap

ti
o

n

(b) Multi-round summarization-based prompt (correct an-
swer).

Figure 9: Contrast between our standard prompt and
our multi-round summarization-based prompt. (a)
demonstrates the process of answering the question with
a standard prompt, and (b) shows answering the question
with our multi-round summarization-based prompt.
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