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ABSTRACT

Large language model (LLM) has become a crucial tool for many machine learning
research and applications. Due to the large parameter count of these models and
the enormous amount of training data, large language models are usually strong
at general tasks. For most applications, however, one would like a smaller, more
parameter-efficient model that is specialized in a particular field. This motivates
the design of fine-tuning, which tunes a pre-trained LLM for a few iterations on
a dedicated dataset for specific tasks. If not handled correctly, the fine-tuning
process would create another LLM that has a comparable amount of parameters,
significantly slowing down any downstream applications.
One of the most widely-known ideas for resolving this issue is the Low-Rank
Adaptation (LoRA) framework, where one assumes the fine-tuning weights are
low-rank therefore the number of parameters together with the inference time is
drastically improved. While performing well in practice, LoRA method is still
a heuristic and lacks theoretical guarantees even though the loss function might
inherit certain structures. Moreover, when fine-tuning multiple similar tasks in
parallel, LoRA requires one to learn a pair of distinct low-rank matrices for each
task, ignoring possible shared structure between tasks.
In this work, we design a framework that further reduces parameter count compared
to LoRA and enables parameter sharing across different parallel fine-tuning tasks.
When the number of parallel fine-tuning tasks grows larger, we cut the parameter
count almost in half compared to LoRA. Moreover, we prove why our approach
and more generally, LoRA works for a large class of loss functions. We empir-
ically verify the effectiveness of our method on various benchmark models and
datasets, demonstrating much-improved parameter count while retaining similar
performance as LoRA.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023) are becoming increasingly important
in the realm of artificial intelligence and information technology, serving a multitude of functions
across various sectors (Chiang et al., 2023; Touvron et al., 2023a;b). Their ability to understand,
generate, and interact with human language in a nuanced manner makes them invaluable tools in
everything from customer service and data analysis to content creation and decision support systems.
Beyond automating tasks, LLMs contribute to the development of conversational agents that can
assist with mental health (Nori et al., 2023), offer educational tutoring (Nori et al., 2023; Phung et al.,
2023; Kasneci et al., 2023), and provide specialized advice in legal or medical fields (Bommarito II
& Katz, 2022; Wang et al., 2023). These models can process and analyze vast amounts of data
far more quickly than humans, making them particularly useful in sifting through large datasets to
identify trends or insights. Thus, LLMs are not only reshaping our interaction with technology but
also have the potential to significantly impact how we solve complex problems, improve efficiency,
and enhance the quality of life.

Fine-tuning is an essential step in harnessing the full potential of Large language models (Touvron
et al., 2023b; Wang et al., 2023), tailoring their generalized capabilities to meet specific needs or
goals. While these models are trained on a broad range of data to perform various tasks, they often
require further customization to excel in specialized applications. Fine-tuning allows businesses,
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researchers, and developers to adapt LLMs for particular industries, such as healthcare (Bommarito II
& Katz, 2022; Wang et al., 2023), finance (Yang et al., 2023; Wu et al., 2023), or law (Bommarito II
& Katz, 2022), thereby optimizing their performance and making them more effective and reliable
tools. This customization not only improves the model’s utility but also helps in mitigating biases,
ensuring ethical use, and meeting compliance standards. In essence, fine-tuning is the bridge between
a model’s generalized abilities and its application in solving real-world, domain-specific problems,
making it a critical element in the deployment of LLMs across diverse settings. Moreover, fine-tuning
is crucial for commercial deployment of LLMs (OpenAI, 2023; Touvron et al., 2023a;b), as they
offer a simple, lightweighted and efficient approach to perform fast inference for dedicated tasks. For
example, fine-tuning LLMs has been consequential for Enterprise co-pilots (E.g., github co-pilot)
that are being deployed widely.

The process of fine-tuning a Large language model involves several methods, each with its unique
advantages, depending on the application and goals. One common approach is data augmenta-
tion (Shorten et al., 2021; Feng et al., 2021; Yoo et al., 2021), where the existing dataset is expanded
by adding variations of the data to increase diversity and reduce overfitting. Another method is
curriculum learning (Xu et al., 2020; Bengio et al., 2009), which involves progressively training
the model on increasingly complex tasks, allowing it to build up its expertise gradually. Transfer
learning (Chronopoulou et al., 2019; Houlsby et al., 2019) is also widely used, taking a pre-trained
model and adapting it for a specific task by training it further on a specialized dataset. Feature-based
fine-tuning involves extracting certain layers or “features” from the pre-trained model and incorporat-
ing them into a new model designed for the specific task. Hyperparameter tuning, where settings
like learning rate or batch size are adjusted, is also crucial for optimizing performance. Additionally,
multi-task learning (Sanh et al., 2021; Liu et al., 2019a) can be employed to fine-tune the model on
several related tasks simultaneously, thereby enhancing its generalizability. These methods can be
used individually or in combination to ensure that the model performs optimally in its designated role,
making fine-tuning a versatile and indispensable step in the deployment of large language models.

One of the key aspects to address is the parameter count of fine-tuning (Houlsby et al., 2019;
Mangrulkar et al., 2022; Ding et al., 2023). Let W0 ∈ Rd×m denote the pre-training model weight,
note that if done naively, even fine-tuning on a single data point will end up with a model as large as
W0, as the ∆W ∈ Rd×m is without any structure if no further assumptions are imposed. On the other
hand, fine-tuning should be parameter-efficient and highly structured, as most of the technical heavy-
lifting has been handled by the time- and parameter-consuming pre-trained model W0. Drawing
inspiration from deep learning theory, where the gradients of model weights are usually low-rank due
to over-parametrization, Hu et al. (2021) proposes the Low-Rank Adaptation (LoRA) framework,
where they assume the fine-tuning weights, ∆W admits a rank-r factorization for a hyperparameter
r. While d and m can be as large as 104 to 105 and lead to a pre-trained model with trillions of
parameters, the LoRA approach allows one to pick r = 50 or 100, reduces the parameter count
by more than 100× fold. Moreover, by performing the fine-tuning process on a low-rank model
∆W = AB for A ∈ Rd×r and B ∈ Rr×m, they also effectively improve the inference time, as
multiplying a vector with ∆W can be performed by first multiplying with B then computing the
matrix-vector product using A and the resulting vector, a runtime improvement from O(md) to
O(mr + dr). Due to these advantages, LoRA has become an important building block for the
fine-tuning procedure of many LLMs, including GPT-3 (Brown et al., 2020).

Despite its impressive empirical performance, LoRA does have several drawbacks. The method itself
is still a heuristic, as the work Hu et al. (2021) does not provide convergence guarantees and they
instead motivate the effectiveness of LoRA from the perspective of subspace similarity Hamm & Lee
(2008). From an algorithmic perspective, LoRA requires each individual fine-tuning task to learn a
distinct pair of low-rank matrices Ai, Bi. This ignores the potential relevance between different tasks,
for example, in the AEP Copilot fine-tuning pipeline, the content and citation retrieval are highly
correlated, and are fine-tuned on the same LLM. One would expect the similarity and relevance of
these two tasks can be exploited in a manner that further reduces the number of parameters required
for fine-tuning. With these considerations in mind, we ask the following question:

Can we develop a framework that further reduces the parameter count for parallel fine-tuning, and
provide theoretical guarantees for it?

In this work, we provide a positive answer to the above question. In particular, we propose a
framework called Multiple Parallel Low-Rank Adaptation (Multi-LoRA) that enables one to fine-
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tune k tasks with the same pre-trained model in a more parameter-efficient manner than LoRA.
Moreover, we prove that for a large class of loss functions, our method exhibits a good convergence
speed under mild assumptions on the gradient. Our analysis, surprisingly, draws inspiration from the
convergence analysis of FedAvg (McMahan et al., 2017) and its variant (Song et al., 2023). We also
empirically verify the effectiveness of our proposed method on publicly available Roberta (Liu et al.,
2019b) and GPT-2 (Radford et al., 2019) models. We achieve similar performance as LoRA while
significantly reduce the parameter count. We summarize our contributions as follows:

• We propose Multi-LoRA, a framework that enables fine-tuning multiple tasks in parallel
and reduces parameter count. Specifically, for k tasks, LoRA would require O(kdr + kmr)
parameters, while Multi-LoRA only requires O(dr + kmr) parameters. If d and m are in
the same order and k is large, this almost cuts the number of parameters in half.

• We provide theoretical guarantees for our framework via a partially decomposable loss
analysis. In particular, we show that whenever the individual task loss has a good local
structure (such as Lipschitzness, smoothness, and convexity), it can be propagated to the
global loss.

• We empirically verify our algorithm by performing experiments on Roberta and GPT2 on
various benchmarks as in Hu et al. (2021). We achieve comparable performances as Hu et al.
(2021), while only using ≤ 60% of parameters compared to LoRA.

1.1 OUR RESULTS

We start with the formulation of our loss,
Definition 1.1 (A mathematical interpretation of the model). Let L : Rd × Rm → R denote a loss
function. Let k ≥ 1 denote a positive integer. Define the global loss function L : Rd × Rmk → R as
follows L(x, y) :=

∑k
i=1 L(x, yi) where y ∈ Rmk is a vector that concatenates all k parameters for

each yi: y :=
[
y⊤1 y⊤2 · · · y⊤k

]⊤
.

Lemma 1.2 (Informal of Lemma 4.4, lipschitz). If L is γ-Lipschitz, then L is (γk)-Lipschitz.
Lemma 1.3 (Informal of Lemma 4.6, smoothness). If L is β-smooth, then L is (kβ)-smooth.

Our results for Lipschitzness and smoothness don’t require additional assumptions. However, for
strong convexity, extra structural assumptions are needed (for details see Lemma 4.8) as otherwise
counterexample exists.
Lemma 1.4 (Informal of Lemma 4.8, strongly convex). If L is α-strongly convex and under certain
assumptions, then L is (0.5α)-strongly convex.

Consequentially, standard first-order optimization methods can be applied directly to
Multi-LoRA and convergence can be obtained.

2 RELATED WORK

Practical/Empirical LLMs In the landscape of practical and empirical studies on Large Language
Models (LLMs), a plethora of research has emerged that scrutinizes various facets of these computa-
tional behemoths. Studies often focus on the utility of LLMs in specific sectors such as healthcare,
where they have been deployed for diagnostic assistance and drug discovery, or in the financial
sector for risk assessment and fraud detection. Additionally, benchmarking papers have explored the
raw performance of these models, evaluating them across various natural language processing tasks
like machine translation, text summarization, and question-answering. BERT (Devlin et al., 2018)
presents a novel approach in NLP by pre-training deep bidirectional representations on unlabeled
text, which enables fine-tuning with minimal architectural modification to achieve state-of-the-art
results across various language processing tasks. Across the GPT (Radford et al., 2018; 2019; Brown
et al., 2020; OpenAI, 2023) series, the progression of GPT models is evident, each showcasing
advancements in natural language understanding and generative capabilities. Starting with a focus on
generative pre-training to improve task-specific fine-tuning in diverse NLP tasks, the series evolves
towards the development of GPT-4 (OpenAI, 2023), a multimodal, large-scale model capable of
human-level performance in professional and academic benchmarks, accepting both image and text
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inputs, and exhibiting advancements in zero-shot and few-shot learning, scalability, and applicability
across a myriad of NLP tasks and real-world scenarios., T5 (Raffel et al., 2020) innovates in transfer
learning for NLP by introducing a unified, text-to-text framework to harmonize diverse language
problems and by comparing various elements like pre-training objectives and architectures. The
PaLM series (Chowdhery et al., 2022; Anil et al., 2023) develops large-scale Transformer language
models, with PaLM (Chowdhery et al., 2022) leveraging a novel ML system, Pathways to achieve
SOTA few-shot learning and breakthrough performance in multi-step reasoning and multilingual
tasks. PaLM 2 (Anil et al., 2023) builds upon this by improving multilingual capabilities, reasoning,
and compute efficiency. FLAN (Wei et al., 2021)introduces a model that enhances zero-shot learning
in language models through instruction tuning, a process of fine-tuning models on tasks described
via instructions, showing superior performance over models like GPT-3 in various NLP tasks by
utilizing natural language instructions, model scale, and diversified fine-tuning datasets. A significant
body of work has also been dedicated to the fine-tuning methods that optimize LLMs for specialized
tasks, offering critical insights into effective techniques such as data augmentation, transfer learning,
and hyperparameter tuning. For example, RoBERTa (Liu et al., 2019b) refines BERT pretraining
approach, revealing through a meticulous replication study that by optimizing key hyperparameters
and training data size, BERT was significantly undertrained and could achieve state-of-the-art results
on several NLP benchmarks, thus emphasizing the pivotal role of design choices in model perfor-
mance. Ethical considerations, particularly those related to bias and fairness, have also seen growing
empirical examination. These research efforts collectively contribute to the ongoing refinement of
LLMs, enhancing their practicality and ethical standards, and ensuring their effective deployment
across a wide range of applications.

Theoretical LLMs A number of work have studied the Large Language Models. Several work have
tried to explain the LLMs in different kind of angles Panigrahi et al. (2023a); Sanford et al. (2023);
Tarzanagh et al. (2023); Arora & Goyal (2023); Malladi et al. (2023b); Panigrahi et al. (2023b). There
are also a number of work studied the attention scheme in computation level, such as Kitaev et al.
(2020); Wang et al. (2020); Zandieh et al. (2023); Alman & Song (2023); Deng et al. (2023); Brand
et al. (2023); Malladi et al. (2023a)

3 MULTI-LORA: A PARAMETER-SHARING FRAMEWORK FOR EFFICIENT
FINE-TUNING

In this section, we present Multi-LoRA, a framework that enables multiple fine-tuning tasks to
share a same low-rank module while maintaining their identities. This results in a nearly 50%
parameter reduction compared to LoRA. To make the following discussion clear, for matrices A,B,
we use subscript Ai, Bi to denote the low-rank modules for the i-th task, and we use A(t), B(t)
to denote the low-rank modules for the t iteration. For example, Bi(t) would denote the low-rank
module for the i-th task at iteration t.

At a high level, Multi-LoRA resembles that of LoRA: the algorithm tunes two low-rank modules
iteratively. The key difference here is that Multi-LoRA further freezes the module A and shares it
across all different tasks. This approach seems to weaken the LoRA framework, as it reduces the
expressivity of the model by freezing A and further, if the tasks are highly unrelated, then sharing
A would intuitively be a bad idea. We show both theoretically and empirically that this is not
the case. Theoretically, we provide a mathematical formulation of our Multi-LoRA framework
and observe a partially decomposable structure of this formulation. This enables one to transmit
good local structure to the global loss, therefore explaining the good performance of Multi-LoRA.
Empirically, we observe Multi-LoRA exhibits comparable performance as LoRA while reducing
number of parameters dramatically.

4 MATHEMATICAL FORMULATION OF MULTIPLE PARALLEL FINE-TUNING

In this section, we provide a mathematical model for Multi-LoRAfrom the perspective of loss
functions. Specifically, we show that by our formulation of global loss, the local structure can be
propagated to global.
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Algorithm 1 Parameter reduction through sharing a low-rank module across all fine-tuning tasks.
We use W0 to denote the pre-trained model weights, r to denote the rank parameter of low-rank
modules, L to denote the loss function that takes in a pre-trained weight, a low-rank factorization
of fine-tuning weight and an m-dimensional data point. k denotes the total number of tasks to be
fine-tuned, and X1, . . . , Xk denote specific datasets for each task. Finally, let T denote the total
number of fine-tuning episodes.

1: procedure MULTI-LORA(W0 ∈ Rd×m, r, L : Rd×m × Rd×r × Rr×m × Rm → R, k,X1 ∈
Rm×n1 , . . . , Xk ∈ Rm×nk , T )

2: /* Initialization stage: initialize A(0) with random Gaussian and Bi(0) to 0r×m. */
3: Initialize each entry of A(0) as independent N (0, 1)
4: for i = 1→ k do
5: Bi(0)← 0r×m

6: end for
7: /* Fine-tuning stage: freeze W0 and A(0), while tuning for each Bi(t). */
8: for t = 1→ T do
9: A(t)← A(t− 1) ▷ Freeze shared module A.

10: for i = 1→ k do
11: Update Bi(t) using Bi(t− 1) and ∇BL(W0, A(t), Bi(t− 1), Xi)
12: end for
13: end for
14: return A(T ), {Bi(T )}ki=1
15: end procedure

4.1 NOTATIONS

We use [n] for a positive integer n to denote the set {1, 2, . . . , n}. Given a vector x, we use ∥x∥2 to
denote its ℓ2 norm. Given a matrix A, we use ∥A∥ to denote its spectral norm and ∥A∥F to denote its
Frobenious norm. Given a matrix A, we use Ai,∗ to denote its i-th row and A∗,j to denote its j-th
column. We use ∥A∥0 to denote the ℓ0 semi-norm of A that measures the number of nonzero entries
in A.

Given a rank-k, m× n real matrix A, we use κ(A) to denote its condition number: κ(A) = σ1(A)
σk(A)

where σ1(A), . . . , σk(A) are singular values of A sorted in magnitude. When A is clear from context,
we often use κ directly.

For a n× n matrix A, we say it is positive semi-definite (PSD, A ⪰ 0) if for all x, x⊤Ax ≥ 0. We
say it is positive definite (PD, A ≻ 0) if for all x ∈ Rn\0n, we have x⊤Ax > 0.

4.2 ASSUMPTIONS AND DEFINITIONS

In this section, we provide a mathematical formulation of the multiple parallel fine-tuning tasks
model studied in this paper.
Definition 4.1 (A mathematical interpretation of the model, restatement of Defintion 1.1). Let
L : Rd × Rm → R denote a loss function. Let k ≥ 1 denote a positive integer.

Define the global loss function L : Rd × Rmk → R as follows

L(x, y) :=
k∑

i=1

L(x, yi)

where y ∈ Rmk is a vector that concatenates all k parameters for each yi:

y :=


y1
y2
...
yk

 .

We would like to highlight the connection between this formulation and the fine-tuning scheme we are
to introduce in this paper. Our algorithm would resemble that of LoRA, with the significant difference
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that if there are k tasks, LoRA would maintain k pairs of matrices Ai, Bi, but our algorithm would
share a single A across all k tasks while only let each task vary their Bi’s. In the above formulation,
one can view x as a shared parameter across all local losses and yi’s are the customized parameters
that are unique to each task. The global loss function is heavily inspired by federated learning and
the FedAvg paradigm McMahan et al. (2017). We would also like to remark that we can vary the loss
function by replacing L with Li and our results still hold. For the simplicity of presentation, we stick
to the same loss across all tasks.

The gradient of the loss function can be compactly expressed in the following way:
Claim 4.2. We have

dL(x, y)
d(x, y)

=


∑k

i=1
dL(x,yi)

dx
dL(x,y1)

dy1

...
dL(x,yk)

dyk


Proof. The proof of this statement follows straightforward by using chain rule.

The form of the gradient enables us to perform a “partial decomposition”: we can decompose it into a
term contributed by the shared term, and k terms correspond to individual parameters. This motivates
us to prove structural property of the global loss based on individual loss. Below, we show several
standard properties of loss functions, such as Lipschitzness, smoothness and (strong) convexity can
be readily propagated from individual loss to global loss.

4.3 LIPSCHITZ PROPERTY

Definition 4.3. We say function L : Rd × Rm → R is γ-Lipschitz if

|L(x, yi)− L(x̃, ỹi)| ≤ γ · ∥
[
x
yi

]
−
[
x̃
ỹi

]
∥2

Lemma 4.4 (Formal version of Lemma 1.2). If L : Rd × Rm → R is γ-Lipschitz, then L :
Rd × Rmk → R is (γk)-Lipschitz.

Proof. We can show

|L(x, y)− L(x̃, ỹ)|2 = |
k∑

i=1

(L(x, yi)− L(x̃, ỹi))|2

≤ k

k∑
i=1

|L(x, yi)− L(x̃, ỹi)|2

≤ k

k∑
i=1

γ2∥
[
x
yi

]
−
[
x̃
ỹi

]
∥22

= kγ2
k∑

i=1

(∥x− x̃∥22 + ∥yi − ỹi∥22)

≤ k2γ2(∥x− x̃∥22 +
k∑

i=1

∥yi − ỹi∥22)

= k2γ2(∥x− x̃∥22 + ∥y − ỹ∥22)

= k2γ2 · ∥
[
x
y

]
−
[
x̃
ỹ

]
∥22

where the first step follows from definition of L, the second step follows from Cauchy-Schwarz
inequality, the third step follows from loss function L is γ-Lipschitz, the forth step follows definition
of ℓ2 norm, the fifth step follows from simple algebra, the sixth step follows from definition of y.
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Taking the square root of both sides of the above equation, then we have

|L(x, y)− L(x̃, ỹ)| ≤ kγ · ∥
[
x
y

]
−
[
x̃
ỹ

]
∥2

Thus, we complete the proof.

4.4 SMOOTHNESS

Definition 4.5. We say function L : Rd × Rm → R is β-smooth if

∥∇L(x, yi)−∇L(x̃, ỹi)∥2 ≤ β · ∥
[
x
yi

]
−

[
x̃
ỹi

]
∥2

Here∇L(x, yi) denote the gradient.
Lemma 4.6 (Formal version of Lemma 1.3). If function L is β-smooth, then L is (kβ)-smooth.

Proof. We can show

∥∇L(x, y)−∇L(x̃, ỹ)∥22 = ∥
k∑

i=1

(∇L(x, yi)−∇L(x̃, ỹi))∥22

≤ k

k∑
i=1

∥∇L(x, yi)−∇L(x̃, ỹi)∥22

≤ k

k∑
i=1

β2∥
[
x
yi

]
−

[
x̃
ỹi

]
∥22

= kβ2
k∑

i=1

(∥x− x̃∥22 + ∥yi − ỹi∥22)

≤ k2β2(∥x− x̃∥22 +
k∑

i=1

∥yi − ỹi∥22)

= k2β2(∥x− x̃∥22 + ∥y − ỹ∥22)

= k2β2 · ∥
[
x
y

]
−

[
x̃
ỹ

]
∥22

where the first step follows from definition of L, the second step follows from Cauchy-Schwarz
inequality, the third step follows from loss function L is β-smooth, the forth step follows definition
of ℓ2 norm, the fifth step follows from simple algebra, the sixth step follows from definition of y.

Taking the square root of both sides of the above equation, then we have

∥∇L(x, y)−∇L(x̃, ỹ)∥2 ≤ kβ · ∥
[
x
y

]
−

[
x̃
ỹ

]
∥2

Thus, we complete the proof.

4.5 CONVEXITY

Definition 4.7. We say function L : Rd × Rm → R is α-strongly convex if

∇2L(x, yi) ⪰ α · Id+m

Without any assumption on α0, α, k relationship, the hessian ∇2L(x, y) might not be psd due to
certain counter-example (see Section A).
Lemma 4.8 (Formal version of Lemma 1.4). If the following conditions hold

• Let k ≥ 1 denote a positive integer.

7



Under review as a conference paper at ICLR 2024

• ∇2
xL(x, yi) ⪯ α0 · Id, where α0 > 0.

• L : Rd × Rm → R is α-strongly convex, where α > 0.

• Let (k − 1)(α0 − α) ≤ α/2.

Then we have L : Rd × Rkm → R is α/2-strongly convex.

Proof. Note that

∇2L(x, y) ∈ R(d+km)×(d+km)

We can consider the Hessian matrix as (k + 1)× (k + 1) blocks.

For convenient, let us rewrite∇2L(x, y) as follows

∇2L(x, y) =


H0,0 H0,1 · · · H0,k

H1,0 H1,1 · · · H1,k

...
...

. . .
...

Hk,0 Hk,1 · · · Hk,k


where H0,0 ∈ Rd×d, Hi,i ∈ Rm×m for all i ∈ [k], H0,i ∈ Rm×d, Hi,0 ∈ Rd×m and Hi,j ∈ Rm×m.
Since yi and yj has no correlation in loss function, thus Hi,j ∈ 0m×m is an all zero matrix.

From assumption we know L is α-strongly convex,thus for all i ∈ [k], we know[
H0,0 H0,i

Hi,0 Hi,i

]
⪰ α · Im+d

Let us pick up a vector z ∈ Rd+mk, let z0 ∈ Rd, let zi ∈ Rm for all i ∈ [k]. Then we have

z⊤∇2L(x, y)z = z⊤0 H0,0z0 +

k∑
i=1

z⊤i Hi,izi +

k∑
i=1

z⊤i Hi,0z0 + z⊤0 H0,iz
⊤
i

= k · z⊤0 H0,0z0 +

k∑
i=1

z⊤i Hi,izi +

k∑
i=1

z⊤i Hi,0z0 + z⊤0 H0,iz
⊤
i − (k − 1) · z⊤0 H0,0z0

=

k∑
i=1

(z⊤0 H0,0z0 + z⊤i Hi,izi + z⊤i Hi,0z0 + z⊤0 H0,izi)− (k − 1) · z⊤0 H0,0z0

≥
k∑

i=1

α(∥z0∥22 + ∥zi∥22)− (k − 1)z⊤0 H0,0z0

≥
k∑

i=1

α(∥z0∥22 + ∥zi∥22)− (k − 1)α0∥z0∥22

= α∥z∥22 − (k − 1) · (α0 − α)∥z0∥22
≥ α∥z∥22 − (k − 1) · (α0 − α)∥z∥22
≥ α∥z∥22 − 0.5α∥z∥22
= 0.5α∥z∥22

where the first follows from definition of Hessian, the second step follows from simple algebra, the
third step follows from simple algebra, the forth step follows from L is α-strongly convex, the fifth
step follows from ∇2

xL(x, yi) ⪯ α0 · Id, the sixth step follows from simple algebra, the seventh
step follows from ∥z0∥22 ≤ ∥z∥22, the eight step follows from assumption of α0 and α, the ninth step
follows from simple algebra.
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Table 1: Performance of RoBERTabase with various adaptation techniques on the GLUE benchmark.
For MNLI we provide the overall (matched and mismatched) accuracy, for CoLA we present
Matthew’s correlation, and for STS-B we report Pearson correlation. For the remaining tasks we
disclose the accuracy. For all these metrics, a higher value is preferable. Numbers marked with * are
referenced from previously published works. The best in bold and the second best underlined.

Method # of Trainable MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.Parameters

Pre-trained 0M 33.5±1.3 50.5±.8 61.0±16.5 0.0±.0 50.3±.4 42.1±11.8 48.4±2.4 -2.2±5.9 35.5
Fine-Tuning* 1000.0M 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4
LoRA* 2.4M 87.5±.3 95.1±.2 89.7±.7 63.4±1.2 93.3±.3 90.8±.1 86.6±.7 91.5±.2 87.2
Multi-LoRA 1.3M 86.1±.2 94.7±.4 88.4±.7 57.9±.8 92.0±.2 89.6±.1 81.8±2.2 90.5±.3 85.1

Table 2: BLEU score (↑) of GPT-2 medium (M) with various adaptation techniques on the E2E NLG
Challenge, DART and WebNLG. Numbers marked with * are referenced from previously published
works. The best numbers are in bold and the second best ones are underlined.

Method # of Trainable E2E NLG Challenge DART WebNLG Avg.Parameters

Fine-Tuning* 1065M 68.2 46.2 46.5 53.6
LoRA 1.1M 68.9 46.2 54.9 56.7
Multi-LoRA 0.7M 67.3 42.2 51.6 53.7

5 EXPERIMENTS

RoBERTa on NLU. We conduct experiments on the base model of RoBERTa (Liu et al., 2019b) for
natural language understanding (NLU) tasks. RoBERTa refined the original pre-training methodology
set forth in BERT (Devlin et al., 2018), enhancing its performance on various tasks without signifi-
cantly increasing the number of parameters. We assess the effectiveness of various efficiency-focused
adaptation methods on GLUE tasks using RoBERTa base (125M) from the HuggingFace Trans-
formers library. Additionally, we replicate the configurations specified in studies by Houlsby et al.
(2019). To maintain an equitable comparison, we alter two key elements in our evaluation approach
for LoRA. Firstly, we maintain a consistent batch size across all tasks and fix the sequence length at
128. Secondly, the model is initialized using pre-trained settings for MRPC, RTE, and STS-B, as
opposed to starting with a model pre-adapted to MNLI like in the fine-tuning baseline. To implement
our algorithm, we utilize the same LoRAA layers (randomly initialized by default configuration)
for all the 8 tasks and only tune LoRAB layers on each task respectively. We set the dimension of
the low-rank matrices r = 8 and the scaling factor for the weight matrices LoRAα = 16 for all the
experiments. the maximum sequence length is chosen as 512, the warmup ratio is selected as 0.06.

We compare our method with pre-trained RoBERTabase model, RoBERTabase fully fine-tuned, and
RoBERTabase fine-tuned with LoRA. Since the results of Fine-Tuning and LoRA are borrowed from
literature and run 5 times independently, we also run our experiments (our method and the evaluation
of Pre-trained model) 5 times using random seed 0, 1, 2, 3, 4. As shown in Tab. 1, our proposed
Multi-LoRA can achieve comparable results with state-of-the-art fine-tuning approaches with
significantly smaller parameter size in total.

GPT-2 on NLG. Having demonstrated Multi-LoRA’s effectiveness in comprehensive fine-tuning
on NLU, we aim to investigate whether Multi-LoRA maintains its superiority on NLG (Natural
Language Generation) tasks. We conduct experiments of GPT-2 medium models on E2E NLG
Challenge, WebNLG and DART. We set the dimension of the low-rank matrices r = 4, the scaling
factor for the weight matrices LoRAα = 32 and dropout probability of the LoRA layers as 0.1 for
all the experiments. The maximum sequence length is chosen as 512. As shown in Tab. 2, our
Multi-LoRA is able to maintain high NLG performance with extremely small parameter size and
is better than fully fine-tuning which training parameter size is thousands of times more than ours.
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APPENDIX

A COUNTEREXAMPLE FOR STRONG CONVEXITY

The following counterexample indicates that we need extra assumption to make sure that L has
strongly convex property.

Lemma A.1 (Counterexample). Let H ∈ R(k+1)×(k+1) denote the following matrix

H =



4 −3 −3 −3 · · · −3
−3 4 0 0 · · · 0
−3 0 4 0 · · · 0
−3 0 0 4 · · · 0

...
...

...
...

. . .
...

−3 0 0 0 · · · 4


We know that

• Part 1. ⟨H,1(k+1)×(k+1)⟩ = −2k + 4

• Part 2.
[
4 −3
−3 4

]
⪰ 0

Proof. Proof of Part 1.

We can show

⟨H,1(k+1)×(k+1)⟩ = 4(k + 1)− 6k

= − 2k + 4

Proof of Part 2.

We have

[x y]

[
4 −3
−3 4

] [
x
y

]
= 4x2 + 4y2 − 6xy

= x2 + y2 + 3(x2 − 2xy + y2)

= x2 + y2 + 3(x− y)2

≥ 0

B SOFTMAX REGRESSION: A CASE STUDY

As a toy example, we consider the softmax regression problem Deng et al. (2023). This problem
can be viewed as a simplification of two-layer transformer network. To better understand how
effectiveness our method would be, we empirically verify various parameters for this problem.
Definition B.1 (Softmax regression). Given A ∈ Rn×d and b ∈ Rn, we define loss function
L : Rd → R as

L(x) := 0.5∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22
Here

• exp(Ax)i = exp((Ax)i) for all i ∈ [n]

• 1n ∈ Rn denote the length-n vector where all the entries are ones

• ⟨a, b⟩ =
∑n

i=1 aibi.
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Definition B.2. Let f(x) = ⟨exp(Ax),1n⟩−1 exp(Ax). Let c(x) = f(x)− b.

Lemma B.3 (see Definition 5.7 in page 14 in Deng et al. (2023)). Let g(x) ∈ Rd denote the gradient
of softmax regression loss (see Definition B.1), then we have

g(x) = A⊤(−f(x)⟨c(x), f(x)⟩+ diag(f(x))c(x))

Lemma B.4 (see Definition 6.1 in page 28 in Deng et al. (2023)). Let H(x) ∈ Rd×d denote the
Hessian of softmax regression loss (see Definition B.1), we have

H(x) = A⊤︸︷︷︸
d×n

B(x)︸ ︷︷ ︸
n×n

A︸︷︷︸
n×d

where

B(x) := ⟨3f(x)− 2b, f(x)⟩f(x)f(x)⊤

+ (b ◦ f(x))f(x)⊤ + f(x)(b ◦ f(x))⊤

+ ⟨f(x)− b, f(x)⟩ · diag(f(x))
+ diag((2f(x)− b) ◦ f(x))

Here

• (a ◦ b)i = aibi for all i ∈ [n]

Remark B.5. Note that B(x) is a constructed as three rank-1 matrices with two diagonal matrices.

• Function is α-Strongly convex

H(x) ⪰ α · Id

• Function is β-Smoothness (this is equivalent to gradient of function is β-Lipschitz)

∥H(x)∥ ≤ β ⇐⇒ ∥g(x)− g(y)∥2 ≤ β · ∥x− y∥2

• Hessian of Function is M -Lipschitz

∥H(x)−H(y)∥ ≤M · ∥x− y∥2

• Function is γ-Lipschitz (this is equivalent to gradient of function is bounded)

∥L(x)− L(y)∥2 ≤ γ · ∥x− y∥2 ⇐⇒ ∥g(x)∥2 ≤ γ

Table 3: Numerical estimations of softmax regression problem for various choices of (n, d). We
perform these experiments by randomly sampling point x and constructing the Hessian matrix, then
performing estimations. We report the average over 10000 random samples.

n d α β M γ
n = 10 d = 5 0.00 148.03 26.83 0.60
n = 10 d = 10 0.00 272.52 23.65 0.74
n = 10 d = 20 0.00 540.98 21.49 0.89
n = 20 d = 5 0.00 447.95 74.38 0.54
n = 20 d = 10 0.00 361.00 26.47 0.77
n = 20 d = 20 0.00 1309.38 52.23 0.91
n = 20 d = 40 0.00 2511.67 58.29 1.24
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