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Abstract

Early disease diagnoses can dramatically im-
prove patient outcomes by enabling timely in-
terventions, yet traditional approaches rely on
laboratory and imaging data that require clini-
cal visits and incur significant costs and delays.
In this study, we introduce MIMIC-SR-ICD11
(MIMIC Self-Report with ICD-11), a dataset
that transforms EHR discharge notes from the
MIMIC database into first-person patient nar-
ratives and standardizes every diagnoses us-
ing WHO ICD-11 codes. We benchmark three
leading large language models on overall ac-
curacy (Hit @1 and F1 variants), sensitivity to
candidate list length and ordering, and robust-
ness across diseases of varying prevalence. Our
experiments show that simply shortening the
candidate list does not yield proportional gains
in accuracy, and F1 scores even fall below a
random-guess baseline. By splitting diseases
into ten frequency-based groups, we uncover an
unexpected accuracy dip for the most common
conditions. To explain this phenomenon, we in-
troduce two lexical specificity metrics: disease
frequency—medical vocabulary size (DF-MVS)
and medical term exclusivity score (MTES).
These metrics demonstrate that generic, non-
distinctive terminology drives prediction bias.
To support future advances, we release our
dataset as a standardized benchmark for the
development of specialized medical diagnostic
models.

1 Introduction

Disease diagnosis has become a central pillar of
modern healthcare, enabling early detection and
timely intervention for acute conditions, while also
guiding lifestyle adjustments and medication regi-
mens to prevent or slow chronic diseases. It is par-
ticularly valuable in resource-limited environments
and helps individuals without medical expertise
avoid a long search for the right provider.

More recently, large language models (LLMs)
have demonstrated strong performance on clini-

cal question—answering benchmarks (Singhal et al.,
2023, 2025). These models are typically fine-tuned
on exam-style question—answer datasets designed
for medical students (Jin et al., 2020; Pal et al.,
2022; Jin et al., 2019), but their training regime
does not directly translate to real-world diagnos-
tic workflows, because these exam-style bench-
marks present well-defined questions with fixed
answer options, whereas real-world diagnosis in-
volves interpreting ambiguous, multi-symptom nar-
ratives. Datasets designed for automatic diagnosis
systems, such as DX (Wei et al., 2018) and DDX-
Plus (Tchango et al., 2022), predict a patient’s un-
derlying disease from categorical symptom indica-
tors. However, this representation often obscures
important clinical details; for example, reducing
“severe, intermittent chest pain radiating to the left
arm” to a simple present/absent flag loses key infor-
mation about intensity and distribution. Moreover,
because these collections are built for fixed-label
classification, models trained on them cannot read-
ily incorporate new symptoms or expand to addi-
tional disease categories beyond the original set.
Su et al. (Su et al., 2024) introduced a dataset that
uses patient-authored free-text symptom descrip-
tions for automated disease prediction, but it is
confined to Chinese data and leaves English self-
reports unexplored.

To address these challenges, we introduce
an English-language dataset, MIMIC-SR-ICDI11,
which converts EHR discharge notes into first-
person patient self-reports and standardizes diag-
noses using World Health Organization (WHO)
ICD-11 terminology. We benchmark three leading
LLMs (ChatGPT, Claude and Gemini) across three
evaluation dimensions: overall predictive accuracy
(Hit1 and Macro-/Micro-/Sample F1), sensitivity to
candidate-list length and ordering, and robustness
across diseases of varying prevalence. Our exper-
iments reveal systematic positional bias in model
decoding and a surprising performance decline for



the most frequent conditions. To explain this coun-
terintuitive result, we propose two lexical speci-
ficity metrics: disease frequency—medical vocabu-
lary size (DF-MVS) and medical term exclusivity
score (MTES), which together expose a vocabulary
bottleneck in high-frequency disease descriptions.
We publicly release our dataset and evaluation code
to support further research on narrative-driven di-
agnostic models.

2 Related Work

In recent years, several datasets have been released
to support the development of automatic diagnosis
systems. SymCat (Peng et al., 2018) synthesizes
records for 90 diseases and their associated symp-
toms by sampling according to disease—symptom
co-occurrence probabilities. DX (Xu et al., 2019)
and Muzhi (Wei et al., 2018) provide realistic,
multi-turn doctor—patient dialogues that closely
mirror actual clinical interactions. Building on
this work, DDXPlus (Tchango et al., 2022) adds
primary, differential, and final diagnoses alongside
binary, categorical, and multiple-choice symptom
representations. Although these benchmarks differ
in scale, they all reduce symptoms to fixed options,
which simplifies annotation and model training but
sacrifices descriptive richness and obscures subtle
clinical details. Moreover, by framing diagnosis
purely as a classification task that maps a rigid
symptom schema to a predetermined disease set,
they are ill suited for evaluating a language model’s
generative abilities in tasks such as predicting dis-
eases from free-text symptom descriptions.

To leverage the generative capabilities of large
language models, several recent corpora incorpo-
rate free-text symptom descriptions to enrich diag-
nostic datasets. These resources abandon fixed-slot
schemas and simple classification setups in favor of
capturing authentic clinical narratives within gen-
erative modeling frameworks. MSdiagnosis (Hou
etal., 2024) and CMEMR (Jiaet al., 2025) combine
multi-section free-text narratives, covering chief
complaints, history of present illness, past medical
history, physical examination findings, and labo-
ratory results with structured labels for primary,
differential, and final diagnoses. Haodf (Su et al.,
2024) mines unstructured patient self-reports from
the Haodf online platform to infer diagnoses di-
rectly, thereby reducing the time clinicians spend
navigating fragmented symptom communications.
Although these corpora significantly enhance the

expressiveness of symptom narratives and support
multi-step reasoning with generative models, they
are all Chinese-language datasets. To date, no
English-language corpus has been released that
leverages real-world, patient-authored free-text nar-
ratives for automated diagnosis. Another related
resource is ChatDoctor (Li et al., 2023), which
consists of multi-turn patient—doctor consultation
dialogues harvested from the HealthCareMagic!
platform. This dataset captures patients’ natural-
language symptom descriptions alongside physi-
cians’ follow-up questions and diagnostic advice.
Its design goal is to train medical dialogue systems
capable of generating plausible diagnostic recom-
mendations rather than performing precise disease
prediction. Although the conversations include
physicians’ inferences about the patient’s condi-
tion, these are expressed at a coarse level using
colloquial disease names that are neither standard-
ized nor mapped to a formal coding scheme (e.g.,
ICD-10), limiting the dataset’s utility for evaluating
fine-grained diagnostic accuracy.

3 Data Construction

To enable low-cost, early-stage disease screening,
we focused our dataset on common conditions
that together account for over 80 percent of real-
world cases. We built the dataset on the latest
MIMIC-IV (Johnson et al., 2024) and MIMIC-IV-
Note (Johnson et al., 2022) releases. The construc-
tion pipeline consists of two steps. First, we extract
each admission’s diagnoses from MIMIC-IV and
normalize them to ICD-11 terminology. Second,
we retrieve free-text symptom descriptions from
the MIMIC-IV-Note EMR notes and rewrite them
as first-person patient self-reports. We release four
variants that differ in the number of disease cat-
egories, allowing evaluation across models with
varying capacity and deployment needs (see Ta-
ble 1 for statistics).

3.1 Disease Normalization

Since diagnostic codes in MIMIC-IV originate
from different versions of the International Classi-
fication of Diseases (ICD-9 and ICD-10), we stan-
dardized all disease labels to ICD-11 terminology
for consistency. We used the official ICD-11 API
provided by the WHO? to map diagnosis descrip-
tions to ICD-11 terms.
1[www.healthcaremagic.com](http://www.

healthcaremagic.com)
2https://icd.who.int/icdapi


[www.healthcaremagic.com](http://www.healthcaremagic.com)
[www.healthcaremagic.com](http://www.healthcaremagic.com)
https://icd.who.int/icdapi

Dataset Number of

Avg + SD (Med, Min-Max)

Avg + SD (Med, Min-Max) Number of

Samples Tokens per Report Diseases per Sample Disease Classes
MIMIC-SR-ICD11_2000 272,579 159.5 £ 52.71 (152, 14 - 594) 281+1.73(2,1-43) 98
MIMIC-SR-ICD11_1000 282,996 159.9 + 53.03 (152, 14 - 594) 307191 (3,1-57) 173
MIMIC-SR-ICD11_500 288,767 160.06 + 53.15 (152, 14 - 594) 326+2.033,1-69) 275
MIMIC-SR-ICD11_200 295,281 160.2 + 53.25 (152, 14 - 594) 344 +£2.14 (3, 1-80) 498

Table 1: Statistics of dataset variants, where data_/NV includes only diseases appearing at least N times. Tokens per
report and diseases per sample are reported as Avg + SD (Median, Min—-Max).

During the mapping process, we applied a sub-
phrase matching strategy to handle excessively
long or detailed diagnosis descriptions that often in-
clude causal or symptomatic elaboration and there-
fore fail to match directly against the WHO APL.
Specifically, when a full diagnosis description did
not return a result, we extracted all contiguous sub-
phrases of at least 80 percent of the original length,
sorted them from longest to shortest, and queried
each in turn until we obtained a valid mapping.
This approach increased the likelihood of finding a
relevant standardized concept for complex or ver-
bose descriptions. To ensure high-precision normal-
ization and minimize noise, we retain only ICD-11
entities marked as important=True by the WHO
API, which indicates strong mapping confidence.
We also exclude non-leaf codes (those with child
subcategories) to prevent semantic overlap among
disease labels. This filtering enhances consistency
in both model training and evaluation and reduces
label ambiguity.

3.2 Patient’s self-report generation

The MIMIC-IV-Note dataset provides de-identified
free-text hospital records for each patient, which
typically include a mix of symptom descriptions,
examination results, medical history, and social
background information. To derive patient-style
narratives suitable for large language model rea-
soning, we utilized ChatGPT?(gpt-40-mini) de-
veloped by OpenAl to convert these clinical notes
into first-person self-reports. During this transfor-
mation, we explicitly instructed the model to filter
out all clinician-generated content such as phys-
ical examination findings, diagnostic test results,
and professional assessments, and retain only the
subjective symptom descriptions as if recounted by
the patient. The generated self-reports are written
in natural language using complete sentences and
framed from the patient’s perspective, which facili-
tates downstream disease diagnoses by aligning the

3https ://openai.com/api/

input format with how patients typically describe
their health concerns in real-world scenarios.

4 Experiment

To evaluate the diagnostic performance of

state-of-the-art  general-purpose LLMs, we
conducted experiments with three widely
used models: ChatGPT (gpt-40-mini),

Claude* (claude-3-7-sonnet-20250219), and
Gemini® (gemini-2.5-flash-preview-04-17).
Throughout our experiments, we employed the
standardized prompt shown in Figure 1, which
compels the models to select diagnoses exclusively
from our candidate list. In addition to overall
performance, we investigated how variations in
the candidate disease list affect the quality of
LLM prediction, focusing on changes in both the
order and length of the candidate list. Finally, we
analyzed the models’ performance across diseases
of different prevalence levels to better understand
their strengths and limitations.

/User input: Analyze the patient's description and identify the diseases\
that best match the reported symptoms, strictly selecting from the
provided candidate list. Return only the names of the selected diseases,
separated by semi colons. Do not include any reasoning or explanation.
Candidate list: [plasma cell myeloma, unstable angina, nontoxic single
thyroid nodule, ...]. Patient self-report: "I am a male patient who has
been experiencing persistent fevers, night sweats, and profound fatigue
over the past few weeks. I have also noted significant weight loss,
estimating around 15 pounds in the last two months. My energy levels
have drastically decreased, to the point where I find it difficult to
engage in any physical activity, and I have been sleeping excessively,
averaging most of the day during a recent trip. Additionally, I have a
persistent cough that is mostly unproductive and occasionally feels
aggravated. I have had episodes of diarrhea, which included a possible
bloody component. Throughout this time, I have been monitoring my
symptoms closely, and my condition feels as though it is deteriorating.
Claude output: fever; gastrointestinal tract haemorrhage; weight loss

\nos; septicaemia )

Figure 1: Tllustration of the standardized prompt format
(instruction, candidate list, and patient self-report) pro-
vided to the LLMs, together with a sample output from
Claude.

*https://docs.anthropic.com/en/api/overview
5https://ai.google.dev/gemini—api/docs/
api-versions
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Model Hit@1 Macro F1

Micro F1

Sample F1 Avg Pred Len  Valid Pred Rate

ChatGPT 0.2077 £ 0.0040  0.1727 £ 0.0038  0.1806 £ 0.0069 0.1630 &+ 0.0070 2.7033 4 0.0153
0.1510 £ 0.0034 0.1637 £0.0076  0.1549 £ 0.0092 3.9533 &+ 0.0764
0.1632 4 0.0033  0.1546 £ 0.0054 3.5000 + 0.0400

0.1887 £ 0.0091
0.2080 £ 0.0036  0.1492 £ 0.0021

Gemini
Claude

0.995 £ 0.0010
0.9981 £ 0.0004
0.9603 £ 0.0040

Table 2: Performance comparison on disease prediction. “Avg Pred Len” denotes the average number of diseases
predicted per sample. “Valid Pred Rate” indicates the proportion of model outputs that fall within the predefined
candidate disease list, indicating how often the outputs conform to the candidate list.

Performance Across Different Orders
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Figure 2: Comparison of model performance under different candidate disease orders.

4.1 Overall Performance

We split MIMIC-SR-ICD11_2000 into 80% train-
ing, 10% validation, and 10% test sets. From the
test set, we drew three random subsamples of 1,000
records each. We evaluated our models on each sub-
sample and then calculated the mean performance
and its standard deviation across the three runs.
The result is shown in Table 2.

Standard deviations for all metrics remain below
0.01, indicating high consistency across the three
independent 1,000-sample. In terms of Hit@1,
both ChatGPT and Claude achieve approximately
0.208, comfortably ahead of Gemini’s 0.189. Chat-
GPT also leads on Macro, Micro, and Sample F1
scores. We attribute this to its more conservative
strategy, favoring high-confidence diagnoses and
producing shorter prediction lists. In contrast, Gem-
ini and Claude generate longer lists to maximize
recall, but this comes at the expense of F1 score.
Finally, ChatGPT and Gemini strictly follow the
candidate list provided, each with a Valid Pred Rate
greater than 99%, while Claude’s rate is slightly
lower at 96%, indicating occasional out-of-list pre-
dictions.

4.2 Disease Order Effect

In this section, we investigate the robustness and
stability of LLMs performance between different
disease orders in the candidate list. Specifically,
we design five schemes: 1) Origin is a random
order but fixed for every sample prediction; 2) Ran-

dom shuffles the candidate list for each sample; 3)
Freq-First follows the real disease-frequency dis-
tribution (highest to lowest; 4) Correct-First places
the ground-truth label at the front of the list; 5)
Correct-Last places the ground-truth label at the
end of the list. The result is shown in Figure 2.

As illustrated in the figure 2, varying the candi-
date list order produces a consistent effect across
all LLMs: Correct-First ordering reliably achieves
the highest performance, while Correct-Last or-
dering consistently produces the lowest. The su-
perior performance of the Correct-First ordering
can be largely attributed to the positional bias in-
herent in transformer-based LLMs. These models
assign disproportionately higher attention weights
to tokens that appear early in the input sequence,
making them more likely to influence the output
distribution. Comparing across LLMs, ChatGPT
experiences the greatest boost under Correct-First
ordering, with Hit@1 rising from around 0.2 to
over 0.34. Gemini and Claude also benefit, each
gaining about ten points in Hit@]1, increasing from
roughly 0.22 to around 0.32. This indicates that
ChatGPT may be the most susceptible to positional
cues but also the most capable of leveraging them
when the correct label is highlighted. In contrast,
Claude’s performance drop under Correct-Last is
the steepest among the three, confirming that it
relies more heavily on early-positioned tokens.

Beyond these extreme cases, we also observe
that ordering by global frequency (“Freq-First”)



Model Candidate List Hit@1 MacroF1 MicroF1 Sample F1 AvgPred Len Valid Pred Rate
Long List 0.210 0.1750 0.1885 0.1703 2.70 0.9963
ChatGPT Short List 0.200 0.1738 0.1866 0.1673 3.06 0.9311
A -4.76% -0.69% -1.01% -1.76% - -6.54%
Long List 0.199 0.1507 0.1725 0.1654 3.97 0.9977
Gemini Short List 0.197 0.1703 0.1899 0.1750 4.71 0.9518
A -1.01%  +13.01%  +10.09% +5.80% - -4.60%
Long List 0.199 0.1507 0.1725 0.1654 3.97 0.9977
Claude Short List 0.205 0.1761 0.1943 0.1807 4.17 0.9451
A +3.02% +16.85% +12.64% +9.25% - -5.27%

Table 3: Comparison between using long candidate lists and short candidate lists for disease prediction. A row
shows the percentage change from the long list to the short list for each metric.

consistently improves over both the fixed original
order and the per-sample random shuffle. This
suggests a lightweight heuristic for boosting per-
formance: listing candidates in decreasing preva-
lence can give the model a small but reliable edge,
even without access to the true label. Notably, the
gain from Freq-First is most pronounced for Hit@1,
where accuracy rises by roughly 2—-3 points all mod-
els.

Finally, we see that F1 metrics are relatively sta-
ble across ordering schemes compared to Hit@1.
The divergence between the best and worst order-
ing for Macro and Sample F1 remains under 5
points for all models, whereas Hit@1 swings by
over 15 percents. Because Hit@1 measures only
the model’s first choice, moving the true label out
of the top slot causes Hit@1 to drop to zero. By
contrast, F1 scores consider the full set of returned
labels. Consequently, F1 metrics mitigate the im-
pact of candidate list reordering, whereas Hit@ 1
remains highly sensitive to even slight shifts in
label position.

4.3 Candidate Length Effect

We aim to test whether LLMs can distinguish the
correct diagnoses when faced with high-confidence
distractors in a compact candidate list. To this
end, we first gather the false positive predictions
from the models produced under the Freq-First and
Correct-First orders. Because the models achieve
their strongest performance under these two orders
and the incorrect labels predicted by the models
tend to assign high confidence score. We then in-
sert the true diagnoses into this pool of confusable
options. This process yields a shortlist that aver-
ages 10.45 diseases per case, allowing us to assess
each model’s ability to reject misleading choices.
The results are summarized in Table 3

First, we observe that the Valid Pred Rate de-
creases for all models. The short candidate list con-
tains each model’s false positives, some of which
fall outside the original candidate list. These in-
valid but confident distractors lower the Valid Pred
Rate and force the models to cover more diseases
than they did with the long list.

Second, shortening the candidate list yields clear
gains for both Gemini and Claude. Gemini’s F1
rises sharply simply because there are fewer dis-
tractors to sift through, but it still falls short of
the other two models. However, the comparative
performance of ChatGPT and Claude remains in-
conclusive. Claude outperforms ChatGPT on every
metric, but part of this advantage may stem from
its prediction length rather than from deeper diag-
nostic insight. Specifically, our shortlists contain
an average of 10.45 diseases per case, with roughly
three true labels. Randomly selecting four can-
didates from such a list yields a higher expected
F1 score than selecting only three, since the extra
pick increases the probability of covering a true
label without substantially lowering precision. In
practice, Claude outputs 4.17 labels on average, a
tendency that artificially boosts its F1 even under
near-random selection. ChatGPT, by contrast, re-
turns fewer labels and therefore does not derive the
same statistical benefit. This artifact explains why
Claude appears to gain more from list reduction
than ChatGPT, despite both models accessing the
exact same information.

Finally, while these LLMs can easily exclude
unlikely diseases, they struggle to distinguish
among highly confusable conditions. Under a
random-guess baseline on the short list, the ex-
pected sample F1 is approximately 0.30, yet all
models perform well below this threshold. This



gap highlights the need for stronger fine-grained
diagnostic discrimination.

4.4 Performance in frequent and infrequent
diseases

4.4.1 Counterintuitive Frequency Effects

We partitioned our 98 diseases into ten prevalence-
based groups and evaluated models’ accuracy
within each group. Groups 1 through 9 each con-
tain ten diseases sorted by descending frequency,
while Group 10 comprises the eight rarest condi-
tions. Figure 4 shows performance for each model
under two candidate list ordering schemes: one
arranged by global frequency (Freq-First) and the
other randomly shuffled.

We find that LLMs do not exhibit a simple
"frequency bias". Their Macro F1 scores across
disease-frequency groups do not mirror the under-
lying data skew: rare conditions are not dispropor-
tionately more difficult to predict than common
diseases. In fact, the decrease in Macro F1 from
high- to low-frequency groups is much smaller than
the corresponding drop in sample counts. This pat-
tern is made more striking by a counterintuitive
dip in performance on the very highest-frequency
diseases (Group 1). Surprisingly, Group 1 yields
lower F1 scores than Groups 2—4. Moreover, in
classical imbalanced-label settings, models tend to
overgenerate frequent labels, boosting recall at the
expense of precision. In contrast, LLMs exhibit
the opposite trend: for the highest-frequency group,
precision markedly exceeds recall, whereas for the
rarest groups, recall outstrips precision.

4.4.2 Mechanisms Behind Frequency Bias

Our first attempt employed a simple Document-
Frequency—Vocabulary Size (DF-VS) metric, de-

fined as
|Val

DF,

where DF; is the number of reports mentioning
disease d and Vj the set of unique vocabularies
used to describe it. Although low DF-VS corre-
lates with poorer prediction (since a smaller, less
diverse vocabulary makes discrimination harder),
DF-VS alone does not fully account for the pro-
nounced performance drop on the most frequent
diseases. To uncover the additional factors behind
this counterintuitive effect, we introduce two re-
fined metrics, Frequency—Medical Vocabulary Size
(DF-MVS) and Medical Term Exclusivity Score
(MTES). Below, we define each metric formally.

DF-VS,; = ey

Disease Frequency—Medical Vocabulary Size
(DF-MVS) We denote by M, the number of dis-
tinct medical terms appearing in all free-text re-
ports for the disease d. The DF-MVS metric then
captures the average term richness per document:

My

DF-M = .
VSq DF,

2
Here, M, is obtained by extracting all unique
medical-entity mentions from reports of disease
d, and DF; is the total count of those reports. This
metric captures both how often a disease appears
and the breadth of specialized vocabulary used to
describe it. Lower DF-MVS indicates that the de-
scription of a disease has fewer medical terms.

Medical Term Exclusivity Score (MTES) For
each term ¢t € Vy, let freq (t) be the frequency of
t in reports of the disease d’, and let D be the total
number of diseases. We first compute the average
cross-disease frequency of ¢:

freq_q(t) = 5— Z frequ(t). (3

Then MTES is defined as the mean of the reciprocal
of these averages (plus a small constant € to avoid
division by zero):

1 —
MTES; = — > freq_4(t). )
‘Vd’ teVy

Lower MTES values indicate that a disease’s terms
are rarely shared with others, reflecting higher de-
scriptive specificity.

To calculate DF-MVS and MTES metrics,
we employ spaCy’s Bio-medical NER model
(en_ner_bc5Scdr_md) (Gu et al., 2017) to extract
clinical entitie from free-text reports. This model
has been fine-tuned on the BioCreative V CDR
corpus (Li et al., 2016), which provides extensive,
high-quality annotations for both disease and chem-
ical mentions in biomedical literature. Compared
to general-purpose NER systems, it offers superior
precision and recall on medical terminology, ensur-
ing robust recognition of both common and rare
conditions.

As shown in Figure 4, although Group 1 diseases
account for more than 40 percent of the dataset,
they remain among the most difficult to predict for
three closely linked reasons. First, Group 1 regis-
ters the lowest DF-VS values (Figure 4.a). This
indicates that despite their high frequency, these
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Table 4: Sample Proportions in Each Disease-Prevalence Group (High-to-Low Frequency Order)
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Figure 3: Performance across different frequency groups of diseases. Higher-frequency diseases tend to be predicted
with greater accuracy, indicating a correlation between disease frequency and model performance.

diseases are described using a small, generic set of
terms, which limits the richness of their lexical rep-
resentation. Second, Group 1 also scores poorly on
DF-MVS (Figure 4.b). In practice, this means that
even though there is abundant text, very few of the
tokens are truly informative medical words such as
specific biomarkers, nuanced symptom qualifiers,
or disease-defining expressions. As a result, nar-
rative redundancy prevails with repeated mentions
of terms such as pain or fever, depriving the model
of the high-signal features it needs. Third, Group
1 has the lowest Medical Term Exclusivity Score
(Figure 4.c). The few medical terms that appear
are common across many conditions, so they carry
little mutual information with any single diagno-
sis. Together, these factors create a vocabulary
bottleneck: a small, non-exclusive set of terms that
produces a low signal-to-noise ratio and prevents
the model from learning the distinctive patterns
required for accurate prediction.

By contrast, mid-frequency diseases in Groups
2 occupy an optimal range. They appear often
enough to accumulate varied phrasing yet remain
uncommon enough to invoke specific medical de-
scriptors, and this balance raises their DF-MVS
while lowering their MTES. Rare diseases in
Groups 7 to 10 suffer from small sample sizes
but benefit from highly distinctive labels such as
"alopecia areata" or "Wegener’s granulomatosis",
which help the model form clear decision bound-
aries. Therefore, mid-frequency and rare disease
categories tend to become easier for the model to
predict simply by adding more examples, because
the language used to describe them already con-

tains distinct, high-signal terms. In contrast, adding
or reducing additional samples for very common
diseases does little to help, since their narratives
rely on broad, generic words that volume changing
alone cannot diversify.

To break through this plateau for frequent condi-
tions, we need to deliberately expand the linguistic
palette in their documentation. Pulling synonym
lists from established medical vocabularies can in-
ject subtle variations in how symptoms and findings
are named. Paraphrase-driven templates can recast
identical clinical observations in different phras-
ings, teaching the model to recognize conceptually
equivalent expressions. Enhanced entity recogni-
tion can spotlight less obvious but diagnostically
relevant terms buried in the text. Together, these
efforts would boost the uniqueness and richness of
the textual features, giving the model the nuanced
cues it needs to distinguish among common disease
labels. In addition to enriching narrative descrip-
tions, we must acknowledge that some conditions
simply lack highly distinctive symptoms and are
only definitively diagnosed through laboratory tests
or imaging studies. For these diseases, model in-
puts should be augmented with structured findings
such as key lab values, radiology impressions or
vital signs. Finally, we can improve prediction
safety and focus by adopting a severity-weighted
candidate checklist. Rather than treating all disease
classes equally, the system can estimate each con-
dition’s potential impact on patient outcomes (e.g.,
risk of organ failure or mortality) and elevate high-
consequence diagnoses into the shortlist even when
their textual signatures are subtle. This risk-aware



(a) DF-VS by Prevalence Group

(b) DF-MVS by Prevalence Group

(c) MTES by Prevalence Group
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Figure 4: Analysis of disease prevalence and vocabulary specificity across prevalence groups. (a) Proportion of
samples in each disease-frequency decile (Group 1 = most frequent, Group 10 = rarest). (b) Average Document-
Frequency—Medical Vocabulary Specificity (DF-MVS) per group, illustrating that rarer diseases employ more
distinctive medical terms. (c) Average Medical Term Exclusivity Score (MTES) per group, indicating how uniquely
each group’s terminology appears compared to the rest. A high DF-MVS coupled with a low MTES signifies that
the group’s medical vocabulary is both plentiful and uniquely characteristic.

ranking ensures that life-threatening conditions re-
ceive appropriate attention, balancing linguistic un-
certainty with clinical urgency and further reducing
the chance that a common but dangerous disease is
overlooked.

5 Conclusion

In this work we have introduced a new benchmark
for narrative-driven disease prediction. We convert
MIMIC electronic health record notes into first-
person patient self-reports and normalize all diag-
noses to ICD-11 name. With the proposed MIMIC-
SR-ICD11 dataset, we evaluate three leading large
language models (ChatGPT, Claude and Gemini)
on overall accuracy, sensitivity to candidate list or-
dering and length, and robustness across disease
prevalence groups.

Our experiments reveal several important in-
sights. First, LLMs performance depends strongly
on how candidate diseases are presented. LLMs
exhibit positional bias when disease lists are per-
muted and benefit from shorter, more focused can-
didate sets only under certain conditions. Second,
common diseases prove surprisingly difficult to pre-
dict despite their data abundance. We show that
this difficulty arises from a vocabulary bottleneck:
high-frequency conditions are documented with
generic and non-exclusive terms that offer low sig-
nal to the model. Mid-frequency and rare diseases
by contrast gain more from increased sample size
because their narratives already contain distinctive
terminology.

6 Future Work

In the future, we identify three key directions for
advancing narrative-driven disease prediction:

1. Incorporate Chain-of-Thought Inference. We
will augment our dataset with explicit reasoning
traces by prompting LLMs to generate intermedi-
ate “chain-of-thought” inference. This can guide
models to attend to critical symptom-to-diagnoses
links and improve interpretability, helping to sur-
face latent clinical cues that raw text alone may
obscure.

2. Train a Domain-Specialized Diagnostic LLM:
We will fine-tune a compact model that has been
pretrained on a large medical text corpus using
our MIMIC-SR-ICD11 dataset. Training will in-
clude a reinforcement learning objective that re-
wards outputs matching our curated candidate list
and penalizes any predictions outside this set. Af-
ter fine-tuning, we will reassess the frequency bias
to determine whether this approach improves pre-
diction performance across both common and rare
disease categories.

3. Enable hierarchical disease prediction with
ICD-11 code We will leverage the built-in hierarchy
of ICD-11 to produce predictions at multiple levels
of granularity. For each specific code it predicts
such as “Type 2 diabetes mellitus”, it will also
identify its parent categories (such as, “diabetes
mellitus”). This layered output gives downstream
applications the flexibility to adjust their decision
scope. Downstream applications can then choose
whether to act on broad disease classes for initial
screening or on detailed leaf-level codes for precise
diagnoses.

Together, these enhancements will deepen model
reasoning, tailor performance to the diagnostic do-
main, and provide clinicians with both detailed and
overview predictions across the disease hierarchy.



A License and Availability

All of our code and the MIMIC-SR-ICD11 dataset
are released under the Creative Commons Attribu-
tion 4.0 International (CC BY 4.0) license. The full
text of the CC BY 4.0 license is available at https:
//creativecommons.org/licenses/by/4.0/.

B Artifact Usage and Intended Use

B.1 Use of Existing Artifacts

We relied on several third-party resources, each
with its own access and usage restrictions:

* MIMIC-1V and MIMIC-IV-Note are governed
by PhysioNet’s credentialed access agree-
ment, which permits use for non-commercial,
research-only purposes. All analysis in this
paper was conducted under that agreement
and in compliance with its requirement that
no clinical or commercial deployment occur.

* WHO ICD-11 API is provided under the
WHO open data policy. We used it strictly
to normalize diagnoses in our dataset, in ac-
cordance with the API’s terms for research
and educational use.

* spaCy’s en_ner_bcScdr_md model is dis-
tributed under the Apache 2.0 license. Our
extraction of medical entities from free-text
reports adheres to that license, which allows
both research and derivative work without ad-
ditional restriction.

In each case, our usage matches the intended
research-only context and does not violate any ac-
cess conditions or licensing terms.

B.2 Intended Use of Created Artifacts

We release the MIMIC-SR-ICD11 dataset (and ac-
companying code) under the Creative Commons
Attribution 4.0 International (CC BY 4.0) license.
This license permits unrestricted research and edu-
cational reuse, provided that appropriate credit is
given. In keeping with PhysioNet’s original agree-
ment, we explicitly restrict MIMIC-SR-ICD11 to
non-commercial, research-only applications. Users
who wish to employ the dataset for clinical decision
support or commercial purposes must first secure
the necessary permissions from the data providers.

C Ethics

All human-subject data in this study (MIMIC-1V
and MIMIC-IV-Note) are fully de-identified un-
der HIPAA and were released under a PhysioNet
Data Use Agreement (DUA) that mandates human-
subjects training and forbids any attempt at re-
identification. The original IRBs at Beth Israel
Deaconess Medical Center and MIT approved the
data release with a waiver of informed consent and
determined that secondary analyses of these de-
identified records are exempt from ongoing review.
Our usage strictly adheres to these terms and re-
mains within a research-only context. The patient
self-reports we generate via ChatGPT are synthetic
paraphrases of those de-identified notes and con-
tain no additional private information, so no new
consent is required.
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We used ChatGPT (gpt-40-mini) as a writing assis-
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E Limitations

Despite its contributions, our work has several im-
portant limitations.

Synthetic self-reports Our patient narratives are
generated by prompting ChatGPT to paraphrase
de-identified discharge text. Although we care-
fully instructed the model to retain only subjective
symptom language, this process may introduce ar-
tifacts, omit subtle nuances, or diverge from how
real patients describe their own experiences. Future
work should validate our synthetic reports against
authentic patient-provided narratives.

ICD-11 mapping We rely on subphrase match-
ing to map heterogeneous ICD-9/10 descriptions
to ICD-11 concepts via the WHO API. While this
increases coverage, it may still produce incorrect
or overly broad mappings for very complex diag-
noses. Mis-mappings could propagate noise into
both training and evaluation.
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