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Abstract001

Early disease diagnoses can dramatically im-002
prove patient outcomes by enabling timely in-003
terventions, yet traditional approaches rely on004
laboratory and imaging data that require clini-005
cal visits and incur significant costs and delays.006
In this study, we introduce MIMIC-SR-ICD11007
(MIMIC Self-Report with ICD-11), a dataset008
that transforms EHR discharge notes from the009
MIMIC database into first-person patient nar-010
ratives and standardizes every diagnoses us-011
ing WHO ICD-11 codes. We benchmark three012
leading large language models on overall ac-013
curacy (Hit @1 and F1 variants), sensitivity to014
candidate list length and ordering, and robust-015
ness across diseases of varying prevalence. Our016
experiments show that simply shortening the017
candidate list does not yield proportional gains018
in accuracy, and F1 scores even fall below a019
random-guess baseline. By splitting diseases020
into ten frequency-based groups, we uncover an021
unexpected accuracy dip for the most common022
conditions. To explain this phenomenon, we in-023
troduce two lexical specificity metrics: disease024
frequency–medical vocabulary size (DF-MVS)025
and medical term exclusivity score (MTES).026
These metrics demonstrate that generic, non-027
distinctive terminology drives prediction bias.028
To support future advances, we release our029
dataset as a standardized benchmark for the030
development of specialized medical diagnostic031
models.032

1 Introduction033

Disease diagnosis has become a central pillar of034

modern healthcare, enabling early detection and035

timely intervention for acute conditions, while also036

guiding lifestyle adjustments and medication regi-037

mens to prevent or slow chronic diseases. It is par-038

ticularly valuable in resource-limited environments039

and helps individuals without medical expertise040

avoid a long search for the right provider.041

More recently, large language models (LLMs)042

have demonstrated strong performance on clini-043

cal question–answering benchmarks (Singhal et al., 044

2023, 2025). These models are typically fine-tuned 045

on exam-style question–answer datasets designed 046

for medical students (Jin et al., 2020; Pal et al., 047

2022; Jin et al., 2019), but their training regime 048

does not directly translate to real-world diagnos- 049

tic workflows, because these exam-style bench- 050

marks present well-defined questions with fixed 051

answer options, whereas real-world diagnosis in- 052

volves interpreting ambiguous, multi-symptom nar- 053

ratives. Datasets designed for automatic diagnosis 054

systems, such as DX (Wei et al., 2018) and DDX- 055

Plus (Tchango et al., 2022), predict a patient’s un- 056

derlying disease from categorical symptom indica- 057

tors. However, this representation often obscures 058

important clinical details; for example, reducing 059

“severe, intermittent chest pain radiating to the left 060

arm” to a simple present/absent flag loses key infor- 061

mation about intensity and distribution. Moreover, 062

because these collections are built for fixed-label 063

classification, models trained on them cannot read- 064

ily incorporate new symptoms or expand to addi- 065

tional disease categories beyond the original set. 066

Su et al. (Su et al., 2024) introduced a dataset that 067

uses patient-authored free-text symptom descrip- 068

tions for automated disease prediction, but it is 069

confined to Chinese data and leaves English self- 070

reports unexplored. 071

To address these challenges, we introduce 072

an English-language dataset, MIMIC-SR-ICD11, 073

which converts EHR discharge notes into first- 074

person patient self-reports and standardizes diag- 075

noses using World Health Organization (WHO) 076

ICD-11 terminology. We benchmark three leading 077

LLMs (ChatGPT, Claude and Gemini) across three 078

evaluation dimensions: overall predictive accuracy 079

(Hit1 and Macro-/Micro-/Sample F1), sensitivity to 080

candidate-list length and ordering, and robustness 081

across diseases of varying prevalence. Our exper- 082

iments reveal systematic positional bias in model 083

decoding and a surprising performance decline for 084
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the most frequent conditions. To explain this coun-085

terintuitive result, we propose two lexical speci-086

ficity metrics: disease frequency–medical vocabu-087

lary size (DF–MVS) and medical term exclusivity088

score (MTES), which together expose a vocabulary089

bottleneck in high-frequency disease descriptions.090

We publicly release our dataset and evaluation code091

to support further research on narrative-driven di-092

agnostic models.093

2 Related Work094

In recent years, several datasets have been released095

to support the development of automatic diagnosis096

systems. SymCat (Peng et al., 2018) synthesizes097

records for 90 diseases and their associated symp-098

toms by sampling according to disease–symptom099

co-occurrence probabilities. DX (Xu et al., 2019)100

and Muzhi (Wei et al., 2018) provide realistic,101

multi-turn doctor–patient dialogues that closely102

mirror actual clinical interactions. Building on103

this work, DDXPlus (Tchango et al., 2022) adds104

primary, differential, and final diagnoses alongside105

binary, categorical, and multiple-choice symptom106

representations. Although these benchmarks differ107

in scale, they all reduce symptoms to fixed options,108

which simplifies annotation and model training but109

sacrifices descriptive richness and obscures subtle110

clinical details. Moreover, by framing diagnosis111

purely as a classification task that maps a rigid112

symptom schema to a predetermined disease set,113

they are ill suited for evaluating a language model’s114

generative abilities in tasks such as predicting dis-115

eases from free-text symptom descriptions.116

To leverage the generative capabilities of large117

language models, several recent corpora incorpo-118

rate free-text symptom descriptions to enrich diag-119

nostic datasets. These resources abandon fixed-slot120

schemas and simple classification setups in favor of121

capturing authentic clinical narratives within gen-122

erative modeling frameworks. MSdiagnosis (Hou123

et al., 2024) and CMEMR (Jia et al., 2025) combine124

multi-section free-text narratives, covering chief125

complaints, history of present illness, past medical126

history, physical examination findings, and labo-127

ratory results with structured labels for primary,128

differential, and final diagnoses. Haodf (Su et al.,129

2024) mines unstructured patient self-reports from130

the Haodf online platform to infer diagnoses di-131

rectly, thereby reducing the time clinicians spend132

navigating fragmented symptom communications.133

Although these corpora significantly enhance the134

expressiveness of symptom narratives and support 135

multi-step reasoning with generative models, they 136

are all Chinese-language datasets. To date, no 137

English-language corpus has been released that 138

leverages real-world, patient-authored free-text nar- 139

ratives for automated diagnosis. Another related 140

resource is ChatDoctor (Li et al., 2023), which 141

consists of multi-turn patient–doctor consultation 142

dialogues harvested from the HealthCareMagic1 143

platform. This dataset captures patients’ natural- 144

language symptom descriptions alongside physi- 145

cians’ follow-up questions and diagnostic advice. 146

Its design goal is to train medical dialogue systems 147

capable of generating plausible diagnostic recom- 148

mendations rather than performing precise disease 149

prediction. Although the conversations include 150

physicians’ inferences about the patient’s condi- 151

tion, these are expressed at a coarse level using 152

colloquial disease names that are neither standard- 153

ized nor mapped to a formal coding scheme (e.g., 154

ICD-10), limiting the dataset’s utility for evaluating 155

fine-grained diagnostic accuracy. 156

3 Data Construction 157

To enable low-cost, early-stage disease screening, 158

we focused our dataset on common conditions 159

that together account for over 80 percent of real- 160

world cases. We built the dataset on the latest 161

MIMIC-IV (Johnson et al., 2024) and MIMIC-IV- 162

Note (Johnson et al., 2022) releases. The construc- 163

tion pipeline consists of two steps. First, we extract 164

each admission’s diagnoses from MIMIC-IV and 165

normalize them to ICD-11 terminology. Second, 166

we retrieve free-text symptom descriptions from 167

the MIMIC-IV-Note EMR notes and rewrite them 168

as first-person patient self-reports. We release four 169

variants that differ in the number of disease cat- 170

egories, allowing evaluation across models with 171

varying capacity and deployment needs (see Ta- 172

ble 1 for statistics). 173

3.1 Disease Normalization 174

Since diagnostic codes in MIMIC-IV originate 175

from different versions of the International Classi- 176

fication of Diseases (ICD-9 and ICD-10), we stan- 177

dardized all disease labels to ICD-11 terminology 178

for consistency. We used the official ICD-11 API 179

provided by the WHO2 to map diagnosis descrip- 180

tions to ICD-11 terms. 181

1[www.healthcaremagic.com](http://www.
healthcaremagic.com)

2https://icd.who.int/icdapi
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Dataset Number of
Samples

Avg ± SD (Med, Min–Max)
Tokens per Report

Avg ± SD (Med, Min–Max)
Diseases per Sample

Number of
Disease Classes

MIMIC-SR-ICD11_2000 272,579 159.5 ± 52.71 (152, 14 - 594) 2.81 ± 1.73 (2, 1 - 43) 98
MIMIC-SR-ICD11_1000 282,996 159.9 ± 53.03 (152, 14 - 594) 3.07 ± 1.91 (3, 1 - 57) 173
MIMIC-SR-ICD11_500 288,767 160.06 ± 53.15 (152, 14 - 594) 3.26 ± 2.03 (3, 1 - 69) 275
MIMIC-SR-ICD11_200 295,281 160.2 ± 53.25 (152, 14 - 594) 3.44 ± 2.14 (3, 1 - 80) 498

Table 1: Statistics of dataset variants, where data_N includes only diseases appearing at least N times. Tokens per
report and diseases per sample are reported as Avg ± SD (Median, Min–Max).

During the mapping process, we applied a sub-182

phrase matching strategy to handle excessively183

long or detailed diagnosis descriptions that often in-184

clude causal or symptomatic elaboration and there-185

fore fail to match directly against the WHO API.186

Specifically, when a full diagnosis description did187

not return a result, we extracted all contiguous sub-188

phrases of at least 80 percent of the original length,189

sorted them from longest to shortest, and queried190

each in turn until we obtained a valid mapping.191

This approach increased the likelihood of finding a192

relevant standardized concept for complex or ver-193

bose descriptions. To ensure high-precision normal-194

ization and minimize noise, we retain only ICD-11195

entities marked as important=True by the WHO196

API, which indicates strong mapping confidence.197

We also exclude non-leaf codes (those with child198

subcategories) to prevent semantic overlap among199

disease labels. This filtering enhances consistency200

in both model training and evaluation and reduces201

label ambiguity.202

3.2 Patient’s self-report generation203

The MIMIC-IV-Note dataset provides de-identified204

free-text hospital records for each patient, which205

typically include a mix of symptom descriptions,206

examination results, medical history, and social207

background information. To derive patient-style208

narratives suitable for large language model rea-209

soning, we utilized ChatGPT3(gpt-4o-mini) de-210

veloped by OpenAI to convert these clinical notes211

into first-person self-reports. During this transfor-212

mation, we explicitly instructed the model to filter213

out all clinician-generated content such as phys-214

ical examination findings, diagnostic test results,215

and professional assessments, and retain only the216

subjective symptom descriptions as if recounted by217

the patient. The generated self-reports are written218

in natural language using complete sentences and219

framed from the patient’s perspective, which facili-220

tates downstream disease diagnoses by aligning the221

3https://openai.com/api/

input format with how patients typically describe 222

their health concerns in real-world scenarios. 223

4 Experiment 224

To evaluate the diagnostic performance of 225

state-of-the-art general-purpose LLMs, we 226

conducted experiments with three widely 227

used models: ChatGPT (gpt-4o-mini), 228

Claude4 (claude-3-7-sonnet-20250219), and 229

Gemini5 (gemini-2.5-flash-preview-04-17). 230

Throughout our experiments, we employed the 231

standardized prompt shown in Figure 1, which 232

compels the models to select diagnoses exclusively 233

from our candidate list. In addition to overall 234

performance, we investigated how variations in 235

the candidate disease list affect the quality of 236

LLM prediction, focusing on changes in both the 237

order and length of the candidate list. Finally, we 238

analyzed the models’ performance across diseases 239

of different prevalence levels to better understand 240

their strengths and limitations. 241

User input: Analyze the patient's description and identify the diseases 

that best match the reported symptoms, strictly selecting from the 

provided candidate list. Return only the names of the selected diseases, 

separated by semi colons. Do not include any reasoning or explanation. 

Candidate list: [plasma cell myeloma, unstable angina, nontoxic single 

thyroid nodule, …]. Patient self-report: "I am a male patient who has 

been experiencing persistent fevers, night sweats, and profound fatigue 

over the past few weeks. I have also noted significant weight loss, 

estimating around 15 pounds in the last two months. My energy levels 

have drastically decreased, to the point where I find it difficult to 

engage in any physical activity, and I have been sleeping excessively, 

averaging most of the day during a recent trip. Additionally, I have a 

persistent cough that is mostly unproductive and occasionally feels 

aggravated. I have had episodes of diarrhea, which included a possible 

bloody component. Throughout this time, I have been monitoring my 

symptoms closely, and my condition feels as though it is deteriorating.

Claude output: fever;  gastrointestinal tract haemorrhage;  weight loss 

nos;  septicaemia

Figure 1: Illustration of the standardized prompt format
(instruction, candidate list, and patient self-report) pro-
vided to the LLMs, together with a sample output from
Claude.

4https://docs.anthropic.com/en/api/overview
5https://ai.google.dev/gemini-api/docs/

api-versions
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Model Hit@1 Macro F1 Micro F1 Sample F1 Avg Pred Len Valid Pred Rate

ChatGPT 0.2077 ± 0.0040 0.1727 ± 0.0038 0.1806 ± 0.0069 0.1630 ± 0.0070 2.7033 ± 0.0153 0.995 ± 0.0010
Gemini 0.1887 ± 0.0091 0.1510 ± 0.0034 0.1637 ± 0.0076 0.1549 ± 0.0092 3.9533 ± 0.0764 0.9981 ± 0.0004
Claude 0.2080 ± 0.0036 0.1492 ± 0.0021 0.1632 ± 0.0033 0.1546 ± 0.0054 3.5000 ± 0.0400 0.9603 ± 0.0040

Table 2: Performance comparison on disease prediction. “Avg Pred Len” denotes the average number of diseases
predicted per sample. “Valid Pred Rate” indicates the proportion of model outputs that fall within the predefined
candidate disease list, indicating how often the outputs conform to the candidate list.

hit@1 Macro F1 Micro F1 Sample F1

0.15

0.20

0.25

0.30

0.35

Sc
or

e

Gemini

hit@1 Macro F1 Micro F1 Sample F1

ChatGPT

hit@1 Macro F1 Micro F1 Sample F1

Claude

Performance Across Different Orders
Original Random Freq-First Correct-First Correct-Last

Figure 2: Comparison of model performance under different candidate disease orders.

4.1 Overall Performance242

We split MIMIC-SR-ICD11_2000 into 80% train-243

ing, 10% validation, and 10% test sets. From the244

test set, we drew three random subsamples of 1,000245

records each. We evaluated our models on each sub-246

sample and then calculated the mean performance247

and its standard deviation across the three runs.248

The result is shown in Table 2.249

Standard deviations for all metrics remain below250

0.01, indicating high consistency across the three251

independent 1,000-sample. In terms of Hit@1,252

both ChatGPT and Claude achieve approximately253

0.208, comfortably ahead of Gemini’s 0.189. Chat-254

GPT also leads on Macro, Micro, and Sample F1255

scores. We attribute this to its more conservative256

strategy, favoring high-confidence diagnoses and257

producing shorter prediction lists. In contrast, Gem-258

ini and Claude generate longer lists to maximize259

recall, but this comes at the expense of F1 score.260

Finally, ChatGPT and Gemini strictly follow the261

candidate list provided, each with a Valid Pred Rate262

greater than 99%, while Claude’s rate is slightly263

lower at 96%, indicating occasional out-of-list pre-264

dictions.265

4.2 Disease Order Effect266

In this section, we investigate the robustness and267

stability of LLMs performance between different268

disease orders in the candidate list. Specifically,269

we design five schemes: 1) Origin is a random270

order but fixed for every sample prediction; 2) Ran-271

dom shuffles the candidate list for each sample; 3) 272

Freq-First follows the real disease-frequency dis- 273

tribution (highest to lowest; 4) Correct-First places 274

the ground-truth label at the front of the list; 5) 275

Correct-Last places the ground-truth label at the 276

end of the list. The result is shown in Figure 2. 277

As illustrated in the figure 2, varying the candi- 278

date list order produces a consistent effect across 279

all LLMs: Correct-First ordering reliably achieves 280

the highest performance, while Correct-Last or- 281

dering consistently produces the lowest. The su- 282

perior performance of the Correct-First ordering 283

can be largely attributed to the positional bias in- 284

herent in transformer-based LLMs. These models 285

assign disproportionately higher attention weights 286

to tokens that appear early in the input sequence, 287

making them more likely to influence the output 288

distribution. Comparing across LLMs, ChatGPT 289

experiences the greatest boost under Correct-First 290

ordering, with Hit@1 rising from around 0.2 to 291

over 0.34. Gemini and Claude also benefit, each 292

gaining about ten points in Hit@1, increasing from 293

roughly 0.22 to around 0.32. This indicates that 294

ChatGPT may be the most susceptible to positional 295

cues but also the most capable of leveraging them 296

when the correct label is highlighted. In contrast, 297

Claude’s performance drop under Correct-Last is 298

the steepest among the three, confirming that it 299

relies more heavily on early-positioned tokens. 300

Beyond these extreme cases, we also observe 301

that ordering by global frequency (“Freq-First”) 302
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Model Candidate List Hit@1 Macro F1 Micro F1 Sample F1 Avg Pred Len Valid Pred Rate

ChatGPT
Long List 0.210 0.1750 0.1885 0.1703 2.70 0.9963
Short List 0.200 0.1738 0.1866 0.1673 3.06 0.9311
∆ -4.76% -0.69% -1.01% -1.76% – -6.54%

Gemini
Long List 0.199 0.1507 0.1725 0.1654 3.97 0.9977
Short List 0.197 0.1703 0.1899 0.1750 4.71 0.9518
∆ -1.01% +13.01% +10.09% +5.80% – -4.60%

Claude
Long List 0.199 0.1507 0.1725 0.1654 3.97 0.9977
Short List 0.205 0.1761 0.1943 0.1807 4.17 0.9451
∆ +3.02% +16.85% +12.64% +9.25% – -5.27%

Table 3: Comparison between using long candidate lists and short candidate lists for disease prediction. ∆ row
shows the percentage change from the long list to the short list for each metric.

consistently improves over both the fixed original303

order and the per-sample random shuffle. This304

suggests a lightweight heuristic for boosting per-305

formance: listing candidates in decreasing preva-306

lence can give the model a small but reliable edge,307

even without access to the true label. Notably, the308

gain from Freq-First is most pronounced for Hit@1,309

where accuracy rises by roughly 2–3 points all mod-310

els.311

Finally, we see that F1 metrics are relatively sta-312

ble across ordering schemes compared to Hit@1.313

The divergence between the best and worst order-314

ing for Macro and Sample F1 remains under 5315

points for all models, whereas Hit@1 swings by316

over 15 percents. Because Hit@1 measures only317

the model’s first choice, moving the true label out318

of the top slot causes Hit@1 to drop to zero. By319

contrast, F1 scores consider the full set of returned320

labels. Consequently, F1 metrics mitigate the im-321

pact of candidate list reordering, whereas Hit@1322

remains highly sensitive to even slight shifts in323

label position.324

4.3 Candidate Length Effect325

We aim to test whether LLMs can distinguish the326

correct diagnoses when faced with high-confidence327

distractors in a compact candidate list. To this328

end, we first gather the false positive predictions329

from the models produced under the Freq-First and330

Correct-First orders. Because the models achieve331

their strongest performance under these two orders332

and the incorrect labels predicted by the models333

tend to assign high confidence score. We then in-334

sert the true diagnoses into this pool of confusable335

options. This process yields a shortlist that aver-336

ages 10.45 diseases per case, allowing us to assess337

each model’s ability to reject misleading choices.338

The results are summarized in Table 3339

First, we observe that the Valid Pred Rate de- 340

creases for all models. The short candidate list con- 341

tains each model’s false positives, some of which 342

fall outside the original candidate list. These in- 343

valid but confident distractors lower the Valid Pred 344

Rate and force the models to cover more diseases 345

than they did with the long list. 346

Second, shortening the candidate list yields clear 347

gains for both Gemini and Claude. Gemini’s F1 348

rises sharply simply because there are fewer dis- 349

tractors to sift through, but it still falls short of 350

the other two models. However, the comparative 351

performance of ChatGPT and Claude remains in- 352

conclusive. Claude outperforms ChatGPT on every 353

metric, but part of this advantage may stem from 354

its prediction length rather than from deeper diag- 355

nostic insight. Specifically, our shortlists contain 356

an average of 10.45 diseases per case, with roughly 357

three true labels. Randomly selecting four can- 358

didates from such a list yields a higher expected 359

F1 score than selecting only three, since the extra 360

pick increases the probability of covering a true 361

label without substantially lowering precision. In 362

practice, Claude outputs 4.17 labels on average, a 363

tendency that artificially boosts its F1 even under 364

near-random selection. ChatGPT, by contrast, re- 365

turns fewer labels and therefore does not derive the 366

same statistical benefit. This artifact explains why 367

Claude appears to gain more from list reduction 368

than ChatGPT, despite both models accessing the 369

exact same information. 370

Finally, while these LLMs can easily exclude 371

unlikely diseases, they struggle to distinguish 372

among highly confusable conditions. Under a 373

random-guess baseline on the short list, the ex- 374

pected sample F1 is approximately 0.30, yet all 375

models perform well below this threshold. This 376
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gap highlights the need for stronger fine-grained377

diagnostic discrimination.378

4.4 Performance in frequent and infrequent379

diseases380

4.4.1 Counterintuitive Frequency Effects381

We partitioned our 98 diseases into ten prevalence-382

based groups and evaluated models’ accuracy383

within each group. Groups 1 through 9 each con-384

tain ten diseases sorted by descending frequency,385

while Group 10 comprises the eight rarest condi-386

tions. Figure 4 shows performance for each model387

under two candidate list ordering schemes: one388

arranged by global frequency (Freq-First) and the389

other randomly shuffled.390

We find that LLMs do not exhibit a simple391

"frequency bias". Their Macro F1 scores across392

disease-frequency groups do not mirror the under-393

lying data skew: rare conditions are not dispropor-394

tionately more difficult to predict than common395

diseases. In fact, the decrease in Macro F1 from396

high- to low-frequency groups is much smaller than397

the corresponding drop in sample counts. This pat-398

tern is made more striking by a counterintuitive399

dip in performance on the very highest-frequency400

diseases (Group 1). Surprisingly, Group 1 yields401

lower F1 scores than Groups 2–4. Moreover, in402

classical imbalanced-label settings, models tend to403

overgenerate frequent labels, boosting recall at the404

expense of precision. In contrast, LLMs exhibit405

the opposite trend: for the highest-frequency group,406

precision markedly exceeds recall, whereas for the407

rarest groups, recall outstrips precision.408

4.4.2 Mechanisms Behind Frequency Bias409

Our first attempt employed a simple Document-410

Frequency–Vocabulary Size (DF–VS) metric, de-411

fined as412

DF-VSd =
|Vd|
DFd

(1)413

where DFd is the number of reports mentioning414

disease d and Vd the set of unique vocabularies415

used to describe it. Although low DF–VS corre-416

lates with poorer prediction (since a smaller, less417

diverse vocabulary makes discrimination harder),418

DF–VS alone does not fully account for the pro-419

nounced performance drop on the most frequent420

diseases. To uncover the additional factors behind421

this counterintuitive effect, we introduce two re-422

fined metrics, Frequency–Medical Vocabulary Size423

(DF–MVS) and Medical Term Exclusivity Score424

(MTES). Below, we define each metric formally.425

Disease Frequency–Medical Vocabulary Size 426

(DF–MVS) We denote by Md the number of dis- 427

tinct medical terms appearing in all free-text re- 428

ports for the disease d. The DF–MVS metric then 429

captures the average term richness per document: 430

DF-MVSd =
Md

DFd
. (2) 431

Here, Md is obtained by extracting all unique 432

medical-entity mentions from reports of disease 433

d, and DFd is the total count of those reports. This 434

metric captures both how often a disease appears 435

and the breadth of specialized vocabulary used to 436

describe it. Lower DF-MVS indicates that the de- 437

scription of a disease has fewer medical terms. 438

Medical Term Exclusivity Score (MTES) For 439

each term t ∈ Vd, let freqd′(t) be the frequency of 440

t in reports of the disease d′, and let D be the total 441

number of diseases. We first compute the average 442

cross-disease frequency of t: 443

freq−d(t) =
1

D − 1

∑
d′ ̸=d

freqd′(t). (3) 444

Then MTES is defined as the mean of the reciprocal 445

of these averages (plus a small constant ϵ to avoid 446

division by zero): 447

MTESd =
1

|Vd|
∑
t∈Vd

freq−d(t). (4) 448

Lower MTES values indicate that a disease’s terms 449

are rarely shared with others, reflecting higher de- 450

scriptive specificity. 451

To calculate DF–MVS and MTES metrics, 452

we employ spaCy’s Bio-medical NER model 453

(en_ner_bc5cdr_md) (Gu et al., 2017) to extract 454

clinical entitie from free-text reports. This model 455

has been fine-tuned on the BioCreative V CDR 456

corpus (Li et al., 2016), which provides extensive, 457

high-quality annotations for both disease and chem- 458

ical mentions in biomedical literature. Compared 459

to general-purpose NER systems, it offers superior 460

precision and recall on medical terminology, ensur- 461

ing robust recognition of both common and rare 462

conditions. 463

As shown in Figure 4, although Group 1 diseases 464

account for more than 40 percent of the dataset, 465

they remain among the most difficult to predict for 466

three closely linked reasons. First, Group 1 regis- 467

ters the lowest DF–VS values (Figure 4.a). This 468

indicates that despite their high frequency, these 469
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Group 1 2 3 4 5 6 7 8 9 10

Proportion (%) 43.49 17.83 9.64 6.98 5.50 4.45 3.82 3.24 2.93 2.13

Table 4: Sample Proportions in Each Disease-Prevalence Group (High-to-Low Frequency Order)
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Figure 3: Performance across different frequency groups of diseases. Higher-frequency diseases tend to be predicted
with greater accuracy, indicating a correlation between disease frequency and model performance.

diseases are described using a small, generic set of470

terms, which limits the richness of their lexical rep-471

resentation. Second, Group 1 also scores poorly on472

DF–MVS (Figure 4.b). In practice, this means that473

even though there is abundant text, very few of the474

tokens are truly informative medical words such as475

specific biomarkers, nuanced symptom qualifiers,476

or disease-defining expressions. As a result, nar-477

rative redundancy prevails with repeated mentions478

of terms such as pain or fever, depriving the model479

of the high-signal features it needs. Third, Group480

1 has the lowest Medical Term Exclusivity Score481

(Figure 4.c). The few medical terms that appear482

are common across many conditions, so they carry483

little mutual information with any single diagno-484

sis. Together, these factors create a vocabulary485

bottleneck: a small, non-exclusive set of terms that486

produces a low signal-to-noise ratio and prevents487

the model from learning the distinctive patterns488

required for accurate prediction.489

By contrast, mid-frequency diseases in Groups490

2 occupy an optimal range. They appear often491

enough to accumulate varied phrasing yet remain492

uncommon enough to invoke specific medical de-493

scriptors, and this balance raises their DF–MVS494

while lowering their MTES. Rare diseases in495

Groups 7 to 10 suffer from small sample sizes496

but benefit from highly distinctive labels such as497

"alopecia areata" or "Wegener’s granulomatosis",498

which help the model form clear decision bound-499

aries. Therefore, mid-frequency and rare disease500

categories tend to become easier for the model to501

predict simply by adding more examples, because502

the language used to describe them already con-503

tains distinct, high-signal terms. In contrast, adding 504

or reducing additional samples for very common 505

diseases does little to help, since their narratives 506

rely on broad, generic words that volume changing 507

alone cannot diversify. 508

To break through this plateau for frequent condi- 509

tions, we need to deliberately expand the linguistic 510

palette in their documentation. Pulling synonym 511

lists from established medical vocabularies can in- 512

ject subtle variations in how symptoms and findings 513

are named. Paraphrase-driven templates can recast 514

identical clinical observations in different phras- 515

ings, teaching the model to recognize conceptually 516

equivalent expressions. Enhanced entity recogni- 517

tion can spotlight less obvious but diagnostically 518

relevant terms buried in the text. Together, these 519

efforts would boost the uniqueness and richness of 520

the textual features, giving the model the nuanced 521

cues it needs to distinguish among common disease 522

labels. In addition to enriching narrative descrip- 523

tions, we must acknowledge that some conditions 524

simply lack highly distinctive symptoms and are 525

only definitively diagnosed through laboratory tests 526

or imaging studies. For these diseases, model in- 527

puts should be augmented with structured findings 528

such as key lab values, radiology impressions or 529

vital signs. Finally, we can improve prediction 530

safety and focus by adopting a severity-weighted 531

candidate checklist. Rather than treating all disease 532

classes equally, the system can estimate each con- 533

dition’s potential impact on patient outcomes (e.g., 534

risk of organ failure or mortality) and elevate high- 535

consequence diagnoses into the shortlist even when 536

their textual signatures are subtle. This risk-aware 537
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Figure 4: Analysis of disease prevalence and vocabulary specificity across prevalence groups. (a) Proportion of
samples in each disease-frequency decile (Group 1 = most frequent, Group 10 = rarest). (b) Average Document-
Frequency–Medical Vocabulary Specificity (DF–MVS) per group, illustrating that rarer diseases employ more
distinctive medical terms. (c) Average Medical Term Exclusivity Score (MTES) per group, indicating how uniquely
each group’s terminology appears compared to the rest. A high DF–MVS coupled with a low MTES signifies that
the group’s medical vocabulary is both plentiful and uniquely characteristic.

ranking ensures that life-threatening conditions re-538

ceive appropriate attention, balancing linguistic un-539

certainty with clinical urgency and further reducing540

the chance that a common but dangerous disease is541

overlooked.542

5 Conclusion543

In this work we have introduced a new benchmark544

for narrative-driven disease prediction. We convert545

MIMIC electronic health record notes into first-546

person patient self-reports and normalize all diag-547

noses to ICD-11 name. With the proposed MIMIC-548

SR-ICD11 dataset, we evaluate three leading large549

language models (ChatGPT, Claude and Gemini)550

on overall accuracy, sensitivity to candidate list or-551

dering and length, and robustness across disease552

prevalence groups.553

Our experiments reveal several important in-554

sights. First, LLMs performance depends strongly555

on how candidate diseases are presented. LLMs556

exhibit positional bias when disease lists are per-557

muted and benefit from shorter, more focused can-558

didate sets only under certain conditions. Second,559

common diseases prove surprisingly difficult to pre-560

dict despite their data abundance. We show that561

this difficulty arises from a vocabulary bottleneck:562

high-frequency conditions are documented with563

generic and non-exclusive terms that offer low sig-564

nal to the model. Mid-frequency and rare diseases565

by contrast gain more from increased sample size566

because their narratives already contain distinctive567

terminology.568

6 Future Work569

In the future, we identify three key directions for570

advancing narrative-driven disease prediction:571

1. Incorporate Chain-of-Thought Inference. We 572

will augment our dataset with explicit reasoning 573

traces by prompting LLMs to generate intermedi- 574

ate “chain-of-thought” inference. This can guide 575

models to attend to critical symptom-to-diagnoses 576

links and improve interpretability, helping to sur- 577

face latent clinical cues that raw text alone may 578

obscure. 579

2. Train a Domain-Specialized Diagnostic LLM: 580

We will fine-tune a compact model that has been 581

pretrained on a large medical text corpus using 582

our MIMIC-SR-ICD11 dataset. Training will in- 583

clude a reinforcement learning objective that re- 584

wards outputs matching our curated candidate list 585

and penalizes any predictions outside this set. Af- 586

ter fine-tuning, we will reassess the frequency bias 587

to determine whether this approach improves pre- 588

diction performance across both common and rare 589

disease categories. 590

3. Enable hierarchical disease prediction with 591

ICD-11 code We will leverage the built-in hierarchy 592

of ICD-11 to produce predictions at multiple levels 593

of granularity. For each specific code it predicts 594

such as “Type 2 diabetes mellitus”, it will also 595

identify its parent categories (such as, “diabetes 596

mellitus”). This layered output gives downstream 597

applications the flexibility to adjust their decision 598

scope. Downstream applications can then choose 599

whether to act on broad disease classes for initial 600

screening or on detailed leaf-level codes for precise 601

diagnoses. 602

Together, these enhancements will deepen model 603

reasoning, tailor performance to the diagnostic do- 604

main, and provide clinicians with both detailed and 605

overview predictions across the disease hierarchy. 606
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A License and Availability607

All of our code and the MIMIC-SR-ICD11 dataset608

are released under the Creative Commons Attribu-609

tion 4.0 International (CC BY 4.0) license. The full610

text of the CC BY 4.0 license is available at https:611

//creativecommons.org/licenses/by/4.0/.612

B Artifact Usage and Intended Use613

B.1 Use of Existing Artifacts614

We relied on several third-party resources, each615

with its own access and usage restrictions:616

• MIMIC-IV and MIMIC-IV-Note are governed617

by PhysioNet’s credentialed access agree-618

ment, which permits use for non-commercial,619

research-only purposes. All analysis in this620

paper was conducted under that agreement621

and in compliance with its requirement that622

no clinical or commercial deployment occur.623

• WHO ICD-11 API is provided under the624

WHO open data policy. We used it strictly625

to normalize diagnoses in our dataset, in ac-626

cordance with the API’s terms for research627

and educational use.628

• spaCy’s en_ner_bc5cdr_md model is dis-629

tributed under the Apache 2.0 license. Our630

extraction of medical entities from free-text631

reports adheres to that license, which allows632

both research and derivative work without ad-633

ditional restriction.634

In each case, our usage matches the intended635

research-only context and does not violate any ac-636

cess conditions or licensing terms.637

B.2 Intended Use of Created Artifacts638

We release the MIMIC-SR-ICD11 dataset (and ac-639

companying code) under the Creative Commons640

Attribution 4.0 International (CC BY 4.0) license.641

This license permits unrestricted research and edu-642

cational reuse, provided that appropriate credit is643

given. In keeping with PhysioNet’s original agree-644

ment, we explicitly restrict MIMIC-SR-ICD11 to645

non-commercial, research-only applications. Users646

who wish to employ the dataset for clinical decision647

support or commercial purposes must first secure648

the necessary permissions from the data providers.649

C Ethics 650

All human-subject data in this study (MIMIC-IV 651

and MIMIC-IV-Note) are fully de-identified un- 652

der HIPAA and were released under a PhysioNet 653

Data Use Agreement (DUA) that mandates human- 654

subjects training and forbids any attempt at re- 655

identification. The original IRBs at Beth Israel 656

Deaconess Medical Center and MIT approved the 657

data release with a waiver of informed consent and 658

determined that secondary analyses of these de- 659

identified records are exempt from ongoing review. 660

Our usage strictly adheres to these terms and re- 661

mains within a research-only context. The patient 662

self-reports we generate via ChatGPT are synthetic 663

paraphrases of those de-identified notes and con- 664

tain no additional private information, so no new 665

consent is required. 666

D Acknowledgements 667

We used ChatGPT (gpt-4o-mini) as a writing assis- 668

tant to help polish sentence structure and improve 669

readability. All technical content, analyses, and 670

conclusions were developed solely by the authors. 671

E Limitations 672

Despite its contributions, our work has several im- 673

portant limitations. 674

Synthetic self-reports Our patient narratives are 675

generated by prompting ChatGPT to paraphrase 676

de-identified discharge text. Although we care- 677

fully instructed the model to retain only subjective 678

symptom language, this process may introduce ar- 679

tifacts, omit subtle nuances, or diverge from how 680

real patients describe their own experiences. Future 681

work should validate our synthetic reports against 682

authentic patient-provided narratives. 683

ICD-11 mapping We rely on subphrase match- 684

ing to map heterogeneous ICD-9/10 descriptions 685

to ICD-11 concepts via the WHO API. While this 686

increases coverage, it may still produce incorrect 687

or overly broad mappings for very complex diag- 688

noses. Mis-mappings could propagate noise into 689

both training and evaluation. 690
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