
Seeing Differently, Acting Similarly:
Heterogeneously Observable Imitation Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

In many real-world imitation learning tasks, the demonstrator and the learner have1

to act under totally different observation spaces. This situation brings significant2

obstacles to existing imitation learning approaches, since most of them learn poli-3

cies under homogeneous observation spaces. On the other hand, previous studies4

under different observation spaces have strong assumptions that these two obser-5

vation spaces coexist during the entire learning process. However, in reality, the6

observation coexistence will be limited due to the high cost of acquiring expert7

observations. In this work, we study this challenging problem with limited observa-8

tion coexistence under heterogeneous observations: Heterogeneously Observable9

Imitation Learning (HOIL). We identify two underlying issues in HOIL, i.e., the10

dynamics mismatch and the support mismatch, and further propose the Impor-11

tance Weighting with REjection (IWRE) algorithm based on importance-weighting12

and learning with rejection to solve HOIL problems. Experimental results show13

that IWRE can successfully solve various HOIL tasks, including the challenging14

tasks of transforming the vision-based demonstrations to random access memory15

(RAM)-based policies in the Atari domain, even with limited visual observations.16

1 Introduction17

Imitation Learning (IL) studies how to learn a good policy by imitating the given expert demonstra-18

tions [16, 1], and has achieved great success in many domains such as autonomous driving [8], video19

games [7], and continuous control [19]. In real-world IL applications, the expert and the learner20

usually have their own observations of the same underlying states from the environment. For example,21

in Figure 1, an autonomous agent is learning to drive by imitating a human expert. The expert takes22

her actions mainly based on auditory and visual observations, which are familiar to human beings.23

However, the learning agent does not necessarily use the same way to observe: it can utilize more24

machine-capable sensors such as a LiDAR, radar, and bird-eye view (BEV) map to generate its25

observations [20]. The key features behind this example are two-fold: First, both the expert and26

the learner have their totally different observations of the same state of the environment. Thus they27

essentially have to choose the same action if acting optimally. Second, the observation space of the28

expert is often of high cost for the learner to utilize [6, 10]. We call this problem Heterogeneously29

Observable Imitation Learning (HOIL).30

There are two lines of research studying the related problems. The first line relates to domain31

adaptation: the observation space of the expert and the learner are the homogeneous, while some32

typical mismatches of distributions could exist: morphological mismatch, viewpoint mismatch, and33

dynamics mismatch [30, 17, 26]. However, these approaches are invalid when the observation spaces34

for experts and learners are completely different as in HOIL.35

The second line studied IL under different observations similar to HOIL, and some representative36

works include Partially Observable Imitation Learning (POIL) [14, 36] and Learning by Cheating37
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Figure 1: Autonomous driving: an example of the HOIL problem. Figures 1, 2 and 3 include some
illustrations and pictures from the Internet (source: www.vecteezy.com).
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Figure 2: Comparisons of different IL processes under different observation spaces. The targets are
all to learn π2 based on the second observation space with an auxiliary policy π1 from corresponding
roll-out data T̃ and T . (a) POIL mainly emphasized that the expert can view full observations,
while the observations for the learner are partial. (b) LBC assumed that the expert’s observations
contain more privileged information than the learner’s. Both POIL and LBC can observe expert’s
observations all along. (c) HOIL limits the amount of expert’s observations.

(LBC) [8], as depicted in Figure 2. Both POIL and LBC assume that the expert’s observations can38

be easily accessed by the learner without any budget limit. However in practice, different from the39

learner observations, the access to expert’s observations might be of high cost and invasive [6, 10],40

hindering the wide application of these methods.41

In this paper, we initialize the study of the HOIL problem. We propose a learning process across42

observation spaces of experts and learners for solving this problem, and analyze the underlying issues43

of HOIL, i.e., the dynamics mismatch and the support mismatch. To tackle both two issues, we resort44

to the techniques of importance-weighting [12] and learning with rejection [9, 15] for active querying45

to propose the Importance Weighting with REjection (IWRE) approach. We evaluate the effectiveness46

of the IWRE algorithm in continuous control tasks of MuJoCo [33], and the challenging tasks of47

learning random access memory (RAM)-based policies given vision-based expert demonstrations48

in Atari [3] games. The results demonstrate that IWRE can significantly outperform existing IL49

algorithms in HOIL tasks, with limited access to expert observations.50

2 Related Work51

Domain-Shifted IL. For the standard IL process, where the learner and the expert share the same52

observation space, current state-of-the-art methods tend to learn the policy in an adversarial style [7],53

like GAIL [16]. When considering the domain mismatch problem, i.e., Domain-Shifted IL (DSIL),54

the research aims at addressing the static distributional shift of the optimal policies resulted from55

the environmental differences but still under homogeneous observation spaces. Stadie et al. [30],56

Sermanet et al. [29], and Liu et al. [23] studied the situation where the demonstrations are in view57

of a third person. Kim et al. [19] and Kim et al. [18] addressed the IL problem with morphological58

mismatch between the expert’s and learner’s environment. Stadie et al. [30], Tirinzoni et al. [32], and59

Desai et al. [11] focused on the calibration for the mismatch between simulators and the real world60

through some transfer learning styles. There are two major differences between HOIL and DSIL:61

One is that HOIL considers heterogeneous observation spaces instead of homogeneous ones; another62
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is that without observation heterogeneity, DSIL can directly align two fixed domains, which may63

not be realistic for solving HOIL when two observation spaces are totally different. Thus HOIL is a64

significantly more challenging problem than DSIL. Besides, Chen et al. [8] learned a vision-based65

agent from a privileged expert. But it can obtain expert’s observations throughout the whole learning66

process, so it cannot handle the problem of the support mismatch under HOIL.67

POMDP. The problem of POMDPs, in which only partial observations are available for the agent(s),68

has been studied in the context of multi-agent [25, 36] and imitation learning [14, 36] problems.69

But distinct from HOIL, in a POMDP, the learner only have partial observations and share a same70

underlying observation space with the expert, which would become an obstacle for them to make71

decisions correctly. For example, Warrington et al. [36] assumed that the observation of the learner72

is partial than that of the expert. Instead, in HOIL, expert’s and learner’s observations are totally73

different from each other, while the learner’s observations are not belong to a part of the expert’s. For74

HOIL, the main challenge is to deal with the mismatches between the observation spaces, especially75

when the access to expert’s observations is strictly limited.76

3 The HOIL Problem77

In this section, we first give a formal definition of the HOIL setting, and then introduce the learning78

process for solving the HOIL problem.79

3.1 Setting Definition80

A HOIL problem is defined within a Markov decision process with mutiple observation spaces, i.e.,81

⟨S, {O},A,P, γ⟩, where S denotes the state space, {O} denotes a set of observation spaces, A82

denotes the action space, P : S × A × S → R denotes the transition probability distribution of83

the state and action, and γ ∈ (0, 1] denotes the discount factor. Furthermore, a policy π over an84

observation space O is defined as a function mapping from O to A, and we denote by ΠO the set85

of all policies over O. In HOIL, both the expert and the learner have their own observation spaces,86

which are denoted as OE and OL respectively. Both OE and OL are assumed to be produced by87

two bijective mappings fE : S → OE, fL : S → OL, which are unknown functions mapping the88

underlying true states to the observations. It is obvious to see that by this assumption, any policy over89

OE has a unique correspondence over OL. This makes HOIL possible since the target of HOIL is to90

find the corresponding policy of the expert policy under OL.91

A state-action pair (s, a), denoted by x, is called an instance. Also, a trajectory T = {xi}, i ∈ [m]92

is a set of m instances. For each observation space, x̃ ∈ T̃ ⊆ OE × A and x ∈ T ⊆ OL × A,93

where OE = fE(S) and OL = fL(S). Furthermore, we define the occupancy measure of a policy π94

under the state space S as ρπ : S ×A → R such that ρπ(x) = π(a|o)Pr(o|s)
∑∞

t=0 γ
tPr(st = s|π).95

Under HOIL, the learner accesses the expert demonstrations T̃πE , a set of instances sampled from ρπE .96

The goal of HOIL is to learn a policy π̂ as the corresponding policy of πE over OL. If OE = OL,97

HOIL degenerates to standard IL . GAIL [16] is one of the state-of-the-art IL approaches under this98

situation, which tries to minimize the divergence between the learner’s and the expert’s occupancy99

measures d(ρπ̂, ρπE
). The objective of GAIL is100

min
π̂

max
w

Ex∼ρπE
[logDw(x̃)] + Ex∼ρπ̂

[log(1−Dw(x̃))]−H(π̂), (1)

where H(π̂) is the causal entropy performed as a regularization term, and Dw : OE ×A → [0, 1] is101

the discriminator of πE and π̂. GAIL solved Equation (1) by alternatively taking a gradient ascent102

step to train the discriminator Dw, and a minimization step to learn policy π̂ based on an off-the-shelf103

RL algorithm with the pseudo reward − logDw(x̃).104

3.2 The Learning Process for Solving HOIL105

In HOIL, we need to cope with the absence of the learner’s observations in demonstrations and the106

high cost of collecting the expert’s observations while learning. So we introduce a learning process107

with pretraining across two different observation spaces for solving HOIL, as abstracted in Figure 3.108

Pretraining. Same to LBC [8], we assume that we can obtain an auxiliary policy π1 based on OE at109

the beginning. π1 can be directly provided by any sources, or trained by GAIL or behavior cloning110

as did in LBC. Besides, we use this π1 to sample some data Tπ1
, which contain both observation111

under OE (i.e., T̃π1) and OL (i.e., T π1), in order to connect these two different observation spaces.112

We name Tπ1
= {T̃π1

, T π1
} the initial data.113
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Figure 3: Illustration of a learning process across two different observation spaces for solving HOIL.
π1 is an auxiliary policy that additionally provided.

Training. Here we learn a policy π2 from the initial data T π1
and the collected data T π2

, under114

OL only. Besides, the learner is allowed for some operation of observation coexistence (OC): At115

some steps of learning, besides the observations OL, the learner could also request T̃π2 from the116

corresponding observations OE (e.g., from the human-understandable sensors). The final objective of117

HOIL is to learn a good policy π2 under OL.118

In practical applications, the auxiliary policy π1 can also come from simulation training or direct119

imitation. But since π1 is additionally provided, it is more practical to consider π1 as a non-optimal120

policy. During training, OC is an essential operation for solving HOIL, which helps the learner121

address the issues of the dynamics mismatch and the support mismatch (especially the latter one).122

Also, in reality, we do not need an oracle for actions, which still needs OC for obtaining expert123

observations first, as in many active querying research [4, 8], so its cost will be relatively lower.124

Besides, the related work [8] also required an initialized policy π1 to solve their problem, which act125

as a teacher under privileged OE in the pretraining and then learned a vision-based student from the126

guidance of the teacher under both OL and OE. Their setting can be viewed as a variety of HOIL127

with optimal π1, unlimited OE, and unlimited OC operations, so HOIL is actually a more practical128

learning framework.129

4 Imitation Learning with Importance-Weighting and Rejection130

In HOIL, the access frequency to OE is strictly limited, so it is unrealistic to learn π2 in a Dataset131

Aggregation (DAgger) style [27] as in LBC. Therefore, we resort to learning π2 with a learned reward132

function by inverse reinforcement learning [1] in an adversarial learning style [16, 13].133

In addition, both OE and OL are assumed to share the same latent state space S as introduced in134

Section 3.1, so the following analysis will be based on S , while the algorithm will handle the problem135

based on OE and OL specifically.136

4.1 Dynamics Mismatch and Importance-Weighting137

To analyze the learning process, we let ρπE
, ρπ1

, and ρπ2
be the occupancy measure distributions138

of the expert demonstrations, the initial data, and the data during training respectively. Since we139

need to consider the sub-optimality of π1, ρπ1
should be a mixture distribution of the expert ρπE

and140

non-expert ρπNE , i.e., there exists some δ ∈ (0, 1) such that141

ρπ1
= δρπE

+ (1− δ)ρπNE
, (2)

as depicted in Figure 4a. During training, the original objective of π2 is to imitate πE through142

demonstrations. To this end, the original objective of reward function Dw2
for π2 is to optimize143

max
w2

Ex∼ρπ2
[logDw2

(x)] + Ex∼ρπE
[log(1−Dw2

(x))]. (3)

But the expert demonstrations are only available under OE. While during training, we can only utilize144

the initial data T π1
∼ ρπ1

to learn π2 and Dw2
. Besides, as π1 is sub-optimal, directly imitating T π1

145

could reduce the performance of the optimal π2 to that of π1. So we use the importance-weighting to146

calibrate this dynamics mismatch, i.e.,147

max
w2

L(Dw2
) = Ex∼ρπ2

[logDw2
(x)] + Ex∼ρπ1

[α(x) log(1−Dw2
(x))], (4)
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Figure 4: The comparisons among the distributions of expert demonstrations ρπE
, initial data ρπ1

,
and non-expert data ρπNE

. The red and blue regions denote the expert and non-expert parts of ρπ1

respectively. H , O, and N denote the latent demonstration, the observed demonstration, and the
non-expert data respectively. (a) The ideal situation, where supp(ρπE

)\supp(ρπ1
) = ∅; (b) The real

situation, where H := supp(ρπE
) \ supp(ρπ1

) ̸= ∅ in ρπE
. (c) The target output of the combined

model I[D∗
w]g

∗. The output +1, 0, and −1 regions correspond to H , O, and N respectively.

where α(x) ≜ ρπE
(x)

ρπ1
(x) is an importance-weighting factor [12]. So the current issue lies in how to148

estimate ρπE

ρπ1
under OE. To achieve this purpose, we need to bridge the expert demonstrations and149

the initial data. Therefore, here we use these two data sets to train an adversarial model Dw1 in the150

same way as Dw2 in the pretraining:151

max
w1

L(Dw1) ≜ Ex∼ρπ1
[logDw1(x̃)] + Ex∼ρπE

[log(1−Dw1(x̃))]. (5)

If we write the training criterion (5) in the form of integral, i.e.,152

max
w1

L(Dw1) =

∫
x

[ρπ1 logDw1 + ρπE log(1−Dw1)]dx, (6)

then, by setting the derivative of the objective (6) to 0 ( ∂L
∂Dw1

= 0), we can obtain the optimum Dw1 :153

D∗
w1

=
ρπ1

ρπ1
+ ρπE

, (7)

in which the order of differentiation and integration was changed by the Leibniz rule. Besides, we154

can sufficiently train Dw1
using the initial data T̃π1

and the expert demonstrations T̃πE
. Then Dw1

155

will be good enough to estimate the importance-weighting factor, i.e.,156

α(x) ≜
ρπE

ρπ1

=
1−D∗

w1
(x̃)

D∗
w1

(x̃)
≈ 1−Dw1

(x̃)

Dw1(x̃)
. (8)

In this way, we can use Dw1 , which can connect demonstrations and initial data, to calibrate the157

learning process of Dw2 . The final optimization objective for Dw2 is158

max
w2

L(Dw2
) = Ex∼ρπ2

logDw2
(x) + Ex∼ρπ1

1−Dw1(x̃)

Dw1
(x̃)

log[1−Dw2
(x)]. (9)

In this way, Dw2
can effectively dig out the expert part of ρπ1

and produce efficient rewards for π2.159

4.2 Support Mismatch160

So far the challenges have still been similar to homogeneously observable imitation learning. However,161

our preliminary experiments demonstrated that merely importance-weighting is not enough to fix162

the problem that occurred by the absence of interactions under OE. So there exist some other issues163

between the expert demonstrations and the initial data. To find out the underlying issues, we plot164

the t-Distributed Stochastic Neighbor Embedding (t-SNE) [34] visualizations of these two empirical165

distributions under OE on Hopper and Walker2d, as shown in Figure 5. Twenty trajectories were166

collected for both the expert demonstrations and the initial data. We can observe that there exist some167
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high-density regions of demonstrations in which the initial data do not cover; that is, there exist some168

regions of the demonstrations that π1 did not explore. Wang et al. [35] found a similar phenomenon in169

the standard IL setting. On the other hand, the importance-weighting α cannot calibrate this situation170

where ρπE

ρπ1
= ∞.171

Expert
π1

(a) Hopper (b) Walker2d

Figure 5: t-SNE visualizations of expert
demonstrations and collected data of π1
under OE.

To formulate this problem, here we introduce the Support172

Set of the occupancy measure:173

Definition 1 (Support Set). The support set of a occu-174

pancy measure ρ is the subset of the domain containing175

the elements which are not mapped to zero:176

supp(ρ) := {x ∈ S ×A|ρ(x) ̸= 0}. (10)

Due to the sub-optimality of π1, supp(ρπE)\supp(ρπ1) ̸=177

∅ (see Figure 4b). We call this part the Latent Demonstra-178

tion, defined as:179

Definition 2 (Latent Demonstration). The latent demon-180

stration H is the set of those x ∈ S ×A that belong to the181

relative complement of supp(ρπ1
) in supp(ρπE

):182

H := {x ∈ S ×A|supp(ρπE
) \ supp(ρπ1

)}. (11)

Also, another part of the demonstration is named the Observed Demonstration, defined as:183

Definition 3 (Observed Demonstration). The observed demonstrationO is the set of those x ∈ S×A184

that belong to the complement of H in supp(ρπE
):185

O := {x ∈ S ×A|supp(ρπE
) ∩ supp(ρπ1

)}. (12)

Besides, the data outside of demonstrations should be non-expert data:186

Definition 4 (Non-Expert Data). The non-expert data N is the set of those x ∈ S × A that out of187

supp(ρπE):188

N := {x ∈ S ×A|ρπE
(x) = 0}. (13)

In other words, the sub-optimality of π1 will cause not only the dynamics mismatch, but also the189

appearance of the latent demonstration H . We call the latter one the problem of Support Mismatch.190

Intuitively, when π2 → πE, we have H → ∅, monotonously. So in order to fix the support mismatch191

between ρπE
and ρπ1

, guiding π2 to find out H is the key.192

In addition, the support mismatch problem can be viewed as an inverse problem of the Out Of193

Distribution (OOD) problem that frequently occurred in offline RL setting [21], in which they tried to194

avoid supp(ρπ1) \ supp(ρπE) instead.195

4.3 Imitation Learning with Rejection196

We can observe thatH∪O∪N = S×A. So it is desirable to filter outH fromO andN . Meanwhile,197

Dw1
and Dw2

can only classify O ∪H and N , under OE and OL respectively. Therefore, here we198

design two models g1 : OE ×A → {0, 1} and g2 : OL ×A → {0, 1} (Output 0: x ∈ O and output199

1: otherwise), so that given x ∼ T (corresponding x̃ ∼ T̃ and x ∼ T ) they can satisfy:200

H = {x ∈ S ×A|I[D∗
w1

(x̃)]g∗1(x̃) = I[D∗
w2

(x)]g∗2(x) = +1}, (14)

201

O = {x ∈ S ×A|I[D∗
w1

(x̃)]g∗1(x̃) = I[D∗
w2

(x)]g∗2(x) = 0}, (15)
202

N = {x ∈ S ×A|I[D∗
w1

(x̃)]g∗1(x̃) = I[D∗
w2

(x)]g∗2(x) = −1}, (16)

respectively, where I[·] takes +1 if · > 0.5, and −1 otherwise. The target combined model203

I[D∗
w(x)]g

∗(x) is depicted in Figure4c.204

To this end, both g1 and g2 should be able to cover O, meanwhile g2 can be adaptive to continuously205

change of ρπ2
due to the update of π2. Here we learn g1 and g2 in a rejection form, to reject O from206
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O ∪H (where I(Dw) = +1). Concretely, the rejection setting is the same as that in Cortes et al. [9].207

Also inspired by Geifman et al. [15], the optimization objective of the combination of Dw and g is208

L(Dw, g) ≜ l̂(Dw, g) + λmax(0, c− ϕ̂(g))2, (17)

where c > 0 denotes the target coverage, and λ denotes the factor for controlling the relative209

importance of rejection. Besides, the empirical coverage ϕ̂(g) is defined as210

ϕ̂(g|X) ≜
1

m

m∑
i=1

g(xi), (18)

where a batch of data X = {xi}, i ∈ [m]. The empirical rejection risk l̂(Dw, g) is the ratio between211

the covered risk of the discriminator and the empirical coverage:212

l̂(Dw, g) ≜
1
m

∑m
i=1⟨L(Dw(xi)), g(xi)⟩

ϕ̂(g)
. (19)

Meanwhile, both Dw1 and g1 can access ρπE under OE directly. So given x ∼ T π2 under OL,213

once ⟨I(Dw2(x)), g2(x)⟩ = +1, we can query the corresponding observations x̃ of x through OC214

operation and use ⟨I(Dw1
(x̃)), g1(x̃)⟩ to calibrate the output of g2 and Dw2

. In this way, g2 and Dw2
215

can be entangled together and adaptively guide π2 to find out the latent demonstrations H under OL.216

4.4 IWRE217

Here we combine the importance-weighting and rejection into a unified whole, to propose a novel218

algorithm named Importance Weighting with REjection (IWRE). Concretely, in a HOIL process:219

Pretraining. We train a discriminator Dw1
by Equation (5) and its corresponding rejection model g1220

by Equation (17) using the initial data and the expert demonstrations.221

Training. We train a discriminator Dw2 by the combination of Equation (9) and Equation (17), as222

well as its corresponding rejection model g2 by Equation (17), using the initial data, the data collected223

by π2, and the output of Dw1 with g1 through OC operation. Also, π2 will be updated with Dw2 and224

g2 asymmetrically as in GAIL.225

The pseudo-code of our algorithm is provided in the supplementary material.226

5 Experiment227

In this section, we validate our algorithm in Atari 2600 [3] (GPL License) and MuJoCo [33]228

(Academic License) environments. The experiments were designed to investigate:229

1) Can IWRE achieve significant performance under HOIL tasks?230

2) Can IWRE deal with the support mismatch problem?231

3) During training, is active querying for HOIL indeed necessary?232

Below we first introduce the experimental setup and then investigate the above questions. More233

results and experimental details are included in the supplementary material.234

5.1 Experimental Setup235

Environments. We choose three pixel-memory based games in Atari and five continuous control236

objects in MuJoCo on OpenAI platform [5] (MIT License). Details as below:237

1. Pixel-memory Atari games. OE: 84 × 84 × 4 raw pixels; OL: 128-byte random access238

memories (RAM). Expert: converged DQN-based agents [24]. Atari games contain two239

totally isolated views: raw pixels and RAM, under the same state. Through these envi-240

ronments, we want to investigate whether the agent can learn an effective policy from241

demonstrations under completely different observation spaces. Moreover, IL with visual242

observations only is already very difficult [7], while learning a RAM-based policy can be243

even more challenging [3, 31], so few IL research reported desirable results on this task.244

2. Continuous control MuJoCo objects. OE: half of original observation features; OL: an-245

other half of original observation features. Expert: converged DDPG-based agents [22]. The246
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Figure 6: The learning curves of each method, where the shaded region indicates the standard
deviation.

features of MuJoCo contain monotonous information like the direction, position, velocity,247

etc., of an object. Through these environments, we want to investigate whether the agent248

can learn from demonstrations with complementary signals under observations with missing249

information. Meanwhile, we make sure RL algorithms can obtain comparable performances250

under OE and OL. More details are reported in the supplementary material.251

Besides, twenty expert trajectories were collected for each environment. Each result contains five252

trials with different random seeds. All experiments were conducted on server clusters with NVIDIA253

Tesla V100 GPUs. The summary of the environments is gathered in the supplementary material.254

Baselines. Six basic contenders were included in the experiments: Vanilla GAIL [16], GAIL255

with importance-weighting [12] (IW), third-person IL [30] (TPIL), generative adversarial MDP256

alignment [19] (GAMA), behavioral cloning [2] (BC), and learning by cheating [8] (LBC). For257

IW, we utilized the discriminator Dw1
trained in the pretraining to calculate the importance weight;258

also the optimization objective for Dw2 during training is the same as Equation (9); TPIL learns the259

third-person demonstrations by leading the cross-entropy loss into the update of the feature extractor;260

GAMA learns a mapping function ψ in view of adversarial training to align the observation of the261

target domain into the source domain, and thereby can utilize the policy in the source domain for262

zero-shot imitation. For fairness, we allowed the interaction between the policy and the environment263

for GAMA under HOIL; LBC uses π1 learned from privileged states as a teacher to train π2 in a264

DAgger [27] style, so here we allowed LBC to access OE during the whole IL process. In Atari, to265

investigate whether our method could achieve good performance for RAM-based control, we further266

included a contender PPO-RAM, which uses proximal policy optimization (PPO) [28] to perform267

RL directly with environmental true rewards under the RAM-based observations. More detailed268

setup including query strategies for TPIL and GAMA, network architecture, and hyper-parameters269

are reported in the supplementary material.270

Learning process. To simulate the situation that OE is costly, the steps for training π1 was set as271

1/4 of that for training π2, using GAIL [16]/HashReward [7] under the OE space for MuJoCo/Atari272

environments. The learning steps were 107 for MuJoCo and 5× 106 for Atari environments. In the273

pretraining, we sampled 20 trajectories from π1, and the data from each trajectory had both OE and274

OL observations. In the training, each method learned 4× 107 steps for MuJoCo and 2× 107 steps275

for Atari under the OL space to obtain π2.276

5.2 Results277

Experimental results are reported in Figure 6. Since the mapping function is hard to learn when278

input is RAM and output is raw images, we omit the results of GAMA in Atari. We can observe that279

while IW is better than GAIL in most environments, both GAIL and IW can hardly outperform π1.280
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Because they just imitated the performance of π1 instead of πE, even with importance-weighting281

for calibration. For TPIL, its learning process was extremely unstable on Hopper, Swimmer, and282

Walker2d due to the continuous distribution shift. Furthermore, the performance of GAMA was283

not satisfactory in Hopper and Walker2d because its mapping function is hard to learn well when284

the support mismatch appears. The results of TPIL and GAMA demonstrate that DSIL methods285

will be invalid under heterogeneous observations as in HOIL tasks. On Atari environments, OE286

contains more privileged information than OL, so LBC can achieve good performance. But when OE287

is not more privileged than OL, like in most environments of MuJoCo, its performance will decrease288

due to the support mismatch, which would make it even worse than BC. Finally, IWRE obtained289

the best performance on 6/8 environments, and comparable performance with LBC on Reacher,290

which shows the effectiveness of our method even with limited access to OE (LBC can access to291

OE all the time). Besides, we can see that the performance differences between the GAIL/IW and292

IWRE/TPIL/GAMA/LBC are huge (especially on Reacher) because of the absence of queries, which293

demonstrates that the query operation is indeed necessary for HOIL problems.294

Moreover, even learned with true rewards, PPO-RAM surprisingly failed to achieve comparable295

performance to IWRE, which shows that IWRE could possibly learn more effective rewards than296

true environmental rewards in RAM-input tasks. The results verify that, IWRE provides a powerful297

approach for tackling HOIL problems, even under the situation that the demonstrations are gathered298

from such a different observation space, meanwhile OE is strictly limited during training.299

Expert
π2(IWRE)

(a) Hopper (b) Walker2d

Figure 7: t-SNE visualizations of expert
demonstrations and collected data of π2
under OE. The high-density regions of
the expert demonstrations were covered
by the collected data of π2 of IWRE.

t-SNE visualization of ρπ2
and ρπE

under OE. In Sec-300

tion 4.2, we point that the sub-optimality of π1 will cause301

the problem of support mismatch, which is embodied as302

the appearance of the latent demonstration H during train-303

ing. Also the empirical results in Figure 5 on Hopper and304

Walker2d verify the existence of this problem. So we want305

to investigate whether the superiority of IWRE indeed306

comes from successfully tackling the support mismatch307

problem. To this end, we plotted the t-SNE visualization308

of the same expert demonstrations as in Section 4.2 and309

the collected data of π2 by IWRE under OE (OE is hidden310

to π2). All setups are the same as in Section 4.2. From the311

results shown in Figure 7, we can see that even under OE,312

which cannot be obtained by π2, almost all high-density313

regions of the demonstrations were covered by the col-314

lected data. Meanwhile, the latent demonstration H is dug315

out nearly. The results demonstrate that IWRE basically solves the problem of support mismatch and316

thereby performs well in these environments.317

Besides, some collected data of π2 of IWRE were out of the distribution of the demonstrations,318

which means π2 slightly overly explored the environment. Since OE is hidden to π2, the reward319

function will encourage π2 to explore more areas to fix the support mismatch problem. Meanwhile,320

the out-of-distribution problem in HOIL is not as severe as in the offline RL settings [21], so this321

over-exploration phenomenon makes sense.322

6 Conclusion323

In this paper, we proposed a new learning framework named Heterogeneously Observable Imitation324

Learning (HOIL), to formulate the situations where the observation space of demonstrations is325

different from that of the imitator while learning. We formally modeled a learning process of HOIL,326

in which the access to the observations of an expert is limited due to the high cost. Furthermore,327

we analyzed underlying challenges during training, i.e., the dynamics mismatch and the support328

mismatch, on the occupancy distributions between the demonstrations and the policy. To tackle these329

challenges, we proposed a new algorithm named Importance Weighting with REjection (IWRE),330

using importance-weighting and learning with rejection. Experimental results showed that the direct331

imitation and domain adaptive methods could not solve this problem, while our approach obtained332

promising results. In the future, we hope to involve the theoretical guarantee for our algorithm333

IWRE and investigate how many OE do we need to query to learn a promising π2. Furthermore,334

we hope to use the learning framework of HOIL and IWRE to tackle more learning scenarios with335

demonstrations in different spaces.336
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