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Abstract

Fine-tuning language models (LMs) with the standard Adam optimizer often
demands excessive memory, limiting accessibility. The “in-place” version of
Stochastic Gradient Descent (IP-SGD) and Memory-Efficient Zeroth-order Op-
timizer (MeZO) have been proposed as solutions to improve memory efficiency.
However, IP-SGD still requires a substantial amount of memory, and MeZO suffers
from slow convergence and degraded final performance due to its zeroth-order
nature. This paper introduces Addax, a novel method that improves both memory
efficiency and algorithm performance of IP-SGD by integrating it with MeZO.
Specifically, Addax computes the zeroth- or first-order gradient of the data points
in the minibatch based on their memory consumption and combines zeroth- and
first-order gradient estimates to obtain the updated direction in each step. By
computing the zeroth-order gradient of data points that require more memory and
the first-order gradient of the ones that require less memory, Addax overcomes the
slow convergence of MeZO and the excessive memory requirement of IP-SGD. Ad-
ditionally, the zeroth-order gradient acts as a regularizer for the first-order gradient,
further enhancing the model’s final performance. Theoretically, we establish the
convergence of Addax under mild assumptions, demonstrating faster convergence
and less restrictive hyper-parameter choices than MeZO. Our extensive experiments
with diverse LMs and tasks show that Addax consistently outperforms MeZO in
terms of accuracy and convergence speed while having a comparable memory
footprint. In particular, our experiments using one A100 GPU on the OPT-13B
model reveal that, on average, Addax outperforms MeZO in terms of accuracy/F1
score by 14% and runs 15× faster while having a comparable memory footprint
to MeZO. In our experiments on the larger OPT-30B model, on average, Addax
outperforms MeZO in terms of accuracy/F1 score by > 16% and runs 30× faster
on a single H100 GPU. Moreover, Addax surpasses the performance of standard
fine-tuning approaches, such as IP-SGD and Adam, in most tasks in terms of
accuracy/F1 score with significantly less memory requirement.

1 Introduction

Fine-tuning pre-trained language models (LMs) is a crucial step in a wide range of natural language
processing tasks, including text classification and sentiment analysis [15], as well as their use in
different domains [24, 54, 40]. However, standard fine-tuning approaches (with the Adam optimizer)
demand excessive memory requirement due to gradient and/or the optimizer state storage, presenting
Preprint. Under review.



a challenge as LMs grow in scale [8, 45]. For instance, fine-tuning a 13-billion-parameter model like
OPT [67] in mixed precision requires over 316 GB of memory, hindering accessibility for researchers
and practitioners with limited resources and specialized hardware.

Recently, various memory-efficient methods for fine-tuning LMs have been proposed. In-context
learning (ICL) utilizes a single inference pass, incorporating label examples in its context for
prediction [8]. Despite its limited success, ICL’s performance is shown to be less effective than
(Adam) fine-tuning for medium-sized LMs [8]. As an alternative approach, Parameter-Efficient
Fine-Tuning (PEFT) tunes a fraction of the network while freezing the rest of the parameters and
significantly reduces the parameters needed for fine-tuning [28, 36, 33]. Despite its efficiency,
fine-tuning LMs with PEFT may still require more memory than model inference. For example,
fine-tuning OPT-13B with Adam with a batch size of 8 requires 4×H100 GPUs (316GB total),
whereas utilizing PEFT decreases this to 2×H100 GPUs (158GB total) with a batch size of 16 [8].
Nonetheless, this requirement is still 6× greater than the 25GB needed for model inference.

Another approach for memory-efficient fine-tuning is to lessen the memory footprint of the optimizer.
Recently, the Memory-Efficient Zeroth-order Optimizer (MeZO) is proposed by Malladi et al.
[42]. MeZO generates gradient estimators solely through forward passes with minimal memory
overhead. Unlike the classical zeroth-order optimization method ZO-SGD [56], MeZO allows
in-place perturbation of model parameters to avoid storing the perturbation vector. One desirable
property of MeZO (and in general approaches that reduce the memory overhead of the optimizers) is
that it can be combined with other methods, such as PEFT. Moreover, Malladi et al. [42] showed that
the memory footprint of MeZO can be 12× lower than Adam. While being memory efficient, MeZO
suffers from 1) slow convergence rate compared to standard fine-tuning methods such as Adam; and
2) possible degradation of the performance (e.g. accuracy) of the fine-tuned model compared to
Adam (see the experiments in [42] and Table 12). Observing these drawbacks, it is natural to ask:

Question: Can we develop an optimizer for fine-tuning language models (LMs)
that requires significantly less memory than the standard Adam but still enjoys
fast convergence and produces high-quality fine-tuned models?

In an effort to answer this question, we propose Addax (ADDition of grAdient estimates through
memory-efficient eXecution), a method that: i) is memory efficient, ii) has fast convergence speed,
and iii) achieves the best performance across a wide range of fine-tuning methods and tasks. Our
specific contributions are as follows:

1. Algorithm design. We develop Addax, a novel approach that cleverly assigns different batches
of data to either MeZO or in-place SGD (IP-SGD) and combines the computed gradients. This
strategic assignment of data points, based on input length, allows Addax to maintain a memory
footprint comparable to MeZO while significantly improving performance. Specifically, Addax
accelerates MeZO’s convergence rate and boosts the final model’s performance, effectively
overcoming the limitations of zeroth-order optimization. Our design is driven by two novel
observations: 1) computing gradients for different data points requires varying memory, and 2)
integrating zeroth-order updates with first-order methods enhances the quality of the fine-tuned
model.

2. Theoretical analysis. Theoretically, we analyze Addax’s convergence under mild assumptions in
two scenarios: with and without the data assignment procedure. Unlike MeZO, the convergence
rate of Addax is independent of model size without requiring the assumption of low-rankness
of the Hessian. Additionally, we show that the hyperparameters for Addax are less restrictive
compared to those of MeZO.

3. Numerical comparisons. We perform comprehensive experiments on a broad range of model
architectures (e.g., masked LM and autoregressive LM), model scales ranging from 350M to 70B
parameters, and tasks including classification, multiple-choice questions, and content generation.
Compared to SGD and IP-SGD, Addax has a lower memory footprint and is on par with MeZO.
Using a single A100 (40GB) GPU, Addax successfully fine-tunes the OPT-13B model on all nine
tasks, while SGD fails on all tasks and IP-SGD fails on three due to memory limitations (see
Figure 1). Addax surpasses MeZO by 14% in accuracy/F1 and converges 15× faster on average,
with a similar memory footprint. Furthermore, Addax outperforms Adam in seven out of nine
tasks while reducing memory usage by up to 89%. When fine-tuning larger model like OPT-30B
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with a single H100 (80GB) GPU, Addax achieves superior performance over IP-SGD and MeZO
on various tasks, e.g. test accuracy 16% higher than MeZO, 4.8% higher than IP-SGD when
IP-SGD applicable (see Figure 2 and Table 1). Similar results are observed when fine-tuning
Addax on OPT-66B and Llama-2-70B using three H100 (240GB total) GPUs (See Table 2 and 3).

Next, we will discuss preliminaries and will leave further discussions on prior work to Appendix C.

2 Notations and Preliminaries

2.1 Notations

We are interested in optimizing the (smooth and possibly non-convex) loss function

min
θ∈Rd

(
L(θ) := Ex∼D [ℓ(θ;x)]

)
, (1)

parameterized by θ ∈ Rd, where D denotes the (fine-tuning) data distribution and x denotes the
(fine-tuning) data point. Throughout, we mark the values related to zeroth- and first-order gradient
with (·)0, (·)1, respectively, and denote the iteration and coordinate indices as (·)t, (·)i, where
t ∈ {0, . . . , T}, i ∈ {1, . . . , d}. In addition, we assume θ parameterized an M -layer network, i.e.,
θ = (θ1, . . . ,θM ), where θm ∈ Rdm and

∑M
m=1 dm = d. The maximum sequence length in the

dataset D is denoted by Lmax. We slightly abuse the notation and denote the loss evaluated on a
minibatch B as L(θ;B) ≜ 1

B

∑
x∈B ℓ(θ;x).

2.2 Memory-Efficient Zeroth-order Optimizer

MeZO [42] is a memory-efficient fine-tuning approach based on the zeroth-order stochastic gradient
descent method (ZO-SGD). The update step of MeZO follows SGD, i.e., θt+1 = θt− η∇̂L

(
θt;B0t

)
,

with the key difference of using zeroth-order gradient ∇̂L
(
θt;B0t

)
estimated on minibatch B0t , instead

of first-order gradient ∇L
(
θt;B1t

)
. The zeroth-order gradient is estimated using Simultaneous

Perturbation Stochastic Approximation (SPSA, [56]):

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z, (2)

where z is a random search direction, e.g., z ∼ N (0, I). In ZO-SGD, SPSA requires generating and
storing z ∈ Rd multiple times during model perturbation, θ+ ϵz,θ− ϵz, which is memory inefficient.
MeZO reduces memory consumption in the implementation of SPSA by only storing the random
seed that generates z, reducing memory consumption from O(d) to O(1).
However, due to the inherent bias and higher noise level in the zeroth-order gradient estimate [44],
MeZO suffers from slower convergence and worse final model performance compared to first-order
methods, c.f. Malladi et al. [42, Table 1], and the experiments in section 4.

2.3 Preliminaries and Major Observations

In this subsection, we provide the key observations behind the development of Addax:

SGD can match the performance of Adam in fine-tuning tasks. Although Adam and AdamW [31,
39] have demonstrated better performance than SGD in training deep learning models from scratch,
they require additional memory to store optimizer states, which is unfavorable in fine-tuning LMs.
On the other hand, it has been observed that SGD achieves comparable performance to Adam in
fine-tuning tasks (see, e.g., Zhang et al. [68] and [41]). This observation is also re-confirmed in our
experiments showing that fine-tuning LMs using (16-bit) SGD can achieve comparable performance
to fine-tuning with (32-bit) Adam. For example, in the right panel of Figure 3, in three fine-tuning
tasks of RTE, CB, and COPA [60], SGD leads to higher performance while requiring significantly less
memory. The success of using SGD in fine-tuning LMs is attributed to the relative “nice” landscape
of fine-tuning tasks of LMs [26, 68].

Memory-efficient implementation of SGD via “in-place” updates. To reduce the memory footprint
of SGD, several studies have explored the utilization of in-place (IP) updates during backward
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Figure 1: Accuracy/F-1 score, memory, and convergence time resulted from fine-tuning the OPT-13B model
with various algorithms on one A100 (40GB) GPU, except for Adam, which runs on five GPUs. The label
“OOM” means the run encounters an out-of-memory error during fine-tuning, even with the smallest batch
size. Addax consistently outperforms other methods in terms of Accuracy, with GPU memory consumption
comparable to MeZO. Except for Adam, all other methods are running in 16-bit mode. We do not report the
time for Adam as it requires five GPUs. The exact numbers can be found in Table 12 in Appendix F.1.
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Figure 2: Accuracy/F-1 score, memory, and convergence time resulted from fine-tuning the OPT-30B model
with various algorithms on one H100 (80GB) GPU. The label “OOM” means the run encounters out-of-memory
errors during fine-tuning. Addax leads to the best final accuracy in all experiments and has a comparable memory
footprint to MeZO while converging orders of magnitude faster. The exact numbers related to this figure can be
found in Table 13 in Appendix F.2.
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Figure 3: Left: Memory profile of fine-tuning OPT-13B with IP-SGD and MeZO on a synthetic dataset with
a fixed sequence length of 300. Right: Fine-tuning OPT-13B using IP-SGD and small batch sizes (BS) can
outperform Adam while consuming significantly lower memory.

propagation [70, 41]. Instead of separating the backward propagation and weight update steps,
which require storing the gradients for all layers, in-place SGD (IP-SGD) combines the two steps by
updating the weights in each layer as soon as the gradients are computed and immediately discards
the gradient after it has been used. In-place update avoids storing the gradients of the full model and,
thus, significantly reduces the memory footprint of SGD.

Though improving over SGD, IP-SGD may still require more memory than MeZO. To compare the
memory consumption of IP-SGD and MeZO, we record the memory consumption as a function of
the batch size in the left panel of Figure 3. As illustrated in the figure, with a memory constraint of
30GB, we can use a batch size of 18 for running MeZO, while we can only use a batch size of 2 for
running IP-SGD.
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Figure 4: Memory profiling of SGD, IP-SGD, and
MeZO on OPT-13B fine-tuning with synthetic datasets
with varying sequence lengths (fixing batch size = 8).

Memory required for computing gradient de-
pends on the input sequence length.

We observe that in fine-tuning LM models, the
memory required for first-order gradient estima-
tion depends on the maximum input sequence
length (in tokens). In Figure 4, we record the
memory consumption of SGD, IP-SGD, and
MeZO with fixed batch size and varying input
sequence length. As illustrated in the figure,
the memory consumption of all algorithms in-
creases as the input sequence length increases,
and the memory increase of IP-SGD is much
faster than MeZO. Given the fact that the input
sequence lengths vary a lot in a given fine-tuning
task across different data points (see Figure 6 in
Appendix D), we conclude that the memory inef-
ficiency of IP-SGD compared with MeZO mainly attributes to the data points with longer sequence
length in the dataset.

With the above observations in hand, we discuss our algorithm, Addax, in the next section.

3 Addax
Building on the insights from Section 2, we propose Addax, a method that assigns data batches to
either MeZO or IP-SGD based on memory needs and then combines their gradients. In memory-
limited scenarios, Addax reduces memory usage by assigning shorter sequences to IP-SGD and
longer ones to MeZO, leading to a similar convergence rate as IP-SGD, much faster than MeZO,
while keeping a similar memory footprint, significantly less than IP-SGD. Furthermore, incorporating
zeroth-order gradients with first-order gradients can enhance the final model performance. We
first propose the Addax algorithm, provide its convergence properties, and finally discuss how
incorporating the zeroth-order gradient benefits SGD in the final model performance.
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3.1 Algorithm Overview
Addax starts by partitioning the dataset into data points with long/short sequence length, i.e., D =
D0 ∪ D1 where D0 = {x ∈ D | length(x) > LT } and D1 = {x ∈ D | length(x) ≤ LT } for some
given threshold hyper-parameter LT , where length(·) measures the sequence length of a data point.
As discussed in Section 2.3, computing gradients on data points in D1 requires much less memory
than computing the gradients in D because the maximum input sequence length of D1 is capped by
LT , which is smaller than Lmax. With this data partition, Addax computes the zeroth-order gradient
on the data points with long sequence length in D0 while computing the first-order gradients for the
data points with short sequence length in D1, resulting in a considerable memory reduction compared
with IP-SGD. In particular, at each iteration of the algorithm, Addax draws a random batch B0
(with |B0| = K0) of data points from D0 and a random search direction z ∈ Rd with E[z] = 0 and
E[zzT ] = I. Then, using the drawn samples, it utilizes SPSA to estimate the directional derivative of
the objective function in the direction z at the point θ with a small perturbation size ϵ:

g0 =
1

K0

∑

x∈B0

ℓ(θ + ϵz;x)− ℓ(θ − ϵz;x)

2ϵ
.

Then, Addax draws a random batch B1 (with |D1| = K1) of data from B0 and computes g1 =
1

K1

∑
x∈B1 ∇ℓ(θ;x). Finally, it updates the model parameters by:

θ ← θ − η
(
αzg0 + (1− α)g1

)
, (3)

where η is the learning rate and α ∈ [0, 1] is a mixing constant for combining the two gradient
estimates. If one naïvely implements the update rule in equation (3), it needs to store the gradient g1

and the direction z. However, as discussed in Section 2, one can perform the update rule in equation (3)
in-place, without storing the values of g1 or z. Such a memory-efficient implementation of Addax is
described in Algorithm 1. We leave further detailed discussions on this algorithm to Appendix A.

Addax without data assignment (Addax-WA). When sufficient memory is available to perform IP-
SGD, one might argue that there is no need to use zeroth-order gradients. However, as demonstrated
in our extensive experiments (see Figure 5 and Fine-tuning results for datasets SST-2, RTE, WSC
of Addax (LT = 320) in Table 13), incorporating zeroth-order gradients still results in better final
accuracy for the fine-tuned model. Therefore, even when memory constraints are not a concern,
we continue to utilize zeroth-order gradients by randomly selecting a data batch and combining its
zeroth-order gradient with IP-SGD. This is achieved by setting D0 ← D and D1 ← D in step 3 of
Algorithm 1. This version of the algorithm is referred to as Addax-WA.

Having introduced Addax, we would like to comment on a recent related work. Concurrently with
our work, Zhang et al. [69] propose a “hybrid ZO-FO” fine-tuning scheme for LLMs, which also
integrates zeroth- and first-order gradient estimates. However, their method differs significantly
from ours. They limit backpropagation to the deeper layers and use zeroth-order optimization in the
shallower layers. This approach prevents them from taking advantage of the memory savings offered
by in-place update rules and does not harness the benefits of zeroth-order methods for improving the
final model accuracy. In contrast, our approach utilizes in-place update rules, ensuring that memory
usage does not scale significantly with model size and removing the need to limit backpropagation to
specific layers. Furthermore, we allocate data to optimizers differently, leading to additional major
memory savings.

3.2 Theoretical Analysis

Depending on whether step 3 or step 5 is executed in Algorithm 1, the algorithm follows two distinct
trajectories. We analyze each case separately. We begin by discussing the convergence result of
Addax when step 3 is applied, i.e., the Addax-WA algorithm. We provide only the informal version
of the results, while the formal theorems can be found in Appendix G. We start by presenting the
convergence of Addax in the general nonconvex setting:
Theorem 3.1 (Informal). Assume that the loss ℓ is Lipschitz smooth, and the first-order stochastic
gradient is unbiased and has bounded variance. Choosing ηt = η = O(d−1/2T−1/2) and ϵ =
O(d−3/4T−1/4)) in Addax leads to the convergence rate:

E
[
∥∇L(θt)∥2

]
= O

(
1√
T
·
√

(1− α)2

K1
+

α2d

K0

)
.
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Algorithm 1 Addax: ADDition of grAdient estimates through memory-efficient eXecution
1: Input: θ with M Layers, T,L, LT , Lmax,K

0,K1, perturbation scale ϵ, mixing parameter
α ∈ [0, 1], and datasetl D.

2: if LT ≥ Lmax then
3: D0 ← D, D1 ← D
4: else
5: D0 ← {x ∈ D | length(x) > LT }, D1 ← {x ∈ D | length(x) ≤ LT }
6: for t ∈ {0, 1, · · · , T − 1} do
7: Randomly draw mini-batches B0, B1 uniformly from D0,D1 with K0, K1 samples.
8: (g0, s)← ZerothGrad(θ,L,B0, ϵ) (Algorithm 2) # Estimate zeroth-order gradient
9: for m = M, . . . , 1 do

10: g1
m ← 1

K1

∑
x∈B1 ∇θmL(θ, x) # Estimate layer l first-order gradient

11: θm ← θm − ηt(1− α)g1
m # Update model parameters

12: g1
m ← None # Clear gradients

13: Reset random number generator with seed s
14: for m = 1, . . . ,M do
15: zm ∼ N (0, Idm

)
16: θm ← θm − ηtαg

0zm # Update model parameters
17: zm ← None
18: Output: θ

Further, by choosing the optimal α = K0

K0+dK1 , we obtain the convergence rate O
(√

d
T (K0+dK1)

)
.

The formal version of this Theorem and its proof can be found in Appendix G.3.

Remark 1. Compared with the convergence rate of zeroth-order methods [21, 44], the above
convergence rate is nearly dimension-independent. In particular, the factor

√
d

T (K0+dK1) is upper

bounded by
√

1
TK1 .

Remark 2. The restrictions on the choice of parameters for Addax are more relaxed than the ones in
zeroth-order methods. In particular, ZO-SGD (or MeZO) requires choosing smaller parameters ϵ =
O(d−1T−1/2) and η = O(1/

√
dT ) for guaranteeing convergence. These choices are clearly more

restrictive than the choice of parameters in Theorem 3.1. Therefore, one can choose a larger learning
rate in Addax compared to MeZO. This is also observed in our experiments (see Appendix D.5 for
details).

Remark 3. Prior works observed that pre-trained LMs have a low effective rank Hessian [2, 35, 46, 47].
Under the assumption that the Hessian has a low effective rank, the dependency on the parameter
dimension d can be further improved (see Theorem G.12 in Appendix G).

Besides assuming the loss is nonconvex and smooth, we also provide the convergence of Addax for
strongly convex and smooth loss functions:
Theorem 3.2 (Informal). Assume that L is strongly convex, per-sample loss ℓ is Lipschitz smooth,
and the first-order stochastic gradients are unbiased and have bounded variance. Choosing ηt =
η = O(T−1 ln(T )) and ϵ = O(α1/2T−1/2d−1/2) in Addax leads to the convergence rate:

E[∥θT − θ⋆∥2] = O
(
ln(T )

T

(
(1− α)2

K1
+

α2d

K0

))

Further, by choosing the optimal α = K0

K0+dK1 , Addax converges with rate O
(

ln(T )d
T (K0+dK1)

)
.

The above results cover the case where step 3 is executed in Algorithm 1. When step 5 is executed,
we can obtain similar results (see Theorem G.10 in Appendix G.4 for details).

3.3 Further Discussions on the Benefits of Utilizing Zeroth-Order Gradients

Beyond enhancing memory efficiency of IP-SGD by eliminating the need to compute gradients
for input data with longer sequence lengths that are more memory-intensive, using zeroth-order
updates alongside first-order updates improve the final performance and accuracy of the fine-tuned
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Figure 5: Left: An illustration of loss function L(θ) alongside its Gaussian smoothed version L̂(θ). Minimizing
(1 − α)L(θ) + αL̂(θ) can help escape sharp local minima and find higher quality solutions. Right: The
regularization effect of zeroth-order gradient estimates on first-order gradient estimates. We fix K1 = 4 in
Addax across experiments while varying K0 from 0 to 16. In the special case where K0 = 0, Addax reduces to
IP-SGD.

model compared with vanilla IP-SGD. We hypothesize the following reasons for this improvement in
performance:

Zeroth-order updates may help to escape spurious and sharp local minima. It is known that
zeroth-order gradient estimates are noisy estimates of the gradient (see [44] and Lemma G.5 in
Appendix G). It has also been observed that injecting noise into the gradient can be beneficial in
nonconvex optimization. For example, Ge et al. [20] and Jin et al. [29] showed that adding noise to
the gradient direction can help escape saddle points in nonconvex optimization. Moreover, Zhou et al.
[71] showed (both experimentally and theoretically) that injecting noise into the gradient direction can
help the algorithm in escaping bad/spurious local minima. One can also argue that noise would help
the algorithm in finding flat minima and avoid sharp local minima Liu et al. [37]. All these insights
suggest that Addax can converge to better local minima. Our extensive experiments in Section 4 also
show that Addax outperforms SGD in terms of the final performance of the fine-tuned model.

Zeroth-order updates act as a regularizer. To simplify the presentation, consider the case where
step 3 is executed in Algorithm 1. Recall that the zeroth-order gradient is an unbiased estimator of
the smoothed version of the actual loss. That is, E[g0z] = ∇L̂(θ), where L̂(θ) ≜ Ez [L(θ + ϵz)] is
the Gaussian smoothed version of the original loss function L(θ) (see Nesterov and Spokoiny [44,
Section 1] and Nemirovsky et al. [43, Section 9.3]). Thus, the Addax update rule in equation (3) aims
to solve the optimization problem

min
θ

(1− α)L(θ) + αL̂(θ).

Such a regularization, illustrated in Figure 5, can help escape sharp local minima and find higher-
quality solutions. When step 5 is executed, then this regularization is only done for some of the data
points but still can be effective. This could be the reason that Addax finds higher-quality models in
all our experiments.

4 Experiments

Experiment Settings. We conduct fine-tuning experiments on five different models: the masked
LM RoBERTa-large of [38] (350M), the OPT-13B, OPT-30B, OPT-66B [67] and Llama-2-70B
models [57]. We also explore the impact of hyper-parameters α and the batch size on Ad-
dax’s performance, detailed in Appendix E.2. Further details on the datasets, prompts used,
and implementation can be found in Appendix D. The code for our experiments is available at
https://github.com/optimization-for-data-driven-science/Addax.

Observations on OPT-13B experiments Following [42], we fine-tune the OPT-13B model using
a single A100 GPU with Addax, MeZO, IP-SGD, and SGD. The results are presented in Figure 1
and Table 12. In this configuration, we aim to select the largest possible batch sizes for MeZO,
IP-SGD, and SGD and optimize (K0,K1) and LT for Addax using one GPU. Averaging over nine
tasks, Addax outperforms MeZO in this configuration by 14% in accuracy/F1 score and converges
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15× faster. To highlight the differences in convergence speed, we plot the convergence curves of
Addax-WA and MeZO using the same batch size in Figure 11.

Remarkably, while Addax can successfully run on all datasets, SGD encounters out-of-memory errors
on all nine tasks and IP-SGD fails in three out of nine tasks. For the six datasets where IP-SGD is
able to fine-tune, Addax achieves an average accuracy/F1 score of 81.7 compared to 80.3 for IP-SGD.
Finally, Addax even outperforms Adam in seven out of nine tasks while it reduces up to 89% the
memory.

Observations on OPT-30B, OPT-66B, and Llama-2-70B experiments. We also perform experi-
ments on fine-tuning the larger-size models OPT-30B, OPT-66B, and Llama-2-70B. In particular, we
fine-tune the OPT-30B model using one H100 GPU and report the results in Figure 2 and Table 13. To
summarize the results, we report the averaged performance metrics (time, accuracy, and memory) in
Table 1. Our experiment on OPT-30B shows that while Addax has comparable memory consumption
to MeZO, on average, Addax outperforms MeZO by more than 16% in terms of final accuracy
and converges 30× faster. Moreover, SGD and IP-SGD failed in three out of seven tasks due to
out-of-memory, while Addax can run on all tasks. In terms of the final accuracy of the fine-tuned
model, Addax outperforms MeZO, SGD, and IP-SGD in all experiments in OPT-30B.

Similar observations are made in fine-tuning OPT-66B and Llama-2-70B models on three H100
GPUs: SGD and IP-SGD fail in some or all tasks due to out-of-memory, while Addax can efficiently
fine-tune on all tasks. Addax outperforms other methods in six of seven tasks for the OPT-66B model
and all six tasks for the Llama-2-70B model. Moreover, Addax outperforms MeZO in terms of final
accuracy while being orders of magnitude faster. The results are summarized in Table 2 and Table 3,
repectively.

Observations on RoBERTa-large experiments. Besides the large autoregressive language model,
we also perform experiments on a smaller language model: RoBERTa-large with 350M parameters.
The results can be found in Figure 7. As can be seen in this figure, 16/32-bit Addax outperforms
zero-shot and MeZO across six different tasks and surpasses Adam in four out of six tasks. We also
investigate the two important hyper-parameters, α and K1

K0+K1 on Addax’s performance. The results
can be found in Figure 8 and Figure 9. As shown in the top row of the heatmaps of the two figures,
it is observed that an increase in the ratio K1

K0+K1 correlates with improved accuracy across tasks
for both 16-bit and 32-bit Addax configurations. We did not identify a consistent trend for α across
different tasks for both 16-bit and 32-bit Addax, suggesting that the optimal α requires tuning and
could be task-specific.

Zeroth-order gradient estimates improve model performance even when K1 is small. We report
the detailed choice of the batch size for different algorithms in Table 12. Notably, fine-tuning OPT-
13B using Addax with a smaller first-order batch size K1 surpasses the performance of SGD with
larger batch sizes. For example, Addax achieves an accuracy of 68.3 on the WIC task with K1 = 4,
while IP-SGD achieves 66.0 with a batch size of 12. This suggests that the zeroth-order gradient
estimate in Addax provides stability (and regularization of the gradient) even when K1 is small and
can effectively reduce memory usage. Additional experimental results are given in Appendix E.

It is important to note that reported memory usage should be interpreted with caution, as it depends
on the selected batch size. Reducing the batch size can lower memory usage, but it may come at the
cost of accuracy and convergence speed. In our tables, when an entry is marked with ∗, it means that
even with the smallest batch size in our grid (i.e. BS = 2), the algorithm still results in out-of-memory.

Hyperparameter tuning. For MeZO, IP-SGD, and SGD, we select the largest possible batch size
from the hyperparameter search grid that maximizes GPU memory usage without causing out-of-
memory. For Addax, we choose K0, K1, and LT values that optimize GPU usage during fine-tuning
on the MultiRC dataset, as it is the task with the longest sequence length. Successful fine-tuning on
MultiRC implies Addax can handle smaller tasks as well. For detailed procedures, please refer to
Appendix D.6.

5 Conclusion, Broader Impact, and Limitations
This paper introduces Addax, a memory-efficient fine-tuning method for Language Models (LMs). By
leveraging both first- and zeroth-order stochastic gradient estimates, Addax demonstrates improved
memory efficiency without sacrificing convergence speed or model performance, as validated by
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Table 1: Summary of OPT-30B fine-tuning results on one H100 GPU (80GB): The METRIC, representing
the average performance across short datasets (SST-2, RTE, WSC, WIC) and long datasets (BoolQ, MultiRC,
SQuAD). Lmax is the maximum sequence length within a dataset. Detailed results are in Table 13.

Short Datasets (Lmax ≤ 260)) Long Datasets (Lmax > 260)
Physical Wall-clock time to Accuarcy/F1(%) Physical Wall-clock time to Accuarcy/F1(%)

Method Memory the best validation (Fine-Tuning) Memory the best validation (Fine-Tuning)

MeZO 66GB 655.7min 69.3 78GB 776.0min 68.7
SGD ∗ ∗ ∗ ∗ ∗ ∗
IP-SGD 70GB 3.0min 75.1 ∗ ∗ ∗
Addax 68GB 14.5min 78.7 77GB 28.5min 82.0

Table 2: Summary of OPT-66B fine-tuning results on three H100 GPUs (240GB total): The METRIC,
representing the average performance across short datasets (SST-2, RTE, BoolQ, WSC, WIC, SQuAD) and long
dataset (MultiRC). Lmax is the maximum sequence length within a dataset. Detailed results are in Table 14.

Short Datasets (Lmax ≤ 420)) Long Dataset (Lmax > 420)
Physical Wall-clock time to Accuarcy/F1(%) Physical Wall-clock time to Accuarcy/F1(%)

Method Memory the best validation (Fine-Tuning) Memory the best validation (Fine-Tuning)

MeZO 170GB 511.5min 72.4 197GB 379.6min 61.1
SGD ∗ ∗ ∗ ∗ ∗ ∗
IP-SGD 170GB 3.8min 77.1 ∗ ∗ ∗
Addax 173GB 21.9min 80.6 215GB 76.9min 80.6

Table 3: Summary of Llama-2-70B fine-tuning results on three H100 GPUs (240GB total): The nota-
tion METRIC represents the average performance across short datasets (RTE, WSC, WIC) and long datasets
(BoolQ, MultiRC, SQuAD). Lmax is the maximum sequence length within a dataset. Detailed results are in
Table 15.

Short Datasets (Lmax ≤ 260)) Long Dataset (Lmax > 260)
Physical Wall-clock time to Accuarcy/F1(%) Physical Wall-clock time to Accuarcy/F1(%)

Method Memory the best validation (Fine-Tuning) Memory the best validation (Fine-Tuning)

MeZO 149GB 4609min 61.1 186GB 792.3min 73.3
SGD ∗ ∗ ∗ ∗ ∗ ∗
IP-SGD 189.5GB 6.2min 78.2 ∗ ∗ ∗
Addax 190.1GB 21.2min 80.1 218GB 37.2min 88.9

our extensive experiments across various models, tasks, and datasets. Addax has the potential to
impact language model fine-tuning tasks for researchers and machine learning practitioners with
limited resources. With a convergence time comparable to first-order methods and memory usage
similar to zeroth-order methods, Addax provides a resource-efficient approach to optimizing higher-
quality fine-tuned models. Furthermore, Addax has proven effective with large-scale models, and its
memory-efficient nature can make large-scale fine-tuning more feasible by requiring fewer resources.

Limitation: Addax introduces an additional hyper-parameter, α, which requires tuning for best
performance. While the search grid for α is small and includes only five different values across all
OPT experiments, this is still an additional burden for institutions with limited resources.

Future works: Addax may also have potential application in tasks other than fine-tuning. For
example, Addax may be used for pre-training tasks or even combined with the Adam algorithm
by passing the combined first- and zeroth-order gradients to Adam. From a theoretical perspective,
conducting an in-depth theoretical analysis of how zeroth-order gradient estimates regularize the
performance of first-order ones is of particular interest. We leave these aspects as future work for
further exploration. Furthermore, we did not explore the effectiveness of Addax when combined with
other memory-efficient methods, such as PEFT [28, 36, 33], quantization [13], and memory-efficient
attention mechanisms [11, 65, 25], but we hope to investigate these combinations in future work.
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A More discussion on Addax

Algorithm 1 outlines the steps of Addax. The process starts by determining whether the dataset
requires partitioning based on the sequence length threshold LT . There are two possible scenarios: If
memory constraints are not a concern, LT can exceed Lmax, the maximum sequence length in the
datasetD. In this case, Addax retains the datasetD as a whole, withD0 andD1 both being equivalent
to D (Step 3). However, when memory is limited and running IP-SGD on the entire dataset D is not
feasible, Addax saves memory by partitioning the dataset according to LT . It assigns samples with
sequence lengths shorter than LT to D1, and the remaining samples to D0 (Step 5). This enables
Addax to run in memory-constrained settings where IP-SGD would otherwise be infeasible.

In Step 8, the zeroth-order gradient estimator g0 and random seed s are obtained using the samples
B0 with batch size K0, which are drawn uniformly from the dataset D0. Similarly, Step 10 gets the
layer l first-order gradients g1

l ∈ Rdl from samples B1 through backward propagation.

A major step in Algorithm 1 is the computation of zeroth-order directional derivative g0, done in
Step 8, which is the subroutine call in Algorithm 2. Algorithm 2 is also used in MeZO, where
the directional derivative is obtained through the classical zeroth-order gradient estimate SPSA;
see equation equation (2). To get the zeroth-order gradient estimates, Algorithm 2 requires the
evaluation of the loss function L through two forward passes at points θ + ϵz and θ − ϵz. The
naïve implementation of the SPSA algorithm costs twice the memory of inference because of the
need to store the value of z ∈ Rd. Algorithm 2 removes this overhead by generating a random
seed s and resetting the random number generator each time model parameters are perturbed (see
Step 3-7 in Algorithm 2). This approach guarantees that Algorithm 3 maintains a consistent direction
for the random vector z across the two perturbations. Employing this in-place operation results in
Algorithm 2 having memory consumption comparable to that of inference.

Steps 9 to 12 in Algorithm 1 are the main update steps based on the first-order gradient estimates for
Addax. In Step 10, we back-propagate the first-order gradient estimates g1

m for layer m and update the
model parameters in Step 11. In Step 12, Addax frees up the calculated first-order gradient estimates
g1
m. This step is crucial because freeing up per-layer gradients ensures that memory requirements

do not scale with the number of model parameters. More discussion on the related literature on this
in-place update rule can be found in Appendix B.

Steps 14 to 17 in Algorithm 1 describes the updates of Addax based on zeroth-order gradient estimates.
We use the same idea as in Malladi et al. [42], where the seed s is stored instead of the random
vector z. The random generator is reset before updating the components (see Step 13 in Algorithm 1),
as described before. For each component θl in θ where m ranges from 1 to M , the process begins
by generating a random direction zm ∼ N (0, Idm

) in Step 15. Subsequently, each θm is updated
using zeroth-order gradient estimates. When iteration t reaches T , Addax outputs the final model
parameters θ.

In general, the in-place update operations have the same output as the update rule θ ← θ− η(αzg0 +
(1− α)g1). This fine-grained control of dynamically allocated gradients ensures that Addax remains
memory-efficient during fine-tuning.

B More discussion on the in-place updates

In this section, we provide a more detailed discussion on in-place updates. The technique of in-place
gradient updates during backward propagation, as referenced in our approach, has been previously
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Algorithm 2 ZerothGrad [42]

1: Input: parameters θ ∈ Rd, loss L : Rd → R, samples B, perturbation scale ϵ.
2: Generate random seed s.
3: θ ← PertubParameters(θ, ϵ, s)
4: ℓ+ ← L(θ;B)
5: θ ← PertubParameters(θ,−2ϵ, s)
6: ℓ− ← L(θ;B)
7: θ ← PertubParameters(θ, ϵ, s)
8: g ← (ℓ+ − ℓ−)/(2ϵ)
9: Output: g, s

Algorithm 3 PertubParameters

1: Input: parameters θ with M Layers, perturbation scale ϵ, random seed s.
2: Reset random number generator with seed s
3: for m = 1, . . . ,M do
4: zm ∼ N (0, Idm)
5: θm ← θm + ϵzm # Update model parameters
6: θm ← None
7: Output: θ

used in Zhao et al. [70], Lv et al. [41]. In modern deep learning training frameworks, such as
PyTorch [48]1, they store the gradient tensor for computing optimizer states and update the model
weights after all layers of gradients are computed. This approach is perfect for models with a small
number of parameters; however, fine-tuning a large model, like OPT-13B with 13 billion parameters,
requires significant memory because the gradient tensor has the same size as the number of model
parameters. For example, as for the OPT-13B model, each parameter needs 2 bytes or 4 bytes for
gradient storage, totaling 26 GB or 52 GB of memory, respectively. Since Addax does not require any
optimizer states, such memory overhead can be avoided by combining the computation of first-order
gradient estimates and parameter updates into a single step. As described in Algorithm 1 lines 9-12,
we sequentially iterate over the M th layer to the 1st layer, compute the gradient g1

m (line 10), and
perform in-place update to θm (line 11). Right after that, we free the memory for gradient gm (line 12).
The loss computation and the update of zeroth-order gradient g0 remain the same as Algorithm 1. It
is important to note that while the main update rule of mixing first-order and zeroth-order gradients
remains unchanged, the implementation details significantly impact the memory consumption of
fine-tuning tasks.

It is also worth noting that the in-place update rule has its own limitations. Firstly, it prevents the opti-
mizer from using gradient accumulation, a technique that scales batch size by accumulating gradients
over several batches and only updating the optimizer after a specified number of batches. Secondly,
it prevents gradient normalization, as the norm of the gradient must be known for normalization.
In our paper, we distinguish between SGD and IP-SGD: SGD uses gradient normalization during
fine-tuning, while IP-SGD does not. This distinction leads to differences in final performance and
convergence time. For all experiments, except those using Adam, we do not employ the gradient
accumulation technique.

C Discussion on related works

Stochastic First-order Optimizers in Deep Learning. SGD [52] has long been used in training deep
neural networks due to its convergence rate that is independent of the number of model parameters.
However, adaptive first-order optimizers have shown advantages over SGD in hyper-parameter tuning,
final model performance, and convergence speed. The concept of adaptive first-order optimizers
dates back to RPROP [51]. AdaGrad [16] adjusts the learning rate based on the estimated geometry,
assigning higher rates to less frequent features. RMSProp [27] builds on RPROP, making it effective
for small batch sizes. Adam [31], inspired by AdaGrad and RMSProp, incorporates a running
average of gradients and has become the preferred method for training neural networks due to its fast
convergence and reduced need for hyper-parameter tuning. Numerous studies have demonstrated

1https://pytorch.org/
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Adam’s success [24, 38, 45], and researchers continue to investigate its efficacy with Transformer
architectures [58].

Zeroth-order optimization. Zeroth-order optimization has been extensively studied in convex,
strongly convex, and non-convex settings in the optimization literature [44, 43, 62, 1, 19, 61]. It
is known that the convergence rate of zeroth-order methods generally scales with the number of
parameters d. This property makes zeroth-order methods less effective for training deep neural
networks for which the number of parameters d can be very large. Recently, MeZO [42] demonstrated
that in language fine-tuning tasks, ZO-SGD can perform comparably to first-order methods. By using
in-place perturbation, MeZO applies ZO-SGD in a memory-efficient manner, keeping memory usage
comparable to inference. The success of fine-tuning with zeroth-order methods may be due to the fact
that LM fine-tuning can occur in a very low-dimensional subspace [2, 35]. However, MeZO suffers
from significantly slow convergence speed and slightly worse performance compared to first-order
optimizers. Balasubramanian and Ghadimi [4] estimate the Hessian to perform ZO optimization
along important directions. Guo et al. [23] focus on fine-tuning a minimal subset of LLM parameters
using zeroth-order methods, incorporating sparsity and quantization to overcome memory limitations.

Mixing update directions from different optimizers. There are recent studies of mixing the update
directions of different optimizers to enhance the performance of training/fine-tuning. MAS [32]
integrates SGD and Adam by assigning constant weights to balance the contributions of gradient
estimates from both optimizers. Concurrent to our work, Zhang et al. [69] explores integrating
zeroth- and first-order gradient estimates through a “hybrid ZO-FO fine-tuning scheme for LLMs”.
However, their method is completely different than ours. In particular, they restrict backpropagation
to the deeper layers of the model, using zeroth-order optimization for the shallower layers to update
parameters. Although this technique enhances memory efficiency, it neglects the possibility of using
in-place first-order updates, leading to significant memory usage. In contrast, our approach employs
in-place first-order gradient estimates, ensuring that memory requirements do not scale with the
number of model parameters, eliminating the need to restrict backpropagation to specific layers. As
we discussed in the main body, the memory demands of fine-tuning LMs with small first-order batch
sizes are comparable to those using zeroth-order batch sizes for many fine-tuning tasks. By utilizing
both gradient estimates, our proposed method, Addax, not only proves to be more memory-efficient
but also surpasses competing methods in terms of the final accuracy of the fine-tuned model.

D Experiment setup

The code is available at https://github.com/optimization-for-data-driven-science/
Addax.

D.1 Datasets

Our setup mainly follows the experiments in [42]. We employ the same datasets utilized in Malladi
et al. [42]. Unless otherwise noted, we apply the same data processing procedures and settings for
both validation and training.

For the RoBERTa-large model, we utilize the following datasets: SST-2 [55], SST-5 [55], SNLI [7],
MNLI [63], RTE [10, 5, 22, 6], and TREC [59]. The test set is limited to 1,000 examples for both
training and validation purposes. In our few-shot learning experiments, we set k = 16, where k
represents the number of examples per class for training and validation.

For the OPT experiments, we employ the SuperGLUE dataset [60], comprising BoolQ [9], CB [12],
COPA [53], MultiRC [30], RTE [10, 5, 22, 6], WIC [49], and WSC [34]. Following the approach
of Malladi et al. [42], we also include SST-2 [55] for development purposes, along with one question
answering (QA) datasets: SQuAD [50]. For each dataset, we randomly select 1, 000 examples for
training, 500 examples for validation, and 1, 000 examples for testing.

D.2 Datasets overview

In this section, we provide a brief overview of the datasets used in our experiments. For both training
and fine-tuning with transformers, peak memory usage is usually determined by the dataset’s longest
sequence length Lmax. Samples shorter than Lmax are padded to this length. Figure 6 shows
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Figure 6: Histogram of sequence lengths for different datasets tokenized by the OPT-13B tokenizer.
Among these datasets, MultiRC has the longest sequence length, Lmax = 739.

the histograms of sequence lengths for six different datasets (SST-2, RTE, WSC, WIC, MultiRC)
tokenized by the OPT-13B tokenizer. The data points in these distributions are mostly from right-
skewed normal distributions, indicating a relatively small number of samples with long sequence
lengths in each dataset.

D.3 Prompts

To ensure a fair comparison, we employ the same prompts as those used by Malladi et al. [42], which
were initially adapted from Gao et al. [18], GPT-3 [8], and PromptSource [3]. Table 4 presents the
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prompts employed in our RoBERTa-large experiments, while Table 5 details the prompts utilized for
the OPT experiments.

Table 4: The prompts for each dataset used in our RoBERTa-large experiments. These prompts
are identical to those used by Malladi et al. [42]. There are three different task types: sentiment
classification (sentiment cls.), topic classification (topic cls.), and natural language inference (NLI).
C is the number of classes for each dataset. The label words can be filled in the [MASK] token of
the prompt template. <S1> and <S2> are the first and second (if any) input sentences.

Dataset C Type Prompt Label words
SST-2 2 sentiment cls. <S1> It was [MASK]. {great, terrible}
SST-5 5 sentiment cls. <S1> It was [MASK]. {great, good, okay, bad, terrible}

TREC 6 topic cls. [MASK] : <S1> {Description, Expression, Entity,
Human, Location, Number}

MNLI 3 NLI <S1> ? [MASK], <S2> {Yes, Maybe, No}
SNLI 3 NLI <S1> ? [MASK], <S2> {Yes, Maybe, No}
RTE 2 NLI <S1> ? [MASK], <S2> {Yes, No}

Table 5: The prompts used in the OPT experiments are identical to those used in Malladi et al. [42].
There are three types of tasks: classification (cls.), multiple-choice (mch.), and question-answering
(QA). <text> is the input from the dataset and blue text are the label words. We follow the same
practice as in Malladi et al. [42]: for the inference task, we incorporate different candidates into the
prompt, compute the average log-likelihood for each, and select the candidate with the highest score.
For question-answering (QA) tasks, answers are produced through greedy decoding.
Dataset Type Prompt
SST-2 cls. <text> It was terrible/great
RTE cls. <premise>

Does this mean that "<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that "<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun "<span2>" refer to <span1>? Yes or No?
Yes/No

WIC cls. Does the word "<word>" have the same meaning in these two sentences? Yes, No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer "<answer>". Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

D.4 Implementation

For the RoBERTa-large experiments, we run Addax in two separate computational precision settings:
one using 16-bit floating-point calculations (FP16), referred to as 16-bit Addax, and the other using
32-bit floating-point calculations (FP32), denoted as 32-bit Addax for clarity. For all RoBERTa-large
experiments, MeZO and Adam are loaded in the FP32 setting. Since fine-tuning RoBERTa-large
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models does not require significant memory, we set LT sufficiently large for running Addax, ensuring
that D0 and D1 are equivalent to the total dataset D.

For the OPT and Llama experiments, Addax is used solely in the FP16 setting. We run SGD and
IP-SGD in the FP16 setting and Adam in the FP32 setting. Unless otherwise noted, Addax, SGD, IP-
SGD, and MeZO are trained in the FP16 setting, while Adam uses the FP32 setting. If the maximum
sequence length within the dataset Lmax is less than LT , Addax does not partition the dataset, and
D0 and D1 are equivalent to the total dataset D. In the scenarios where IP-SGD fails, Addax further
reduces the memory usage by assigning different batches of data to ZO-SGD and FO-SGD based
on LT . Specifically, Addax partitions the training data X based on the length of data points, given
a threshold LT . The data is divided into D0 and D1, where D0 = {x ∈ D | length(x) > LT } and
D1 = {x ∈ D | length(x) ≤ LT }.
We do not employ advanced quantization techniques such as LLM.int8() [13] and QLoRA [14],
nor do we integrate Addax with Parameter-Efficient Fine-Tuning methods (PEFT) [28, 36, 33]. For
model inference, we utilize the standard PyTorch [48] implementation of transformer. We do not
use the memory-efficient approaches such as FlashAttention [11], KDEformer [65], and HyperAt-
tention [25]. Although the combination between Addax and these methods remains unexplored,
we posit that their combination could significantly enhance Addax by further reducing the memory
demands and augmenting performance. We leave the exploration of Addax’s interplay with various
memory-efficient methods to future work.

D.5 Hyper-parameters

We present the hyper-parameters for all experiments conducted with RoBERTa-large in Table 6 and
those for OPT-13B, OPT-30B, OPT-66B, Llama-2-70B in Table 7, Table 8, Table 9 and Table 10
respectively. It is important to note that for both models, the hyper-parameters grid utilized for MeZO
and Adam adheres to the specifications set forth in Malladi et al. [42].

For RoBERTa-large experiments, both Addax and MeZO employ a constant learning rate schedule,
while Adam uses linear scheduling. For the training process, Addax and Adam are set for 1, 000
steps, while MeZO extends to 100, 000 steps. We check validation performance every 50 training
step and save the best validation checkpoint for testing.

For OPT experiments, Addax, SGD, IP-SGD, and MeZO similarly adopt a constant learning rate
schedule, with Adam maintaining its linear scheduling. Here, Adam is configured for 100 steps,
whereas Addax, SGD, and IP-SGD are set for 1, 000 steps, and MeZO for 20, 000 steps. For the SGD
and IP-SGD experiments in OPT-13B, we choose the batch size from our grid that maximizes the
memory usage of a single A100 GPU, as larger batch sizes tend to yield better results. For OPT-30B,
OPT-66B experiments, and Llama-2-70B experiments, we set the batch size of SGD and IP-SGD to
the same or less than K1 of Addax. We check validation performance every 1/20 training step and
save the best validation checkpoint for testing. We leave a detailed discussion on how we selected
batch size, K1, K0, and LT for reporting accuracy in Appendix D.6.

As explained in the main body, Addax can use larger learning rates than MeZO, resulting
in faster convergence. For the RoBERTa-large experiments, Addax uses the learning rate η of
{1e− 5, 5e− 5, 1e− 4}, while MeZO uses the learning rate η of {1e− 7, 1e− 6, 1e− 5}. For the
OPT experiments, we fix the learning rate η of Addax to 1e − 4, while MeZO uses a magnitude
smaller learning rate η of {1e− 6, 1e− 7}.

D.6 Detailed methods in selecting BS, K0, K1, and LT for reporting

D.6.1 OPT-13B experiments

In our OPT-13B experiments, we run Addax, MeZO, IP-SGD, and SGD using a single
A100 (40GB) GPU. For MeZO, IP-SGD, and SGD, we select a batch size from the grid
{2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32}, choosing the largest possible batch size that maximizes
GPU memory usage without encountering out-of-memory errors. A method is considered to have
failed to fine-tune the dataset if it cannot run even with the smallest batch size from the grid. For
example, SGD fails to fine-tune all datasets with the smallest batch size, and IP-SGD fails to fine-tune
the BoolQ, MultiRC, and SQuAD datasets on a single A100 (40GB) GPU.
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Table 6: The hyper-parameter grids used for RoBERTa-large experiments. Addax and MeZO use a
constant learning rate schedule, and Adam uses linear scheduling. Addax and Adam use 1K steps,
and MeZO uses 100K steps. We check validation performance every 50 training step and save the
best for testing.

Experiment Hyper-parameters Values

16-bit/32-bit Addax K0 +K1 64
K1

K0+K1 {0.1, 0.2, 0.3, 0.4, 0.5}
Learning Rate η {1e− 5, 5e− 5, 1e− 4}

ϵ 1e− 3
α {3e− 4, 1e− 3, 3e− 3, 4e− 3,

5e− 3, 7e− 3, 1e− 2, 1e− 1}
MeZO Batch size 64

Learning Rate η {1e− 7, 1e− 6, 1e− 5}
ϵ 1e− 3

32-bit Adam Batch size {2, 4, 8}
Learning Rate η {1e− 5, 3e− 5, 5e− 5}

Table 7: The hyper-parameter grids used for OPT-13B experiments in one A100 GPU (40GB). Addax,
SGD, IP-SGD, and MeZO use a constant learning rate schedule, and Adam uses linear scheduling.
Adam uses 200 steps. Addax, IP-SGD, and SGD use 1K steps and MeZO 20K steps. We check
validation performance every 1/20 training step and save the best for testing. Note that for IP-SGD,
SGD, and MeZO, some runs may have encountered out-of-memory errors during training when
fine-tuning with one A100 GPU.

Experiment Hyper-parameters Values

Addax (K1,K0) (4, 6)
Learning Rate η 1e− 4

ϵ 1e− 3
α {1e− 4, 3e− 4, 5e− 4, 7e− 4, 9e− 4}

LT {150, 155, 160, 165, 170}
MeZO Batch size {2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32}

Learning Rate η {1e− 6, 1e− 7}
ϵ 1e− 3

SGD Batch size {2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32}
Learning Rate η {5e− 3, 1e− 2, 5e− 2}

IP-SGD Batch size {2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32}
Learning Rate η {1e− 4, 1.25e− 4, 7.5e− 4}

Adam Batch size 8
Learning Rate η {1e− 5, 5e− 5, 8e− 5}

To further reduce the memory requirements of IP-SGD, we first fine-tune Addax on the longest
dataset, MultiRC (Figure 6), as successfully running Addax on the longest dataset ensures it can also
run on shorter ones. We found that with (K1,K0) = (4, 6) and LT = 170, Addax achieves optimal
performance on the MultiRC dataset while staying within the 40GB memory constraints. Thus, we
use the same (K1,K0) = (4, 6) configuration for Addax when fine-tuning the remaining datasets,
searching for optimal combinations of α and LT ≤ 170.

D.6.2 OPT-30B, OPT-66B, Llama-2-70B experiments

For the OPT-30B experiments, we follow the same methodology as described in the OPT-13B
experiments. For MeZO, IP-SGD, and SGD, we choose the largest possible batch size from the
grid that maximizes GPU memory usage without encountering out-of-memory errors, using a single
H100 GPU (80GB). For Addax in the OPT-30B experiments, we fine-tune with two different settings:
(K1,K0) = (4, 6) when LT = 180 and (K1,K0) = (2, 6) when LT = 320. In both settings,
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Table 8: The hyper-parameter grids used for OPT-30B experiments in one H100 GPU (80GB). Addax,
SGD, IP-SGD, and MeZO use a constant learning rate schedule. Addax, IP-SGD, and SGD use 1K
steps and MeZO 20K steps. We check validation performance every 1/20 training steps and save the
best for testing.

Experiment Hyper-parameters Values

Addax (K1,K0) {(2, 6), (4, 6)}
Learning Rate η 1e− 4

ϵ 1e− 3
α {1e− 4, 3e− 4, 5e− 4, 7e− 4, 9e− 4}

LT {320, 180}
MeZO Batch size {2, 4, 6, 8, 10, 12, 14, 16}

Learning Rate η {1e− 6, 1e− 7}
ϵ 1e− 3

SGD Batch size {2, 4}
Learning Rate η {5e− 3, 1e− 2, 5e− 2}

IP-SGD Batch size {2, 4}
Learning Rate η {1e− 4, 1.25e− 4, 7.5e− 4}

Table 9: The hyper-parameter grids used for OPT-66B experiments in three H100 GPU (240GB total).
Addax, SGD, IP-SGD and MeZO use a constant learning rate schedule Addax, IP-SGD, SGD use 1K
steps and MeZO 20K steps. We check validation performance every 1/20 training step and save the
best for testing.

Experiment Hyper-parameters Values

Addax (K1,K0) (4, 6)
Learning Rate η 1e− 4

ϵ 1e− 3
α {1e− 4, 3e− 4, 5e− 4, 7e− 4, 9e− 4}

LT 260

MeZO Batch size {2, 4, 6, 8, 10, 12, 14, 16}
Learning Rate η {1e− 6, 1e− 7}

ϵ 1e− 3

SGD Batch size {2, 4}
Learning Rate η {5e− 3, 1e− 2, 5e− 2}

IP-SGD Batch size {2, 4}
Learning Rate η {1e− 4, 1.25e− 4, 7.5e− 4}

Addax does not encounter out-of-memory issues when fine-tuning the MultiRC dataset in one GPU,
indicating that it can also fine-tune the remaining datasets.

In the OPT-66B and Llama-2-70B experiments, we fine-tune MeZO, IP-SGD, and SGD by selecting
the largest possible batch size from the grid that maximizes GPU memory usage without encountering
out-of-memory errors, using three H100 GPUs (a total of 240GB). For simplicity, Addax uses the
same (K1,K0) = (4, 6) configuration from the OPT-13B experiments, with LT = 260 for OPT-66B
and LT = 240 for Llama-2-70B, allowing Addax to successfully run without out-of-memory errors.

D.7 Memory profiling

In our memory profiling, we conform to the methodologies previously established in Malladi et al. [42].
Our implementation utilizes the default configuration provided by the transformers [64] package.
We do not turn on any advanced memory optimization technique, such as gradient checkpointing. For
multi-GPU backpropagation, we utilize the Fully Sharded Data Parallel (FSDP) [17] by PyTorch [48].
We use Nvidia’s nvidia-smi command to monitor the GPU memory usage. We report the
maximum GPU memory consumption observed throughout all experiments.
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Table 10: The hyper-parameter grids used for Llama-2-70B experiments in three H100 GPU (240GB
total). Addax, SGD, IP-SGD and MeZO use a constant learning rate schedule Addax, IP-SGD, SGD
use 1K steps and MeZO 20K steps. We check validation performance every 1/20 training step and
save the best for testing.

Experiment Hyper-parameters Values

Addax (K1,K0) (4, 6)
Learning Rate η 1e− 4

ϵ 1e− 3
α {1e− 4, 3e− 4, 5e− 4, 7e− 4, 9e− 4}

LT 240

MeZO Batch size {2, 4, 6, 8, 10, 12, 14, 16}
Learning Rate η {1e− 6, 1e− 7}

ϵ 1e− 3

SGD Batch size {2, 4}
Learning Rate η {5e− 3, 1e− 2, 5e− 2}

IP-SGD Batch size {2, 4}
Learning Rate η {1e− 4, 1.25e− 4, 7.5e− 4}
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Figure 7: Experiments on RoBERTa-large: 16/32-bit Addax outperform zero-shot and MeZO across all
tasks and outperform Adam in four out of six tasks. Detailed numbers can be found in Table 11.

E Roberta-large experiments

E.1 RoBERTa-large experiments main results

Table 11 reports the detailed numbers of the accuracy on the RoBERTa-large model across different
fine-tuning methods that are shown in Figure 7. For the accuracy of MeZO and Adam, we directly
report the results from Malladi et al. [42].

E.2 Investigation on the hyper-parameters of Addax

In this section, we explore the effect of different hyper-parameters, specifically reporting on the
accuracy of both 32-bit and 16-bit Addax across various tasks utilizing the RoBERTa-large model
using different combinations of hyper-parameters. We include the combinations of α and K1

K0+K1

for 32-bit and 16-bit Addax in Figure 8 and Figure 9. Generally, it is observed that an increase in
the ratio K1

K0+K1 correlates with improved accuracy across tasks for both 16-bit and 32-bit Addax
configurations, as evidenced by the top row of the heatmaps for each task in Figure 8 and Figure 9.
We did not identify a consistent trend for α across different tasks for both 16-bit and 32-bit Addax,
suggesting that the optimal α could be task-specific.
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Table 11: Experiments on RoBERTa-large (350M parameters). 16-bit Addax and 32-bit Addax
outperform zero-shot and MeZO across the board on 6 tasks while surpassing Adam in four out of
six tasks. All experiments use prompts (Appendix D.3). For the accuracy of 32-bit MeZO and 32-bit
Adam, we report the results from Malladi et al. [42].

Task SST-2 SST-5 SNLI MNLI RTE TREC
Type sentiment natural language inference topic

Zero-shot 79.0 35.5 50.2 48.8 51.4 32.0

Samples per classes: k = 16

32-bit MeZO 90.5 45.5 68.5 58.7 64.0 76.9
32-bit Addax 90.6 49.1 79.3 69.9 64.6 89.6
16-bit Addax 91.4 50.4 79.3 68.2 67.2 90.8
32-bit Adam 91.9 47.5 77.5 70.0 66.4 85.0

Table 12: Experiments on OPT-13B (with 1,000 examples) using a single A100 (40GB) GPU except
for Adam, which is run on five H100 GPUs (350GB total). Addax consistently outperforms zero-shot,
MeZO, and IP-SGD across nine tasks and surpasses Adam in seven of the nine tasks. An asterisk (*)
indicates runs that encountered out-of-memory errors during training, even with the smallest possible
batch size.

Task SST-2 RTE CB BoolQ WSC WIC MultiRC ReCoRD SQuAD
Metrics Task type classification multiple choice generation

Accuracy/F1 (%) Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 46.2
MeZO 91.9 65.3 69.6 66.5 61.5 59.7 59.4 86.0 82.6
SGD * * * * * * * * *
IP-SGD 94.5 82.3 85.7 * 63.5 66.0 * 90.0 *
Adam 92.1 79.1 71.4 77.0 63.5 69.6 76.2 81.0 84.5
Addax 94.5 84.8 89.3 81.0 63.5 68.3 71.2 90.0 88.4

Memory (GB) MeZO 29.7 39.0 38.7 39.6 31.6 31.4 36.9 27.6 36.8
SGD * * * * * * * * *
IP-SGD 38.3 35.0 37.7 * 38.6 38.4 * 30.6 *
Adam 248.4 252.3 275.2 315.0 251.7 250.1 349.4 247.7 259.8
Addax 28.7 35.6 39.2 38.0 29.4 29.3 39.2 27.7 33.3

Batch Size MeZO 32 16 14 8 32 32 6 32 10
SGD * * * * * * * * *
IP-SGD 16 2 2 * 12 12 * 32 *
32-bit Adam 8

(K1,K0) Addax (4, 6)

Time (Min) MeZO 222.5 289.2 182.8 255.4 40.3 103.9 363.8 31.7 245.5
SGD * * * * * * * * *
IP-SGD 2.8 4.2 2.2 * 3.4 7.6 * 0.3 *
Addax 10.2 23.2 13.5 35.5 2.1 17.4 5.3 0.9 10.8

F OPT and Llama experiments

F.1 OPT-13B experiments main results

Table 12 reports the detailed numbers of the accuracy on the OPT-13B model across different fine-
tuning methods shown in Figure 1. Details on batch size, time to the best validation checkpoint,
and memory for different algorithms are also available in Table 12. We also report GPU memory
consumption across tasks and different fine-tuning methods for the OPT-13B model in Figure 1, with
the exact number reported in Table 12. See Appendix D.7 for memory profiling details.

F.2 OPT-30B, OPT-66B and Llama-2-70B experiments main results

Tables 13, 14, 15 present the complete results of fine-tuning OPT-30B and OPT-66B with Addax-
P, SGD, IP-SGD, and MeZO, including metrics such as accuracy, memory usage, and batch
size/(K1,K0). Figures 2 and 10 show the corresponding data.
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Figure 8: The accuracy (%) of the 32-bit Addax across different tasks on the RoBERTa-large model,
with variable combinations of α and K1

K1+K0 .

F.3 Convergence speed of different tuning methods on the OPT-13B model

In this section, we demonstrate that 16-bit Addax reaches a convergence speed comparable to 16-bit
SGD, despite SGD using 4× more first-order samples for backward propagation. Meanwhile, Addax
memory consumption is comparable to MeZO. The comparison of convergence speeds across the
three methods is illustrated in Figure 11. For MeZO and SGD, the batch size is set to 16, while for
Addax, we configure (K1,K0) as (4, 12). The learning rate for Addax is set at η = 1e − 4. For
SGD, the learning rates are η = {5e − 3, 1e − 2, 5e − 2}. For MeZO, we utilize learning rates of
η = {1e− 6, 1e− 7}. We select the hyper-parameters that yield the best validation accuracy across
three methods. We utilize a single H100 GPU (80GB total) for running both Addax and MeZO,
whereas SGD requires two H100 GPUs (160GB total). MeZO requires significantly more steps (20K
steps) to converge compared to Addax and SGD (1K steps). Addax, using a smaller first-order batch
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Figure 9: The accuracy (%) of the 16-bit Addax across different tasks on the RoBERTa-large model,
with variable combinations of α and K1

K1+K0 .

size of K1 = 4, achieves a convergence speed comparable to SGD with a batch size of 16 while
requiring significantly less memory.

G Theoretical Results and Proofs

G.1 List of Assumptions

Assumption G.1. ℓ(θ;x) is L-Lipschitz smooth, i.e.,

∥∇ℓ(θ;x)−∇ℓ(θ′;x)∥ ≤ L ∥θ − θ′∥ ,∀θ,θ′ ∈ Rd, x ∈ D.
Assumption G.2. The stochastic gradient is unbiased and has bounded variance, i.e.,

Ex[∇ℓ(θ;x)] = ∇L(θ), Ex[∥∇ℓ(θ;x)−∇L(θ)∥2] ≤ σ2,∀θ ∈ Rd.
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Table 13: Experiments on OPT-30B (with 1000 examples) on a one H100 (80GB) GPU. * means the
run encounters out-of-memory errors during training.

Task SST-2 RTE BoolQ WSC WIC MultiRC SQuAD
Metrics Task type classification generation

Accuracy/F1 (%) Zero-shot 56.7 52.0 39.1 38.5 50.2 44.2 46.5
SGD * * * * * * *
MeZO 90.6 66.4 66.9 63.5 56.3 59.3 79.9
IP-SGD BS = 2 89.6 77.6 * 63.5 68.0 * *
IP-SGD BS = 4 91.2 * * 63.5 66.5 * *
Addax (LT = 320) 93.9 83.4 80.8 63.5 66.8 75.8 85.9
Addax (LT = 180) 95.1 85.9 82.3 63.5 70.2 67.8 88.0

Batch Size MeZO 16 10 16 16 6 12
IP-SGD BS = 2 2
IP-SGD BS = 4 4

(K1,K0) Addax (LT = 320) (2, 6)
Addax (LT = 180) (4, 6)

Memory (GB) MeZO 62.0 75.0 79.8 64.6 63.8 76.0 78.3
IP-SGD BS = 2 62.5 80.0 * 64.4 62.9 * *
IP-SGD BS = 4 65.2 * * 66.3 66.5 * *
Addax (LT = 320) 64.9 75.5 78.4 62.6 62.6 81.0 69.1
Addax (LT = 180) 64.4 79.5 79.5 65.8 66.0 80.8 71.3

Time (min) MeZO 719.3 980.0 499.0 116.9 762.6 962.8 866.2
IP-SGD BS = 2 1.9 1.1 * 1.0 7.9 * *
IP-SGD BS = 4 1.9 * * 1.1 9.1 * *
Addax (LT = 320) 4.0 9.8 32.3 1.4 19.7 11.4 3.7
Addax (LT = 180) 9.7 23.1 25.5 1.5 23.5 48.6 11.3
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Figure 10: Accuracy/F-1 score, memory, and convergence time resulted from fine-tuning OPT-66B model with
zero-shot, MeZO, SGD, IP-SGD, and Addax on 3 H100 GPU (240GB total). The label “OOM” means the run
encounters out-of-memory errors during fine-tuning. The exact numbers related to this figure can be found in
Table 14 in Appendix F.2.
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Table 14: Experiments on OPT-66B (with 1000 examples) on three GPUs (240GB total). * means the
run encounters out-of-memory errors during training.

Task SST-2 RTE BoolQ WSC WIC MultiRC SQuAD
Metrics Task type classification generation

Accuracy/F1 (%) Zero-shot 57.5 67.2 66.8 43.3 50.6 49.4 48.1
SGD * * * * * * *
MeZO 91.2 65.7 72.7 63.5 58.9 61.1 82.5
IP-SGD (BS=2) 89.1 82.3 67.0 63.5 65.8 * 87.0
IP-SGD (BS=4) 92.4 78.7 * 63.5 70.1 * *
Addax (LT = 260) 95.5 85.2 84.0 63.5 66.9 80.6 88.3

Batch Size MeZO 16 8 16
IP-SGD (BS=2) 2
IP-SGD (BS=4) 4

(K1,K0) Addax (LT = 260) (4, 6)

Memory (GB) MeZO 139.8 177.0 204.2 144.0 143.2 197.3 210.2
IP-SGD 136.5 166.2 203.6 145.4 139.4 * 215.4
IP-SGD 141.2 213.3 * 147.8 145.0 * *
Addax (LT = 260) 141.9 204.6 228.7 145.9 144.3 215.4 173.6

Time (min) MeZO 439.1 980.5 286.6 152.4 173.7 379.6 1036.2
IP-SGD 0.4 2.8 0.7 4.9 3.0 * 1.2
IP-SGD 3.9 1.7 * 1.1 9.1 * *
Addax (LT = 260) 7.6 36.3 31.7 15.1 14.2 76.9 26.7

Table 15: Experiments on Llama-2-70B (with 1000 examples) on three H100 (80GB) GPUs. * means
the run encounters out-of-memory errors during training.

Task RTE BoolQ WSC WIC MultiRC SQuAD
Metrics Task type classification generation

Accuracy/F1 (%) Zero-shot 60.6 75.9 55.8 49.8 45.8 70.5
SGD * * * * * *
MeZO 52.7 63.1 75.0 55.6 64.4 92.3
IP-SGD BS = 2 85.2 * 75.0 73.4 * *
IP-SGD BS = 4 * * 75.0 74.3 * *
Addax (LT = 240) 89.9 87.9 76.0 74.5 85.3 93.4

Batch Size MeZO 16 6 16
IP-SGD BS = 2 2
IP-SGD BS = 4 4
Addax (LT = 240) (4, 6)

Memory (GB) MeZO 159.4 195.9 143.6 143.6 169.3 192.9
IP-SGD BS = 2 235.2 * 150.8 151.6 * *
IP-SGD BS = 4 * * 164.0 182.5 * *
Addax (LT = 240) 239.5 231.7 162.9 167.9 236.1 187.3

Time (min) MeZO 1288.7 565.0 6133.7 6405.5 879.9 932.0
IP-SGD BS = 2 2.6 * 5.0 9.5 * *
IP-SGD BS = 4 * * 1.3 11.0 * *
Addax (LT = 240) 31.7 28.0 5.0 27.0 30.0 53.7

Assumption G.3 (Low effective rank Hessian). There exists a matrix 0 ⪯ H ⪯ L · Id such that
∇2L(x) ⪯H , and the effective rank of H is at most r, i.e.,

tr (H) ≤ Lr.

Assumption G.4. L(θ) is µ-convex, i.e.,

L(θ) ≥ L(θ′) + ⟨∇L(θ′),θ − θ′⟩+ µ

2
∥θ − θ′∥2 ,∀θ,θ′ ∈ Rd.

28



0 1000 2000 3000 4000 5000
Steps

0.0

0.2

0.4

0.6

0.8

L
os

s

MeZO (37.0 GB)

16-bit Addax (45.1 GB)

16-bit SGD (105.9 GB)

(a) Task: RTE

0 500 1000 1500 2000
Steps

0.00

0.25

0.50

0.75

1.00

L
os

s MeZO (42.5 GB)

16-bit Addax (53.4 GB)

16-bit SGD (151.9 GB)

(b) Task: CB

Figure 11: Convergence speed of three fine-tuning methods (Addax, MeZO, and SGD) on two
fine-tuning datasets with the OPT-13B model. We set the batch size to 16 for MeZO and SGD and
fix (K1,K0) = (4, 12) for Addax. We utilize a single H100 GPU (80GB total) for running both
Addax and MeZO, whereas SGD requires two H100 GPUs (160 GB total) to run with BS = 16.
MeZO requires significantly more steps to converge compared to Addax and SGD. Addax with 4×
less first-order samples achieves a convergence speed similar to SGD, despite requiring significantly
less memory.

G.2 Useful Lemmas

Lemma G.5 (Gao et al. [19], Lemma 4.1 (b)). Suppose Assumption G.1 holds, then the expected
gradient estimated with SPSA is a biased estimation of∇L(θ) and satisfies

∥∥∥EB,z[∇̂L(θ;B)]−∇L(θ)
∥∥∥
2

≤ ϵ2L2d2

4
.

Lemma G.6 (Malladi et al. [42], Lemma 2). Suppose Assumption G.1 and Assumption G.2 holds,
then the variance of the gradient estimated with SPSA satisfies

Var(∇̂L(θ;B)) = EB

[∥∥∥EB[∇̂L(θ;B)]− ∇̂L(θ;B)
∥∥∥
2
]
≤ d

K
σ2.

Lemma G.7 (Zhang et al. [66], Lemma C.1 (iv)). Let z ∼ N (0, Id), v ∈ Rd be some fixed vector,
H ∈ Rd×d be some fixed matrix independent of z, we have:

Ez[(z
⊤v)2z⊤Hz] =

d

d+ 2

(
2v⊤Hv + ∥v∥2 tr (H)

)
.

G.3 Convergence analysis of Addax in smooth nonconvex setting when D0 and D1 are same

The following Theorem is the precise statement of the result behind Theorem 3.1 presented in the
main body.

Theorem G.8. Under Assumptions G.1, G.2, by running Algorithm 1 for T iterations with 0 < ηt =
η ≤ 2−α

4L ,∀t, the output satisfies

E[∥∇L(θt)∥2] ≤
4(L(θ0)− L⋆)

ηT (2− α)

+
α(1 + α− α2/2)ϵ2L2d2

2(2− α)
+

4ηL

(2− α)

(
(1− α)2

2K1
+

α2d

2K0

)
σ2.

(4)
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Proof: By Assumption G.1:

Et[L(θt+1)] ≤ L(θt) + Et[⟨∇L(θt),θt+1 − θt⟩] +
L

2
Et[∥θt+1 − θt∥2]

(a)
= L(θt)− ηt

〈
∇L(θt), (1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]

〉

+
Lη2t
2

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥
2

+
Lη2t (1− α)2

2
EB1 [

∥∥∇L(θt)−∇L(θt;B1)
∥∥2] + Lη2tα

2

2
Var(∇̂L(θt;B0))

(b)

≤ L(θt)− (1− α)ηt ∥∇L(θt)∥2 − αηt

〈
∇L(θt),EB0 [∇̂L(θt;B0)]

〉

+
Lη2t
2

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥
2

+
Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2,

(5)

where (a) substitutes the update of θ and takes expectations to g0, g1;(b) follows from the Lemma G.6.
The third term on the Right-Hand-Side (RHS) can be further bounded as

− αηt

〈
∇L(θt),EB0 [∇̂L(θt;B0)]

〉

(a)
= −αηt

2
∥∇L(θt)∥2 −

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥
2

+
αηt
2

∥∥∥∇L(θt)− EB0 [∇̂L(θt;B0)]
∥∥∥
2

(b)

≤ −αηt
2
∥∇L(θt)∥2 −

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥
2

+
αηtϵ

2L2d2

8
,

(6)

where (a) uses the fact that ∥u+ v∥2 = ∥u∥2 + ∥v∥2 + 2 ⟨u,v⟩; (b) applies Lemma G.5 to the last
term. The fourth term on the RHS of equation (5) can be bounded as

Lη2t
2

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥
2

=
Lη2t
2

∥∥∥∇L(θt) + α
(
EB0 [∇̂L(θt;B0)]−∇L(θt)

)∥∥∥
2

(a)

≤ Lη2t ∥∇L(θt)∥2 + α2Lη2t

∥∥∥
(
EB0 [∇̂L(θt;B0)]−∇L(θt)

)∥∥∥
2

(b)

≤ Lη2t ∥∇L(θt)∥2 +
α2η2t ϵ

2L3d2

4
,

(7)

where (a) applies Cauchy-Schwarz inequality; (b) applies Lemma G.5 to the last term. Substitute
equation (6), equation (7) back to equation (5), we have

Et[L(θt+1)] ≤ L(θt)− (1− α

2
− Lηt)ηt ∥∇L(θt)∥2 −

αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥
2

+
αηtϵ

2L2d2(1 + 2αηtL)

8
+

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2

2K0
σ2.

(8)

Choose ηt ≤ 2−α
4L , we have 1− α

2 − Lηt ≥ 2−α
4 > 0, 1 + 2αηtL ≤ 1 + α− α2

2 and

(2− α)ηt
4

∥∇L(θt)∥2 +
αηt
2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥
2

≤ L(θt)− Et[L(θt+1)]

+
αηtϵ

2L2d2(1 + α− α2/2)

8
+

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2

2K0
σ2.

(9)

Sum from t = 0 to T , we have
T∑

t=0

(
(2− α)ηt

4
E[∥∇L(θt)∥2] +

αηt
2

E
[∥∥∥EB0 [∇̂L(θt;B0)]

∥∥∥
2
])
≤ L(θ0)− E[L(θT+1)]

+

T∑

t=0

ηt ·
α(1 + α− α2/2)ϵ2L2d2

8
+

T∑

t=0

η2t ·
(
L(1− α)2

2K1
σ2 +

Lα2d

2K0
σ2

)
.

(10)
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Choose ηt = η ≤ 2−α
4L ,∀t, and divide both side by (2−α)ηT

4 , we have

E[∥∇L(θt)∥2] +
2α

2− α
E
[∥∥∥EB0 [∇̂L(θt;B0)]

∥∥∥
2
]
≤ 4(L(θ0)− L⋆)

ηT (2− α)

+
α(1 + α− α2/2)ϵ2L2d2

2(2− α)
+

4ηL

(2− α)

(
(1− α)2

2K1
+

α2d

2K0

)
σ2,

(11)

which completes the proof.

Corollary G.9. By choosing η = min

{
2−α
4L ,

√
2(L(θ0)−L⋆)

TLσ2
(

(1−α)2

K1 +α2d
K0

)
}

and

ϵ ≤
(
2(L(θ0)− L⋆)σ

2
(
(1− α)2/K1 + α2d/K0

)

T

)1/4

· 1

L3/4d
√

α(1 + α− α2/2)
,

Algorithm 1 converges with rate

E[∥∇L(θt)∥2] ≤ 5
√
2L ·

√
(1−α)2

K1 + α2d
K0

2− α
· σ
√
L(θ0)− L⋆

T

= O
(

1√
T
·
√

(1− α)2

K1
+

α2d

K0

)

G.4 Convergence analysis of Addax in smooth nonconvex setting when D0 and D1 are
different

Assume that datasets D0 and D1 are different. Consider loss functions L, L0, and L1, where L0

and L1 are evaluated on datasets D0 and D1 of sizes N0 and N1, respectively. The combined loss
function L is defined as:

L =
(N0L0 +N1L1)

N0 +N1

Theorem G.10. Assuming that the loss functions L, L0, and L1 satisfy Assumptions G.1 and G.2
and LT ≤ Lmax, running Algorihtm 1 for T iterations with a learning rate 0 < ηt = η ≤ 2α

L ,∀t,
ϵ1/2 ≤ 1

∥∇L(θt)∥ and choose α = N0

N0+N1 , the output satisfies

E[∥∇L(θt)∥2] ≤
L(θ0)− L⋆

ηT (1− α)

+
ϵ1/2Ldα(6 + ϵ3/2Ldα2)

4(1− α)
+

ηL

(1− α)

(
(1− α)2

2K1
+

α2d

2K0

)
σ2

(12)
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Proof: By Assumption G.1:

Et[L(θt+1)] ≤ L(θt) + Et[⟨∇L(θt),θt+1 − θt⟩] +
L

2
Et[∥θt+1 − θt∥2]

(a)
= L(θt)− ηt

〈
∇L(θt), (1− α)∇L1(θt) + αEB0 [∇̂L0(θt;B0)]

〉

+
Lη2t
2

∥∥∥(1− α)∇L1(θt) + αEB0 [∇̂L0(θt;B0)]
∥∥∥
2

+
Lη2t (1− α)2

2
EB1 [

∥∥∇L1(θt)−∇L1(θt;B1)
∥∥2] + Lη2tα

2

2
Var(∇̂L0(θt;B0))

(b)

≤ L(θt)− ηt

〈
∇L(θt), (1− α)∇L1(θt) + αEB0 [∇̂L0(θt;B0)]

〉

+
Lη2t
2

(∥∥(1− α)∇L1(θt) + α∇L0(θt)
∥∥+

∥∥∥EB0 [∇̂L0(θt;B0)]−∇L0(θt)
∥∥∥
)2

+
Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2

(c)

≤ L(θt)− ηt

〈
∇L(θt), (1− α)∇L1(θt) + αEB0 [∇̂L0(θt;B0)]

〉

+
Lη2t
2
∥∇L(θt)∥2 +

L2η2t ϵd

2
∥∇L(θt)∥+

ϵ2L3η2tα
2d2

8

+
Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2

(13)
where (a) substitutes the update of θ and takes expectation of g0, g1; (b) add and subtract α∇L0(θt)
and Cauchy-Schwartz inequality to the third term and the last two terms follow from the Lemma G.6;
(c) follows from the Lemma G.5. The second term on the Right-Hand-Side (RHS) can be further
bounded by

− ηt

〈
∇L(θt), (1− α)∇L1(θt) + αEB0 [∇̂L0(θt;B0)]

〉

= −ηt
〈
∇L(θt), (1− α)∇L1(θt) + α∇L0(θt)− α∇L0(θt) + αEB0 [∇̂L0(θt;B0)]

〉

= −ηt ∥∇L(θt)∥2 − αηt

〈
∇L(θt),EB0 [∇̂L0(θt;B0)]−∇L0(θt)

〉
(14)

The second term in equation (14) can be further bounded by

− αηt

〈
∇L(θt),EB0 [∇̂L0(θt;B0)]−∇L0(θt)

〉

(a)

≤ αηt ∥∇L(θt)∥
∥∥∥EB0 [∇̂L0(θt;B0)]−∇L0(θt)

∥∥∥
(b)

≤ αηtϵLd

2
∥∇L(θt)∥

(15)

where (a) applies Cauchy-Schwartz inequality; (b) applies Lemma G.5. Substitute equation (16)
back to equation (14), we have

− ηt

〈
∇L(θt), (1− α)∇L1(θt) + αEB0 [∇̂L0(θt;B0)]

〉

≤ −ηt ∥∇L(θt)∥2 +
αηtϵLd

2
∥∇L(θt)∥

(16)
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Substitute equation (16) back to equation (13), we have

Et[L(θt+1)] ≤ L(θt)− (1− Lηt
2

)ηt ∥∇L(θt)∥2

+
ϵLd(α+ Lηt)

2
ηt ∥∇L(θt)∥+

ϵ2L3ηtα
2d2

8
ηt +

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2

(a)

≤ L(θt)− (1− Lηt
2

)ηt ∥∇L(θt)∥2

+
ϵ1/2Ld(α+ Lηt)

2
ηt +

ϵ2L3ηtα
2d2

8
ηt +

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2

(17)
where (a) choose that ϵ1/2 ≤ 1

∥∇L(θt)∥ , then ϵ1/2 ∥∇L(θt)∥ ≤ 1.

Choose ηt ≤ 2α
L , we have 1− Lηt

2 ≥ 1− α > 0, ηtL ≤ 2α and

(1− α)ηt ∥∇L(θt)∥2 ≤ L(θt)− Et[L(θt+1)]

+
ϵ1/2Ldα(6 + ϵ3/2Ldα2)

4
ηt +

Lη2t (1− α)2

2K1
σ2 +

Lη2tα
2d

2K0
σ2

(18)

Sum from t = 0 to T we have

T∑

t=0

(
(1− α)ηtE[∥∇L(θt)∥2]

)
≤ L(θ0)− E[L(θT+1)]

+

T∑

t=0

ϵ1/2Ldα(6 + ϵ3/2Ldα2)

4
ηt +

T∑

t=0

η2t ·
(
L(1− α)2

2K1
σ2 +

Lα2d

2K0
σ2

)

(19)

Choosing ηt = η ≤ 2α
L ,∀t and dividing both sides by (1− α)ηT , we have

E[∥∇L(θt)∥2] ≤
L(θ0)− L⋆

ηT (1− α)

+
ϵ1/2Ldα(6 + ϵ3/2Ldα2)

4(1− α)
+

ηL

(1− α)

(
(1− α)2

2K1
+

α2d

2K0

)
σ2

(20)

where the expectation is taken over t (uniformly) and the randomness of the algorithm. This completes
the proof.

Corollary G.11. By choosing η = min

{
2α
L ,
√

2(L(θ0)−L⋆)

TLσ2
(

(1−α)2

K1 +α2d
K0

)
}

and

ϵ ≤ min





1
∥∇L(θt)∥2(

(L(θ0)−L⋆)σ
2((1−α)2/K1+α2d/K0)

2T

)1/4

· 2
L3/4dα3/2

2(L(θ0)−L⋆)σ
2((1−α)2/K1+α2d/K0)
9TLd2α2





Addax converges with rate

E[∥∇L(θt)∥2] ≤
√
2L

2
·

√
(1−α)2

K1 + α2d
K0

1− α
· σ
√
L(θ0)− L⋆

T

= O
(

1√
T
·
√

(1− α)2

K1
+

α2d

K0

)
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G.5 Convergence of Addax with low efficient rank Hessian

Theorem G.12. Under Assumption G.1-Assumption G.3, by running Algorithm 1 for T iterations
with ηt = η ≤ min{ 1

(1−α)L ,
2−α

1−α+2α2L(2+r)},∀t, the output satisfies

E[∥∇L(θt)∥2] ≤
L(θ0)− L⋆

ηC1T
+

αϵ2L2d2 (1 + 2ηαLr)

8C1

+
ηLσ2

2C1

(
(1− α)2

K1
+

2(2 + r)α2

K0

)
, (21)

where C1 = 1− α
2 −

ηL
2

(
1− α+ 2α2L(2 + r)

)
.

Proof: Using the Taylor expansion with Lagrange remainder, we have:

L(θt+1) = L(θt) + ⟨∇L(θt),θt+1 − θt⟩+
1

2
(θt+1 − θt)

⊤∇L(θ′)(θt+1 − θt), (22)

where θ′ = λθt + (1− λ)θt+1, for some λ ∈ [0, 1]. Taking expectation conditioned on everything
until t, we have:

Et[L(θt+1)] = L(θt) + ⟨∇L(θt),Et[θt+1 − θt]⟩+
1

2
Et

[
(θt+1 − θt)

⊤∇L(θ′)(θt+1 − θt)
]

(a)

≤ L(θt)− ηt

〈
∇L(θt), (1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]

〉

+
η2t
2
E
[〈

(1− α)∇L(θt;B1) + α∇̂L(θt;B0),

H
(
(1− α)∇L(θt;B1) + α∇̂L(θt;B0)

)〉]

= L(θt)− ηt(1− α) ∥∇L(θt)∥2 − ηtα
〈
∇L(θt),EB0 [∇̂L(θt;B0)]

〉

+
η2t (1− α)2

2
EB1

[〈
∇L(θt;B1),H∇L(θt;B1)

〉]

+
η2tα

2

2
EB0

[〈
∇̂L(θt;B0),H∇̂L(θt;B0)

〉]

+ η2tα(1− α)
〈
EB0 [∇̂L(θt;B0)],HEB1 [∇L(θt;B1)]

〉

(b)

≤ L(θt)− ηt(1− α) ∥∇L(θt)∥2 − ηtα
〈
∇L(θt),EB0 [∇̂L(θt;B0)]

〉

+
η2t (1− α)2L

2

(
∥∇L(θt)∥2 +

σ2

K1

)

+
η2tα

2

2
EB0

[〈
∇̂L(θt;B0),H∇̂L(θt;B0)

〉]

+ η2tα(1− α)
〈
∇L(θt),HEB0 [∇̂L(θt;B0)]

〉
, (23)

where (a) substitute the update rule of Algorithm 1; (b) uses the fact that B0 and B1 are independent
to the last term, and applies Assumption G.2 to the fourth term. Next, we bound the last two terms
separately. For the fifth term, we have:

EB0

[〈
∇̂L(θt;B0),H∇̂L(θt;B0)

〉]
= EB0

[
tr
(〈
∇̂L(θt;B0),H∇̂L(θt;B0)

〉)]

(a)
= EB0

[
tr
(
H∇̂L(θt;B0)⊤L(θt;B0)

)]

(b)
= tr

(
HEB0

[
∇̂L(θt;B0)⊤L(θt;B0)

])
(24)

where the (a) uses the property to trace that tr (ABC) = tr (BCA), and (b) uses the fact that trace
is a linear operator so E[tr (·)] = tr (E[·]). We have:

EB0,z

[
∇̂L(θt;B0)⊤∇̂L(θt;B0)

]
= EB0,z

[(L(θt + ϵz;B0)− L(θt − ϵz;B0)
2ϵ

)2

zz⊤

]
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(a)

≤ 1

2ϵ2
EB0,z

[
(2ϵz⊤∇L(θt;B0))2zz⊤

]

+
1

2ϵ2
EB0,z

[(
L(θt + ϵz;B0)− L(θt − ϵz;B0)− 2ϵz⊤∇L(θt;B0)

)2
zz⊤

]

(b)

≤ 2EB0,z

[
(z⊤∇L(θt;B0))2zz⊤

]

+
1

ϵ2
EB0,z

[(
L(θt + ϵz;B0)− L(θt;B0)− ϵz⊤∇L(θt;B0)

)2
zz⊤

]

+
1

ϵ2
EB0,z

[(
L(θt;B0)− L(θt − ϵz;B0)− ϵz⊤∇L(θt;B0)

)2
zz⊤

]

Assumption G.1

≤ 2EB0,z

[
(z⊤∇L(θt;B0))2zz⊤

]
+

2

ϵ2
EB0,z

[(
dLϵ2

2

)2

zz⊤

]

(c)
= 2EB0,z

[
(z⊤∇L(θt;B0))2zz⊤

]
+

d2L2ϵ2

2
Id, (25)

where (a) extracts the constant, add and subtract 2ϵ∇L(θt;B0) and uses the Cauchy–Schwarz
inequality; (b) add and subtract L(θt;B0) to the second term, then applies the Cauchy–Schwarz
inequality; by Assumption G.1, we have

∣∣L(θ + ϵz;B)− L(θ;B)− ϵz⊤∇L(θ;B)
∣∣ ≤ Lϵ2d

2 ; and (c)

uses the fact that E[zz⊤] = Id as z ∼ N (0, Id). Substitute equation (25) to equation (24), we have:

EB0

[〈
∇̂L(θt;B0),H∇̂L(θt;B0)

〉]

≤ 2tr
(
HEB0,z

[
(z⊤∇L(θt;B0))2zz⊤

])
+ tr

(
d2L2ϵ2

2
H

)

= 2EB0,z

[
(z⊤∇L(θt;B0))2z⊤Hz

]
+

rd2L3ϵ2

2

Lemma G.7
=

2d

d+ 2
EB0

[
2∇L(θt;B0)⊤H∇L(θt;B0) +

∥∥∇L(θt;B0)
∥∥2 tr (H)

]
+

rd2L3ϵ2

2
Assumption G.3

≤ 2dL(2 + r)

d+ 2
EB0

[∥∥∇L(θt;B0)
∥∥2
]
+

rd2L3ϵ2

2
Assumption G.2

≤ 2dL(2 + r)

d+ 2

(
∥∇L(θt)∥2 +

σ2

K0

)
+

rd2L3ϵ2

2
. (26)

For the last term in equation (23), we applies the Cauchy–Schwarz inequality:
〈
∇L(θt),HEB0 [∇̂L(θt;B0)]

〉 (a)

≤ L

2

(
∥∇L(θt)∥2 +

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥
2
)
, (27)

where (a) applies the fact that ⟨a, b⟩ ≤ 1
2 (∥a∥

2
+ ∥b∥2). Substitute equation (26), equation (27), and

equation (6) back to equation (23), we have:

Et[L(θt+1)] ≤ L(θt)− ηt

(
1− α

2
− ηtL

2

(
1− α+ 2α2L(2 + r)

))
∥∇L(θt)∥2

− ηtα(1− ηt(1− α)L)

2

∥∥∥EB0 [∇̂L(θt;B0)]
∥∥∥
2

+
ηtαϵ

2L2d2 (1 + 2ηtαLr)

8
+

η2tLσ
2

2

(
(1− α)2

K1
+

2(2 + r)α2

K0

)
.

By setting ηt = η ≤ min{ 1
(1−α)L ,

2−α
1−α+2α2L(2+r)}, summing from t = 0, . . . , T − 1, and divide

both side by ηC1T , with C1 = 1− α
2 −

ηL
2

(
1− α+ 2α2L(2 + r)

)
, we have:

E[∥∇L(θt)∥2] ≤
L(θ0)− L⋆

ηC1T
+

αϵ2L2d2 (1 + 2ηαLr)

8C1

+
ηLσ2

2C1

(
(1− α)2

K1
+

2(2 + r)α2

K0

)
. (28)

The theorem is proved.
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Corollary G.13. By choosing

η = min





1

(1− α)L
,

2− α

1− α+ 2α2L(2 + r)
,

√√√√ 2(L(θ0)− L⋆)

TLσ2
(

(1−α)2

K1 + 2(2+r)α2

K0

)





and

ϵ ≤
(
32(L(θ0)− L⋆)σ

2
(
(1− α)2/K1 + 2(2 + r)α2/K0

)

T

)1/4

· 1

L3/4d
√
α
,

Algorithm 1 converges with rate

E[∥∇L(θt)∥2] ≤
√
2L ·

√
(1−α)2

K1 + 2(2+r)α2

K0

2− α− ηL (1− α+ 2α2L(2 + r))
· σ
√
L(θ0)− L⋆

T

= O
(

1√
T

√
(1− α)2

K1
+

2(2 + r)α2

K0

)

G.6 Convergence analysis of Addax in smooth strongly convex setting

Theorem G.14. Under Assumptions G.1, G.2, and G.4, by running Algorithm 1 for T iterations with
0 < ηt = η ≤ 1

2L ,∀t, the output satisfies

Et[∥θT − θ⋆∥2] ≤
(
1− ηtµ

2

)T
∥θ0 − θ⋆∥2

+
α2(1/µ+ ηt)ϵ

2L2d2

µ
+

2ηt(1− α)2

K1µ
σ2 +

2ηtα
2d

K0µ
σ2.

(29)

By Assumption G.4, with µ > 0, we have:

Et[∥θt+1 − θ⋆∥2] = Et[∥θt+1 − θt + θt − θ⋆∥2]
= ∥θt − θ⋆∥2 + Et

[
∥θt+1 − θt∥2 + 2 ⟨θt+1 − θt,θt − θ⋆⟩

]

(a)
= ∥θt − θ⋆∥2 + η2t

∥∥∥(1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]
∥∥∥
2

+ η2t (1− α)2EB1 [
∥∥∇L(θt)−∇L(θt;B1)

∥∥2] + η2tα
2Var(∇̂L(θt;B0))

− 2ηt

〈
θt − θ⋆, (1− α)∇L(θt) + αEB0 [∇̂L(θt;B0)]

〉

(b)

≤ ∥θt − θ⋆∥2 + 2η2t ∥∇L(θt)∥2 +
η2tα

2ϵ2L2d2

2
+

η2t (1− α)2

K1
σ2 +

η2tα
2d

K0
σ2

− 2ηt ⟨θt − θ⋆,∇L(θt)⟩ − 2αηt
〈
θt − θ⋆,EB0 [∇̂L(θt;B0)]−∇L(θt)

〉

(c)

≤ ∥θt − θ⋆∥2 + 4η2tL (L(θt)− L⋆)− ηt

(
2(L(θt)− L⋆) + µ ∥θt − θ⋆∥2

)

− 2αηt
〈
θt − θ⋆,EB0 [∇̂L(θt;B0)]−∇L(θt)

〉

+
η2tα

2ϵ2L2d2

2
+

η2t (1− α)2

K1
σ2 +

η2tα
2d

K0
σ2, (30)

where (a) substitutes the update of θ and takes expectations to g0, g1 and conditions on θt;(b) plugs
in equation (7) to the second term, and the third term follows from Lemma G.6; (c) uses the fact
that L(θ) ≤ L(θ⋆) + 1

2L ∥∇L(θ)∥
2 for convex and smooth L(·). This implies that ∥∇L(θ)∥2 ≤

2L(L(θ)−L(θ⋆)) and applies to the second term. We apply Assumption G.4 to the sixth term in (c)
by setting θ, θ′ to θ⋆ and θt, respectively. The middle term can be further bounded as:

−2
〈
θt − θ⋆,EB0 [∇̂L(θt;B0)]−∇L(θt)

〉
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(a)

≤ µ

2α
∥θt − θ⋆∥2 +

2α

µ

∥∥∥EB0 [∇̂L(θt;B0)]−∇L(θt)
∥∥∥
2

≤ µ

2α
∥θt − θ⋆∥2 +

αϵ2L2d2

2µ
, (31)

where (a) applies Young’s inequality for inner products, i.e., −2⟨a,b⟩ ≤ 1
τ ∥a∥2 + τ∥b∥2 with

τ = 2α
µ in our case. Then we have:

Et[∥θt+1 − θ⋆∥2] ≤
(
1− ηtµ

2

)
∥θt − θ⋆∥2 − 2ηt(1− 2ηtL) (L(θt)− L⋆)

+
ηtα

2(1/µ+ ηt)ϵ
2L2d2

2
+

η2t (1− α)2

K1
σ2 +

η2tα
2d

K0
σ2, (32)

By setting ηt ≤ 1
2L , we have 1− 2ηtL ≥ 0. Then we have:

Et[∥θt+1 − θ⋆∥2] ≤
(
1− ηtµ

2

)
∥θt − θ⋆∥2 +

ηtα
2(1/µ+ ηt)ϵ

2L2d2

2

+
η2t (1− α)2

K1
σ2 +

η2tα
2d

K0
σ2, (33)

Recursively apply the above equation (33) and sum from t = 0 to T − 1 by setting ηt = η ≤ 1
2L , we

have

E[∥θT − θ⋆∥2] ≤
(
1− ηµ

2

)T
∥θ0 − θ⋆∥2 +

T−1∑

j=0

(
1− ηµ

2

)j ηα2(1/µ+ η)ϵ2L2d2

2

+

T−1∑

j=0

(
1− ηµ

2

)j (η2(1− α)2

K1
σ2 +

η2α2d

K0
σ2

)

(a)

≤
(
1− ηµ

2

)T
∥θ0 − θ⋆∥2 +

α2(1/µ+ η)ϵ2L2d2

µ

+
2η(1− α)2

K1µ
σ2 +

2ηα2d

K0µ
σ2 (34)

where (a) comes from 0 ≤ 1− 1−ηµ
2 < 1. This completes the proof

Corollary G.15. By choosing η = min

{
1
2L ,

2
µT ln

(
T

µ2∥θ0−θ⋆∥2
4
(

(1−α)2

K1 +α2d
K0

)
σ2

)}
and

ϵ ≤ σ

Ld

√√√√2
(

(1−α)2

K1 + α2d
K0

)

Tα(1/µ+ ηα)
,

Algorithm 1 converges with rate

E[∥θT − θ⋆∥2] ≤
9

µT
ln


T

µ2
∥∥θ0 − θ⋆

∥∥2

4
(

(1−α)2

K1 + α2d
K0

)
σ2



(
(1− α)2

K1
+

α2d

K0

)
σ2

= O
(
ln(T )

T

(
(1− α)2

K1
+

α2d

K0

))
.
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