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Abstract

In this study, we undertake a reproducibility analysis of "Learning Fair Graph Representa-
tions Via Automated Data Augmentations" by Ling et al. (2022). We assess the validity
of the original claims focused on node classification tasks and explore the performance of
the Graphair framework in link prediction tasks. Our investigation reveals that we can
partially reproduce one of the original three claims and fully substantiate the other two.
Additionally, we broaden the application of Graphair from node classification to link pre-
diction across various datasets. Our findings indicate that, while Graphair demonstrates
a comparable fairness-accuracy trade-off to baseline models for mixed dyadic-level fairness,
it has a superior trade-off for subgroup dyadic-level fairness. These findings underscore
Graphair’s potential for wider adoption in graph-based learning. Our code base can be
found on GitHub at https://github.com/juellsprott/graphair-reproducibility.

1 Introduction

Graph Neural Networks (GNNs) have become increasingly popular for their exceptional performance in
various applications (Hamaguchi et al., 2017; Liu et al., 2022; Han et al., 2022a). A key application area
is graph representation learning (Grover & Leskovec, 2016; Hamilton, 2020; Han et al., 2022b), where a
significant concern is the potential for GNNs to inherit or amplify biases present in the graph representation
training data. This can lead to discriminatory model behavior (Dai & Wang, 2022). To address this issue,
Ling et al. (2022) introduced Graphair, an automated data augmentation technique aimed at learning fair
graph representations without maintaining biases from the training data.

This work evaluates the main claims made by Ling et al. (2022), which were based solely on the performance of
the framework in node classification tasks. We expand our evaluation by conducting additional experiments
to assess the adaptability and generalizability of Graphair through its application to a different downstream
task, namely, link prediction. This approach allows us to further test the performance and fairness of the
embeddings.

For this purpose, we apply Graphair to new real-world datasets, adapting certain aspects of the framework
and fairness metrics to suit link prediction. Our contributions are summarized as follows:
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• We replicate the original experiments to assess the reproducibility of the primary claims. We find
that one of the three claims made by the original authors was partially reproducible, while the
remaining claims are fully verified.

• We adapt the Graphair framework for link prediction on various real-world datasets, which required
modifications to both the framework and the fairness metrics. These adjustments provided valuable
insights into Graphair’s adaptability and generalizability to another downstream task. Our findings
suggest that Graphair achieves a superior trade-off in one of the fairness metrics used for this task.

2 Scope of reproducibility

The original paper Learning Fair Graph Representations Via Automated Data Augmentations by Ling et al.
(2022) introduces Graphair, an innovative automated graph augmentation method for fair graph represen-
tation learning. This approach stands out from prior methods (Luo et al., 2022; Zhao et al., 2022; Agarwal
et al., 2021) by utilizing a dynamic and automated model to generate a new, fairer version of the original
graph, aiming to balance fairness and informativeness (Ling et al., 2022).

In this work, we study the reproducibility of this paper. Besides examining the three main claims, we also
assess the adaptability and effectiveness of Graphair in a different context, namely link prediction. This
extension tests the framework’s ability to maintain fairness and informativeness in a different downstream
tasks. We will test this on a variety of datasets. The claims and our extension are as follows:

• Claim 1: Graphair consistently outperforms state-of-the-art baselines in node classification tasks for
real-world graph datasets. Our extension evaluates whether this superior performance extends to
link prediction tasks as well.

• Claim 2: Both fair node features and graph topology structures contribute to mitigating prediction
bias.

• Claim 3: Graphair can automatically generate new graphs with fair node topology and features.

3 Methodology

3.1 Graphair

The Graphair framework introduces a novel approach to graph augmentation, focusing on the dual objec-
tives of maintaining information richness and ensuring fairness. It incorporates a model g, which adeptly
transforms an input graph G = {A, X, S}, where A represents the adjacency matrix, X the node features,
and S the sensitive attributes, into an augmented counterpart G′ = {A′, X ′, S}. This transformation uti-
lizes two main operations: TA for adjusting the adjacency matrix A and TX for masking node features
X. A GNN-based encoder genc precedes these transformations, tasked with extracting deep embeddings to
inform these operations. The resulting augmented graph G′ is designed to capture the core structural and
feature-based elements of the original graph G, while simultaneously keeping fairness principles to prevent
the propagation of sensitive attribute information. This objective is achieved by training an adversarial
model and using contrastive loss to optimize G′. An overview of the Graphair framework is presented in
Figure 5 in Appendix A.1.

3.1.1 Adversarial Training for Fairness

To ensure the fairness of the augmented graph, the model employs an adversarial training strategy. The
adversarial model k learns to predict sensitive attributes S from the graph’s features. Simultaneously, the
representation encoder f and augmentation model g are optimized to minimize the predictive capability
of the adversarial model, effectively removing biases from the augmented graph. The primary goal of
adversarial training is to guide the encoder in generating representations that are free from sensitive attribute
information. This optimization can be formally defined as follows:
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min
g,f

max
k

Ladv = min
g,f

max
k

1
n

n∑
i=1

[
Si log Ŝi + (1 − Si) log(1 − Ŝi)

]
(1)

Here, Ŝi represents the predicted sensitive attributes, and n is the number of nodes.

3.1.2 Contrastive Learning for Informativeness

The model employs contrastive learning to enhance the informativeness of the augmented graphs. This
method focuses on ensuring that the node representations between the original graph hi and the augmented
graph h′

i maintain a high degree of similarity, thereby preserving key information. The positive pair in this
context is defined as any pair (hi, h′

i), where hi is the node representation in the original graph and h′
i is the

corresponding representation in the augmented graph.

The contrastive learning function l, used to compute the loss for these positive pairs, is specified as follows:

l(hi, h′
i) = − log

(
exp(sim(hi, h′

i)/τ)∑n
j=1 exp(sim(hi, hj)/τ) +

∑n
j=1 Ij ̸=i exp(sim(hi, h′

j)/τ)

)
(2)

where τ is the temperature scaling parameter, and Ij ̸=i is an indicator function that equals 1 if j ̸= i and
0 otherwise. This loss function aims to minimize the distance between similar node pairs while maximizing
the distance between dissimilar pairs in the embedding space.

The overall contrastive loss Lcon is given by:

Lcon = 1
2n

n∑
i=1

[l(hi, h′
i) + l(h′

i, hi)] (3)

3.1.3 Reconstruction Based Regularization to Ensure Graph Consistency

To ensure that the augmentation model produces graphs that do not deviate significantly from the input
graphs, the model includes a reconstruction-based regularization term in its overall training objective. Specif-
ically, let LBCE and LMSE represent the binary cross-entropy and mean squared error losses, respectively.
The regularization term is mathematically expressed as:

Lreconst = LBCE(A, Ã′) + λLMSE(X, X ′)

= −
n∑

i=1

n∑
j=1

[Aij log (Ã′
ij) + (1 − Aij) log (1 − Ã′

ij)] + λ||X − X ′||2F
(4)

Here, λ is a hyperparameter, and ∥·∥F denotes the Frobenius norm of a matrix.

3.1.4 Integrated Training Objective

By emphasizing informativeness and fairness properties, Graphair seeks to produce augmented graphs that
are less susceptible to bias. This approach contributes to fairer graph representation learning while preserving
the valuable information contained in the data. The overall training process is described as the following
min-max optimization procedure, where α, β, and γ are hyperparameters that balance the different loss
components:

min
f,g

max
k

L = min
f,g

max
k

αLadv + βLcon + γLreconst (5)
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3.2 Datasets

To replicate the main claims, we use the same datasets as the original paper by Ling et al. (2022), which
include specific dataset splits and sensitive and target attributes. We employ three real-world graph datasets:
NBA1, containing player statistics, and two subsets of the Pokec social network from Slovakia, namely Pokec-
n and Pokec-z (Dai & Wang, 2021). The specifics of these datasets are summarized in Table 1.

For the link prediction task, we utilize well-established benchmark datasets in this domain: Cora, Citeseer,
and Pubmed (Spinelli et al., 2021; Chen et al., 2022; Current et al., 2022; Li et al., 2021). These datasets
feature scientific publications as nodes with bag-of-words vectors of abstracts as node features. Edges
represent citation links between publications. Notably, these datasets possess a broader range of features
compared to those used by Ling et al. (2022) and have a larger set of possible sensitive attributes |S|. Full
details are provided in Table 1.

Table 1: Dataset Statistics.

Dataset S |S| Features Nodes Edges
NBA nationality 2 39 403 16,570
Pokec-z region 2 59 67,797 882,765
Pokec-n region 2 59 66,569 729,129
Citeseer paper class 6 3,703 3,327 9,104
Cora paper class 7 1,433 2,708 10,556
PubMed paper class 3 500 19,717 88,648

3.3 Experimental Setup

We obtain the model’s codebase from the DIG library, more specifically, from the FairGraph module2.
To enhance reproducibility, we employ complete seeding across all operations, which was missing in some
operations of the original code. A key difference in the experimental setup between the one reported by the
original authors and ours is that we conducted a 10,000-epoch grid search for the Pokec dataset, instead
of the 500-epoch grid search initially reported by (Ling et al., 2022). This modification was recommended
by the original authors to enhance reproducibility. We refer to the subsection A.4 for more details, where
we show that a 500-epoch search does not yield optimal results for the Pokec datasets, but higher epochs
improve performance in accuracy and fairness. To verify Claims 1 and 2, we follow the procedure described
by Ling et al. (2022). For Claim 3, due to memory constraints, we compute the homophily and Spearman
correlation values for the Pokec datasets on a mini-batch instead of the entire graphs. Aside from this, we
adhere to the same procedures for this claim as well.

3.4 Link Prediction

In our study, we extend the scope of the original work by performing a different downstream task, namely
link prediction. We implement several modifications to adjust the Graphair network for the downstream
task of link prediction. First of all, we modifiy the output size of the adversarial network from two, which
corresponded to the binary sensitive feature in the Pokec and NBA datasets, to the respective number of
distinct values of the sensitive feature in the corresponding dataset.

To create the link embeddings for the input of the classifier, we compute the Hadamard product of the node
embeddings (Horn & Johnson, 2012), which pairs node embeddings effectively. For nodes v and u, we define
the link embedding hvu as:

hvu = hv ◦ hu (6)

These new link embeddings require labels that reflect the sensitive attributes of the connected nodes. To
this end, we integrate dyadic-level fairness criteria into our fairness assessment for link prediction. We form

1https://www.kaggle.com/datasets/noahgift/social-power-nba
2https://github.com/divelab/DIG/tree/dig-stable/dig/fairgraph
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dyadic groups that relate sensitive node attributes to link attributes, following the mixed and subgroup
dyadic-level fairness principles suggested by Masrour et al. (2020). The mixed dyadic-level groups classify
links as either inter- or intra-group based on whether they connect nodes from the same or different sensitive
groups. The subgroup dyadic-level approach assigns each link to a subgroup based on the sensitive groups
of the nodes it connects. A subgroup is formed for each possible combination of sensitive groups. This
method facilitates the measurement of fairness in two distinct aspects. Firstly, it assesses how well each
protected subgroup is represented in link formation at the subgroup dyadic-level. Secondly, it evaluates
node homogeneity for links at the mixed dyadic-level.

For assessing fairness in link prediction, we aim to optimize for Equality of Opportunity (EO) and Demo-
graphic Parity (DP) using these dyadic groups. Following the original paper’s definition, DP is defined
as: ∣∣∣P(Ŷ = 1 | D = 0) − P(Ŷ = 1 | D = 1)

∣∣∣
and EO as: ∣∣∣P(Ŷ = 1 | D = 0, Y = 1) − P(Ŷ = 1 | D = 1, Y = 1)

∣∣∣
where Y is a ground-truth label, Ŷ is a prediction, and in the case of link prediction, D denotes the dyadic
group to which the link belongs. These definitions extend to multiple dyadic groups (|D| > 2), which is the
case for subgroup dyadic analysis. As our final metrics, we define the Demographic Parity difference (∆DP)
as the selection rate gap and the Equal Opportunity difference (∆EO) as the largest discrepancy in true
positive rates (TPR) and false positive rates (FPR) across groups identified by D:

∆DP = max
d

P(Ŷ |D = d) − min
d

P(Ŷ |D = d),

∆TPR = max
d

P(Ŷ = 1|D = d, Y = 1) − min
d

P(Ŷ = 1|D = d, Y = 1),

∆FPR = max
d

P(Ŷ = 1|D = d, Y = 0) − min
d

P(Ŷ = 1|D = d, Y = 0),

∆EO = max(∆TPR, ∆FPR).

Link prediction performance is measured using accuracy and the Area Under the ROC Curve (AUC) metrics,
representing the trade off between true and false positives.

3.4.1 Baselines

We adopt FairAdj (Li et al., 2021) and FairDrop (Spinelli et al., 2021) as our benchmarks. FairAdj learns a
fair adjacency matrix during an end-to-end link prediction task. It utilizes a graph variational autoencoder
and employs two distinct optimization processes: one for learning a fair version of the adjacency matrix
and the other for link prediction. We used two versions of FairAdj: one with 5 epochs (r = 5) and the
other with 20 epochs (r = 20). FairDrop, on the other hand, proposes a biased edge dropout algorithm to
counteract homophily and improve fairness in graph representation learning. We used two different versions
of FairDrop: one with Graph Convolutional Network (GCN) (Kipf & Welling, 2016) and the other with
Graph Attention Networks (GAT) (Velickovic et al., 2017).

3.5 Hyperparameters

Node Classification To align our experiments closely with the original study, we adopt the hyperparam-
eters specified by the authors. This includes conducting a grid search on the hyperparameters α, γ, and λ
with the values {0.1, 1.0, 10.0}, as performed in the original work (Ling et al., 2022). We use the default
settings from the original code where specific hyperparameters are not disclosed, a choice validated by the
original authors. A complete list of all hyperparameters is provided in Table 7 in subsection A.2.

Link Prediction We replicate the grid search from the node classification experiments for link prediction
on the Citeseer, Cora, and PubMed datasets. Initially, we conduct a grid search on the model parameters,
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including varying the number of epochs, the learning rates for both the Graphair module and the classifier,
and the sizes of the hidden layers for both components. We select the most notable model setup based on
performance metrics (accuracy and ROC) and fairness values, and then perform a subsequent grid search on
the loss hyperparameters α, λ, and γ to fine-tune the model further.

We compare the results of Graphair with baseline results from Spinelli et al. (2021) and Li et al. (2021),
which also underwent grid searches. For FairAdj, we conducted a grid search focusing on model parameters,
involving variations in learning rates, hidden layer sizes, number of outer epochs, and the specific configu-
ration parameter. We evaluated two versions of FairAdj: one with 5 epochs and the other with 20 epochs.
For FairDrop, we also performed a grid search on the model parameters, testing different learning rates,
epoch counts, and hidden layer sizes. We evaluated two configurations of FairDrop: one using a Graph
Convolutional Network (GCN) and the other using Graph Attention Networks (GAT). More detailed infor-
mation on the hyperparameters fine-tuned during the grid search for each model is presented in Table 8 in
subsection A.2.

3.6 Computational requirements

All of our experiments are conducted on a high-performance computing (HPC) cluster, that features NVIDIA
A100 GPUs, divided into four partitions with a combined memory of 40 GB. For a detailed overview of the
GPU hours required for each experiment, see Table 9 in subsection A.3. A rough estimate suggests that a
total of 80 GPU hours are necessary to complete all experiments.

4 Results

This section presents the outcomes of our experimental results aimed at reproducing and extending the
findings of the original work on Graphair. We discuss the reproducibility of specific claims made in the
original paper in subsection 4.1 and explore the performance of Graphair in a link prediction downstream
task in subsection 4.2.

4.1 Results reproducing original paper

Claim 1: To verify Claim 1, we performed node classification on the NBA, Pokec-n, and Pokec-z datasets.
Table 2 shows a comparison of the results reported by the original authors and the results of baseline models
given by the original authors with those obtained by us through replicating the experimental setup described
in subsection 3.3. Consistent with the original study, our results are derived by selecting the best outcome
from the grid search procedure. We observe that the results for the NBA dataset are similar to those reported
by the authors. However, for the Pokec datasets, our Graphair model gets better fairness scores at the cost
of worse accuracies.

When examining the fairness-accuracy trade-off in Figure 1, which uses the ∆DP fairness metric, we see
that for the NBA dataset we can achieve a similar trade-off. For the Pokec-z data, a small discrepancy is
reflected by a similar trend, but with lower accuracy scores. The Pokec-n dataset also shows a similar trend
but fails to reach the higher accuracies of the original model. Considering that the code we used from the
DIG library differs from what the original authors used, combined with the fact that a different number of
epochs, namely 10,000 was used for the Pokec dataset instead of the originally reported 500, we think there
might still be some differences in the experimental setups. Even though these discrepancies are probably
minor, they do not allow us to achieve better performance in terms of the accuracy-fairness trade-off for all
datasets compared to baseline models, which makes us only partially able to reproduce Claim 1.

6



Table 2: Comparison of the results reported by the original authors with those obtained by us.

NBA Pokec-n Pokec-z
Methods ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓
FairWalk 64.54 ± 2.35 3.67 ± 1.28 9.12 ± 7.06 67.07 ± 0.24 7.12 ± 0.74 8.24 ± 0.75 65.23 ± 0.78 4.45 ± 1.25 4.59 ± 0.86
FairWalk+X 69.74 ± 1.71 14.61 ± 4.98 12.01 ± 5.38 69.01 ± 0.38 7.59 ± 0.96 9.69 ± 0.09 67.65 ± 0.60 4.46 ± 0.38 6.11 ± 0.54
GRACE 70.14 ± 1.40 7.49 ± 3.78 7.67 ± 3.78 68.25 ± 0.99 6.41 ± 0.71 7.38 ± 0.84 67.81 ± 0.41 10.77 ± 0.68 10.69 ± 0.69
GCA 70.43 ± 1.19 18.08 ± 4.80 20.04 ± 4.34 69.34 ± 0.20 6.07 ± 0.96 7.39 ± 0.82 67.07 ± 0.14 7.90 ± 1.10 8.05 ± 1.07
FairDrop 69.01 ± 1.11 3.66 ± 2.32 7.61 ± 2.21 67.78 ± 0.60 5.77 ± 1.83 5.48 ± 1.32 67.32 ± 0.61 4.05 ± 1.05 3.77 ± 1.00
NIFTY 69.93 ± 0.09 3.31 ± 1.52 4.70 ± 1.04 67.15 ± 0.43 4.40 ± 0.99 3.75 ± 1.04 65.52 ± 0.31 6.51 ± 0.51 5.14 ± 0.68
FairAug 66.38 ± 0.85 4.99 ± 1.02 6.21 ± 1.95 69.17 ± 0.18 5.28 ± 0.49 6.77 ± 0.45 68.61 ± 0.19 5.10 ± 0.69 5.22 ± 0.84
Graphair 69.36 ± 0.45 2.56 ± 0.41 4.64 ± 0.17 67.43 ± 0.25 2.02 ± 0.40 1.62 ± 0.47 68.17 ±0.08 2.10 ± 0.17 2.76 ± 0.19
Graphair (ours) 68.54 ± 0.32 1.31 ± 0.19 5.34 ± 0.32 65.76 ± 0.01 0.72 ± 0.34 0.41 ± 0.40 65.22 ± 0.01 1.32 ± 0.29 2.24 ± 0.31

Figure 1: ACC and DP trade-off for baselines, Graphair and our results for Graphair. Upper-left corner
(high accuracy, low demographic parity) is preferable.

Claim 2: Table 3 confirms that Claim 2 is substantiated for both the NBA and Pokec-z datasets. In com-
parisons of Graphair with and without feature masking (FM) or edge perturbation (EP), notable increases in
fairness metrics are observed. This supports the claim that each model component contributes to mitigating
prediction bias. Interestingly, we notice an increase in accuracy when removing feature masking across all
datasets, a result that deviates from findings in the original work, which showcased similar accuracy scores
when EP was removed. We attribute this to the use of more training epochs in our experimental setup. It
seems logical that performance would improve when edge perturbation is removed, as the encoder model
genc can utilize the original adjacency matrix. This allows the classifier to exploit increased homophily in
the network, thereby increasing accuracy and worsening fairness.

Table 3: Comparisons among different components in the augmentation model.

NBA Pokec-n Pokec-z
Methods ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓
Graphair (ours) 68.54 ± 0.40 1.31 ± 0.27 5.34 ± 0.24 65.76 ± 0.02 0.72 ± 0.36 0.41 ± 0.42 65.22 ± 0.02 1.32 ± 0.33 2.24 ± 0.35
Graphair w/o EP (ours) 72.68 ± 0.40 2.95 ± 1.12 9.05 ± 2.53 67.26 ± 0.16 2.11 ± 0.09 1.37 ± 0.33 69.25 ± 0.10 6.56 ± 0.74 6.73 ± 0.65
Graphair w/o FM (ours) 67.79 ± 0.32 10.73 ± 1.12 26.79 ± 2.53 64.61 ± 0.36 3.83 ± 0.47 3.18 ± 0.27 57.91 ± 0.13 5.19 ± 0.74 6.34 ± 0.33

Claim 3: The plots in Figure 2 clearly illustrate that the homophily values for the augmented graph are
lower than those for the original graph. These results support the authors’ claim that Graphair automatically
generates new graphs with a fairer node topology. The plots in Figure 3 reveal that, for all three datasets,
the features with the highest Spearman correlation to the sensitive feature generally exhibit lower values in
the fair view. These findings lend support to the authors’ claim that Graphair produces features that are
fairer. We can therefore conclude that Claim 3 is fully reproducible.
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Figure 2: Node sensitive homophily distributions in the original and the fair graph data.

Figure 3: Spearman correlation between node features and the sensitive attribute in the original and the fair
graph data.

4.2 Results beyond original paper

The performance of Graphair compared to baseline models is presented in Table 4, Table 5, and Table 6. For
fairness metrics, subscripts m and s denote application to mixed groups and subgroups, respectively. Our
findings indicate that Graphair is outperformed by both FairDrop variants in terms of accuracy and AUC
across all datasets. However, compared to FairDrop, Graphair excels in all fairness metrics on all datasets,
particularly in the subgroup variants on the Citeseer and Cora datasets. FairAdj demonstrates comparable
performance in accuracy and AUC relative to Graphair but performs worse in subgroup fairness metrics,
only excelling in the ∆DPm metric across all datasets.

We further investigate the trade-off between accuracy and ∆DP for both mixed and subgroup variants across
the three datasets for each model, as shown in Figure 4. The trade-off for Graphair is comparable to the
baseline models for the mixed variant, while achieving a superior trade-off for the subgroup variant. While
Spinelli et al. (2021) suggest that high scores for subgroup fairness metrics are due to dataset characteristics,
we find that Graphair improves this metric through its augmentative approach, which generates augmenta-
tions with similar predictive power across different subgroups. This enables Graphair to consistently predict
links with the same probability across various subgroups, resulting in lower subgroup dyadic-level fairness
while maintaining predictive power.

Table 4: Link Prediction on Citeseer

Method Accuracy ↑ AUC ↑ ∆DPm ↓ ∆EOm ↓ ∆DPs ↓ ∆EOs ↓
FairAdjr=5 77.1 ± 2.5 83.4 ± 2.3 33.8 ± 3.5 8.2 ± 4.1 65.6 ± 6.2 80.0 ± 9.0
FairAdjr=20 73.5 ± 2.8 81.2 ± 3.0 26.0 ± 3.4 5.3 ± 3.5 56.5 ± 7.5 70.1 ± 8.0
GCN+FairDrop 87.3 ± 1.7 97.1 ± 1.6 46.7 ± 3.0 8.8 ± 4.5 68.9 ± 6.0 41.1 ± 10.0
GAT+FairDrop 86.3 ± 1.3 96.6 ± 1.2 45.0 ± 2.7 9.6 ± 4.8 68.4 ± 5.9 39.3 ± 9.8
Graphair (ours) 79.2 ± 0.7 86.9 ± 0.6 40.5 ± 0.6 1.1 ± 1.5 2.9 ± 3.0 11.3 ± 3.8
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Table 5: Link Prediction on Cora

Method Accuracy ↑ AUC ↑ ∆DPm ↓ ∆EOm ↓ ∆DPs ↓ ∆EOs ↓
FairAdjr=5 76.6 ± 1.9 83.8 ± 2.4 38.9 ± 4.5 11.6 ± 4.7 78.5 ± 5.3 100.0 ± 8.0
FairAdjr=20 73.0 ± 1.8 78.9 ± 2.2 29.3 ± 3.1 4.7 ± 4.7 83.3 ± 7.2 97.5 ± 7.8
GCN+FairDrop 90.4 ± 1.1 97.0 ± 0.8 58.2 ± 2.7 17.3 ± 5.2 93.6 ± 3.7 98.5 ± 0.5
GAT+FairDrop 85.4 ± 1.4 96.2 ± 1.2 53.2 ± 3.0 17.8 ± 4.6 84.7 ± 2.3 98.2 ± 0.5
Graphair (ours) 75.2 ± 0.8 83.3 ± 0.9 38.7 ± 0.8 12.7 ± 1.7 37.9 ± 3.2 13.3 ± 2.1

Table 6: Link Prediction on PubMed

Method Accuracy ↑ AUC ↑ ∆DPm ↓ ∆EOm ↓ ∆DPs ↓ ∆EOs ↓
FairAdjr=5 83.7 ± 3.2 90.6 ± 4.7 40.76 ± 3.7 35.5 ± 2.5 40.7 ± 3.2 16.7 ± 1.9
FairAdjr=20 76.1 ± 1.8 83.7 ± 2.1 37.2 ± 2.5 22.6 ± 2.0 53.4 ± 5.5 39.9 ± 5.4
GCN+FairDrop 92.3 ± 0.4 97.4 ± 0.2 44.2 ± 0.5 7.6 ± 0.7 54.1 ± 1.5 15.3 ± 2.6
GAT+FairDrop 92.2 ± 0.8 97.3 ± 0.7 43.7 ± 0.9 7.8 ± 1.1 54.5 ± 2.1 14.3 ± 4.1
Graphair (ours) 82.3 ± 0.2 89.8 ± 2.9 37.6 ± 0.4 2.6 ± 0.7 36.4 ± 2.4 8.0 ± 2.4

Figure 4: ACC and DP trade-off for the baselines and our Graphair for link prediction. The top row shows
the ∆DPm metric, and the bottom row shows the ∆DPs metric. Points in the upper-left corner are desired.

5 Discussion

Upon revisiting the three claims in our study, we find that Claim 1 is partially reproducible, whereas Claims
2 and 3 are fully reproducible. In the case of Claim 1, while we were able to replicate the performance of the
NBA dataset consistent with the original paper, discrepancies emerged with the Pokec datasets. Specifically,
our results showed improved fairness scores at the expense of lower accuracies compared to the original
findings. This could be attributed to differences in experimental setup, particularly the number of training
epochs used, which deviated from the original study’s methods. We used 10,000 epochs for the Pokec datasets
as opposed to the 500 reported in the original paper, a change recommended by the original authors.

Further analysis of Graphair’s performance in link prediction indicates that, while it demonstrates a compa-
rable fairness-accuracy trade-off to baseline models for mixed dyadic-level fairness, Graphair has a superior
trade-off for subgroup dyadic-level fairness.
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5.1 What was easy and what was difficult

The clarity of the code within the DIG library3 significantly facilitated reproducibility. The original paper
provided a clear outline of the experiments, enabling a straightforward process to identify the necessary
components for reproducing the study’s claims and implementing our link prediction extensions.

We encountered initial challenges with the reproducibility of Claim 1, which necessitated seeking clarification
from the authors. Correspondence with the original authors resolved issues related to unspecified hyperpa-
rameter settings and a bug in the code. Reproducing Claim 3 for the Pokec datasets proved non-trivial due to
the large memory requirements for processing the full graph, necessitating solutions to acquire experimental
results.

5.2 Communication with original authors

We initiated contact with one of the authors, Hongyi Ling, via email to seek clarification on our initial
results that did not match those of the original paper. These discrepancies were resolved, and the authors
responded promptly to our emails, providing valuable feedback. Most notably, they recommended a change
in our experimental setup for the Pokec datasets, specifically increasing the number of epochs from 500 to
10,000.

3https://github.com/divelab/DIG
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A Appendix

A.1 Overview of the Graphair model

Figure 5: Overview of the Graphair framework (Ling et al., 2022)

A.2 List of all hyperparameters

Table 7: Overview of hyperparameters for the Graphair model m and the evaluation classifier c on all
datasets.

Hyperparameter NBA Pokec-n Pokec-z Citeseer Cora PubMed
α 1.0 0.1 10.0 0.1 10.0 10.0
β 0.1 1.0 10.0 0.1 10.0 10.0
γ 0.1 0.1 0.1 0.1 0.1 0.1
λ 1.0 10.0 10.0 1.0 10.0 0.1
chidden 128 128 128 128 128 128
clearning_rate 1e-3 1e-3 1e-3 5e-3 5e-3 5e-3
cweight_decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
mlearning_rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
mweight_decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

Table 8 presents a comprehensive overview of the hyperparameters adjusted during the grid search. The
initial seven rows correspond to the Graphair model, while the subsequent rows correspond to the baseline
models used for link prediction tasks. Regarding the epoch count for node classification with Graphair,
500 epochs were used for the NBA dataset and 10,000 for the Pokec datasets. For grid searches with the
Graphair model for link prediction, the number of epochs was set to 200.
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Table 8: Overview of all hyperparameters tuned in the grid search.

Hyperparameter Node Classification Link Prediction
α { 0.1, 1, 10} { 0.1, 1, 10}
γ { 0.1, 1, 10} { 0.1, 1, 10}
λ { 0.1, 1, 10} { 0.1, 1, 10}
Classifier lr 1e-3 {1e-2, 1e-3, 1e-4}
Model lr 1e-4 {1e-2, 1e-3, 1e-4}
Classifier Hidden Dimension 128 {64, 128, 256}
Model Hidden Dimension 128 {64, 128, 256}
Model lr (FairAdj)* - {0.1, 1e-2, 1e-3}
hidden1 (FairAdj) - {16, 32, 64}
hidden2 (FairAdj) - {16, 32, 64}
outer epochs (FairAdj) - {4, 10, 20}
Epochs(FairDrop) - {100, 200, 500, 1000}
Model lr (FairDrop) - {5e-2, 1e-2, 5e-3, 1e-3, 5e-4, 1e-4}
Hidden dim. (FairDrop) - {64, 128, 256, 512}

A.3 GPU Run hours

Table 9: Computational Requirement Overview

Name of the experiment GPU Hour (Hour) Max GPU Memory Usage (GB)
Claim 1 (grid search) 20 3.70
Claim 2 2 3.67
Claim 3 0.5 3.70
Link Prediction (grid search) 60 3.70

GPU hour is measured by the amount of time each experiment script needed from the start to the end.
Maximum GPU memory usage is determined by max_memory_allocated method from the Pytorch library.

A.4 Impact of the number of epochs on the accuracy and fairness results

Figure 6: Impact of the number of epochs on the accuracy and fairness results.

Following the original authors’ recommendation to increase the number of epochs in order to replicate their
results, we performed an ablation study to examine the impact of the number of epochs on accuracy and
fairness metrics. As illustrated in Figure 6, there is a positive correlation between the number of epochs and
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both accuracy and fairness metrics. Based on these findings, we conducted our experiments using 10,000
epochs for the Pokec datasets as this led to a notable increase in performance.
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