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Abstract

In this study, we undertake a reproducibility analysis of "Learning Fair Graph Representa-
tions Via Automated Data Augmentations" by Ling et al. (2022). We assess the validity of
the original claims centered around node classification tasks and explore the performance of
the Graphair framework in link prediction tasks. Our investigation reveals that while we can
partially reproduce some of the original claims—likely impeded by unstable training and a
code bug identified through collaboration with the original authors—we fully substantiate
another claim. Additionally, we broaden the application of Graphair from node classification
to link prediction across various datasets. This expansion demonstrates Graphair’s superior
performance in fairness metrics when compared to existing models, showing only a slight
reduction in accuracy. This underlines Graphair’s potential applicability in a wider array
of graph-based learning contexts, showcasing its capability to maintain high fairness stan-
dards without significantly compromising accuracy. Our code base can be found on GitHub
https://anonymous.4open.science/r/Reproducibility-Study-Of-Graphair-1DB6.

1 Introduction

Graph Neural Networks (GNNs) have become increasingly popular for their exceptional performance in
various applications (Hamaguchi et al., 2017; Liu et al., 2022; Han et al., 2022a). A key application area
is graph representation learning (Grover & Leskovec, 2016; Hamilton, 2020; Han et al., 2022b), where a
significant concern is the potential for GNNs to inherit or amplify biases present in the graph representation
training data. This can lead to discriminatory model behavior (Dai & Wang, 2022).

To address this issue, Ling et al. (2022) introduced Graphair, an automated data augmentation technique
aimed at learning fair graph representations without maintaining biases from the training data.

This work evaluates the main claims made by Ling et al. (2022), which were based solely on the performance of
the framework in node classification tasks. We expand our evaluation by conducting additional experiments
to assess the adaptability and generalizability of Graphair through its application to a different downstream
task, namely, link prediction. This approach allows us to further test the performance and fairness of the
embeddings.

For this purpose, we apply Graphair to new real-world datasets, adapting certain aspects of the framework
and fairness metrics to suit link prediction. Our contributions are summarized as follows:

• Replicating the original experiments to assess the reproducibility of the primary claims. We find
that we can only partially verify two of the three claims made by the authors which is likely due to
unstable training and a bug in the code acknowledged by the authors. The remaining claim is fully
verified.

• Applying Graphair to various real-world datasets for link prediction, which necessitated adjustments
to the framework and fairness metrics. This endeavor provides insights into Graphair’s adaptability
and generalizability to another downstream task.
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2 Scope of reproducibility

The original paper Learning Fair Graph Representations Via Automated Data Augmentations by Ling et al.
(2022) introduces Graphair, an innovative automated graph augmentation method for fair graph represen-
tation learning. This approach stands out from prior methods (Luo et al., 2022; Zhao et al., 2022; Agarwal
et al., 2021) by utilizing a dynamic and automated model to generate a new, fairer version of the original
graph, aiming to balance fairness and informativeness (Ling et al., 2022).

In this work, we study the reproducibility of this paper. Besides examining the three main claims, we also
assess the adaptability and effectiveness of Graphair in a different context, namely link prediction. This
extension tests the framework’s ability to maintain fairness and informativeness in a different downstream
tasks. We will test this on a variety of datasets. The claims and our extension are as follows:

• Claim 1: Graphair consistently outperforms state-of-the-art baselines in node classification tasks for
real-world graph datasets. Our extension investigates if this superiority also holds in the context of
link prediction tasks.

• Claim 2: Both fair node features and graph topology structures contribute to mitigating prediction
bias.

• Claim 3: Graphair can automatically generate new graphs with fair node topology and features.

3 Methodology

3.1 Graphair

The Graphair framework introduces a novel approach to graph augmentation, focusing on the dual objec-
tives of maintaining information richness and ensuring fairness. It incorporates a model g, which adeptly
transforms an input graph G = {A, X, S}, where A represents the adjacency matrix, X the node features,
and S the sensitive attributes, into an augmented counterpart G′ = {A′, X ′, S}. This transformation uti-
lizes two main operations: TA for adjusting the adjacency matrix A and TX for masking node features
X. A GNN-based encoder genc precedes these transformations, tasked with extracting deep embeddings to
inform these operations. The resulting augmented graph G′ is designed to capture the core structural and
feature-based elements of the original graph G, while simultaneously keeping fairness principles to prevent
the propagation of sensitive attribute information. This objective is achieved by training an adversarial
model and using contrastive loss to optimize G′. An overview of the Graphair framework is presented in
Figure 3 in Appendix A.1.

3.1.1 Adversarial Training for Fairness

To ensure the fairness of the augmented graph, the model employs an adversarial training strategy (Eq. 1).
The adversarial model k learns to predict sensitive attributes S from the graph’s features. Simultaneously,
the representation encoder f and augmentation model g are optimized to minimize the predictive capability
of the adversarial model, effectively removing biases from the augmented graph. The primary goal of
adversarial training is to guide the encoder in generating representations that are free from sensitive attribute
information. Here, Ŝi represents the predicted sensitive attributes, and n is the number of nodes.

min
g,f

max
k

Ladv = min
g,f

max
k

1
n

n∑
i=1

[
Si log Ŝi + (1 − Si) log(1 − Ŝi)

]
(1)

3.1.2 Contrastive Learning for Informativeness

The model employs contrastive learning (see Eq. 2) to ensure that the augmented graphs are fair and
informative. By aligning the representations of nodes between the input and augmented graphs, the model
strives to retain essential information content. The aim of the contrastive learning approach is to ensure a
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high degree of similarity between the node representations hi of the original and h′
i of the augmented graphs.

The function Lcon denotes the contrastive loss between two node representations.

Lcon = 1
2n

n∑
i=1

[l(hi, h′
i) + l(h′

i, hi)] (2)

3.1.3 Integrated Training Objective

The training framework of Graphair integrates aforementioned adversarial and contrastive learning objec-
tives in a coherent manner. This integrated approach ensures that the encoder not only minimizes bias
in the graph representations but also captures the essential attributes of the original graph. Through this
methodology, Graphair seeks to produce augmented graphs that are less susceptible to bias, contributing
to fairer graph representation learning while retaining the valuable information contained in the data. The
overall training process is described as the following min-max optimization procedure, where α, β, and γ are
hyperparameters balancing the different loss components, including adversarial loss Ladv, contrastive loss
Lcon, and a reconstruction loss Lreconst:

min
f,g

max
k

L = min
f,g

max
k

αLadv + βLcon + γLreconst (3)

3.2 Datasets

For reproducing the main claims, we employ the same datasets as the original paper by Ling et al. (2022),
including dataset splits and sensitive and target attributes. We use three real-world graph datasets: NBA1,
which contains player statistics, and two subsets of the Pokec social network from Slovakia, specifically
Pokec-n and Pokec-z (Dai & Wang, 2021). The details of these datasets are summarized in Table 1.

For the link prediction task, we utilize commonly used datasets in this domain: Cora, Citeseer, and Pubmed.
In these datasets, nodes represent scientific publications, and edges indicate whether one publication refer-
ences another. Notably, these datasets feature a more extensive range of features compared to those used
by Ling et al. (2022). Further details are provided in Table 1, where the size of the set of possible sensitive
attributes, denoted as |S|, is indicated. For all datasets, the sensitive attribute is the paper class. The
dataset splits and sensitive attributes in our study are consistent with those utilized in (Spinelli et al., 2021),
aiming to benchmark our findings against theirs. Spinelli et al. (2021) focuses on improving fairness in
graph representation networks for link prediction tasks and is recognized, to our knowledge, for reporting
state-of-the-art performance in fairness metrics, as detailed in Section 3.4, across these datasets.

Table 1: Dataset Statistics

Dataset S |S| Features Nodes Edges
NBA nationality 2 39 403 16,570
Pokec-z region 2 59 67,797 882,765
Pokec-n region 2 59 66,569 729,129
Citeseer paper class 6 3,703 3,327 9,104
Cora paper class 7 1,433 2,708 10,556
PubMed paper class 3 500 19,717 88,648

3.3 Hyperparameters

Node Classification To align our experiments closely with the original study, we adopt the hyperparameters
as specified by the authors. This includes a grid search on the hyperparameters α, γ, and λ, and we expand

1https://www.kaggle.com/datasets/noahgift/social-power-nba
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this search to include β, which is not originally tuned. The grid search is conducted on these hyperparameters
with the values {0.1, 1.0, 10.0}.

For training the adversarial model k, augmentation encoder g, representation encoder f , and the evaluation
classifier, we apply the hyperparameters detailed in the original study. We use the default settings from the
original code where specific hyperparameters are not disclosed. This decision is verified by the authors as
correct. A comprehensive list of all hyperparameters is provided in Table 8 in Appendix A.2.

Link Prediction We replicate the grid search from the node classification for link prediction on the Citeseer,
Cora, and PubMed datasets. We compare these results with baseline results from Spinelli et al. (2021). Based
on preliminary results, we increase the epoch count to 200, the learning rate for the Graphair module to
1e − 4, and for the classifier, to 5e − 3. We keep the remaining hyperparameters unchanged.

3.4 Experimental Setup and Metrics

We default to the settings of the original authors to replicate their findings. We obtain the model’s codebase
from the authors via the DIG library, specifically using the FairGraph module2. Due to the large number
of nodes for the PubMed and Pokec datasets, we use the GraphSAINT framework. This framework allows
for the implementation of mini-batching, reducing the computational complexity when performing training
and evaluation on Graphair. An implementation of the framework can bound as part of the PyG library3.
To enhance reproducibility, we employ complete seeding across all operations, which was missing in some
operations of the original code.
To verify Claims 1 and 2, we follow the procedure described by Ling et al. (2022), with the addition of our
expanded hyperparameter search detailed in Section 3.3. For Claim 3, due to time and memory constraints,
we compute the homophily and Spearman correlation values for the Pokec datasets on a mini-batch instead
of the entire graphs. Aside from this, we adhere to the same procedures for this claim as well.

3.4.1 Link Prediction

In our study, we extend the scope of the original work to encompass link prediction. We implement several
modifications to adjust the Graphair network for the downstream task of link prediction. Initially, we modifiy
the output size of the adversarial network from two, which corresponded to the binary sensitive feature in
the Pokec and NBA datasets, to the respective number of distinct values of the sensitive feature in the
corresponding dataset. The classification network is not modified.

To create the link embeddings for the input of the classification network, we compute the Hadamard product
of the node embeddings Horn & Johnson (2012), which pairs node embeddings effectively. For nodes v and
u, we define the link embedding hvu as:

hvu = hv ◦ hu (4)

These new link embeddings require labels that reflect the sensitive attributes of the connected nodes. To
this end, we integrate dyadic-level fairness criteria into our fairness assessment for link prediction. We form
dyadic groups that relate sensitive node attributes to link attributes, following the mixed and subgroup
dyadic-level fairness principles suggested by Masrour et al. (2020). The mixed dyadic-level groups classify
links as either inter- or intra-group based on whether they connect nodes from the same or different sensitive
groups. The subgroup dyadic-level approach assigns each link to a subgroup based on the sensitive groups
of the nodes it connects. A subgroup is formed for each possible combination of sensitive groups. This
method facilitates the measurement of fairness in two distinct aspects. Firstly, it assesses how well each
protected subgroup is represented in link formation at the subgroup dyadic-level. Secondly, it evaluates
node homogeneity for links at the mixed dyadic-level.

For assessing fairness in link prediction, we aim to optimize for Equality of Opportunity (EO) and Demo-
graphic Parity (DP) using these dyadic groups. Following the original paper’s definition, DP is defined

2https://github.com/divelab/DIG/tree/dig-stable/dig/fairgraph
3https://github.com/pyg-team/pytorch_geometric
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as: ∣∣∣P(Ŷ = 1 | D = 0) − P(Ŷ = 1 | D = 1)
∣∣∣

and EO as: ∣∣∣P(Ŷ = 1 | D = 0, Y = 1) − P(Ŷ = 1 | D = 1, Y = 1)
∣∣∣

where Y is a ground-truth label, Ŷ is a prediction, and in the case of link prediction, D denotes the dyadic
group to which the link belongs. These definitions extend to multiple dyadic groups (|D| > 2), which is the
case for subgroup dyadic analysis. As our final metrics, we define the Demographic Parity difference (∆DP)
as the selection rate gap and the Equal Opportunity difference (∆EO) as the largest discrepancy in true
positive rates (TPR) and false positive rates (FPR) across groups identified by D:

∆DP = max
d

P(Ŷ |D = d) − min
d

P(Ŷ |D = d),

∆TPR = max
d

P(Ŷ = 1|D = d, Y = 1) − min
d

P(Ŷ = 1|D = d, Y = 1),

∆FPR = max
d

P(Ŷ = 1|D = d, Y = 0) − min
d

P(Ŷ = 1|D = d, Y = 0),

∆EO = max(∆TPR, ∆FPR).

Link prediction performance is measured using accuracy and the Area Under the ROC Curve (AUC) metrics,
representing the trade off between true and false positives.

3.5 Computational requirements

All of our experiments are conducted on a high-performance computing (HPC) cluster, that features NVIDIA
A100 GPUs, divided into four partitions with a combined memory of 40 GB. For a detailed overview of the
GPU hours required for each experiment, see Table 9 in Appendix A.3. In total, 32 of GPU hours were
necessary to complete all experiments.

4 Results

4.1 Results reproducing original paper

Claim 1: To verify Claim 1, we perform node classification on the NBA, Pokec-n, and Pokec-z datasets.
Table 2 presents a comparison of the results reported by the original authors with those obtained by us
through the replication of the experimental setup, as described in Section 3.4. Consistent with the original
study, our results are derived by selecting the best outcome from the grid search procedure. We observe
that the results for the NBA dataset are similar to those reported by the authors. However, for the Pokec
datasets, there is a noticeable difference in accuracy of about 4 to 7 percentage points with similar fair-
ness values. After seeking clarification from the authors and verifying certain default hyperparameters, we
conclude that we cannot fully reproduce the results reported in the original paper for the Pokec datasets.
Considering that the code provided by the DIG library diverges from what the original authors used, our
current hypothesis—following communication with the authors—is that this discrepancy could be due to a
bug in the library’s code, particularly in the batch functionality necessary for the Pokec datasets. Moreover,
this issue might also stems from the observed training instability, where a wide range of hyperparameter
settings yield similar outcomes, or where similar configurations lead to large differences.

Table 2: Comparison of the results reported by the original authors with those obtained by us

NBA Pokec-n Pokec-z
Methods ACC ↑ ∆

DP
↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓

Original paper 69.36 ± 0.45 2.56 ± 0.41 4.64 ± 0.17 67.43 ± 0.25 2.02 ± 0.40 1.62 ±0.47 68.17 ±0.08 2.10 ± 0.17 2.76 ± 0.19
Our gridsearch 70.61 ± 0.23 1.49 ± 1.06 4.88 ± 0.59 62.04 ± 0.20 2.37 ± 0.79 1.22 ± 0.92 61.97 ± 0.22 3.09 ± 0.36 4.73 ± 0.33
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Table 3: Comparisons among different components in the augmentation model.

NBA Pokec-n Pokec-z
Methods ACC ↑ ∆

DP
↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓ ACC ↑ ∆DP ↓ ∆EO ↓

Our gridsearch 70.61 ± 0.23 1.49 ± 1.06 4.88 ± 0.59 62.04 ± 0.20 2.37 ± 0.79 1.22 ± 0.92 61.97 ± 0.22 3.09 ± 0.36 4.73 ± 0.33
Our Graphair w/o FM 70.89 ± 0.30 7.61 ± 0.35 21.82 ± 0.58 61.78 ± 0.34 0.97 ± 0.45 0.54 ± 0.25 62.91 ± 0.11 4.08 ± 0.72 5.15 ± 0.31
Our Graphair w/o EP 73.42 ± 0.38 5.44 ± 1.10 10.39 ± 2.51 68.26 ± 0.14 2.46 ± 0.07 1.82 ± 0.31 69.18 ± 0.08 6.42 ± 0.72 6.77 ± 0.63

Claim 2: Table 3 demonstrates that Claim 2 is fully substantiated for both the NBA and Pokec-z datasets.
When comparing our results with those obtained without feature masking (FM) or edge perturbation (EP),
we observe clear increases in both fairness metrics and accuracy, employing the same hyperparameters as
those used for the results presented in Table 2. However, for the Pokec-n dataset, we are unable to fully
replicate the results. Our extensive tests, covering a wide range of hyperparameter combinations from our
grid search (all yielding results comparable to those noted in Table 2), consistently shows that removing
FM results in better fairness metrics while maintaining similar levels of accuracy. Conversely, removing EP
leads to significantly improved accuracy with roughly equivalent fairness metrics. This notable discrepancy
warrants further investigation into this effect and the specific hyperparameters associated with this behavior.

Claim 3: The plots in Figure 1 clearly illustrate that the homophily values for the augmented graph are
lower than those for the original graph. Furthermore, the average homophily values are nearly identical
to those reported by the authors. These results support the authors’ claim that Graphair automatically
generates new graphs with a fairer node topology. The plots in Figure 2 reveal that, for all three datasets,
the features with the highest Spearman correlation to the sensitive feature generally exhibit lower values in
the fair view. These findings lend support to the authors’ claim that Graphair produces features that are
fairer. We can therefore conclude that Claim 3 is fully reproducible.

Figure 1: Node sensitive homophily distributions in the original and the fair graph data.

Figure 2: Spearman correlation between node features and the sensitive attribute in the original and the fair
graph data.

6



4.2 Results beyond original paper

We find that Claim 1 can be generalized to link prediction, as evidenced by the results presented in Tables
4, 5, and 6. Details of the citation datasets utilized for this purpose are depicted in Table 1. The results
demonstrate the clear superior performance of Graphair across all fairness metrics for the Citeseer and
Cora datasets. Given that the accuracy and AUC scores are not significantly compromised, we assert that
Claim 1 can be generalized to these datasets. Although the results for the Pubmed dataset do not show
improved scores for the DP and EO metrics for the mixed-dyadic group criteria, they do exhibit far superior
performance for the subgroup criteria. It is particularly noteworthy how much lower the subgroup fairness
metrics are on all datasets compared to those reported in the FairDrop paper (Spinelli et al., 2021). While
Spinelli et al. (2021) suggest that their higher scores are likely attributable to the datasets themselves, our
results contest this claim. Overall, these results allow us to confidently state that the embeddings generated
by Graphair lead to significantly less bias being inherited by the subsequent classifier, as evidenced by the
substantially lower fairness scores in the link prediction task on a variety of datasets.

Table 4: Link Prediction on Citeseer

Method Accuracy ↑ AUC ↑ ∆DPm ↓ ∆EOm ↓ ∆DPs ↓ ∆EOs ↓
FairAdjr=5 78.5 ± 2.2 86.7 ± 2.2 39.2 ± 3.2 19.0 ± 3.9 18.2 ± 5.8 47.6 ± 8.8
FairAdjr=20 74.4 ± 2.5 82.5 ± 2.7 31.0 ± 3.1 15.6 ± 3.0 19.7 ± 6.9 43.1 ± 7.4
GCN+FairDrop 79.2 ± 1.4 88.4 ± 1.4 42.6 ± 2.5 26.5 ± 4.2 17.6 ± 5.5 64.3 ± 9.5
GAT+FairDrop 78.2 ± 1.1 87.1 ± 1.1 42.9 ± 2.2 28.3 ± 4.3 25.9 ± 5.2 73.4 ± 9.1
Graphair 70.2 ± 0.5 77.9 ± 0.3 28.3 ± 0.3 4.5 ± 1.0 5.4 ± 2.5 21.1 ± 3.3

Table 5: Link Prediction on Cora

Method Accuracy ↑ AUC ↑ ∆DPm ↓ ∆EOm ↓ ∆DPs ↓ ∆EOs ↓
FairAdjr=5 75.9 ± 1.6 83.0 ± 2.2 40.7 ± 4.1 20.9 ± 4.3 83.8 ± 4.9 98.3 ± 7.2
FairAdjr=20 71.8 ± 1.6 79.0 ± 1.9 32.3 ± 2.8 15.8 ± 4.3 78.34 ± 6.8 98.3 ± 7.2
GCN+FairDrop 82.4 ± 0.9 90.1 ± 0.7 52.9 ± 2.5 31.0 ± 4.9 89.4 ± 3.4 100.0 ± 0.0
GAT+FairDrop 79.2 ± 1.2 87.8 ± 1.0 48.9 ± 2.8 31.9 ± 4.3 94.5 ± 2.0 100.0 ± 0.0
Graphair 71.3 ± 0.1 78.8 ± 0.1 27.3 ± 0.2 2.6 ± 0.3 38.9 ± 0.7 8.9 ± 0.7

Table 6: Link Prediction on PubMed

Method Accuracy ↑ AUC ↑ ∆DPm ↓ ∆EOm ↓ ∆DPs ↓ ∆EOs ↓
FairAdjr=5 75.5 ± 2.5 84.1 ± 0.7 23.2 ± 4.1 15.9 ± 4.7 53.4 ± 1.9 43.2 ± 9.5
FairAdjr=20 73.8 ± 2.4 82.1 ± 0.8 22.9 ± 4.2 15.9 ± 4.0 52.5 ± 9.7 43.5 ± 9.8
GCN+FairDrop 88.4 ± 0.4 94.8 ± 0.2 42.5 ± 0.5 12.2 ± 0.7 55.7 ± 1.5 26.6 ± 2.6
GAT+FairDrop 79.0 ± 0.8 87.6 ± 0.7 37.4 ± 0.9 19.7 ± 1.1 56.8 ± 2.1 47.3 ± 4.1
Graphair 78.6 ± 0.2 82.0 ± 2.9 24.8 ± 0.4 14.6 ± 0.7 29.6 ± 2.4 18.8 ± 2.4

5 Discussion

Revisiting the three claims in our study, we discover that Claims 1 and 2 are partially reproducible, whereas
Claim 3 is fully reproducible. The discrepancies encountered in Claim 1, particularly the performance
discrepancies on the Pokec datasets which did not meet the reported standards, are likely due to two main
issues: unstable training, as evidenced by our grid search results, and a bug within the code’s batching
functionality, as acknowledged by the original authors. This bug specifically influences the performance on
the Pokec datasets. Furthermore, we extend the scope of Claim 1 to assess its applicability to link prediction
tasks across different datasets. Here, we observe that our approach outperforms state-of-the-art models,
affirming Claim 1’s generalizability to the link prediction domain.
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The partial reproducibility of Claim 2 seems to stem from the same factors that affected Claim 1. However,
it is important to note that we are able to fully reproduce the claim for the NBA and Pokec-z datasets.
Interestingly, the outcomes for the Pokec-n dataset are contrary to expectations, suggesting that the model
actually improved with the changes instead of worsening.

Claim 3, on the other hand, is fully reproducible. The evidence is clear in both the topology and feature
aspects, with homophily values and Spearman correlations demonstrating enhanced results in the augmented
graph data compared to the original datasets. This solidifies the claim that Graphair successfully produces
fairer graph data by improving both the graph structure and feature correlations.

5.1 What was easy

The comprehensiveness and clarity of the code within the full module significantly facilitated ease of use and
implementation. The original paper provided a clear outline of the experiments, enabling a straightforward
process to determine the necessary components for reproducing the study’s claims. Furthermore, the clarity
with which the original paper was written made it relatively easy to fully understand the approach taken. This
clarity also simplified the process of making modifications for extending the study to include an additional
downstream task, as it was clear which parts of the code were responsible for specific functions and where
changes needed to be made.

5.2 What was difficult

Challenges with the consistency and reproducibility of results from hyperparameter grid searches necessi-
tated seeking clarification from the authors, especially since certain default hyperparameters set in the code
deviated from those detailed in the original paper. Despite the clarity of the paper and the understandabil-
ity of the model code, achieving complete reproducibility was not trivial due to these initial discrepancies.
These were further enhanced by some commits whose purposes have been unclear since the publication of
the original work. Additionally, the authors acknowledged a bug in the provided code as part of the library,
specifically in the minibatching code, which likely contributed to the observed deviations leading to conclu-
sions of partial reproducibility for some claims. Finally, reproducing Claim 3 for the Pokec datasets proved
non-trivial due to the large memory requirements for processing the full graph, necessitating solutions to
acquire experimental results. The GPU hours required to train Graphair on larger datasets also limited our
ability to expand on our experimental setup without running into time constraints.

5.3 Communication with original authors

We initiated contact with one of the authors, Hongyi Ling, via email to seek clarification on the hyperpa-
rameters used, the dataset, and certain aspects of the code. For instance, we obtained the missing method of
mini-batching from their GitHub repository, and the files containing the synthetic graph dataset, which were
used to assess the model’s scalability. The authors responded promptly to our emails and offered valuable
responses.
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A Appendix

A.1 Overview of the Graphair model

Figure 3: Overview of the Graphair framework (Ling et al., 2022)

A.2 List of all hyperparameters

Table 7: Overview of all hyperparameters of the Graphair components, adverserial model k, representation
encoder f and augmentation model g. *For knclass on link prediction, this value is based on the dataset used
between Citeseer, Cora and PubMed.

Hyperparameter Node Classification Link Prediction
khidden 64 64
knclass 1 {6, 7, 3}*
fhidden 64 64
fdropout 0.1 0.1
fnlayer 2 3
fout_feats 64 64
ghidden 64 64
gtemperature 1 1
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Table 8: Overview of hyperparameters for the Graphair model m and the evaluation classifier c on all
datasets.

Hyperparameter NBA Pokec-n Pokec-z Citeseer Cora PubMed
α 1.0 0.1 10.0 0.1 10.0 10.0
β 0.1 1.0 10.0 0.1 10.0 10.0
γ 0.1 0.1 0.1 0.1 0.1 0.1
λ 1.0 10.0 10.0 1.0 10.0 0.1
chidden 128 128 128 128 128 128
clearning_rate 1e-3 1e-3 1e-3 5e-3 5e-3 5e-3
cweight_decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5
mlearning_rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
mweight_decay 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

A.3 GPU Run hours

Table 9: Computational Requirement Overview

Name of the experiment GPU Hour (Hour) Max GPU Memory Usage (GB)
Claim 1 0.5 3.70
Claim 2 1 3.67
Claim 3 0.5 3.70
Link Prediction 1 3.70
Grid Search 3.3 30 3.70

GPU hour is measured by the amount of time each experiment script needed from the start to the end.
Maximum GPU memory usage is determined by max_memory_allocated method from the Pytorch library.

11


	Introduction
	Scope of reproducibility
	Methodology
	Graphair
	Adversarial Training for Fairness
	Contrastive Learning for Informativeness
	Integrated Training Objective

	Datasets
	Hyperparameters
	Experimental Setup and Metrics
	Link Prediction

	Computational requirements

	Results
	Results reproducing original paper
	Results beyond original paper

	Discussion
	What was easy
	What was difficult
	Communication with original authors

	Appendix
	Overview of the Graphair model
	List of all hyperparameters
	GPU Run hours


