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ABSTRACT

Classical image transformation such as the discrete cosine transform (DCT) and
the discrete wavelet transforms (DWTs) provide semantically meaningful repre-
sentations of images. In this paper we propose a general method for adversarial
attacks in such transform domains that, in contrast to prior work, obey the L∞

constraint in the pixel domain. The key idea is to replace the standard attack
based on projections with the barrier method. Experiments with DCT and DWTs
produce adversarial examples that are significantly more similar to the original
than with prior attacks. Further, through adversarial training we show that robust-
ness against our attacks transfers to robustness against a broad class of common
image perturbations.

1 INTRODUCTION

Adversarial attacks Biggio et al. (2013); Szegedy et al. (2014); Papernot et al. (2016a) have raised
concerns about the safety and robustness of deploying neural networks in critical decision-making
processes. Given a neural network that makes accurate predictions on clean data, these attacks
modify inputs in a way indiscernible to humans to produce erroneous predictions.

Adversarial attacks can be broadly grouped into black-box and white-box Papernot et al. (2016a);
Tramèr et al. (2018). White-box attacks have full access to the neural network architecture, its
weights, the training data and the learning algorithm Goodfellow et al. (2015); Kurakin et al. (2017);
Papernot et al. (2016a); Madry et al. (2018); Croce & Hein (2020). Black-box attacks are only al-
lowed to perform queries on the target network and observe the input-output relationship Narodytska
& Kasiviswanathan (2017); Brendel et al. (2017); Su et al. (2019); Andriushchenko et al. (2020).
Many approaches have been proposed to detect adversarial examples Xu et al. (2018); Ma et al.
(2018); Feinman et al. (2017); Metzen et al. (2017) and defend against them Gu & Rigazio (2014);
Papernot et al. (2016b); Liao et al. (2018); Xie et al. (2019); Zhou et al. (2021). However, most
of these defenses can again be broken by suitable adaptive attacks Tramèr et al. (2020); Carlini &
Wagner (2017).

Adversarial training Kurakin et al. (2017); Madry et al. (2018), a seminal approach that augments
the training data with adversarial examples, reveals to be effective in training empirically Zhang
et al. (2019) and provably Salman et al. (2019) robust neural networks. Another approach proposed
by Balunovic & Vechev (2019) combines adversarial training with provable defenses to boost the
certified robustness. Further, the robustness of trained neural networks can be verified formally
through abstract interpretations and relaxations Singh et al. (2019); Xu et al. (2020); Bunel et al.
(2020); Müller et al. (2022).

Typically, the distance between a clean and a perturbed input is measured by an Lp norm 1. In partic-
ular, L0(a pseudonorm) and L∞ have been argued to be necessary adversarial robustness metrics for
images Kotyan & Vargas (2022) since they are easily interpretable: number of modified pixels and
pixel-wise threshold, respectively. Further, Hendrycks & Dietterich (2019) noticed an interesting
interaction between the L∞ adversarial robustness and common image corruptions such as motion
blur, shot noise, and frost. An additional argument for L2 and L∞ perturbations are the closed for-
mulas for projections needed in common attacks like the Projected Gradient Descent (PGD) Shafahi

1All norms in this paper are vector norms, i.e., an H × W RGB image is considered as vector in Rn

n = 3HW , not as a matrix.
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et al. (2019); Wong et al. (2020); Madry et al. (2018). A different set of techniques aims to perturb
in semantically more meaningful ways, e.g., by inserting a carefully chosen patch into the image
Thys et al. (2019); Zolfi et al. (2021); Eykholt et al. (2018). The high level idea of bringing image
processing knowledge to the problem also motivates our contribution explained next.

Motivation and Contributions Images are not random grids of pixels but can be approximately
modeled as first-order Gauss-Markov random fields, which enables JPEG compression. Concretely,
when decomposed into frequencies by discrete cosine transforms (DCT) Rao & Yip (2001) at the
heart of JPEG or the hierarchical discrete wavelet transforms (DWT) Daubechies (1992) for JPEG
2000, most of the norm concentrates around the low frequencies, which is a key characteristic of
images. Prior work have used some of these transforms as a defense to attenuate the additive per-
turbation noise injected by adversarial attacks Das et al. (2017); Guo et al. (2018), or as a form
of data augmentation Duan et al. (2021); Hossain et al. (2019). Furthermore, perturbations in the
transformed domain were used to defend against pixel attacks Bafna et al. (2018) or to carry attacks
in the transformed domains Duan et al. (2021); Hossain et al. (2019); Deng & Karam (2020); Shi
et al. (2021a); Luo et al. (2022). However, these attacks did not bound the effect of the change in
the pixel domain.

The goal of our work is to provide adversarial attacks in transform domains, which thus can exploit
their expressiveness, while at the same time obeying the common L∞ bounds in the pixel domain.
Doing so makes the amount of change interpretable, enables comparison to prior attacks, and lever-
ages the interaction with various common image corruptions Hendrycks & Dietterich (2019). The
challenge is in the high-dimensional geometry, which makes it difficult to derive the projections
needed in PGD-based attacks and thus a different approach is needed. Specifically, we contribute:

• A novel white-box attack based on the barrier method from nonlinear programming that
does not require any closed-form projections and can be instantiated for a large class of
transforms. Our focus is on DCT and DWTs.

• An evaluation of our attacks against prior work on ImageNet. In particular, given the
same L∞ bound, we show that our attacks consistently yield adversarial examples with
significantly higher similarity to the original, as verified by the Learned Perceptual Image
Patch Similarity (LPIPS) metric. As a baseline we also include a hand-crafted PGD-based
attack for DCTs to illustrate the challenges in obtaining projections that obey L∞ bounds.

• Adversarial training using the adversarial examples produced by our attack run on Ima-
geNet. We show that the obtained networks provide better robustness against common im-
age corruptions on CIFAR-10 spanning different categories including noise, blur, weather
and digital corruptions.

2 THE ATTACK FORMULATION

Many image transforms have been invented to provide expressive representations of images Rao
& Yip (2001). Widely used examples include the DCT and DWTs at the heart of the JPEG and
JPEG 2000 compression standards Wallace (1992); Adams (2001). Both are linear and invertible
and decompose an image into a notion of frequencies, in which high frequencies capture details that
often can be removed with little visual impact. An example is shown in Fig. 1. We aim to leverage
such expressive transform representations for adversarial attacks while, in contrast to prior work,
obeying the widely used L∞ box defined in the pixel space. Our approach is applicable to a large
number of transforms; thus, we first present it in a general way before instantiating it to DCT and
DWTs.

Let x0 ∈ [0, 1]n be a clean image correctly classified as c by a classification model f (pixel color
channel values are assumed normalized to [0, 1]). l is a loss function, for example a cross-entropy.
Let ϕ be an invertible and differentiable image transform that maps the original image from the pixel
space to a domain with a desirable expressiveness. In this ϕ-domain, we seek to find a perturbed
version y′ of y0 = ϕ(x0) such that x′ = ϕ

−1
(y′) gets misclassified and

∥∥x′ − x0
∥∥
∞ ≤ ϵ in the

pixel domain. y′, and thus x′, can be computed by solving the following constrained optimization
problem:

min
y

−l(ϕ−1
(y), c) subject to

∥∥ϕ−1
(y)− x0

∥∥
∞ ≤ ϵ. (1)
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original image DCT coefficients DWT coefficients at level 1 DWT coefficients at level 2

Figure 1: Example of a block DCT and multi-level DWT decompositions (in our work we use up to
five levels) of an ImageNet sample in grayscale. In the transform domains, magnitude is encoded by
darkness, with white being zero. The DCT concentrates the values in each block in the top left, the
DWT recursively decomposes into a downscaled version of the image plus horizontal and vertical
details at different levels.

In principle, this problem can be resolved by a projected gradient descent (PGD) scheme, analogous
to Madry et al. (2018). This amounts to iterating over two phases:

zt+1 = yt + η sign(∇yl(ϕ
−1
(yt), c)), (2)

yt+1 = P ∗(zt+1, ϵ). (3)
Equation 2 minimizes the inverse loss function. It requires computing the gradient of the loss with
respect to the input ∇yl(ϕ

−1
(yt), c), taking its sign, and moving in the opposite direction with a

step size η. Equation 3 projects on the L∞-box defined in the pixel space but operates in the ϕ-
domain. The derivation of such a P ∗ is challenging since ϕ is not L∞-preserving:

∥∥x− x0
∥∥
∞ ̸=∥∥ϕ(x)− ϕ(x0)

∥∥
∞. Given ϕ it may be possible to hand-craft a suitable P ∗. We do this later in

Section 4 for the DCT to show the issues involved. However, our main contribution is an approach
different from PGD that eliminates the need for such projections and is applicable to a large set of
transforms with minor modifications.

3 THE BARRIER METHOD

In this section, we propose a method entirely different from the PGD approach from Madry et al.
(2018) to solve problem 1. It is based on the so-called barrier method Nocedal & Wright (2006)
from nonlinear programming. In the context of adversarial attacks, the barrier method was used
before by Finlay et al. (2019) to enforce a decision boundary constraint, which is fundamentally
different from the box constraint in the transform domain that we are targeting.

At the heart of barrier methods is the barrier function that incorporates the inequality constraints
in conjunction with the objective function in a way that minimizing yields a solution to the original
problem. Formally, problem 1 is solved as

min
y

−l(ϕ−1
(y), c)− µ log(ϵ−

∥∥ϕ−1
(y)− x0

∥∥
∞). (4)

The formulation depends on the free parameter µ which controls the balance between the loss term
−l(., .) and the logarithmic term that embeds the box constraint. The log term can be seen as a
smooth approximation of the indicator function that is = 1 if

∥∥ϕ−1
(y)− x0

∥∥
∞ ≤ ϵ is fulfilled and

= 0 otherwise. It serves as a penalty since it grows very large near the boundary of the box.

A straightforward approach computes the gradient that is zero for all dimensions expect the one
dimension that yields the maximum absolute value. For instance, if xt = (−2.5, 1.5) with
L∞(xt) = 2.5 the gradient will be ∇xL

∞(xt) = (−1, 0). This causes slow convergence since
only one dimension is updated per iteration. Fig. 2a shows an illustration of the barrier function
in two dimensions. The log term −µ log(ϵ −

∥∥ϕ−1
(y)− x0

∥∥
∞) smoothly enforces the constraint

maxi |ϕ−1
(y)i − x0

i | ≤ ϵ that is also satisfied when |ϕ−1
(y)i − x0

i | ≤ ϵ for all i. Using the latter
condition with the log barrier method in each dimension we obtain the formulation that we use

min
y

−l(ϕ−1
(y), c)− µ

n−1∑
i=0

log(ϵ− |ϕ−1
(y)i − x0

i |). (5)
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(a) Enforcing the constraint
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∞ ≤ ϵ.
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(b) Enforcing |xi − x0
i | ≤ ϵ for all i.

Figure 2: A two dimensional illustration of the continuous functions enforcing the L∞ box con-
straint for ϵ = 1, x0 = (0, 0), l = 0, and ϕ is the identity function.

A two dimensional illustration of this barrier function is shown in Fig. 2b.

After this continuous relaxation of the discrete condition, our new formulation does not need further
projections and can be solved by a generic standard gradient descent-based optimizer. Just like
the original PGD attack, there is no formal guarantee of convergence for an arbitrary classifier f .
In practice, we obtained the best results using the difference of logits ratio loss function as loss l
proposed by Croce & Hein (2020) while being optimized by Adam Kingma & Ba (2015).

In this paper, we instantiate the barrier method for L∞-preserving attacks in the domains of the
DCT and several DWT families, applied up to five levels. For DWTs, we leverage in addition their
semantics by preserving the down-scaled version of the original image in the top-left corner (see
Fig. 1) in our attacks.

4 PROJECTION APPROXIMATION FOR THE DCT

We briefly sketch the challenges in deriving a suitable projection operator P ∗ in equation 3 to enable
a PGD-based attack in a transform domain, by doing so for the DCT. The general problem is that
commonly used transforms are not L∞-preserving and thus P ∗ has to be derived specifically from
the transform definition using high-dimensional geometry, which may even become infeasible.

Let H be the L∞ box of radius ϵ defined in the pixel space around a given clean image x0: H =
B∞(x0, ϵ). Applying DCT preserves the volume (due to orthogonality) but rotates H. As a result,
the maximal L∞ norm of dct(H) is substantially larger than ϵ. Thus when projecting zt+1 in
equation 2, we have to ensure that again that the inverse idct(P ∗(zt+1, ϵ)) ∈ H. To this end, we
define P∗ as a standard L∞ projection (clipping) but the box we are projecting onto must have an
adequate width. This radius is given by the following lemma. The proof is technical and based on
the definition of the DCT as a linear transform whose matrix consists of cosine values. Details about
the definition and the proof are in the supplements B and C.

Lemma 1. Let κ = (1 + 2
√
2 · ψ + 2 · ψ2)/N with ψ = −1/2 + sin(N + 1

2 )
π
2N /2 sin(

π
4N ). Then

idct(B∞(y0, ϵ/κ)) ⊆ B∞(x0, ϵ),

and there is no smaller κ with this property.

The situation is sketched in Fig. 3 in two dimensionsN = 2 (instead of 64 as for the JPEG standard).
On the left we have yt and xt in DCT- and pixel-space, respectively. A step of size η in direction
of the gradient with maximal loss is determined to obtain zt+1. On the right zt+1 is projected onto
idct(B∞(y0, ϵ/κ)) to obtain yt+1 and ensure that xt+1 is in H, which is in general in the interior,
in contrast to the original PGD attack.
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Figure 3: One iteration of PGD in DCT space. The figure serves as intuition for the effect of rotations
on the L∞-norm by considering only 2 (instead of 8 · 8 = 64) dimensions.

5 EXPERIMENTAL EVALUATION

In this section, we first evaluate our attacks in the DCT and DWT transform domains and compare
to prior attacks. Then we investigate their use for adversarial training and, in particular, the robust-
ness of the obtained networks against common image corruptions. All of our code and scripts to
reproduce the experiments will be made available as open source.

We evaluate our attacks in Section 5.2 with images from ImageNet using a trained vision trans-
former architecture Dosovitskiy et al. (2020). In Section 5.2, for adversarial training and evaluation
of robustness towards common image corruptions, we used a smaller ConvNet model trained on
CIFAR-10. Its architecture consists of 16 convolutional layers, 5 max pooling layers, and 3 fully
connected layers. Convolutions are followed by batch normalization and ReLU activation functions.
The fully connected layers are preceded by dropout layers. This architecture is similar to that used
by Zhu et al. (2021).

5.1 COMPARISON OF THE DIFFERENT ATTACKS

We compare our attacks against four baselines: standard PGD, the two variants of the automatic pro-
jected gradient descent attack (APGD) Croce & Hein (2020) and the square attack Andriushchenko
et al. (2020). All attacks have the same budget of k = 100 iterations. The step size of the standard
PGD attack is set to η = ϵ× 5

2k . The other attacks we invoke as implemented in the AutoAttack suit
Croce & Hein (2020). We discuss the instantiation and the parameterization of our attacks in more
detail next.

Instantiation of our attacks Our barrier attack from Section 3 is instantiated for the DCT in a
way compatible with JPEG compression pipeline, and called dct_barrier. This means, first we
perform a color conversion from RGB to YCrCb2 before the DCT is applied block-wise on 8 × 8
blocks.

Similarly, dwt_barrier_l is the instantiation of our attack compatible with JPEG-2000, where
we consider two types of wavelets: Cohen-Daubechies-Feauveau (CDF) 9/7 and LeGall 5/3, applied
with l levels. Unless noted otherwise, the default is CDF 9/7 with one level. The parameter µ in
equation 5 is initially set to µ = 10/n (n is the dimension of the image) and is doubled to further
strengthen the log term if the constraint is violated or having an underflow problem. We minimize
the barrier functions with the Adam optimizer Kingma & Ba (2015) with an initial step size rate of
0.01 and the default beta parameters of (0.9, 0.999).

2The conversion from RGB to YCrCbA is a pixel-wise affine transformation. Further details can be found
in the supplement A.
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Our attacks Baseline attacks

dct_pgd dct_barrier dwt_barrier_1 dwt_barrier_3 dwt_barrier_5 pgd apgd-ce apgd-dlr square

ϵ = 0.02
L∞ 0.02 0.0126 0.0113 0.013 0.0129 0.02 0.02 0.02 0.018
L2 1.5702 0.1842 0.107 0.1917 0.1986 4.3551 5.795 5.513 6.9304

similarity distance 0.0013 0.0001 0.0 0.0002 0.0002 0.0265 0.0575 0.0568 0.0403
success rate (%) 63.74 26.97 7.39 28.77 30.17 99.9 100.0 100.0 90.21

ϵ = 0.03
L∞ 0.03 0.024 0.0211 0.0237 0.024 0.03 0.0251 0.0251 0.0249
L2 2.1926 0.611 0.3083 0.5689 0.5942 5.4517 6.89 6.8642 9.5579

similarity distance 0.003 0.0012 0.0004 0.0012 0.0012 0.0446 0.094 0.1014 0.0771
success rate (%) 80.1 75.12 39.8 69.15 77.11 100.0 100.0 100.0 99.5

ϵ = 0.1
L∞ 0.0978 0.0817 0.0838 0.0811 0.0807 0.1 0.1 0.1 0.1
L2 5.2214 3.1043 2.4656 2.8278 2.8493 11.9267 24.8942 27.2576 37.5832

similarity distance 0.0157 0.0208 0.0147 0.0174 0.0178 0.166 0.4398 0.5122 0.3527
success rate (%) 99.0 99.4 93.61 99.8 99.3 100.0 100.0 100.0 100.0

ϵ = 0.2
L∞ 0.166 0.1567 0.1639 0.1533 0.1531 0.2 0.1672 0.1672 0.1672
L2 7.6775 6.2671 5.3749 5.3251 5.3982 20.0369 40.1668 45.4996 60.5106

similarity distance 0.0369 0.0739 0.057 0.0558 0.0582 0.3327 0.6578 0.7498 0.5161
success rate (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ϵ = 0.3
L∞ 0.2057 0.2286 0.2387 0.2244 0.2237 0.3 0.2522 0.2522 0.2522
L2 9.8083 9.1894 7.9604 7.9484 7.8762 28.3351 59.038 66.9566 88.0086

similarity distance 0.0628 0.1352 0.1072 0.1104 0.1101 0.4717 0.8383 0.92 0.6805
success rate (%) 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0

Table 1: Evaluation of our four proposed attacks alongside with five baseline attacks for multiple
L∞ box radii ϵ. We show the average L∞ and L2 norm of the retrieved adversarial examples, the
success rate of the attacks and the similarity distance that these adversarial images have with respect
to the clean images using the LPIPS metric (lower values mean better similarity). The success rate
is over 1000 test images randomly sampled from ImageNet, and the distance metrics are means.

Figure 4: An illustration of different adversarial examples found by our proposed attacks compared
to the baseline all run with L∞ box radius value of ϵ = 0.3. Each row of adversarial images is
followed by a row of heatmaps representing the pixelwise difference w.r.t the corresponding clean
image in the first column. In these, white = 0 and black = ϵ.

Our PGD-based attack presented from Section 4 is called dct_pgd. The standard PGD attack uses
as step size parameter η the size ϵ of the box multiplied by 5

2k . Taking into account our shrinkage
factor of κ induced by the DCT (Lemma 1) and a second scaling factor ρ = 2.772, caused by the
color conversion from RGB to YCbCr, we choose η = 5ϵ/(2κρk).
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Figure 5: Visualization of a part of the results presented in Table 1. The two plots correspond to a
targeted L∞ box of radius ϵ = 0.03. The success rate is encoded with the marker size.

Results We ran all the mentioned attacks on a sample of 1000 correctly classified test images
and show the mean of the results in Table 1. For three randomly selected images, we provide a
visualization of the adversarial examples and their difference to the original in Fig. 4. In addition,
we plot a subset of this tables’s entries that correspond to ϵ = 0.03 in Fig. 5 to show the interplay of
L∞-bound, LPIPS similarity distance, and attack success rate.

From Fig. 4, we notice visually that the adversarial examples found are significantly less modified
compared to those reported by the pixel-based attacks, even when targeting relatively large L∞ box
radii, while still using almost the full slack provided by the ϵ bound. Table 1 confirms this higher
visual similarity by a consistently higher similarity in the LPIPS metric across all experiments. The
trade-off for this higher similarity is in a lower success rate for very small ϵ, whereas the prior
benchmarks almost always succeed. For example, for the DCT, run for ϵ = 0.03, it drops to about
75%. For the DWT with one level it is then only 39%, which is likely due to us freezing the scaled-
down version of the original image in the top left corner (see Fig. 1), which effectively freezes
one quarter of all DWT values. Indeed for decompositions with more levels the success increases
significantly to 69% (dwt_barrier_3) and 77% (dwt_barrier_5) while still maintaining
substantially small similarities distance in contrast to the attacks operating in the pixel domain. For
the even smaller ϵ = 0.02, the trend to lower success rates continues. Thus, for very small ϵ our
DCT and DWT attacks are not suited.

We remark that the adversarial examples retrieved by the dct_pgd have, on average, an L∞ norm
smaller than the radius of the targeted box. In other words, these attacks, in most cases, do not
necessarily reach the boundary of the box, unlike pgd which always ends up at this extreme. This
phenomenon is most likely due to the rotation caused by DCT which leads to the elimination of a
part of the search space that we conjecture contains more noisy images on which the pgd attack
lands.

Analysis of the barrier-based attack against PGD As we have seen above, the barrier-based
attacks usually do not reach the boundary of the L∞-box. To analyze this behaviour, we also imple-
mented a barrier-based attack in the pixel domain, called barrier. We performed an experiment
tracking the evolution of the L∞ norm, and also the L2 norm, of the explored images throughout
the iterations of the barrier and the pgd attacks targeting an L∞ box of radius 0.2. The results
are shown in Fig. 6. The pgd attack is likely to reach the l∞ box boundary in the first few itera-
tions due to the frequent projections on the boundary. The barrier method, in contrast reaches the
boundary only slowly due to the logarithmic term and usually not entirely. This term encourages the
attack to explore the vicinity of the original image before moving away towards the boundary. The
comparison of the L2 norms show that the overall noise introduced by the barrier method is smaller.
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Figure 6: Comparison between our barrier attack and the standard pgd by tracking the evolution
of the norm value through the iterations.

5.2 ADVERSARIAL TRAINING

The high similarity of the adversarial examples produced by our attacks motivates their use as prox-
ies to achieve robustness against yet another class of image perturbations that also preserves visual
similarity: common image corruptions. To this end, we use our attacks for adversarial training (AT),
a technique in which the neural network is trained on adversarial examples aiming to increase ro-
bustness against this adversary. We train for robustness against two adversaries: the standard PGD
and our DCT-based attack. We choose to focus on the dct_pgd variant given its identical compu-
tational cost to the standard PGD. Both attacks are granted the same number of iterations k = 30
with step sizes identical to those discussed in Section 5.1. For each adversary, we perform the ad-
versarial training targeting three L∞ box radii. This means that in total six ConvNets (of the same
architecture outlined earlier) are shown in Table 2.

Adversarial robustness First, we report the natural accuracy of these networks. Then, we eval-
uate their robustness against the corresponding adaptive attack that is used for training and their
robustness against the other attack. The results in Table 2 show that the neural networks trained
with PGD in the RGB space (standard AT) have significantly lower natural accuracy, in contrast to
the networks trained with our attack in the DCT space (AT with DCT). For large values of ϵ, the
accuracy of standard adversarial training remains low around 10 %, which is indistinguishable to
random predictions given that the dataset contains 10 classes. In contrast, our adversarial training
largely preserves the natural accuracy. We notice that the robustness against the DCT attack does
not imply robustness against the PGD attack.

Adversarial robustness transferability towards common image corruptions We consider the
CIFAR-10-C dataset Hendrycks & Dietterich (2019), a benchmark constructed by applying common
image corruptions to the CIFAR-10 test set. These corruptions are only used for evaluation and not
to augment the data during training. There is a near perfect correlation between the adversarial
accuracy in the DCT space and the accuracy associated with these corruptions. In other words,
evaluating a neural network using our attack offers a good approximation of the accuracy against a
variety of common image corruptions. More importantly, the results shown in Table 2 show that the
adversarial robustness against our proposed DCT-based attacks transfers. Neural networks trained
using our DCT-based attacks are found to always be more robust to common image corruptions
across all categories noise, blur, weather and digital. This means the expressiveness of the DCT
representation is well-suited to increase robustness against these corruptions.

6 RELATED WORK

We provide more details on prior work on robustness related to discrete image transforms. Most
aimed at defending against pixel-based adversarial attacks or improving the generalization of neu-
ral networks towards common image corruptions. The work of Dziugaite et al. (2016); Das et al.
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Natural Adversarial Noise Blur Weather Digital

RGB DCT Gauss Shot Impulse Defocus Gauss Motion Zoom Snow Fost Fog Bright Contrast Elastic Pixel JPEG

ϵ = 0.03
Standard AT 63 39 60 61 62 59 60 58 57 58 60 55 43 62 33 59 61 62

AT with DCT (ours) 85 5 80 77 79 73 77 73 70 74 78 78 70 83 55 76 81 83

ϵ = 0.1
Standard AT 26 20 24 25 25 24 26 26 26 26 24 20 23 23 22 26 26 26

AT with DCT (ours) 80 0 70 79 79 76 74 72 68 72 74 71 59 76 47 72 78 79

ϵ = 0.2
Standard AT 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

AT with DCT (ours) 76 0 62 76 76 75 71 69 66 68 70 65 51 72 41 68 74 75

Table 2: A summary of the accuracies of different neural networks trained with either the standard
PGD (standard AT) or our DCT attack (AT with DCT) for multiple ϵ box radii.

(2017); Guo et al. (2018) aims to filter out noise from the adversarial examples by adjusting var-
ious quality factor values during JPEG compression/decompression, which amounts to reducing
the magnitude of the DCT coefficients. Closely related, Bafna et al. (2018) sought L0 robustness
through projecting the largest DCT coefficients. These defenses has been shown to be breakable
through adaptive attacks Shin & Song (2017); Tramèr et al. (2020), specifically, by approximating
the non-differentiable rounding operator of the JPEG compression and running a gradient-based at-
tack. Other fast and iterative rounding schemes have been proposed in Shi et al. (2021b). Yin et al.
(2019); Guo et al. (2019) considers L2 perturbations that preserve norms due to orthogonality of the
used transforms, discrete Fourier transform (DFT) and DCT respectively.

The work in Duan et al. (2021) generates adversarial examples by removing information in the DCT
domain. The L∞ box used is on the JPEG quantization matrix instead of the input image. Since
the DCT coefficients of the clean image are element-wise divided by this matrix before rounding,
larger box radii allow their technique to eliminate more frequencies from the image. In the same
direction, Hossain et al. (2019) preceded the neural network by a DCT based layer that randomly
crops some DCT coefficients during training. This can be interpreted as an extension of the dropout
technique aiming at its regularization effects. Yahya et al. (2020) propose a gradient-free method
that obtains adversarial examples by mixing the frequencies of a clean image with the frequencies
of another auxiliary image that they call watermark. In addition to FFT and DCT, they make use
two wavelets: Haar and Daubechies 3. Sharma et al. (2019) applies masks to selectively perturb
low and high frequencies. Much like Deng & Karam (2020); Shi et al. (2021a), all these works do
not provide any guarantee on the bounds in the pixel space, which is the primary contribution in our
work.

Luo et al. (2022) explicitly uses a similarity distance in the optimization problem formulation in the
pursuit of semantically similar adversarial examples. In our work, we only enforce an L∞ box and
still achieve a high semantic similarity that is not explicitly used in the optimization. Finlay et al.
(2019) invokes the barrier function on the loss while minimizing the norm in a manner similar to
Carlini & Wagner (2017) without accounting for the box.

Finally, the work in Gueguen et al. (2018); dos Santos & Almeida (2021) proposed neural network
architectures that operate directly on the JPEG format to avoid decompression before classification.
Our work could be used to study the robustness of such architectures.

7 CONCLUSION

We proposed the first method to adversarially attack image classification networks in transform
domains while observing an L∞-bound in the pixel domain. Our approach is based on the barrier
method, which eliminates the need for projections and can thus be easily instantiated for a large
class of transforms, linear and beyond. The results with DCT and DWTs show the relevance of
our attacks: we obtain adversarial examples that are more similar to the original than prior work.
Further, when used for training, the obtained robustness transfers to common image perturbations,
which demonstrates the expressiveness of the considered transforms. We see our contribution as a
step towards leveraging decades of research on image representations for better robustness.
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Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certi-
fying neural networks. Proc. ACM Program. Lang., 3(POPL), jan 2019. doi: 10.1145/3290354.
URL https://doi.org/10.1145/3290354.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

12

http://arxiv.org/abs/1801.02613
http://arxiv.org/abs/1801.02613
https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704
https://proceedings.neurips.cc/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3a24b25a7b092a252166a1641ae953e7-Paper.pdf
https://doi.org/10.1145/3290354


Under review as a conference paper at ICLR 2023

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. January 2014. 2nd International
Conference on Learning Representations, ICLR 2014 ; Conference date: 14-04-2014 Through
16-04-2014.

Simen Thys, Wiebe Van Ranst, and Toon Goedeme. Fooling automated surveillance cameras: Ad-
versarial patches to attack person detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.
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A COLOR CONVERSION

YCbCr is a color system where each pixel is represented by three values: the brightness Y and a pair
encoding the of color spectrum CbCr. Let c the RGB triplet of a pixel in the position (i, j). Then d,
the YCbCr values at this same pixel, are given by d = A · c+ b, where

A =

(
0.299 0.587 0.114

−0.1687 −0.3312 0.5
0.5 −0.4186 −0.0813

)
and b =

(
0

128/255
128/255

)
.

B THE DEFINITION OF DCT

Let X be a 2D block of an image of size N × N . The DCT transform of X is a matrix Y of size
N ×N where the coefficient at the position (p, q) is given by:

Ypq =
αpαq

N

N−1∑
i=0

N−1∑
j=0

Xij cos
(2i+ 1)pπ

2N
cos

(2j + 1)qπ

2N
, α0 = 1 and αr =

√
2, 0 < r < N.

(6)

C PROOF OF LEMMA 1

Proof. Let x and x′ be two pixel images in some color system. x and x′ are subdivided into blocks
X and X ′ of size N × N . Y and Y ′ are the DCT block coefficients of X and X ′, respectively.
Y and Y ′ are blocks of the DCT transforms y = dct(x) and y′ = dct(x′). It is clear that if
y′ ∈ B∞(y, ϵ′) then Y ′ ∈ B∞(Y , ϵ′). Now, let find the smallest ϵ′′ > 0 such as X ′ ∈ B∞(X, ϵ′′).

|Xij −X ′
ij | =

1

N

∣∣∣∣∣
N−1∑
p=0

N−1∑
q=0

αpαq(Ypq − Y ′
pq) cos

(2i+ 1)pπ

2N
cos

(2j + 1)qπ

2N

∣∣∣∣∣
≤ 1

N

N−1∑
p=0

N−1∑
q=0

αpαq|Ypq − Y ′
pq|
∣∣∣∣cos (2i+ 1)pπ

2N
cos

(2j + 1)qπ

2N

∣∣∣∣
≤ 1

N

N−1∑
p=0

N−1∑
q=0

αpαqϵ
′
∣∣∣cos pπ

2N
cos

qπ

2N

∣∣∣
≤ ϵ′

N

N−1∑
p=0

N−1∑
q=0

αpαq cos
pπ

2N
cos

qπ

2N

≤ ϵ′

N

(
α2
0 +

N−1∑
q=1

α0αq cos
qπ

2N
+

N−1∑
p=1

α0αp cos
pπ

2N
+

N−1∑
p=1

N−1∑
q=1

αpαq cos
pπ

2N
cos

qπ

2N

)

≤ ϵ′

N

1 + 2
√
2
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p=1

cos
pπ

2N
+ 2

(
N−1∑
p=1

cos
pπ

2N

)2
 =

ϵ′

N

(
1 + 2

√
2ψ + 2ψ2

)
= ϵ′κ
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Now, let’s simplify ψ =
∑N−1

p=1 cos pπ
2N .

N∑
p=0

ei
pπ
2N =

ei
(N+1)π

2N − 1

ei
π
2N − 1

= ei
π
4
ei

(N+1)π
4N − e−i

(N+1)π
4N

ei
π
4N − e−i π

4N

=
(
cos

π

4
+ i sin

π

4

) 2i sin (N+1)π
4N

2i sin π
4N

= cos
π

4
×

sin (N+1)π
4N

sin π
4N

+ i sin
π

4
×

sin (N+1)π
4N

sin π
4N

=
2 cos π

4 sin (N+1)π
4N

2 sin π
4N

+ i sin
π

4
×

sin (N+1)π
4N

sin π
4N

=
sin(N + 1

2 )
π
2N + sin π

4N

2 sin π
4N

+ i sin
π

4
×

sin (N+1)π
4N

sin π
4N

=
1

2
+

sin(N + 1
2 )

π
2N

2 sin π
4N

+ i sin
π

4
×

sin (N+1)π
4N

sin π
4N

, whence

ψ =

N−1∑
p=1

cos
pπ

2N
= Real

(
N∑

p=0

ei
pπ
2N

)
− 1

= −1

2
+

sin(N + 1
2 )

π
2N

2 sin π
4N

.

So we have found ϵ′′ = ϵ′κ. To show that this the smallest ϵ′′ (and thus smallest κ) with this property,
it suffices to set Y ′ at a corner of the hypercube, for instance Y ′

pq = Ypq − ϵ′ for all p and q. Then
we follow this same derivation that gives equalities instead of inequalities.

Finally, since idct(B∞(Y , ϵ′)) ⊆ B∞(X, ϵ′κ) holds for all the corresponding blocks Y and X ,
this property also holds for the totality of the image x and its transforms y: idct(B∞(y, ϵ′)) ⊆
B∞(x, ϵ′κ).
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