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Abstract

Machine learning models have shone in a variety of domains and attracted
increasing attention from both the security and the privacy communities.
One important yet worrying question is: will training models under the
differential privacy (DP) constraint unfavorably impact on the adversarial
robustness? While previous works have postulated that privacy comes at the
cost of worse robustness, we give the first theoretical analysis that DP models
can indeed be robust and accurate, even sometimes more robust than their
naturally-trained non-private counterparts. We observe three key factors
that influence the privacy-robustness-accuracy tradeoff: (1) hyperparamters
for DP optimizers are critical; (2) pre-training on public data significantly
mitigates the accuracy and robustness gap; (3) choice of DP optimizers
makes a difference. With these factors set properly, we achieve 90% natural
accuracy, 72% robust accuracy (+9% than the non-private model) under
l2(0.5) attack, and 69% robust accuracy (+16% than the non-private model)
with pre-trained SimCLRv2 model under l∞(4/255) attack on CIFAR10
with ϵ = 2. In fact, DP models can be, theoretically and empirically, Pareto
optimal in terms of accuracy and robustness. The robustness of DP models is
consistently observed on MNIST, Fashion MNIST and CelebA, with ResNet
and Vision Transformer. We believe our results are an encouraging step
towards training models that are private as well as robust.

1 Introduction

Machine learning models trained on large amount of data can be vulnerable to privacy attacks
and leak sensitive information. For example, Carlini et al. (2021) shows that attackers can
extract text input from the training set via GPT2 (Radford et al., 2019), that contains
private information such as address, phone number, name and so on; Zhu et al. (2019) shows
that attackers can recover both the image input and the label from gradients of ResNet (He
et al., 2016) trained on CIFAR100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),
and LFW (Huang et al., 2008).

To protect against the privacy risk rigorously, the differential privacy (DP) is widely applied
in various deep learning tasks (Abadi et al., 2016; McMahan et al., 2017; Bu et al., 2020;
Nori et al., 2021; Li et al., 2021), including but not limited to computer vision, natural
language processing, recommendation system, and so on. At high level, DP is realized via
DP optimizers such as DP-SGD and DP-Adam, while allowing the privacy-preserving models
to achieve high accuracy. Therefore, the privacy concerns have been largely alleviated by
switching from regular optimizers to DP ones.

An equally important concern from the security community is that, many models such as
deep neural networks are known to be vulnerable against adversarial attacks. This robustness
risk is severe when the attackers can successfully fool models to make the wrong prediction,
through negligible perturbation on the input data. An example from Engstrom et al. (2019)
shows that a strong ResNet50 trained on ImageNet (Deng et al., 2009) with 76.13% accuracy
can degrade to 0.00% accuracy, even if the input image is merely perturbed by 4/255.
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However, at the intersection of these two concerns, previous works have empirically observed
an upsetting privacy-robustness tradeoff under some scenarios, implying the implausibility of
achieving both robustness and privacy at the same time. In Song et al. (2019) and Mejia et al.
(2019), adversarially trained models are shown to be more vulnerable to privacy attacks,
such as the membership inference attack, than naturally-trained models. In Tursynbek et al.
(2020) and Boenisch et al. (2021), DP trained models were more vulnerable to robustness
attacks than naturally-trained models on MNIST and CIFAR10.

On the contrary, we show that DP models can be adversarially robust, sometimes even
more robust than the naturally-trained models. Indeed, we illustrate that DP models can
be Pareto optimal. That is, under some conditions, any model with higher accuracy than
DP ones must have worse robustness. In sharp contrast to the empirical nature of previous
arts, we enhance our understanding about the adversarial robustness of DP models from a
theoretical angle. Our analysis shows that DP classifier (without adversarial training) can
be the most adversarially robust. Motivated by our theoretical analysis, we claim that the
hyperparameter tuning is vital to successfully learning a robust and private model, where the
optimal choice is to use small clipping norms and large learning rates. Interestingly, such a
hyperparameter choice is also observed to be the most effective in learning naturally accurate
models under DP (Li et al., 2021; Kurakin et al., 2022; De et al., 2022; Bu et al., 2022b).
Additionally, we advocate pretraining and selecting proper optimizers for DP training, which
allow us to max out the performance on MNIST (LeCun et al., 1998), Fashion MNIST(Xiao
et al., 2017), CIFAR10(Krizhevsky et al., 2009), and CelebA(Liu et al., 2015).

2 Preliminaries

Notation. We denote the model as f , the data as {xi} ∈ Rd and the labels as {yi}, following
i.i.d. from the distributions x and y respectively. We denote the gradient of the i-th sample
at step t as gt(xi, yi;w, b), where w is the weights and b is the bias of model f .

To start, we introduce the definition of (ϵ, δ)-DP (Dwork et al., 2014).
Definition 2.1. A randomized algorithm M is (ε, δ)-DP if for any neighboring datasets
S, S′ that differ by one arbitrary sample, and for any event E, it holds that

P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ. (1)

In words, DP guarantees in the worst case that adding or removing one single datapoint
(xi, yi) does not affect the model much, as quantified by the small constants (ϵ, δ). Therefore
DP limits the information possibly leaked about such datapoint.

Algorithmically, DP is guaranteed by privatizing the gradient in two steps: (1) the per-
sample gradient clipping Abadi et al. (2016) (specified by the clipping norm R, to bound the
sensitivity of

∑
i g(xi, yi)); (2) the random noising (specified by the noise multiplier σDP, to

randomize the outcome so that each sample’s contribution is indistinguishable). In words,
DP training simply applies any optimizer (SGD/Adam/...) on the private gradients instead
of on the regular gradients.

Non-DP training on regular gradient:
∑

ig(xi, yi) (2)
DP training on private gradient:

∑
ig(xi, yi) ·min{R/||gi||2, 1}+ σDPR · N (0, I)

We are interested in the adversarial robustness of models trained by DP optimizers: we
consider the adversarially robust classification error and the natural classification error as

Rγ(f) := P(∃||p||∞ < γ, s.t. f(x+ p) ̸= y), R0(f) := P(f(x) ̸= y), (3)

where p ∈ Rd is the adversarial perturbation, γ is the attack magnitude, and l∞ attack is
considered here. Notice that when γ = 0, the robust error in (3) reduces to the natural error.
Remark 2.2. It is important to note that ϵ is determined by σDP, but not R, e.g. ϵ =√

2 ln(1.25/δ)/σDP Dwork et al. (2014); Abadi et al. (2016); Dong et al. (2021). Hence, DP
classifiers with any R share exactly the same privacy guarantee, but some are more robust
and/or some are more accurate. We highlight in Section 3.2 that DP itself does not imply
robustness, but its optimization (with correct hyperparameter) might.
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3 Theoretical Analysis on Linear Classifiers

To theoretically understand the adversarial robustness of DP learning, we study the robustness
of the DP and non-DP linear models on a binary classification problem. We consider a mixed
Gaussian distribution, where the positive class y = +1 has a larger variance (i.e. it is more
difficult to be classified correctly1) than the negative class y = −1:

x ∼
{

N
(
θd,K

2σ2Id
)

if y = +1
N
(
−θd, σ

2Id
)

if y = −1
(4)

where y
unif∼ {−1,+1}, θd = (θ, · · · , θ) ∈ Rd, σ > 0 and K > 1.
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Figure 1: Decision
boundaries of linear
classifiers for (4), K =
4, σ = 0.2, θ = 1.

The setting2 in (4) is analyzable because of the data symmetry along
the diagonal axis Ex1 = · · · = Exd (see Figure 1). We show that this
symmetry leads to an explicit decision hyperplane of linear classifiers
in Theorem 1, which further characterizes the strongest adversarial
perturbation p∗ ≡ arg sup∥p∥∞<γ P(f(x+ p) ̸= y) explicitly.

In the following analysis, we focus on the linear classifiers with
weights wj and bias b,

f(x;w, b) = sign(
d∑

j=1

wjxj + b).

Within the family of linear classifiers, by the symmetry of data in
(4), it can be rigorously shown by (1) that the optimal weights with
respect to the natural and robust errors are always w1 = · · · = wd.
That is, the weights do not distinguish between the robust and
natural models. Consequently, the key to the adversarial robustness
lies in the intercept b, which is analyzed in the subsequent sections.

3.1 Optimal Robust and Natural Linear Classifiers

We firstly review the robust error of robust classifier and the explicit formula of its intercept.
Theorem 1 (Extended from Theorem 2 in Xu et al. (2021)). For data distribution (x, y) in
Equation (4) and under the γ attack magnitude, the optimal robust linear classifier is

fγ = argmin
f is linear

P(∃||p||∞ < γ, s.t. f(x+ p) ̸= y) = argmin
f is linear

Rγ(f).

The optimal robust error is

Rγ (fγ) =
1

2
Φ
(
B(K, γ)−K

√
B(K, γ)2 + q(K)

)
+

1

2
Φ
(
−KB(K, γ) +

√
B(K, γ)2 + q(K)

)
,

where Φ is the cumulative distribution function of standard normal, B(K, γ) = 2
K2−1

√
d(θ−γ)
σ

and q(K) = 2 logK
K2−1 . Furthermore, by the symmetry of the data distribution, we have

1, · · · , 1, bγ = argmin
w,b

Rγ(f(·;w, b))

in which
bγ =

K2 + 1

K2 − 1
d(θ − γ)−K

√
4d2(θ − γ)2

(K2 − 1)
2 + dσ2q(K). (5)

Theorem 1 gives the closed form of the optimal robust classifier fγ , or equivalently its
intercept bγ , and the optimal robust error. The special case of natural error can be easily
recovered with γ = 0:

1, · · · , 1, b0 = argmin
w,b

R0(f(·;w, b)).

1The fact that larger variance indicates lower intra-class accuracy is rigorously proven by Xu
et al. (2021, Theorem 1).

2This setting is also studied in Xu et al. (2021), which focuses on the robustness-fairness tradeoff,
and thus is different to our interest.
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Figure 2: Intercepts and robust/natural
error under (4), with K = 4, σ = 0.2, θ = 1.

We know for sure from Theorem 1 that there
exists a tradeoff between the robustness and ac-
curacy: it is impossible for the natural classifier
f0 to be optimally robust, or for the robust clas-
sifier fγ to be optimally accurate, since b0 ̸= bγ
(c.f. Figure 2 and Fact 3.1).
Fact 3.1. bγ in (5) is strictly decreasing in γ,
ranging from b0 to −∞.

Proof of Fact 3.1. Proof 5 in Xu et al. (2021)
shows that dbγ

dγ ≤ −K−1
K+1d < 0, thus bγ is strictly

decreasing in γ. Therefore, the range of bγ is
(b∞, b0]. Finally, we note that bγ < K2+1

K2−1 (θ−γ),
hence b∞ = −∞.

3.2 Adversarially Robust Errors of Private Linear classifiers

We focus on a specific linear classifier f(·;1, b) or simply f(·; b) where only the intercept
b is learned and DP-protected. This bias-only optimization is commonly used in transfer
learning Zaken et al. (2022); He et al. (2021). Note that this linear classifier is as private as
those optimizing both weights and bias, since σDP is the same.

For this classifier and any b, the robust error (γ ̸= 0) and the natural error (γ = 0) are:

Rγ(f) =P(∃∥p∥∞ ≤ γ s.t. f(x+ p) ̸= y) = max
∥p∥∞≤γ

P(f(x+ p) ̸= y)

=
1

2
P(f(x+ γd) ̸= −1 | y = −1) +

1

2
P(f(x− γd) ̸= +1 | y = +1)

=
1

2
P

(
d∑

i=1

wj (xj + γ) + b > 0 | y = −1

)
+

1

2
P

(
d∑

i=1

wj (xj − γ) + b < 0 | y = +1

)

=
1

2
Φ

(
−
√
d(θ − γ)

σ
+

1√
dσ

· b
)

+
1

2
Φ

(
−
√
d(θ − γ)

Kσ
− 1

K
√
dσ

· b
)

(6)

where γd ≡ (γ, · · · , γ). With (6), we can analyze the robust and natural errors for any
intercept b (private or not, robust or natural) and any attack magnitude γ.

DP classifiers can be the most adversarially robust Our next result answers the
following question: fixing a DP classifier fDP := f(·; bDP), or equivalently its intercept bDP,
under which attack magnitude is it robust? We show that, it is possible for some attack
magnitude γ∗ that bDP = bγ∗ , and thus the DP classifier is the most robust classifier among
all linear classifiers.
Theorem 2. For data distribution (x, y) in Equation (4) and for any bDP < b0, there exists
γ∗ > 0 such that bγ∗ = bDP, and therefore

min
f is linear

Rγ∗(f) ≡ Rγ∗(fγ∗) = Rγ∗(fDP)

In words, the DP classifier is optimally robust under attack magnitude γ∗.

Proof of Theorem 2. By Fact 3.1, bγ − bDP is decreasing in γ, ranging from b0 − bDP to
−∞. By the intermediate value theorem, there exists γ∗ > 0 such that bγ∗ = bDP, i.e.
fDP = fγ∗(·; bγ∗) is the most adversarially robust.

By Theorem 2, as long as the DP intercept is sufficiently small, the DP classifier must be
the most robust under some attack magnitude. We visualize in Figure 3 that for small bDP,
we can inversely find γ∗ = 0.075 such that indeed bDP ≈ bγ∗ (grey solid line).
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Figure 3: Intercepts for (4), same setup as Figure 2. For DP classifiers, we use DP-SGD
with η = 8, epochs=50, batch size=1000, sample size=10000, (ϵ, δ)=(15,1e-4).
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Figure 4: Per-sample gradients at b =
b0.075 before and after clipping for (4),
K = 4, σ = 0.2, θ = 1, and R = 0.1.

DP optimization can lead to robustness
The achievability of bDP < b0, for Theorem 2
to hold, can be explained by the per-sample
gradient clipping in DP optimizers. We tem-
porarily ignore the noise (σ = 0)3 and de-
note C(xi, yi; b) := g(xi, yi; b)min{R/|gi|, 1} as the
clipped per-sample gradient. By definition of station-
ary point,

∑
C(xi,+1; bDP) +

∑
C(xi,−1; bDP) = 0

and
∑

g(xi,+1; b0) +
∑

g(xi,−1; b0) = 0. For large
R, the clipping happens: C(xi, yi; b) ≈ g(xi, yi; b)
and bDP ≈ b0, i.e. DP classifier is as accu-
rate/robust as the natural classifier; for small R
(i.e. |g(xi, yi; bDP| > R), −C(xi,+1; bDP) =
C(xi,−1; bDP) = R which indicates the gradients
from +1 class balance against the other class. Hence,
we can have bDP < b0 and, by Fact 3.1, DP classifier
is more robust than the natural classifier.

DP classifiers can be Pareto optimal in robust-
ness and accuracy Next, suppose we only require
the DP classifier to be more robust than the natural
classifier, not necessarily the most robust among all
linear classifiers. We can answer the question: fixing
the attack magnitude γ, under which condition is fDP
more robust than the natural classifier f0?
Theorem 3. Fixing the attack magnitude γ, if data distribution in Equation (4) satisfies
K2+1
2K γ < |θ − γ|+ |θ|, then whenever bγ < bDP < b0, we have

min
f is linear

Rγ(f) ≡ Rγ(fγ) < Rγ(fDP) < Rγ(f0).

Furthermore, any b with better natural accuracy than bDP must have worse robustness:

R0(f) < R0(fDP) =⇒ Rγ(f) > Rγ(fDP).

That is, DP linear classifier can be Pareto optimal in terms of the robust and natural accuracy.

Theorem 3 shows that, under some conditions, DP models are more robust than natural
models, and cannot be dominated in the Pareto optimal sense. We visualize the premise
bγ < bDP < b0 in Figure 3 and Figure 1, and that Rγ(fγ) < Rγ(fDP) < Rγ(f0) in Figure 2.

3Noise only adds variance to the gradient but does not affect the mean (see Figure 3), and when
learning rate is small, σ has little effect on convergence (Bu et al., 2021).
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We emphasize that our results on the l∞ attacks are extendable to l2 attacks (see Corollary 3.2
and experiments in Appendix C). Put differently, we show that DP models can be adversarially
robust and Pareto optimal under both l∞ and l2 attacks.

Corollary 3.2. All theorems hold for l2 attacks by changing γ → γ/
√
d.

Remark 3.3. Theorem 2 gives sufficient and necessary condition for the DP classifier to
be more robust than all classifiers at one attack magnitude γ∗; Theorem 3 gives sufficient
but not necessary condition for the DP classifier to be more robust than one classifier (the
natural one) at many attack magnitudes.

4 Training Private and Robust Deep Neural Networks

We extend our investigation beyond the linear classifiers in Theorem 2 and Theorem 3, and
study the robustness of DP neural networks. Notably, several state-of-the-art advances are
actually achieved by linear classifiers within the deep neural networks (Mehta et al., 2022;
Tramer & Boneh, 2020), i.e. by finetuning only the last linear layer of neural networks, such
as Wide ResNet and SimCLR. In what follows, we finetune all parameters in all layers.

By experimenting with real datasets MNIST, CIFAR10 and CelebA, we corroborate our
claim that DP models can be adversarially robust on deep neural networks. We use one
GPU of Nvidia GTX 1080 Ti.

4.1 Hyperparameters are keys to robustness: small clipping norm

In DP deep learning, the clipping norm R and learning rate η are crucial for high natural
accuracy. On one hand, R has to be small to achieve state-of-the-art natural accuracy. In
Li et al. (2021); De et al. (2022); Mehta et al. (2022); Bu et al. (2022a), large models such
as ResNet, ViT and GPT2 are optimally trained at R < 1, even though the gradient’s
dimension is of hundreds of millions. On the other hand, DP training empirically benefits
from large learning rate, usually 10 times larger than the non-DP training. This pattern is
observed for DP-Adam (Li et al., 2021) and for DP-SGD (Kurakin et al., 2022), over text
and image datasets.
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Figure 5: Robust and natural accuracy by (R, η) on CIFAR10. Same setting as Tramer
& Boneh (2020): pretraining SimCLR on ImageNet and privately training using DP-SGD
(momentum=0.9), under (ϵ, δ)=(2,1e-5) and attacked by 20 steps of l∞(2/255) PGD.
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Interestingly, we also observe such choice of (R, η) performs strongly in the adversarial
robustness context (though not exactly the same hyperparameters). From the ablation study
in Figure 5 for CIFAR10 and in Appendix B for MNIST, Fashion MNIST and CelebA, it is
clear that robust accuracy and natural accuracy have distinctively different landscapes over
(R, η). We observe that the optimal (R, η) should be carefully selected along the diagonal
ridge for DP-SGD to obtain high robustness and high natural accuracy. Otherwise, even
small deviation can lead to a sharp drop in the robustness, though the natural accuracy may
remain similar (see upper right corner of 2D plots in Figure 5).

Our ablation study demonstrates that the most robust DP network, with 81.04% robust
accuracy and 89.86% natural accuracy, can be more robust than the most robust naturally-
trained network (79.59% robust accuracy and 94.31% natural accuracy). If we trade some
robustness off the DP network, we can achieve the same level of robustness as the most
robust non-DP network (80.20% robust accuracy and 91.27% natural accuracy).

While Figure 5 presents the result of a single attack magnitude, we further study the influence
of hyperparameters under different attack magnitudes. We illustrate on CIFAR10 the l∞
attack performance in Table 1 and the l2 one in Table 5.

SimCLRv2 pre-trained on unlabelled ImageNet ResNet50
DP DP DP DP DP DP Non-DP Non-DP Non-DP Non-DP

attack ϵ = 2 ϵ = 2 ϵ = 4 ϵ = 4 ϵ = 8 ϵ = 8 ϵ = ∞ ϵ = ∞ ϵ = ∞ ϵ = ∞
magnitude robust accurate robust accurate robust accurate robust accurate adv 8/255 accurate

γ = 0 89.69% 92.87% 90.91% 93.41% 91.22% 93.64% 94.29% 94.55% 87.03% 95.25%
γ = 2/255 81.05% 33.21% 82.53% 57.80% 83.02% 68.90% 79.79% 59.56% – –
γ = 4/255 68.85% 0.16% 70.21% 9.69% 71.08% 28.09% 53.56% 15.99% – –
γ = 8/255 39.63% 0.00% 38.39% 0.00% 39.28% 0.01% 8.14% 0.00% 53.49% 0.00%
γ = 16/255 1.20% 0.00% 0.65% 0.00% 0.91% 0.00% 0.00% 0.00% 18.13% 0.00%

Table 1: Natural and robust accuracy of SimCLRv2 (Chen et al., 2020) and ResNet50 from
(Engstrom et al., 2019) on CIFAR10 under 20 steps l∞ PGD attack. See the explanation of
robust or accurate versions below and detailed hyperparameters in Appendix D.

We evaluate the robust and natural accuracy on the state-of-the-art DP models in Tramer
& Boneh (2020), considering two groups of hyperparameters: the accurate one reproduced
from Tramer & Boneh (2020) that has the highest natural accuracy, and the robust one from
a grid search on (R, η) for the highest robust accuracy. From Table 1 and Table 5, we see
that even under the same privacy constraint, the robustness from different hyperparameters
can be fundamentally different. For example, DP SimCLR at ϵ = 2 can be either very robust
(≈ 70% accuracy at γ = 4/255) or not robust at all (0.16% accuracy). Consequently, our
results may explain the misunderstanding of previous researches by the improper choice of
the hyperparameters.
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Figure 6: Robust and natural accu-
racy on CIFAR10 at different itera-
tions. Dots are CNN from Papernot
et al. (2020). Crosses are SimCLR
from Tramer & Boneh (2020). See
details in Appendix D.

Scrutinizing the robust version of hyperparame-
ters, we see that, across all l∞ attack magnitudes
γ = {2/255, 4/255, 8/255, 16/255}and l2 ones γ =
{0, 0.25, 0.5, 1.0, 2.0}, DP SimCLR can be more ro-
bust than the non-DP SimCLR, in fact comparable
to the adversarially trained ResNet50 that is bench-
marked in Engstrom et al. (2019). To be assured, we
demonstrate that our choice of small R and large η
is consistently robust on Fashion MNIST, CIFAR10
and CelebA in Appendix C.

4.2 Pareto
optimality in accuracy and robustness

In the standard non-DP regime, the tradeoff between
the accuracy and the robustness is well-known En-
gstrom et al. (2019). We extend the Pareto statement
in Theorem 3 to DP deep learning, thus adding the pri-
vacy dimension into the privacy-accuracy-robustness

7
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tradeoff. In Figure 6, we show that two state-of-the-art DP models on CIFAR10 (one
pre-trained, the other not) achieve Pareto optimality with proper hyperparamters, and thus
cannot be dominated by any natural classifiers. This can be observed by the fact that
no green cross (or dot) is to the top right of all blue crosses (or dots), meaning that any
natural classifier may have better robustness or higher accuracy, but not both. Therefore,
our observation supports the claim that DP neural networks can be Pareto optimal in terms
of the robustness and the accuracy.

4.3 DP neural networks can be robust against general attacks

Following the claim in Section 4.1 that DP neural networks can be robust against l2 and l∞
PGD attacks, we now demonstrate the transferability of DP neural networks’ robustness
against different attacks. We consider FGSM(Goodfellow et al., 2014), BIM(Kurakin et al.,
2018), PGD∞(Madry et al., 2017), APGD∞(Croce & Hein, 2020), PGD2(Madry et al., 2017)
and APGD2(Croce & Hein, 2020). This is interesting in the sense that DP mechanism
does no intentionally defend against any adversarial attack, while the adversarial training
(Goodfellow et al., 2014) usually specifically targets a particular attack, e.g. PGD attack
is defensed by PGD adversarial training. In Table 2, we attack on the robust models from
Table 1, with the robust parameters. We consistently observe that DP models can be
more adversarially robust than the non-DP ones on MNIST/Fashion MNIST/CelebA in
Appendix C, if the hyperparameters (R, η) are set properly.

Natural FGSM BIM PGD∞ APGD∞ PGD2 APGD2

DP , ϵ = 2 89.86% 69.73% 68.85% 68.85% 68.85% 72.10% 71.97%
DP , ϵ = 4 90.91% 71.13% 70.21% 70.21% 70.21% 72.79% 72.63%
DP , ϵ = 8 91.22% 71.88% 71.08% 71.08% 71.06% 73.08% 72.99%
Non-DP 94.29% 56.24% 53.56% 53.56% 53.56% 63.32% 62.93%

Table 2: Natural and robust accuracy on CIFAR10 under general l2/l∞ adversarial attacks.
Same model as Table 1 with the robust parameters. See attack hyperparameters in Ap-
pendix D.

4.4 Robustness and accuracy landscapes of DP optimizers
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Figure 7: Robust and natural accuracy by η and R on CelebA with label ‘Male’. We train a
simple CNN with DP-Adam and test under 20 steps of l∞(2/255) PGD attack. See details
in Appendix D.

We claim that the diagonal pattern of the accuracy landscapes observed in Figure 5 (CIFAR10
& DP-Heavyball), Figure 11 (CIFAR10 & DP-SGD), Figure 12 (MNIST & DP-SGD) and
Figure 13 (Fashion MNIST & DP-SGD) is not universal. For example, in Figure 7, we show
that adaptive optimizers are much less sensitive to the clipping norm R, as the landscapes
are characterized by the row-wise pattern instead of the diagonal pattern. This pattern is
particularly obvious in the small R regime, where the robust and natural accuracy are high
(see right panel in Figure 8).
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To analyze the insensitivity to the clipping norm, we take the RMSprop(Tieleman et al., 2012)
as an example, which complements the analysis of Adam in Bu et al. (2022b). For sufficiently
small R, the private gradient in (2) becomes g̃t = R ·

(∑
i

gt(xi)
||gt(xi)||2 + σN (0, I)

)
:= R · ĝt.

With private gradient g̃t, DP-RMSprop updates parameters θt by θt = θt−1 − ηt
g̃t√
ṽt

, where

ṽt = αṽt−1 + (1− α)g̃2
t =

∑t
s(1− α)αt−sg̃2

s = R2 ·∑t
s(1− α)αt−sĝ2

s . Overall, we obtain an
updating rule that is independent of the clipping norm R,

θt = θt−1 − ηt
R · ĝt√

R2 ·∑t
s(1− α)αt−sĝ2

s

= θt−1 − ηt
ĝt√∑t

s(1− α)αt−sĝ2
s

.

As a result, DP optimizers can have fundamentally different landscapes with respect to the
hyperparameters (R, η), and thus affect the accuracy and robustness (see Figure 9).

4.5 Large scale experiments on CelebA face datasets

We further validate our claims on CelebA (Liu et al., 2015), a public high-resolution (178×218
pixels) image dataset, consisting of 200000 real human faces that are supposed to be protected
against privacy risks. We train ResNet18 (He et al. (2016), 11 million parameters) and Vision
Transformer (ViT, Dosovitskiy et al. (2020), 6 million parameters) with DP-RMSprop. Both
models are implemented by Wightman (2019) and pretrained on ImageNet.

ResNet18 ViT
attack DP DP DP Non-DP DP DP DP Non-DP

magnitude ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞ ϵ = 2 ϵ = 4 ϵ = 8 ϵ = ∞
γ = 0 80.10% 85.10% 88.48% 91.91% 92.30% 92.33% 92.09% 92.87%

γ = 2/255 1.26% 0.47% 1.03% 1.19% 1.42% 2.02% 10.35% 0.08%
γ = 4/255 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
γ = 8/255 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
γ = 16/255 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 3: Natural and robust accuracy on CelebA with label ‘Smiling’, DP-RMSprop, under
20 steps l∞ PGD attack. Here the hyperparameters have not been carefully searched for the
best robustness. See details in Appendix D.

Natural FGSM BIM PGD∞ APGD∞ PGD2 APGD2

DP , ϵ = 2 80.10% 24.47% 1.24% 1.26% 1.18% 47.02% 46.25%
DP , ϵ = 4 85.10% 24.40% 0.45% 0.47% 0.41% 56.92% 56.09%
DP , ϵ = 8 88.48% 29.32% 0.97% 1.03% 0.41% 57.40% 56.69%
Non-DP 91.91% 22.94% 1.09% 1.19% 0.68% 66.89% 66.13%

Table 4: Natural and robust accuracy on CelebA with label ‘Smiling’ under general l2/l∞
adversarial attacks. Same ResNet18 as Table 3. See attack hyperparameters in Appendix D.

In Table 3 and Table 4, we observe that DP ResNet18 and ViT are almost as adversarially
robust as their non-DP counterparts, if not more robust. These observations are consistent
with those of simpler models on tiny images (c.f. Table 1 and Table 2).

5 Discussion

Through the lens of theoretical analysis and extensive experiments, we have shown that
differentially private models can be adversarially robust and sometimes even more robust
than the naturally-trained models. This phenomenon holds for various attacks with different
magnitudes, from linear models to large vision networks, from grey-scale images to real face
datasets, and from SGD to adaptive optimizers. We not only are the first to reveal this
possibility of achieving privacy and robustness simultaneously, but also are the first to offer
practical guidelines to address this important goal. We hope that our insights will excite the
practitioners and boost their confidence to protect both the privacy and the robustness in
real-world applications.
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