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Abstract

One of the main challenges of social interaction in vir-
tual reality settings is that head-mounted displays occlude
a large portion of the face, blocking facial expressions and
thereby restricting social engagement cues among users.
We present an algorithm to automatically infer expressions
by analyzing only a partially occluded face while the user
is engaged in a virtual reality experience. Specifically, we
show that images of the user’s eyes captured from an IR
gaze-tracking camera within a VR headset are sufficient to
infer a subset of facial expressions without the use of any
fixed external camera. Using these inferences, we can gen-
erate dynamic avatars in real-time which function as an ex-
pressive surrogate for the user. We propose a novel data
collection pipeline as well as a novel approach for increas-
ing CNN accuracy via personalization. Our results show a
mean accuracy of 74% (F1 of 0.73) among 5 ‘emotive’ ex-
pressions and a mean accuracy of 70% (F1 of 0.68) among
10 distinct facial action units, outperforming human raters.

1. Introduction
Facial expressions are essential for interpersonal com-

munication and social interaction. They provide a means

for conveying thought and emotion through visual cues that

may not be easy to articulate verbally. However, virtual re-

ality (VR) equipment using head-mounted displays (HMD)

makes natural expressions difficult to recognize as half the

face is occluded. Thus for VR systems to provide rich so-

cial interaction, faithfully representing these expressions in

some manner is absolutely critical. We propose to recognize

and convey facial expressions from inside a VR HMD.

Visual classification of expressions has been a well

studied topic in computer vision. Most of this relies on

faces [14, 23, 31]. We focus on a no extern, where the user

is wearing a head-mounted display (HMD) in a VR setting

Figure 1: Eyemotion visual schematic. A: A user wear-

ing the VR HMD used for expression tracking (Note that

no external camera is used in our method; this is just for

visualization). B: Interior of the HMD, with IR LEDs visi-

ble around the radius of the eyepieces, highlighted with red

circles. C: Captured eye data. D: Model inference with dy-

namic avatar representation.

as shown in (Fig. 1A).

One could attach a user facing external camera that cap-

tures the lower face but that may not always be feasible such

as in a mobile setting. An external camera is also not able

to capture upper-facial expressions as they are occluded.

We propose a new approach aimed at classification of fa-

cial action units (AUs) [12] and ‘emotive’ expressions using

only internally mounted infrared cameras within the HMD.

We are motivated by the recent availability of commercial

HMDs with eye-tracking cameras [1]. This uses infrared

cameras (Fig. 1B). These are used for tracking [29], but in

our work we use the same input images for expression clas-

sification. A key aspect of our work is a labeling-based ap-

proach – as opposed to visual tracking of facial featureseye
images.

Our model classifies user expressions using only lim-

ited periocular eye image data, as shown in Fig. 1C, which

is further limited by the large amount of intra-class vari-
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ation among users. To account for limited data, a new

type of data, and large variations, we turn to deep learn-

ing techniques. Recently convolutional neural networks

(CNNs) [20, 15, 35] have performed very well on image

classification tasks and are pervasive in machine learning

and computer vision. Additionally, deep learning methods

have the benefit of learning important invariant features and

embeddings without requiring any hand-crafted feature rep-

resentations. Deep learning has also been shown to give

state of the art results on faces [22, 34]. Our approach,

based on deep learning, outperforms normal human accu-

racy and even advanced (trained users) human accuracy for

categorizing select facial expressions from our dataset of

only IR eye images. Human ratings form the primary base-

line for our work. We use these ratings for comparison and

evaluation, but not as labels during training.

We also demonstrate an application of our classification

framework that animates facial models and avatars in real-

time, which could be used in social VR apps to convey and

interpret users’ facial expressions. Note that our classifica-
tion based approach has applications beyond synthesis since

it also provides semantics of the expression (potentially cor-

related with the emotive response to the VR environment),

which may then be used as feedback to the system.

Our primary contributions are: (1) Demonstrating that

the information required to classify a variety of facial ex-

pressions is reliably present in IR eye images captured by

a commercial HMD sensor, and that this information can

be decoded using a CNN-based method. (2) A novel per-

sonalization technique to improve CNN accuracy on new

users. Across experiments, personalization resulted in a 4%

accuracy improvement on average, and was statistically sig-

nificant for a set of basic ‘emotive’ expressions (p = 0.018)

and AUs (p = 0.001) (Section 4.2). (3) The collection of a

unique dataset (Section 3) of eye images paired with expres-

sion labels, collected with two separate commercial HMDs

each with 23 different users. (4) We show our method can

be used to generate expressive avatars in real-time, which

can function as an expressive surrogate for users engaged in

VR environments (Section 5.2).

2. Related work
The problem of expression inference from limited facial

data in a VR setting exists at the intersection of well studied

problems in a variety of disciplines, discussed below.

Expression classification from visual data: While much

work has been done on automatically inferring human ex-

pressions from images, nearly all of it focuses on unoc-

cluded, frontal faces (see [27, 14, 5, 32] for recent sur-

veys). Tian et al. [39] employ facial action units for fine-

grained facial expression recognition, using feature track-

ing and neural networks. Saatci et al. [31] use active ap-

pearance models to construct cascaded SVM classifiers for

gender and 4 expressions/emotional states. The popularity

of deep learning produced renewed interest in the field, with

new challenges like [11] requiring emotion recognition on

video data, and [13] requiring classification of 11 AUs and

recognition of basic and compound emotions. Recent work

on expression inference includes Liu et al. [23], who pro-

pose a boosted deep belief network, and Barsoum et al. [4],

who use the VGG network [35] to learn emotions from

noisy crowd-sourced labels. Kahou et al. [17] and Bargal

et al. [3] use deep convolutional networks combined with

SVM classifiers for expressions from the EmotiW dataset

challenge [11]. Benitez-Quiroz et al. [13] use Kernel Sub-

class Discriminant Analysis (KSDA) to classify facial ac-

tion units, intensities and emotion categories on a large im-

age dataset in the wild. All of these works require full, un-
occluded face images, unavailable in our scenario. There

has been some work with partial occlusion of the face such

as [16, 18, 7].

Expression classification with alternate sensors: There

has been some recent research on expression classifica-

tion using wearable sensors. Scheirer et al. [33] use

face mounted piezoelectric sensors to discriminate between

confused and interested expressions as well as discrim-

inating between expressive states in general and neutral

states. More recently Masai et al. [24] used optical sen-

sors mounted on glasses to determine 8 expressions simi-

lar to [11] with a small set of users, and performed hard-

ware modifications for facial expression mapping inside a

HMD [36]. This work is the closest to our proposal of

expression classification in virtual reality headsets. How-

ever, we propose a method for expression classification us-

ing gaze tracking cameras rather than embedded optical

or piezoelectric sensors, which is more robust to person-

alized fit, and does not require customized sensors beyond

a commercial eye-tracking system. Much work using al-

ternate sensors has been motivated by facial re-enactment

(e.g. [22]) and is covered below.

Gaze tracking in VR: Gaze tracking is the subject of in-

tense and sustained research, and used for many interactive

applications [25]. Gaze tracking has recently seen applica-

tions in virtual and mixed reality [21, 38] and on mobile de-

vices using convolutional neural networks [19]. However,

these methods do not classify expressions or AUs.

Facial re-enactment in VR: Unoccluded face synthesis,

facial reenactment and avatar re-targeting in VR has been

an active area of recent research. These approaches use a

combination of visual tracking of the lower (unoccluded)

face, along with custom sensors mounted inside the HMD.

Burgos et al. [8] composite the occluded part of the face

by aligning and blending the unoccluded parts with a pre-
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captured facial expression database. Li et al. [22] mea-

sure strain signals with electronic sensors to estimate fa-

cial expressions of the occluded face, and combine with a

user facing RGB-D camera to train a linear 3D paramet-

ric model of blendshapes. Olszewski et al. [26] propose an

approach for 3D avatar control with eye-tracking cameras

and a user facing RGB camera. A CNN model is trained to

regress from these streams to blendshape coefficients. Thies

et al. [38] also perform real-time gaze-aware facial reenact-

ment in VR using a RGB-D camera to capture the unoc-

cluded regions, and two internal infra-red (IR) cameras to

track the eye gaze. A multi-linear blendshape model is fit

to these streams by optimizing for photometric and geomet-

ric alignment. Zhao et al. [43] synthesize unoccluded face

images using an HMD case fitted with wide-angle near IR

cameras, along with a user facing RGB camera. A 3D bi-

linear blendshape model is fit to the input, the occluded part

is synthesized from warped, and colorized IR eye images

with evaluation on unoccluded face images.

In contrast, our work aims to classify a set of facial ex-

pressions from cameras present in eye-tracking enabled VR

HMDs, with all optical and field-of-view constraints. As

such our work cannot be directly compared against these;

instead we show comparisons among various CNN-based

models trained on eye images and against human ratings

to benchmark our results. Most attempts at personalization

use per-subject samples and quick retraining [9, 42]. How-

ever there has also been some work at personalizing expres-

sion classification without retraining with new samples [10]

based on unsupervised generalization with STM. We how-

ever, introduce a novel personalization approach which re-

quires no retraining with a deep learning framework.

3. Our Dataset
We perform supervised training using a CNN to classify

face expressions from eye images recorded inside the HMD.

We collect a large amount of data which is cumbersome or

impossible to label by hand. This section describes our data

collection method, which obtains ground truth expression

data from participants using infra-red eye images and with-

out the need for manual image annotations such as that re-

quired by spontaneous expressions.

3.1. Data Collection

There are some public datasets of near infra-red eye im-

ages [6] that target iris detection and biometric authentica-

tion, but contain no expression labels. In addition, these

datasets do not directly translate to the novel sensors used

in VR. Therefore, we designed a system to collect such data

from participants in a controlled setting.

We collected a subset of facial action units that influ-

ence the upper face, and could be reliably performed by

multiple subjects. We also distinguish between left and

Figure 2: Inferring expressions from eye images alone is

significantly different from doing so using the unoccluded

face. Here we have four participants making four different

expressions: without wearing the HMD (column 1, for ref-

erence only), within the HMD (column 2), and within the

HMD during session 2 (column 3). The expressions are (A)

happiness, (B) anger, (C) surprise, (D) and squint. The dif-

ficulty of this task, even for humans, is clear as the amount

of expressive information conveyed is significantly reduced

while variability is readily visible.

right AUs, where applicable. These are Neutral (AU0), Left
Brow Raise (AU1+2L), Right Brow Raise (AU1+2R), Brow
Lower (AU4), Upper Lid Raise (AU5), Squint (AU44),
Both Eyes Closed (AU43), Left Wink (AU46L), Right Wink
(AU46R), and Cheek Raise (AU6). We also collect ‘emo-

tive’ expressions for basic emotions as defined by [12],

which are Neutral, Anger, Surprise, and Happiness. See

Fig. 2 for an illustration of the variability of the data. We

experiment with training classifiers on facial action units, a

subset of useful and non-overlapping facial action units, ex-

pressions, and a subset of expressions useful for VR social

environments. The mapping from AUs to emotional expres-

sions has been well characterized [12].

3.2. Collection Setup

We collected data with two separate HMDs, with near

IR (880nm) cameras mounted between the eye lens and dis-

play screen using a beam splitter. HMD1 and HMD2 cap-

ture 200x200-pixel and 320x240-pixel eye image pairs re-

spectively, both at 10Hz. The different headset cameras and

camera requirements of each HMD allow characterization

of the generalization of our technique (they are different
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Figure 3: The Eyemotion pipeline, including personalization. A: Raw eye images from the HMD. B: Rectified eye images.

C: The average neutral image for this user session, used for personalization. D: The difference between the rectified headset

image and the mean neutral image is the input to a deep neural network. In the non personalization case, the mean neutral

image is not subtracted from the rectified image. E: Output takes the form of a distribution over expressions. F: This

distribution is used to generate an expressive avatar.

manufacturered headsets from SMI). 23 different partici-

pants were collected with each HMD with different genders

(for a total of 46), ethnicities, and hair color.

We collected these data by asking users to form an ex-

pression, giving them an example from an exemplar video.

While this may not result in spontaneous expressions [41], it

provides explicit labels for each expression. Removing the

need for expert ratings allows larger-scale data collection

than would otherwise be possible. To provide a realistic ex-

emplar, we first recorded videos of trained actors perform-

ing each expression for the participant to use as a reference.

During the collection process, for each expression, we pro-

vide to the participant the name of the expression, a looped

clip of an actor performing the expression, and a live video

of the participant in order for them to practice the expres-

sion. If the participant can’t perform the expression, they

are able to skip it. Otherwise they hold the expression and

follow a randomly moving target on the screen with their

gaze (to encourage gaze diversity) or head pose (to encour-

age variations in HMD pose). This continues for all expres-

sions and AUs (these are the images in column 1 of Fig. 2).

We then have them put on the HMD and repeat the process

twice more, taking the headset off and putting it back on

to account for slippage and variation in fit. Each of these

headset repetitions constitutes a ‘session.’

3.3. Data Characteristics

To ensure diversity, we collected each participant’s per-

sonal information through a data collection form. Of the 46

participants: 16 were female; 16 were aged 35 or over from

an age range of 18 to 64 with a median age of 30; 11 par-

ticipants had non-brown eyes and 4 had non-brown or black

hair. 25 of our participants were nonwhite, with 9 Asian, 7

east Indian or south Asian, 4 two or more races, 3 Hispanic

or Latino, 2 African American, and 2 preferring not to say.

Approximately 50,000 eye image pairs were collected

per HMD (about 2,000 per participant). Each expression

was collected for the same amount of time; however, as

some participants were unable to perform all of the expres-

sions, there exists slight variability in the number of images

per expression.

3.4. Data Cleanup

Since participants blink during the data collection pro-

cess, and we want to remove this source of variance,we re-

moved closed-eye images with a custom classifier, similar

to the approach in Section 4.1. The classifier was trained

to recognize eyeblinks using the neutral and the eyes closed

images from our participants. Neutral and closed-eye im-

ages were validated and cleaned manually by ensuring that

neutral images did not include any blinks and that eyes were

actually closed during closed-eye periods. Approximately

400 images were removed by hand and using the classifier.

3.5. Data Augmentation

The tightly controlled acquisition environment in the

headset means lighting and eye-camera viewpoint are

largely fixed, with nearly all of the variation coming from

differences in participants and the position of the headset

on the head during acquisition. Thus data augmentation was

performed carefully and monitored for consistency. Further,

the semantic meaning of many of the labels (e.g. ‘Left Eye

Wink’) precludes random flips. Random rotations are lim-

ited so that they do not exceed human variation in eye orien-

tation. We found a 2% variation (rather than 10% used fre-

quently) is appropriate when performing random augmen-

tation of rotation, scale, and brightness.

4. Our Approach
Initially, we experimented with features obtained from

facial iris and eye landmark positions, similar to those pro-

duced in [14] and [44]. However, testing with a proprietary

eye landmarker produced frequent failures when the partic-
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(a) A correct example of the

eye landmark tracker.

(b) Most eye landmark tracker

results contained errors.

Figure 4: Eye tracker results with blue dots as the iris and

pupil landmark locations and green dots as the palpebral

fissure landmark locations.

ipants made expressions that distorted the shape of the eyes

(see Fig. 4). Using those kinds of existing hand-crafted fea-

tures on our new domain does not yield good features and

ignores the periocular data which is found to contain useful

information [28]. Recent work on facial animation using

VR and an external camera [22] has also shown that deep

models work well to estimate facial expressions, which is

similar to our problem. The entire pipeline, including per-

sonalization, is represented schematically in Fig. 3.

4.1. CNN Architecture

Our proposed method leverages a CNN to learn an

embedding describing expressions and emotions using in-

frared eye images. Specifically, we train a variant of the

widespread Inception architecture [37] using the Tensor-

Flow library [2] motivated by experimentation on various

CNN architectures, described in Section 5. The model used

was pre-trained for 150,000 iterations on the Imagenet data.

Data are registered and augmented as described in Section

3. The HMD eye cameras are calibrated, and both eye im-

ages are rectified, concatenated and scaled to 299x299 pix-

els. The network was trained using a learning rate of 0.045

which decays stepwise by 0.94 every epoch. To prevent

overfitting, we used L2 weight decay (0.0004). The soft-

max cross-entropy function was chosen as the loss along

with L2 regularization.

Optimization was performed with a ‘RMSProp’ opti-

mizer [40], with momentum 0.9, decay factor 0.9, and ε of

1.0.

4.2. Personalization

One of the dominant sources of variance in our data is

individual variation in appearance. We attempt to partially

remove this variance since it does not vary with, and may

not be predictive of, affective state. Since this variance re-

moval occurs within-subject, it is effectively ‘personaliza-

tion.’ Our approach is inspired by the standard practice

of mean image subtraction. To remove appearance based

variation, we construct a mean neutral image, one for each

person/session pair by averaging together first 5 seconds of

Figure 5: Personalization is performed by subtracting each

user’s mean neutral data from the current image to reduce

the unimportant sources of variance and highlight important

ones. Columns are 1: the original image, 2: the mean neu-

tral image, and 3: the difference between the two (which

are contrast normalized for demonstrative purposes). Row

are different expressions, with A: happiness, B: anger, and

C: brow raise.

their neutral images, as neutral images are stable over time.

This image is subtracted from all other images derived from

the originating person/session pair to effectively normalize

it for a user (see Fig. 5) per Equation 1 where P (I) is the

CNN test input, I is the original image, and Nu is the set of

neutral images for that user. An ‘in practice’ realization of

this technique would be requesting a user maintain a min-

imally emotive expression for a short period of time and

using the accumulated data to construct a similar normaliz-

ing image effectively giving each person a different mean

subtraction. This generates P (I) for new/test users.

P (I) = I − 1

|Nu|
∑

Iu∈Nu

Iu (1)

Repeated experiments demonstrated that ‘personalizing’

images by subtracting a separate mean image per user is an

effective means of increasing the accuracy of the classifier.

To avoid introducing a bias towards statistical signif-

icance when testing the effectiveness of personalization,

we first collapsed across results within a single subject–

session–condition triplet (e.g., subject 28, session 2, con-

dition ‘brow raise’) into a single average accuracy and F1
score, then conducted a paired 1-tailed t-test to test the sig-

nificance of the difference in average accuracy across the

23 users between results obtained with and without ‘per-

sonalization.’ Action unit expression classification was

significantly increased by the introduction of personaliza-

tion (p < 0.001) as was ‘emotive’ expression classification

(p = 0.018).
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5. Experiments & Results

We experiment with benchmarks of different convolu-

tional neural networks in a small, single validation set study

on the 10 action units listed in Section 3 with 4 holdout par-

ticipants and 19 participants to train on from HMD1. This

yields a comparison metric for our proposed architecture.

The different architectures we tried as benchmarks are listed

in Table 1. For all our uses of InceptionV3, we fine-tune a

model trained off of the ImageNet dataset [30].

Methods 1-4 were results from human raters as described

in Section 5.1. Method 5 is the result from professions

FACs coders validating our ground truth data. Method 6

is the same ignoring left/right brow raise. Method 7 is ob-

tained from a two tower (one-per-eye) gaze tracking net-

work adapted from [19]. Method 8 is InceptionV3 with two

towers (one for each eye) and tied weights. Method 9 is a

single-tower InceptionV3, which receives concatenated eye

images, but only the last fully connected softmax layers are

allowed to vary. Method 10 is the same approach with the

alexnet architecture. Methods 11 and 12 are fine-tuned In-

ceptionV3 with data augmentation as described in Section

3.5. Method 13/14 is our Eyemotion approach detailed in

Section 4.

Initial tests we performed on different participants

showed that results across individuals (without personaliza-

tion) vary drastically and range between 31% to 90% be-

tween users/headsets (see Supplementary materials). Re-

sults depend on factors such as ergonomic fit, eyebrow

color, eyebrow position, and expressiveness. Because of

this, one hold out test set of participants is acceptable in a

small study but not an effective enough performance mea-

surement for comparison of our actual model accuracy.

Therefore, in the experiments below, we use 5-fold cross

Method Accuracy
1: Average of human raters 47%

2: Average of human raters w/neutral 50%

3: Advanced human rater 58%

4: Advanced human raters w/neutral 62%

5: FACs Coder 73%

6: FACs Coder without individual brow raises 81%

7: Variants based off of [19] 26%

8: InceptionV3 one tower per eye 48%

9: InceptionV3 w/ frozen weights 55%

10: Alexnet HMD1 57%

11: InceptionV3 HMD1 65%

12: InceptionV3 HMD2 69%

13: Eyemotion (our approach) HMD1 70%

14: Eyemotion (our approach) HMD2 73%

Table 1: Preliminary tests using 4 left out participants.

validation by holding out participants on our dataset to get

a more robust comparison between our approach and the

baseline model.

Figure 6: Visualizing the correct and incorrect classifica-

tions of the model for a subset of expressions. Columns 1

and 2 are correct classifications (green border), while col-

umn 3 are false negatives (red border). Rows are different

expressions. A: Surprise, B: Neutral, C: Happiness, D: Eyes

closed, E: Anger. In some cases, it is clear why the incorrect

classification was made.

We found results on HMD1 and HMD2 were roughly

the same as shown in Table 1, so for brevity we present

results for HMD2 only and include more results in our sup-

plementary material. Our model achieves a mean accuracy

on ‘emotive’ expressions of 66.6% and 73.7% without and

with personalization, respectively. Facial action unit clas-

sification accuracy was 63.7% without personalization and

70.2% with personalization (results in Fig 6, per class de-

tails shown in Tables 2, 3, 4, and 5). Both results have

higher than the average advanced human rater accuracy of

60.8% discussed in Section 5.1.

5.1. Human Accuracy

We took a subset of 350 images of the data with differ-

ent users and expressions in order to form a human bench-

mark of the data given that humans excel at pattern match-

ing. We had 2 beginner classifiers (who had not seen any

eye images previously), 1 intermediate classifier (who had

seen some eye images previously), and 2 advanced, well-

trained classifiers look at the concatenated eye images and

guess the label from the 10 facial action units on each of

those images. We also do this with a sample image of each

person as a personalization method can be useful for the

1631



Action Unit Precision Recall F1 Support
Brow lower 0.59 0.66 0.63 2897

Upper lid raise 0.74 0.76 0.75 4912

Cheek raise 0.56 0.64 0.60 2659

Eyes closed 0.54 0.51 0.53 793

Left brow raise 0.52 0.28 0.36 1598

Left wink 0.95 0.86 0.90 2638

Neutral 0.48 0.59 0.53 2309

Right brow raise 0.29 0.18 0.22 1855

Right wink 0.83 0.87 0.85 2220

Squint 0.62 0.71 0.66 2135

Avg / total 0.64 0.65 0.64 24016

Table 2: Facial action units finetuned with InceptionV3.

The overall mean accuracy 63.7%.

Action Unit Precision Recall F1 Support
Brow lower 0.67 0.74 0.70 2576

Upper lid raise 0.75 0.70 0.73 4956

Cheek raise 0.65 0.64 0.64 2903

Eyes closed 0.92 0.54 0.68 872

Left brow raise 0.61 0.33 0.43 1616

Left wink 0.93 0.90 0.91 2577

Neutral 0.53 0.96 0.68 2372

Right brow raise 0.50 0.24 0.32 1701

Right wink 0.82 0.87 0.84 2235

Squint 0.65 0.67 0.66 2208

Avg / total 0.70 0.69 0.68 24016

Table 3: Facial action units finetuned with InceptionV3 us-

ing our personalization method. Mean accuracy 70.2%.

classifier. The inter-rater kappa from our raters without and

with a sample neutral image were 0.61 and 0.64 respec-

tively showing good agreement among raters. The F1 score

of the best rater was 0.63 without and 0.65 with neutral im-

ages (worse than our method’s results). This suggests that

some amount of one-shot learned personalization should be

able to improve results. We also computed the inter-rater

kappa from 4advanced human raters on 350 random images

without andwith a sample neutral image per sample. The

scores were0.61and0.64respectively showing good agree-

ment amongraters. We also computed the f1 score for the

advancedhuman rater: 0.63 without and 0.65 with a neutral

image;worse/lower than our methods (0.64 without, 0.68

with).

5.2. Applications

Given our model produces a probability distribution of

AUs or expressions, we can use that output to infer what

a user is feeling and/or drive an avatar showing their ex-

Expression Precision Recall F1 Support
Anger 0.72 0.72 0.72 2695

Closed Eyes 0.77 0.78 0.77 899

Happiness 0.66 0.67 0.66 2610

Neutral 0.60 0.78 0.68 2274

Surprise 0.71 0.51 0.59 2425

Avg / total 0.68 0.68 0.67 10903

Table 4: Expressions finetuned with InceptionV3. Overall

mean accuracy 66.6%.

Expression Precision Recall F1 Support
Anger 0.71 0.83 0.77 2455

Closed Eyes 0.90 0.67 0.77 863

Happiness 0.81 0.60 0.69 2644

Neutral 0.64 0.95 0.77 2425

Surprise 0.81 0.60 0.69 2516

Avg / total 0.76 0.74 0.73 10903

Table 5: Expressions finetuned with InceptionV3 using our

personalization method. Overall mean accuracy 73.7%.

pressions in real-time. Smoothing with exponential decay is

applied on the inferred expression probabilities to get tem-

porally stable labels. The model also yields a more intuitive

expression medium for VR as opposed to gestures or key-

board inputs. We can also adjust a user’s VR environment

based on their expression and hence their inferred emotional

state.
This can be demonstrated with a simple example where

we change the ambient light and color based on the user’s

expressions while they watch a film clip as shown in the

supplementary material. An example of this is included in

the supplementary video, and shown in Fig. 8a and Fig. 8b.

Clearly these are very simple applications of our frame-

work, and far more elaborate adjustments of the ambient

environment are possible.

6. Discussion
Our initial studies rapidly demonstrated the superiority

of the concatenated-eye architecture, in which eye images

are concatenated together before being input (see Table 1).

This architecture outperformed all others by ten percentage

points or more when evaluated on the hold-out participants.

We hypothesize that the improvement is due to concatenat-

ing the eye images at the outset, giving the CNN the abil-

ity to combine information from each eye. When the test-

ing was extended to four other folds, such that each par-

ticipant is excluded from training in exactly one fold, this

accuracy improvement remained. Introducing a novel eye

personalization technique, motivated by mean image sub-

traction, further improved the accuracy by nearly five per-
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Figure 7: Confusion matrices of advanced human raters showing the accuracy of a)Advanced human, b) Advanced human

with a given neutral image, c) Our network tested on holdout users never seen before. Labels are Neutral (AU0), Left Brow
Raise (AU1+2L), Right Brow Raise (AU1+2R), Brow Lower (AU4), Upper Lid Raise (AU5), Squint (AU44), Both Eyes
Closed (AU43), Left Wink (AU46L), Right Wink (AU46R), and Cheek Raise (AU6).

(a) Animation still with our

model inferring happiness.
(b) Animation still with our

model inferring anger.
Figure 8: An animation that can be driven by our model’s

inference.

centage points on average, which t-tests showed was signif-

icant (all p < 0.05). Typical errors occured when a visible

component (e.g. eyebrows) was occluded (see Fig. 6).

We compare our personalization method to nonperson-

alization methods and an implementation inspired by [19].

Compared to other attempts at personalization, we instead

explicitly create a difference from the mean neutral image

and show this yields better results on average across all

classes and especially improving neutral classification. In

addition, some comparison could be made to [24] where

they classify 8 expressions on 8 users achieving good ac-

curacy on holdout sessions. However, on hold-out users,

they achieve an accuracy of at most 48% and determined

that a new user requires individual training for classifica-

tion. Our deep learning personalization method scales well

to new users and requires no individual training.

We also found that our implementation is robust to dif-

ferent hair colors and makeup. However, incorrect labels

during data collection harm our results, which is why left

brow raise and right brow raise have such low precision and

recall as many people cannot do both and, critically, partici-

pants during data collection would attempt to do them even

if they could not. This is a downside of autonomous data

collection in which participants are asked to perform, as we

have no means other than the participant’s self report that

the performances are accurate. It is, however, non-trivial to

collect in-the-wild or unoccluded data for this task.

7. Conclusions

Future work would consider Using naturalistic stimuli

(such as video) and treating the task as a clustering or an

alignment would spare participants the requirement of hav-

ing to ‘fake’ expressions and remove the requirement of im-

posing a fixed set of expressions.

A large amount of information about facial expressions

is encoded in the eyes alone. Perhaps more surprising, this

work shows that such information is interpretable by a CNN

and can automate expression inference, even when the im-

ages are relatively low fidelity and derived from consumer-

grade equipment. Even with 50 users, our model hand-

ily exceeds human classification accuracy and can power

an avatar that serves as an expressive surrogate for a user

wearing an HMD. We have demonstrated using consumer-

grade eye-tracking cameras, which are already being in-

cluded in VR headsets, a means to preserve and transmit

social information among users engaged in VR. We also
propose a novel personalization method with no retraining
that achieves 74% accuracy on classifying expressions and
70% accuracy on classifying facial action units.
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