Under review as a conference paper at ICLR 2025

SYMMAP: IMPROVING COMPUTATIONAL EFFICIENCY
IN LINEAR SOLVERS THROUGH SYMBOLIC
PRECONDITIONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Matrix preconditioning is a crucial modern technique for accelerating the solv-
ing of linear systems. Its effectiveness heavily depends on the choice of precon-
ditioning parameters. Traditional methods often depend on domain expertise to
define a set of fixed constants for specific scenarios. However, the characteristics
of each problem instance also affect the selection of optimal parameters, while
fixed constants do not account for specific instance characteristics and may lead
to performance loss. In this paper, we propose Symbolic Matrix Preconditioning
(SymMaP), a novel framework based on Recurrent Neural Networks (RNNs)
for automatically generating symbolic expressions to compute efficient precon-
ditioning parameters. Our method begins with a grid search to identify optimal
parameters according to task-specific performance metrics. SymMaP then per-
forms a risk-seeking search over the high-dimensional discrete space of symbolic
expressions, using the best-found expression as the evaluation criterion. The re-
sulting symbolic expressions are seamlessly integrated into modern linear sys-
tem solvers to improve computational efficiency. Experimental results demon-
strate that SymMaP consistently outperforms traditional algorithms across various
benchmarks. The learned symbolic expressions can be easily embedded into exist-
ing specialized solvers with negligible computational overhead. Furthermore, the
high interpretability of these concise mathematical expressions facilitates deeper
understanding and further optimization of matrix preconditioning strategies.

1 INTRODUCTION

Linear system problems are widely used in machine learning, physics, engineering, and other sci-
entific disciplines (Leon et al.l [2006; [LeVeque, 2007). These problems often cannot be solved
through analytical or closed-form solutions, rendering the development of efficient numerical al-
gorithms (Demmel, |[1997). Among these techniques, matrix preconditioning is one of the most pop-
ular approaches to enhance the efficiency of solving linear systems (Trefethen & Bau, [2022; |Chen),
2005). During the preconditioning process, the selection of preconditioning parameters—such as
the over-relaxation factor in Successive Over-Relaxation (SOR) (Golub & Van Loan, 2013)—plays
a crucial role.

In traditional numerical computation, fixed constants for preconditioning parameters are often tai-
lored for specific scenarios based on domain expertise (Chenl 2005)). However, apart from problem-
specific scenarios, the characteristics of the problem also influence the selection of optimal precon-
ditioning parameters. Choosing a fixed constant as the parameter (Benzi, [2002), on the other hand,
would overlook the inherent characteristics of the problem, thereby leading to suboptimal perfor-
mance. Existing heuristic formulas for predicting parameters, such as Young’s formula (Golub &
Van Loan, [2013)), impose many restrictions on both the input and the problem structure and thus
are often not suitable for more generalized scenarios. The above all highlight the urgent need for a
more flexible approach that not only accommodates a wider range of scenarios but also dynamically
adjusts to the evolving characteristics of the problems.

A good algorithm for discovering the optimal preconditioning parameters must overcome several
significant challenges: (C1) Strong Generalization Capability. Different application scenarios and

Under review as a conference paper at ICLR 2025

preconditioning goals demand that the algorithm possesses robust generalization capabilities to
adapt effectively across various contexts (Golub & Van Loanl 2013)).

(C2) Computational Efficiency. Given the frequent invocation of linear system solvers in scientific
computing, any parameter prediction algorithm must incur minimal computational overhead and
seamlessly integrate with existing specialized solver libraries (Chen, [2005]).

(C3) Algorithmic Transparency. The often opaque nature of prediction algorithms hinders re-
searchers’ ability to understand and trust their outcomes, making it difficult to validate and refine
the models effectively. Conversely, transparent algorithms allow practitioners to validate and verify
the underlying mechanisms, which helps ensure that the prediction results are derived in a logically
coherent and justifiable manner (Lipton, 2016).

To address these challenges, we propose Symbolic Matrix Preconditioning (SymMaP), a novel
Recurrent Neural Network (RNN)-based symbolic discovery framework that searches for symbolic
expressions of efficient preconditioning parameters. We begin by applying grid search to iden-
tify the optimal preconditioning parameters based on task-specific performance metrics. Next, the
framework conducts a risk-seeking search within the high-dimensional discrete space of symbolic
expressions, with the risk-seeking strategy evaluating the best-found symbolic expression. Finally,
these symbolic expressions are integrated into modern solvers for linear systems to enhance their
computational efficiency.

The experimental results highlight several advantages of our algorithm:

* Superior Performance: Our novel matrix preconditioning approach, based on symbolic
regression, consistently outperforms traditional algorithms across various benchmarks.

* Robust Generalization Capability: It is widely applicable to predicting diverse matrix
preconditioning parameters and optimizing for various objectives.

* Easy Deployment: The learned symbolic expressions can be easily embedded into existing
specialized linear system solvers with negligible additional computational time, which is
friendly to the pure CPU environments.

* High Interpretability: The learned strategies are concise, one-line mathematical expres-
sions, facilitating further understanding and optimization of matrix preconditioning algo-
rithms by researchers.

2 PRELIMINARIES

2.1 MATRIX PRECONDITIONING TECHNIQUE

Matrix preconditioning is a technique employed to accelerate the convergence of iterative solvers
and enhance the stability of algorithms. It is generally employed in solving linear systems (Chenl
2005; |Golub & Van Loan, 2013). These systems are typically expressed in the form:

Az =b. (1)

The fundamental idea of preconditioning is to transform the original problem into an equivalent one
with better numerical properties. The objectives are twofold: 1. to accelerate the convergence of
iterations by altering the spectral distribution of the matrix A. 2. to reduce the condition number of
the matrix A, thereby lessening its ill-conditioning and enhancing the stability of iteration. Specifi-
cally, this technique involves finding a preconditioner M that approximates either the inverse of A
or some form conducive to iterative solutions (Chenl 2005). Consequently, the original equation
is transformed into

MAx = Mb. 2)

The preconditioned matrix M A should have a lower condition number than the original matrix
A, allowing iterative methods such as Generalized Minimal Residual Method (GMRES) (Saad &
Schultz, [1986)) to converge more rapidly. Some common preconditioning techniques include the
Jacobi, Gauss-Seidel, SOR (Young, |1954) , Algebraic Multigrid (AMG) (Trottenberg et al., 2000),
etc.

Under review as a conference paper at ICLR 2025

- 102
| —®— lIterations —a— Time 100% 4 100% 100% 100% 100%
94%
92%
90%
" S 87% a6 87%
c w © 85% =
o u o 83%
= () o
o £ g 80% | 28978%
9 = =
- |_ 73%73%
k101 70% Optimal Parameter w,,
o

SymMaP

Optimal Fixed Constant

Default Parameter

10! ™ ™ ™ ™ ™ ™ ™ 1072 60% T T T T
000 025 050 075 1.00 125 150 175 2.00 le-5 le-6 le-7 le-8
SOR preconditioning parameter w Tolerance (2 Norm)

Figure 1: Left: Variation in iteration counts and computation times under different SOR precon-
ditioning parameters applied to a linear system from a second-order elliptic PDE. Right: Ratio of
average computation times at various tolerances to default parameter times under different SOR pa-
rameter selection schemes, evaluated on a second-order elliptic PDE dataset.

2.2 PREFIX NOTATION AND GENETIC PROGRAMMING

Prefix notation is a mathematical format where every operator precedes its operands, eliminating the
need for parentheses required in conventional infix notation and simplifying symbolic manipulation.
This representation is particularly advantageous in symbolic regression, as it allows mathematical
expressions to be expressed as sequences of tokens that can be easily processed by neural networks.

In this notation, operators can be unary (e.g., sin, cos) or binary (e.g., +, —, X, =), while operands
can be constants or variables (Landajuela et al.,2021). Each prefix expression uniquely corresponds
to a symbolic tree structure, facilitating the conversion back to the original mathematical expres-
sion (Lample & Chartonl 2019).

Genetic Programming (GP) is a well-known algorithm that builds on this notation by evolving math-
ematical expressions that model relationships within data. As an evolutionary computation tech-
nique, GP generates solutions without requiring prior knowledge of their structure (Espejo et al.,
2009). The expressions are represented as tree structures, with internal nodes corresponding to op-
erators and leaf nodes representing variables or constants (Banzhaf et al.||1998). This representation
aligns well with prefix notation, allowing for effective manipulation and optimization.

GP begins with an initial population of randomly generated expression trees and iteratively applies
genetic operations—selection, crossover, and mutation—to improve their fitness. Selection identi-
fies the fittest expressions based on a predefined metric (Eiben & Smithl 2015). Crossover combines
parts of two parent expressions, while mutation introduces random changes, facilitating the explo-
ration of new potential solutions. Through these iterative processes, GP refines the population of
expressions, converging towards optimal solutions that accurately capture the underlying relation-
ships in the data (Espejo et al., 2009} |[Langdon & Poli, [2013).

3 MOTIVATION

The selection of matrix preconditioning parameters plays a crucial role in determining the effec-
tiveness of the preconditioning process (Chen, |2005). To design appropriate algorithmic prediction
parameters, we first analyze the optimization space for preconditioning parameter selection and
identify the optimal parameters. Subsequently, we examine the unique challenges present in this
scenario. Finally, in response to these challenges, we have opted for symbolic learning to guide the
parameter selection process.

3.1 MOTIVATION FOR OPTIMIZING PRECONDITIONING PARAMETERS

As illustrated figure [T] (Ieft), the choice of relaxation factors w significantly impacts the iteration
count and computation time, when solving a second-order elliptic Partial Differential Equation

Under review as a conference paper at ICLR 2025

(PDE) (Evans, 2022) with SOR preconditioning (Young} [1954), There exists an optimal parame-
ter w,, that minimizes the iteration count and computation time, with specific details available in

the Appendix [B.2]

To further analyze the optimization space of preconditioning parameters, we evaluated the impact
of various parameter selection strategies on preconditioning performance. As shown in Figure
(right), the *Optimal Parameter w,,;,” represents the parameter that minimizes computation time in
each experiment, serving as the theoretical upper limit of our optimization. The ’Optimal Fixed
Constant’ refers to a fixed constant that minimizes average computation time, and ’Default Param-
eter’ corresponds to the default setting of w = 1 in the Portable Extensible Toolkit for Scientific
Computation (PETSc) (Balay et al., [2024). The gap between the optimal fixed constant and the
optimal parameter highlights significant potential for optimizing preconditioning parameter selec-
tion, motivating this paper. The performance of our SymMaP algorithm approaches the optimal
parameter, demonstrating its accuracy in learning the optimal parameter expression.

3.2 CHALLENGES IN PREDICTING EFFICIENT PRECONDITIONING PARAMETERS

The choice of preconditioning parameters directly influences the efficiency of solving linear systems.
We aim to develop a universal framework for predicting efficient parameters. However, the context
of solving linear systems imposes specific challenges on algorithms that predict preconditioning
parameters:

(C1) Strong Generalization Capability: Real-world scientific computing scenarios vary signifi-
cantly. For instance, the grid format and feature selection of PDE:s in different physical environments
can lead to significant variations in matrix structure (Johnson, [2009)), resulting in distinct optimal
parameters. Moreover, preconditioning faces various tasks such as reducing computational costs and
lowering condition numbers (Chenl 2005). This necessitates that parameter prediction algorithms
possess robust generalization capabilities: they should take problem scenarios and characteristics as
inputs while being applicable to different preconditioning methods and optimization goals.

(C2) Computational Efficiency: Solving linear systems typically relies on Krylov subspace meth-
ods implemented in low-level libraries optimized for CPU architectures, such as PETSc (Balay et al.,
2024), LAPACK (Anderson et al.,[1999). Algorithms like GMRES (Saad & Schultz,|1986) and Con-
jugate Gradient (CG) (Greenbaum,|1997) iteratively compute the matrix’s invariant subspace, favor-
ing single-threaded or limited multi-threaded execution modes. Preconditioning techniques aim to
accelerate these solvers without significant additional computational overhead, often adopting im-
plicit iterative formats (e.g., SOR (Chenl 2005)) or utilizing low-cost matrix decompositions (e.g.,
AMBG (Trottenberg et al.,[2000)). Therefore, any parameter prediction algorithm must be compatible
with CPU environments and seamlessly integrate into existing algorithm libraries while maintaining
low computational overhead to preserve the performance gains of preconditioning.

(C3) Algorithmic Transparency: Algorithms in scientific computing often require rigorous anal-
ysis under mathematical theories. Opaque prediction algorithms could confuse researchers. For
instance, the relaxation factor w in SOR needs to avoid being too close to 0 or 2 in some scenar-
ios (Agarwal, 2000). This is an issue that opaque algorithms cannot avoid in advance. Moreover,
interpretable algorithms can guide researchers to conduct further studies and reveal the underly-
ing mathematical structures of problems. Therefore, these pose challenges to the transparency and
interpretability of the parameter prediction algorithms.

3.3 SYMBOLIC LEARNING TO PRECONDITIONING PARAMETER SELECTION

Symbolic learning focuses on extracting explicit mathematical expressions from data, enabling the
generation of analytical models that link system properties to optimal preconditioning parameters.
This approach eliminates manual tuning and enhances solver efficiency by directly predicting pa-
rameters based on system characteristics. Introducing symbolic learning into matrix preconditioning
addresses the challenges of selecting optimal parameters by offering a generalizable, efficient, and
transparent solution.

Firstly, symbolic learning can accommodate various types of input parameters and can specifi-
cally tailor symbolic expression learning for different preconditioning methods and optimization
goals (Cranmer et al.l 2020), thereby meeting the requirement for broad applicability in scientific

Under review as a conference paper at ICLR 2025

1. Training Data Generation 2. Evalutate Expressions and I/ 3. Sequential Model \‘
s . q Parent
linear system Train the Deep Symbolic Model ren NN Sampled
PDE(Oé) ' Ale)z = b(a) P>y : & Siblin Token !
parameter N prcc%dilinncr dataset {(ml, yl)}:L:l ! I g) :
w o ege

¢ (& initial parameter 6 : — 1
! 1
M(w)A(a)z = M(w)b(a) — 6= 6o update 6 I |
\ | — + prefix |
¢ | i . N 1 expressionI
X generationg expression 7 | e
‘% 1 —> X 1
adaptive S optimal parameter : |
grid search :,,_ wop | constant optimization | 1]
J g l . —> const 1
0 parameter w g 1 1
i B | calculate R(7) | I I
=) | - y 1
dataset {(zi,y5) = (0 wop)}{ a ' — '

’

NO | \ N o o e e e e e .
AN ST \| R(7) = 1 oriter = max r--TT =" N eTETETTT
| 4. Deployment in linear solvers I Token Library ; | Symbolic log |
_____________________ 1 1 1 1Experssion | 1
- ! , 1 1t - &, 1 + |
I vintegrated to : ' compilled to | 1 _ 1 -) 27 N\ 1

.) o ! - X const
' linear solver ! . library 1! = 1 AN |
! L 4 N, 01 | expression 7 | 1.z Yy const | | const i 1
y ’ S o PAERN ’

Figure 2: [llustration of how SymMaP discovers efficient symbolic expressions for preconditioning
parameters. Part 1 demonstrates the acquisition of optimal parameters and dataset generation; Part
2 illustrates the training process of the RL-based deep symbolic discovery framework; Part 3 shows
how the sequential model generates symbolic policies; Part 4 presents the deployment of symbolic
expressions.

computing tasks (Challenge C1). Secondly, the explicit expressions derived are computationally
lightweight and can be quickly evaluated at runtime, integrating seamlessly into existing CPU-
based algorithm libraries like PETSc (Balay et al.,|2024) with almost no overhead (Challenge C2).
Thirdly, symbolic learning provides transparent and interpretable models (Rudin, [2019)), allowing
researchers to understand the influence of parameters within existing theoretical frameworks and
identify potential numerical stability issues. This interpretability fosters trust in the algorithm’s
predictions and supports further theoretical exploration (Challenge C3).

4 METHOD

In this study, we introduce a novel framework, SymMaP, for symbolic discovery in matrix precondi-
tioning by utilizing RNN. As shown in Figure 2] we first obtain the optimal preconditioning param-
eters for the given scenario through a grid search to construct a training dataset. Then we employ an
RNN to generate symbolic expressions in prefix notation, which are then evaluated for their fitness.
The RNN is trained using a reward function based on the performance of the generated expressions.
By optimizing the RNN parameters to maximize this reward function, we generate symbolic expres-
sions that approximate the desired mathematical functions. Finally, we deploy the learned symbolic
expressions into linear system solvers. The detailed steps are as follows and pseudocode is provided
in the Appendix [C]

4.1 INPUT FEATURES AND TRAINING DATA GENERATION

Input Features. We discuss solving parameterized PDEs, a common scenario in linear systems.
These problems are generated using methods like uniform random generation, Gaussian Random
Fields (GRF), and truncated Chebyshev polynomials (details are provided in Appendix [D.T). We
use these parameters as input features for symbolic learning in SymMaP.

Training Data Generation. For each generated linear system, we determine its optimal precondi-
tioning parameters via adaptive grid search. Taking the SOR preconditioning as an example—with
relaxation factors w ranging from O to 2 and aiming to minimize computation time—we start with

Under review as a conference paper at ICLR 2025

a coarse grid (e.g., step size 0.01) to compute iterations for each factor. We then select the factors
with the fewest computation time and perform a finer grid search (e.g., step size 0.001) around them
to find the optimal relaxation factor.

By generating a series of linear systems and finding the optimal preconditioning parameters for
each, we create the necessary training data. Each data point comprises: 1. the problem generation
parameters x;; 2. the optimal preconditioning parameters y;. ¢ = 1,2, ..., n and n is the number of
data. Our goal is for symbolic learning to discover an expression mapping the problem parameters
to the optimal preconditioning parameters.

4.2 THE GENERATION OF SYMBOLIC EXPRESSIONS

Token Library. For SymMaP, we define the library of mathematical operators and operands as
{+, —, X, =, sqrt, exp, log, pow, 1.0}. Although other operators such as poly, sin and cos are fre-
quently used (Udrescu & Tegmarkl [2020), we decided to exclude them because they offer limited
explanatory power in matrix preconditioning and significantly increase the time and memory con-
sumption during training.

After converting the mathematical expressions into prefix notation, we leverage this tokenized rep-
resentation as a pre-order traversal of the expression tree (Zaremba & Sutskever, 2014). In each
iteration, the RNN receives a pair consisting of a parent node and a sibling node as inputs and
outputs a categorical distribution over all possible next tokens. The parent node refers to the last
incomplete operator that requires additional operands to form a complete expression. The sibling
node, in the context of a binary operator, represents the operand that has already been processed and
incorporated into the expression. In cases where no parent or sibling node is applicable, they are
designated as empty nodes. This structured input method enables the RNN to maintain contextual
awareness and effectively predict the sequence of tokens that form valid mathematical expressions.

The Sequential Model. During the generation of a single symbolic expression, the RNN emits a
categorical distribution for each ’next token” at each step. This distribution is represented as a vector

((;), where ¢ denotes the i-th step and 0 represents the parameters of the RNN. The elements of the
vector correspond to the probabilities of each token, conditioned on the previously selected tokens

in the traversal (Petersen et al.,|2019):

(E?i)(Ti) = p(7i|T1:4-1; 0). 3)

Here, 7; denotes the index of the token selected at the i-th step. The probability of generating the en-
tire symbolic expression 7 is then the product of the conditional probabilities of all tokens (Petersen
et al.,|2019; |Landajuela et al., 2021):

N
p(r16) = [[v5 ().)
=1

Optimization of Constants: The library £ incorporates a ‘constant token,” which allows for the
inclusion of various constant placeholders within sampled expressions. These placeholders serve as
the parameters £ in the symbolic expression. We seek to find the optimal values of these parame-
ters by maximizing the reward function: {* = arg max, R(7;§), utilizing a nonlinear optimization
method. This optimization is executed within each sampled expression as an integral part of com-
puting the reward, prior to each training iteration.

4.3 THE REWARD FUNCTION

Once a symbolic expression is fully generated (i.e., the symbolic tree reaches all its leaf nodes), we
evaluate its fitness by calculating the Normalized Root-Mean-Square Error (NRMSE), a metric fre-
quently used in genetic programming symbolic discovery (Schmidt & Lipson, [2009). The NRMSE
is defined as

(&)

Under review as a conference paper at ICLR 2025

where §; is the predicted value for the i-th sample, y; is the optimal preconditioning parameter, o,
is the standard deviation of the target values y, and n is the number of data. To bound this fitness
value between 0 and 1, we apply a squashing function:

1
Rir)= — —
(T) = T NRMSE

Our objective is to maximize R(7), thereby minimizing the NRMSE and improving the accuracy of
the generated expressions.

(6)

4.4 THE TRAINING ALGORITHM

Although the objective function is well-defined, it is important to note that R(7) is not a deter-
ministic value but a random variable dependent on the RNN’s parameters 6. Therefore, the key
challenge is to establish an appropriate criterion for evaluating this random variable, and then apply
gradient-based optimization methods accordingly.

Risk-seeking Policy. It is natural to consider the expectation of the reward function, i.e.
Ep(r0)[R(T)], as the objective function to optimize. We can easily obtain

Vo E‘rwp(r;@) [R(T)] =]E‘r/vp(‘r;e) [R(T)VB log p(T; 0)])

by applying the “log-integral” trick (Williams} {1992). Thus, even though the expectation of the
reward function is not directly differentiable with respect to @, we can approximate the gradient
using the sample mean.

In the context of symbolic regression, model performance is often driven by a few exceptional results
that outperform others by a significant margin (Petersen et al.| 2019} [Tamar et al., 2015). With this
in mind, we adopt a risk-seeking policy, which aims to maximize:

J(0,¢) = Eropro) [R(T)|R(T) > Q(0,¢)]. (8)
Here, (0, ¢) is the (1 — €)-quantile of the reward distribution under parameter 0, i.e.
Q(0,¢) =inf{q € R|CDF(R(7);0) > 1 — ¢}, 9

where CDF(R(1); 0) refers to the cumulative distribution function. From this, the gradient of
J(0,) can be derived as (Petersen et al., 2019):

VoJ(0,¢) = Erpir0)[(R(T) = Q(0,¢)) Ve logp(T;0)|R(T) > Q(0,¢)]. (10)

This gradient can be estimated using Monte Carlo sampling:

N
A 1 i A i
Vol (0.6) ~§ = > (R(T) = Q(6,))Vologp(T;:0) - 1p0)26(0.00 (1)
=1

Q(0,¢) is the empirical (1 — €)-quantile of the reward function. By concentrating on the top &
percentile of samples, SymMaP emphasizes optimizing the best-performing solutions in precondi-
tioning, thereby obtaining the optimal symbolic expressions for preconditioning parameters.

4.5 DEPLOYMENT IN LINEAR SOLVER

After the training process, we obtained a symbolic formula for predicting the preconditioning pa-
rameters. The learned formula is exceptionally concise and incurs minimal computational cost.
Therefore, we directly compile the learned policy into a lightweight shared object using a simple
script and then integrate it into the linear system solver package.

5 EXPERIMENTS

We conducted comprehensive experiments to evaluate the SymMaP framework, organized into three
primary sections: 1. Assessment of three different preconditioners and optimization goals across
various datasets to determine the effectiveness of SymMaP algorithm, 2. Analysis of associated

Under review as a conference paper at ICLR 2025

computational overhead and the interpretability of the learned symbolic expressions, 3. Ablation
studies of SymMaP.

Preconditioners: We considered three different preconditioners and various optimization metrics:
1. SOR preconditioner with the relaxation factor w (Golub & Van Loan| [2013)); 2. SSOR precon-
ditioner with the relaxation factor w (Golub & Van Loan, 2013); 3. AMG preconditioner with the
threshold parameters 61 (Trottenberg et al., [2000).

Datasets: We examined linear systems arising from three distinct classes of PDEs: 1. Darcy flow
problems consist of symmetric matrices, generated by the finite difference method (L1 et al., [2020;
Kovachki et al.,[2021); 2. Second-order elliptic PDEs also consist of symmetric matrices, generated
by the finite difference method (Evans, 2022} [Bers et al., |1964); 3. Biharmonic equations consist of
non-symmetric matrices, generated by the finite element method. And non-symmetric matrices are
not amenable to SSOR and AMG preconditioning (Ciarlet & Raviart, |1974; Barrata et al.| 2023).

Baselines: We compared SymMaP against various parameter selection methods for preconditioning.
Specifically, the comparison involved the following scenarios: 1. No matrix preconditioning, 2.
Default parameters in PETSc (Balay et al.|[2024), 3. Fixed constants, 4. Optimized fixed constants.

Experiment Settings: To ensure consistent evaluations, all preconditioning was implemented in the
C version of the PETSc library (Balay et al.,|2024). Experiments were executed using the GMRES
algorithm (Saad & Schultz,|1986) within a standardized computing environment.

Details on preconditioners, the mathematical forms of datasets, and the runtime environment are
available in Appendices [B] [D.1} and respectively. Information on the generation of training
datasets for the following experiments and parameters of the SymMaP algorithm are outlined in
Appendices and For an introduction to related work, see Appendix [A]

5.1 MAIN EXPERIMENTS

In these experiments, we optimized relaxation factors w in both SOR and SSOR preconditioning,
and threshold parameters 61 in AMG preconditioning. For SOR, we identified w values that mini-
mize computation time, forming the training dataset for SymMaP to learn symbolic expressions that
optimize computational times for solutions. In SSOR, we used a hybrid metric combining normal-
ized computation times and iteration counts to determine optimal w values aimed at optimizing both
metrics simultaneously. Similarly, for AMG, we selected f7 values that minimize the condition
number of preconditioned matrices.

Table 1: Comparison of average computation times (seconds) for SOR with different w selections,
and tolerance is le-7. SymMaP 1 and SymMaP 2 are the two learned expressions that achieved the
highest reward function scores, with the best-performing method highlighted in bold.

No PETSc default Fixed constant Fixed constant

Dataset Matrix size precondition =1 w =02 =18 Optimal constant SymMaP 1 SymMaP 2
Biharmonic 4.2 x 103 7.67 2.04 4.86 1.60 1.31 1.24 1.26
Darcy Flow 1.0 x 10* 33.1 13.5 17.5 9.91 9.54 8.50 8.60
Elliptic PDE 4.0 x 10* 31.3 21.0 21.4 17.5 16.6 15.8 16.3

Table 2: Comparison of average computation times and iterations for SSOR with different w se-
lections, and tolerance is le-7. SymMaP 1 and 2 are the first two expressions learned. Results are
displayed as "time (seconds) / iteration”, with the best method in bold.

No PETSc default Fixed constant Fixed constant

Dataset Matrix size precondition w=1 w=02 w=18 Optimal constant SymMaP 1~ SymMaP 2
Darcy Flow 4.9 x 10> 4.18/8596 0.488/1068 0.757/ 1685 1.09 /2322 0.448 /960 0.412/936 0.523/1226
Elliptic PDE 4.0 x 10* 23.9/5281 10.5 /2369 14.7 /3534 8.72/1926 8.68 /1864 7.70/1666 7.74/1714

Experimental results indicate that SymMaP consistently outperforms all others across all experimen-
tal tasks. For SOR, Table[T]shows that SymMaP reduces computation times by up to 40% compared
to PETSc’s default settings and by 10% against the optimal constants. In SSOR, Table 2] shows that
it cuts computation time and iteration counts by up to 27% and 30%, respectively, over PETSc’s

Under review as a conference paper at ICLR 2025

Table 3: Comparison of average condition numbers for preconditioned matrices using different
threshold parameter 6 selections in AMG. SymMaP 1 and 2 are the first two expressions learned,
with the best method in bold.

ST No PETSc default Fixed constant ~ Fixed constant
Dataset Matrix size precondition 0p =0 0p = 0.2 0p =08 Optimal constant SymMaP 1 SymMaP 2
Darcy Flow 1.0 x 10* 752862 8204 19146 11426 7184 4824 5786
Elliptic PDE 4.0 x 10* 6792 184.6 205.4 212.5 182.8 168.8 170.3

defaults, and achieves reductions of 11% in time and 10% in iterations compared to optimal con-
stants. For AMG, Table 3] shows that SymMaP lowers the condition number by up to 40% relative
to PETSc’s defaults and 32% against the optimal constants.

These results highlight SymMaP’s ability to effectively derive high-performance symbolic expres-
sions for various preconditioning parameters, showcasing its broad applicability and strong general-
ization across different preconditioning tasks.

5.2 COMPARISON WITH NEURAL NETWORK PERFORMANCE

To analyze the deployment overhead and predictive performance of the SymMaP algorithm, we con-
ducted a comparison with predictions made directly by a Multilayer Perceptron (MLP). Specifically,
we implemented an MLP with three fully connected layers, using Mean Squared Error (MSE) as
the loss function and ReLU as the activation function. Both symbolic expression and MLP were
executed in a CPU environment to simulate a scientific computing context.

Table 4: Comparison of the runtime required for symbolic expression and MLP to predict the SOR
relaxation factor and the subsequent average solution time for linear systems, using the Darcy Flow
dataset with a matrix size of 10% and tolerance is le-5.

‘ Runtime (s) Solution time (s)
MLP 5.1e-5 7.1e-1
Symbol 1.1e-5 7.1e-1

As shown in Table[d] the runtime of symbolic expressions learned by SymMaP was only 20% of that
of the MLP, primarily due to the poor performance of neural networks in a pure CPU environment,
highlighting SymMaP’s computational efficiency under these conditions. Furthermore, the aver-
age solution times for parameters predicted by both symbolic expressions and MLP were closely
matched. This demonstrates that symbolic expressions possess equivalent expressive capabilities to
neural networks in this scenario, effectively approximating the optimal parameter expressions.

5.3 INTERPRETABLE ANALYSIS

Table 5: Symbolic expressions learned from the main experiments

Precondition Dataset Symbolic expression

SOR Biharmonic 1.04+1.0/(4.0+1.0/x2) + 1.0/z;
SOR Elliptic PDE 1.0 4+ 1.0/(z2 + 1.0 + 1.0/ (22 + 4.0))
SOR Darcy Flow 1.0+ 1.0/(z4 + 1.0)

SSOR Elliptic PDE 1.0+ 1.0/(z2 + 1.2)

AMG Elliptic PDE (xrx3 +1)/7

In Table [5] we report a subset of the learned symbolic expressions, with the mathematical signifi-
cance of the related symbols detailed in Appendix[E.T] These symbolic expressions are notably more
concise and selective, not utilizing all candidate parameters and symbols, which aids researchers in
analyzing their underlying relationships.

For instance, in the context of SOR and SSOR preconditioning, empirical evidence suggests that
smaller relaxation factors should be chosen when diagonal components are relatively small. Our

Under review as a conference paper at ICLR 2025

experimental findings corroborate this: for the second-order elliptical PDE dataset, the symbolic
expressions derived for SOR and SSOR preconditioning depend solely on s, with larger x» values
leading to smaller predicted relaxation factors, exemplified by 1.0 + ﬁ Here, x5 represents
the coupling coefficient of the elliptical PDE, which directly influences the relative size of the non-
diagonal components of the generated matrix, whereas other coefficients have minimal impact. As
the coupling coefficient increases, the relative numerical of the non-diagonal components increases,
and the diagonal components reduce correspondingly, aligning with empirical observations.

Additionally, further examples include using SymMaP to optimize the relaxation factor for SOR
iterations. Training data were generated from the symmetric positive definite matrices portion of the
second-order elliptic PDE dataset. By inputting the spectral radius p(A) into SymMaP, it accurately
achieved the theoretically optimal relaxation formula, the Young’s formula (Young, |1954):

2
Wopt = —————F———=. (12)
1+ /1= p(A)?
Note: The SOR iteration discussed here is a direct iterative method for solving linear systems and
not a preconditioning technique; it is distinct from the SOR preconditioning discussed in the main
experiments, though both require setting a relaxation factor.

These experimental outcomes demonstrate that SymMaP can derive interpretable and efficient sym-
bolic expressions for parameters, further aiding researchers in understanding and exploring the un-
derlying mathematical principles.

5.4 ABLATION EXPERIMENTS

Table 6: Ablation study examining the selection of mathematical operators, comparing the effects on
preconditioning and training times. The first column lists the selected operators, the second column
shows the condition numbers of preconditioned matrices derived from AMG parameter predictions
on the Darcy flow dataset (lower is better), and the third column displays SymMaP training times.

Functionset Condition number Training time(s)
+, —, X, =, poly 6803.8 15351
+, —, X, =, sqrt, exp, log, pow, 1.0 7086.9 703.17
+, —, X, <+, sqrt, exp, log, sin, cos, pow, 1.0 7172.6 635.82
+, —,+, 1.0, pow 7241.8 703.26
+, —, X, =+, sqrt, pow, 1.0 7271.1 746.80
+, —, X, =, pow, 1.0 7301.4 702.46

We conducted an ablation study using SymMaP to evaluate the impact of different mathematical
operator selections, as described in Table[6] In the main experiments, We utilized the operator set
{+, —, X, =, sqrt, exp, log, pow, 1.0} listed in the second row. The results indicate that this selection
of operators achieves a balance between predictive performance and training time efficiency, meeting
our expectations. Furthermore, experiments detailing the performance of SymMaP in relation to
variations in learning rate, batch size, and dataset Size are documented in Appendix

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose SymMaP, a deep symbolic discovery framework designed for predicting
efficient matrix preconditioning parameters. Experiments show that SymMaP can predict high-
performance parameters and is applicable across a variety of preconditioning and optimization ob-
jectives. Additionally, SymMaP is easy to deploy with virtually no additional computational over-
head. Future work will focus on optimizing preconditioning for specific matrix structures, such as
symmetric and upper triangular matrices. We also aim to analyze the mathematical significance of
the learned symbolic expressions from a theoretical perspective, such as exploring the impact of
problem characteristics on the solution process through pseudospectral analysis. Furthermore, plans
to extend SymMaP to additional preconditioning methods (e.g., ILU, ICC) are underway. We are
confident in the symbolic model’s immense potential for broad real-world applications, especially
in matrix preconditioning.

10

Under review as a conference paper at ICLR 2025

7 CODE OF ETHICS AND ETHICS STATEMENT

This paper adheres to the ICLR Code of Ethics. The research focuses on developing a more efficient
matrix preconditioning parameter prediction framework. It does not involve human subjects, per-
sonal data, or sensitive information that could raise concerns regarding privacy, security, or fairness.
Furthermore, no potential conflicts of interest, legal compliance issues, or harmful applications were
identified in this study.

8 REPRODUCIBILITY

For the sake of reproducibility, we have included essential codes in the supplementary materials,
covering dataset generation, the algorithm’s source code, and performance evaluation scripts. How-
ever, it’s worth noting that the current code version lacks structured organization. Should this paper
be accepted, we commit to reorganizing the codes for improved clarity. Additionally, in Appendix|C]
we provide pseudocode for our algorithm. In Appendix [D| we offer a detailed explanation of our
experimental setups.

REFERENCES

Ravi P Agarwal. Difference equations and inequalities: theory, methods, and applications. CRC
Press, 2000.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-447-8 (paper-
back).

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune,
Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Ja-
cob Faibussowitsch, William D. Gropp, Véaclav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry
Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May,
Lois Curfman Mclnnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Ro-
man, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang,
Hong Zhang, and Junchao Zhang. PETSc Web page. https://petsc.org/l, 2024. URL
https://petsc.org/.

Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. Genetic programming:
an introduction: on the automatic evolution of computer programs and its applications. Morgan
Kaufmann Publishers Inc., 1998.

Igor A Barrata, Joseph P Dean, Jgrgen S Dokken, Michal Habera, Jack HALE, Chris Richardson,
Marie E Rognes, Matthew W Scroggs, Nathan Sime, and Garth N Wells. Dolfinx: The next
generation fenics problem solving environment. 2023.

Michele Benzi. Preconditioning techniques for large linear systems: a survey. Journal of computa-
tional Physics, 182(2):418-477, 2002.

Lipman Bers, Fritz John, and Martin Schechter. Partial differential equations. American Mathemat-
ical Soc., 1964.

Ke Chen. Matrix preconditioning techniques and applications. Number 19. Cambridge University
Press, 2005.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024.

Philippe G Ciarlet and Pierre-Arnaud Raviart. A mixed finite element method for the biharmonic
equation. In Mathematical aspects of finite elements in partial differential equations, pp. 125-145.
Elsevier, 1974.

11

https://petsc.org/
https://petsc.org/

Under review as a conference paper at ICLR 2025

Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases. Advances
in neural information processing systems, 33:17429-17442, 2020.

James W Demmel. Applied numerical linear algebra. SIAM, 1997.
Agoston E Eiben and James E Smith. Introduction to evolutionary computing. Springer, 2015.

Pedro G Espejo, Sebastidn Ventura, and Francisco Herrera. A survey on the application of genetic
programming to classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 40(2):121-144, 2009.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

Roland Glowinski and Olivier Pironneau. Numerical methods for the first biharmonic equation and
for the two-dimensional stokes problem. SIAM review, 21(2):167-212, 1979.

Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

Markus Gotz and Hartwig Anzt. Machine learning-aided numerical linear algebra: Convolutional
neural networks for the efficient preconditioner generation. In 2018 IEEE/ACM 9th Workshop on
Latest Advances in Scalable Algorithms for Large-Scale Systems (scalA), pp. 49-56. IEEE, 2018.

Anne Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid pde solvers. In International Conference on Machine Learning, pp. 2415-2423. PMLR,
2019.

Claes Johnson. Numerical solution of partial differential equations by the finite element method.
Courier Corporation, 2009.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021.

Guillaume Lample and Francois Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

Mikel Landajuela, Brenden K Petersen, Sookyung Kim, Claudio P Santiago, Ruben Glatt, Nathan
Mundhenk, Jacob F Pettit, and Daniel Faissol. Discovering symbolic policies with deep rein-
forcement learning. In International Conference on Machine Learning, pp. 5979-5989. PMLR,
2021.

William B Langdon and Riccardo Poli. Foundations of genetic programming. Springer Science &
Business Media, 2013.

Steven J Leon, Lisette G De Pillis, and Lisette G De Pillis. Linear algebra with applications. Pearson
Prentice Hall Upper Saddle River, NJ, 2006.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-
state and time-dependent problems. SIAM, 2007.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zachary Chase Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016. URL
http://arxiv.org/abs/1606.03490.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhonggiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022.

12

http://arxiv.org/abs/1606.03490

Under review as a conference paper at ICLR 2025

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid
using graph neural networks. In International Conference on Machine Learning, pp. 6489-6499.
PMLR, 2020.

Daniel J] Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Igbal, Jean-Baptiste Lespiau, Alex Ahern, et al. Faster sorting algorithms
discovered using deep reinforcement learning. Nature, 618(7964):257-263, 2023.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients. arXiv preprint arXiv:1912.04871, 2019.

Riccardo Poli, WB Langdon, and NF McPhee. A field guide to genetic programming (with contri-
butions by jr koza)(2008). Published via http://lulu. com, 2008.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. arXiv preprint arXiv:2204.11127, 2022.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature machine intelligence, 1(5):206-215, 2019.

John W Ruge and Klaus Stiiben. Algebraic multigrid. In Multigrid methods, pp. 73-130. SIAM,
1987.

Youcef Saad and Martin H Schultz. Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856—
869, 1986.

Yousef Saad. [terative methods for sparse linear systems. SIAM, 2003.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81-85, 20009.

Rita Stanaityte. ILU and Machine Learning Based Preconditioning for the Discretized Incompress-
ible Navier-Stokes Equations. PhD thesis, University of Houston, 2020.

Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West. Optimization-based algebraic
multigrid coarsening using reinforcement learning. Advances in neural information processing
systems, 34:12129-12140, 2021.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Policy gradients beyond expectations: Conditional
value-at-risk. Citeseer, 2015.

Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.
Ulrich Trottenberg, Cornelius W Qosterlee, and Anton Schuller. Multigrid. Elsevier, 2000.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

David Young. Iterative methods for solving partial difference equations of elliptic type. Transactions
of the American Mathematical Society, 76(1):92-111, 1954.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

13

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 MACHINE LEARNING FOR ALGORITHM DISCOVERY

Machine learning has the potential to uncover implicit rules beyond human intuition from training
data, enabling the construction of algorithms that outperform handcrafted programs. Approaches to
algorithm discovery in machine learning encompass symbolic discovery, program search, and more.
Specifically, program search focuses on optimizing the computational processes of algorithms. For
example, Mankowitz et al.| (2023)) explores the discovery of faster sorting algorithms, while (Chen
et al.| (2024) investigate efficient optimization algorithms.

In contrast, symbolic discovery aims to search within the space of small mathematical expressions
rather than computational streams (Petersen et al. 2019} [Landajuela et al., 2021). This approach
is analogous to an extreme form of model distillation, where knowledge extracted from black-box
neural networks is distilled into explicit mathematical expressions. Traditional methods for sym-
bolic discovery have relied on evolutionary algorithms, including genetic programming (Poli et al.|
2008). Recently, deep learning has emerged as a powerful tool in this domain, offering enhanced
representational capacity and new avenues for solving symbolic discovery problems (Schmidt &
Lipson, 2009} [Cranmer et al., 2020).

A.2 NEURAL NETWORKS FOR MATRIX PRECONDITIONING

Recent studies have explored the use of neural networks to improve matrix preconditioning tech-
niques. |Greenfeld et al.| (2019); [Luz et al. (2020); Taghibakhshi et al.|(2021) demonstrate the ef-
fectiveness of neural networks in refining multigrid preconditioning algorithms, thus streamlining
the computational process. |Gotz & Anzt| (2018)) utilized Convolutional Neural Networks (CNNs)
for the optimization of block Jacobi preconditioning algorithms, while Stanaityte| (2020) developed
corresponding Incomplete Lower-Upper Decomposition (ILU) preconditioning algorithms leverag-
ing machine learning insights.Although these algorithms achieved impressive results, they still face
challenges such as limited interpretability and reduced computational efficiency when deployed in
pure CPU environments. This paper attempts to address these issues by incorporating symbolic
learning into the framework.

B DETAILED INTRODUCTION OF MATRIX PRECONDITIONING

B.1 OVERVIEW OF MATRIX PRECONDITIONING METHODS

* Jacobi Method: The Jacobi preconditioner utilizes only the diagonal elements of a ma-
trix to precondition a linear system. By approximating the inverse of the diagonal matrix,
this method is computationally simple and effective for systems with strong diagonal dom-
inance. However, its convergence rate can be slow, and its performance diminishes for
poorly conditioned or weakly diagonally dominant matrices. The Jacobi method is typ-
ically used as a baseline for comparison with more sophisticated preconditioners (Saad,
2003).

* Gauss-Seidel (GS) Method: The Gauss-Seidel preconditioner improves upon the Jacobi
method by considering both the lower triangular and diagonal parts of the matrix in a se-
quential manner. Unlike the Jacobi method, which updates all variables simultaneously, the
GS method updates each variable in sequence using the most recent values. This leads to
faster convergence, especially for diagonally dominant matrices. However, the GS method
can still struggle with poorly conditioned systems, and its forward-only approach can limit
performance in some applications (Saad, [2003).

¢ Successive Over-Relaxation (SOR): The SOR method builds on the Gauss-Seidel method
by introducing a relaxation factor w to accelerate convergence. This factor allows for over-
relaxation (w > 1) or under-relaxation (w < 1), tuning the method for faster performance
on certain types of problems. SOR can significantly reduce the number of iterations needed
for convergence compared to both the Jacobi and GS methods, but choosing the optimal
relaxation factor is problem-dependent (Youngl 1954).

14

Under review as a conference paper at ICLR 2025

* Symmetric Successive Over-Relaxation (SSOR): SSOR is a symmetric version of the
SOR method, where relaxation is applied in both forward and backward sweeps of the
matrix. This bidirectional process improves stability and is well-suited for use with itera-
tive solvers like the conjugate gradient method, which requires symmetric preconditioners.
SSOR’s symmetry ensures that the preconditioner maintains the properties needed for ef-
ficient and stable convergence, making it a popular choice for symmetric positive-definite
systems (Golub & Van Loan, [2013).

* Algebraic Multigrid (AMG): AMG is an advanced preconditioning technique designed
to handle large, sparse systems of linear equations, especially those arising from the dis-
cretization of partial differential equations. Unlike traditional methods, AMG operates on
multiple levels of the matrix structure, coarsening the matrix to form a hierarchy of smaller
systems that are easier to solve. Solutions on the coarser grids are then interpolated back to
the finer grids. This multilevel approach makes AMG highly efficient for large-scale prob-
lems, as it can dramatically reduce the number of iterations needed to achieve convergence.
AMG is often used in combination with methods like SSOR or Gauss-Seidel as a smoother
on each grid level, and it is particularly effective in cases where the problem exhibits a
multiscale nature (Ruge & Stiiben, |1987).

Relationship Among Jacobi, GS, and SOR Methods: The Jacobi method is the simplest of the
three, using only diagonal information. The GS method improves upon the Jacobi method by using
both diagonal and lower triangular matrix elements to achieve faster convergence. SOR further
refines the GS method by introducing a relaxation factor to optimize the update process. Both
the GS and SOR methods can be seen as iterative improvements on the Jacobi method, with SOR
offering a more flexible and potentially faster alternative by adjusting the relaxation factor. SSOR
extends SOR symmetrically, making it suitable for use in more advanced iterative solvers like the
conjugate gradient method (Saad, [2003; |Golub & Van Loan, 2013)).

B.2 PARAMETERS IN MATRIX PRECONDITIONING

The choice of preconditioning parameters significantly influences the effectiveness of the precondi-
tioning process, especially in the iterative solving of linear systems (Chen, 2005)). Below, we discuss
three specific preconditioning techniques—SOR, SSOR, and AMG—focusing particularly on how
their key parameters affect the preconditioning results.

B.2.1 RELAXATION FACTOR w IN SOR AND SSOR METHODS

In the SOR preconditioning method, the relaxation factor w is a critical parameter that determines
the acceleration of iteration. SOR evolves from the Gauss-Seidel method by introducing w to speed
up convergence. The SOR iteration formula is given by:

2 Y = (D4 wL) ™ (1 —w)Dx® 4+ wb — wU:c(k)} , (13)

where D, L, and U are the diagonal, strictly lower triangular, and strictly upper triangular parts of
the matrix A, respectively (Golub & Van Loan 2013)).

The SSOR preconditioning method can be represented by the following formula:

1

MSSOR = m

(D —wU)D (D — wL), (14)

where Mgsor constitutes the preconditioner, and D, L, U, and w are defined similarly to their
roles in the SOR method. This symmetrical formulation enhances the stability and effectiveness of
the preconditioning, particularly benefiting symmetric positive-definite matrices by optimizing the
convergence properties of the iterative solver (Golub & Van Loan, 2013)).

The choice of w directly impacts the speed of convergence and the condition number of the ma-
trix. Different problems and scenarios often require different choices of w, which typically need to

15

Under review as a conference paper at ICLR 2025

be determined based on the specific properties of the problem and through numerical experimenta-
tion (Golub & Van Loan, 2013). In the PETSc library, the default relaxation factor w for both SOR
and SSOR is set to 1, at which point SOR degenerates to GS preconditioning.

B.2.2 THRESHOLD PARAMETERS 01 IN AMG

In the AMG method, the threshold parameter 7 determines whether the non-zero elements of the
matrix are “’strong” enough to be considered in the construction of a coarse grid during the multigrid
process. This parameter is crucial for establishing the connectivity between coarse and fine grids in
the hierarchical multilevel structure (Ruge & Stiibenl [1987).

The AMG method solves the equation system through multiple levels of grids, each corresponding
to a coarser version of the original problem. During this process, the threshold parameter is used to
determine whether a given non-zero matrix element is strong enough to keep the corresponding grid
points connected during coarsening.

* A lower threshold often leads to more elements being considered as strong connections,
which might increase the complexity of the coarse grid but can help preserve the essential
characteristics of the original problem, thus improving the efficiency and convergence of
the multigrid method.

* A higher threshold might result in fewer strong connections, thereby reducing the com-
plexity of the coarse grid. However, this can weaken the effectiveness of the AMG method,
especially in maintaining the characteristics of the original problem.

Different values of 67 directly influence the condition number of the preconditioned matrix. Se-
lecting the appropriate threshold parameter typically involves considering the specific structure
and characteristics of the problem, and adjustments are made through experimental fine-tuning to
achieve the optimal balance (Trottenberg et al.,2000). In the PETSc library, the default threshold
parameter 6 is set to 0.

16

Under review as a conference paper at ICLR 2025

C ALGORITHM PSEUDOCODE

Algorithm 1 RNN-based Symbolic Discovery Process
Input: RNN with parameter 0, the library of tokens L.

T[]
parent(0), sibling(0) <— empty node
xo < parent(0)||sibling(0) > x is the concatenation of parent and sibling nodes.
ho < 0. > Initialize hidden state of RNN.
fort=1,2,--- do
(¢, hy) < RNN(zp—1, he—1; 0). > 1)¢ is the categorical distribution of the next token.
1y < ApplyConstraint(;, £, T) > Regularize the distribution.
Sample token 7 ~ 1
if Arity(7;) > 0 then > Arity(7;) denotes the number of operands of .

parent(t) < T
sibling () «— empty node
else > When Arity(7;) = 0, go back to the last incomplete operator node.
count < 0
fori=t,t—1,...,1do > Backward iteration.
count <— count + Arity(7;) —1
if count = 0 then
parent(t) < T;
sibling(t) + 711
break
end if
end for
if count = —1 then break > The expression sequence is complete.
end if
end if
x4 parent(t)||sibling(¢)
end for
Output: Prefix expression sequence 7.

Algorithm 2 Deep Symbolic Optimization for Matrix Preconditioning Parameter

Input: RNN with initial parameter 8y, the library of tokens £, batch size [V, iteration number .J,
risk factor ¢, and learning rate c.
0 «— 90
j+0
repeat
for:=1,2,...,N do
7" + SymbolicDiscover(8, L)

&* + argmax{¢ in T as constant placeholder : R(7;¢)} > Constant optimization.
7" ¢+ ReplaceConstant(7 (%), £*)
Compute §; using 7(*) and 6. > See Eq. equation
Compute g5 as entropy gradient.
0+ 0+ g1+ g2) > Update the parameter.
Train model: update pg via PPO by optimizing .J(6;€).

end for

until 5 = J or convergence
Output: The best symbolic expression 7.

17

Under review as a conference paper at ICLR 2025

D EXPERIMENT SETTINGS

D.1 DATASETS

1. Darcy Flow Problem

We consider two-dimensional Darcy flows, which can be described by the following equation (L1
et al., [2020; Rahman et al., [2022; |[Kovachki et al., 2021} Lu et al., [2022):

-V (K(m,y)Vh(a:,y)) = f,

where K is the permeability field, i is the pressure, and f is a source term which can be either a
constant or a space-dependent function.

In our experiment, K (x,y) is generated using truncated Chebyshev polynomials. We convert the
darcy flow problem into a system of linear equations using the central difference scheme of Finite
Difference Methods (FDM) (LeVeque, |2007). The coefficients of the Chebyshev polynomials serve
as input features for our symbolic learning algorithm.

2. Second-order Elliptic Partial Differential Equation

We consider general two-dimensional second-order elliptic partial differential equations, which are
frequently described by the following generic form (Evans| 2022} [Bers et al.,{1964):

LU = 011Uz + Q12Uzy + Q22Uyy + a1Uy + a2y + aou = f,
where ag, a1, a2, a11,a12, azs are constants, and f represents the source term, depending on z, y.
The variables u, u,, u, are the dependent variable and its partial derivatives. The equation is classi-
fied as elliptic if 4a11a20 > a,.
In our experiments, aq1, ass, ai, az, ap are uniformly sampled within the range (—1, 1), while the
coupling term a2 is sampled within (—0.01,0.01). We then select equations that satisfy the elliptic
condition to form our dataset. Similar to the approach with the darcy flow problem, we convert the

PDE into a system of linear equations using the central difference scheme of FDM. The coefficients
ap, a1, a2, a11, 412, age serve as input features for our symbolic learning algorithm.

3. Biharmonic Equation

We consider the biharmonic equation, a fourth-order elliptic equation, defined on a domain 2 C
R2. The equation is expressed as follows (Ciarlet & Raviart, |1974; |Glowinski & Pironneau, |1979;
Barrata et al., 2023):

Viu=f inQ,
where V4 = V2V? represents the biharmonic operator and f = 4.07* sin(7x) sin(7y) is the
prescribed source term.
In our experiments, we construct the dataset by varying the solution domain £2. We utilize the
discontinuous Galerkin finite element method from the FEniCS library to transform this problem
into a system of linear equations (Barrata et al., 2023)). The parameters of the domain serve as input
features for our symbolic learning algorithm.

D.2 ENVIRONMENT

To ensure consistency in our evaluations, all comparative experiments were conducted under uni-
form computing environments. Specifically, the environments used are detailed as follows:

1. Environment (Env1):

¢ Platform: Windows11 version 22631.4169, WSL
* Operating System: Ubuntu 22.04.3
* CPU Processor: AMD Ryzen 9 5900HX with Radeon Graphics CPU, clocked at 3.30GHz

2. Environment (Env2):

* Platform & Operating System: Ubuntu 18.04.4 LTS
* CPU Processor: Intel(R) Xeon(R) Gold 6246R CPU at 3.40GHz

18

Under review as a conference paper at ICLR 2025

¢ GPU Processor: GeForce RTX 3090 24GB
* Library: CUDA Version 11.3

Speed tests for solving linear systems were performed in Env 1, while all training related to symbolic
learning was conducted in Env 2.

D.3 TRAINING DATA GENERATION

We employed an adaptive grid search to generate the training dataset. Initially, we traversed a coarse
grid, sampling every 0.05, and from this dataset, we selected the three points with the smallest val-
ues. Subsequently, we conducted a finer grid search around these points, sampling every 0.001, to
identify the point with the minimum value, which we designated as our optimal parameter. Partic-
ularly, after experimental validation confirmed the dataset’s convexity, we utilized a binary search
sampling method for a dataset derived from the second-order elliptic equation’s SOR precondition-
ing. Starting with points at 0.0, 1.0, and 2.0, we compared these values. If the value at 0.0 was
lowest, we computed at 0.5; if at 2.0, then at 1.5; and if at 1.0, then at both 0.5 and 1.5. This process
was repeated until achieving a minimum point with a precision of 0.001.

For SOR preconditioning, we evaluated second-order elliptic equations, Darcy flow equations,
and biharmonic equations, with solution time as the metric for optimal preprocessing parameters,
achieved by minimizing solution time using the previously described grid method. In SSOR precon-
ditioning, applied to second-order elliptic and Darcy flow equations, we utilized a hybrid metric that
combined normalized computation time and iteration counts, aiming to simultaneously optimize
both iteration counts and solution times. For AMG preconditioning, also examined with second-
order elliptic and Darcy flow equations, we used the condition number of the preconditioned matrix
as the metric, where a lower value indicates better performance.

D.4 PARAMETERS OF THE SYMMAP

Experimental Setup. SymMAP is implemented using the LSTM architecture with one layer and
32 units. More details about the hyperparameters are provided in Table

Table 7: Hyperparameters of SymMAP (Default Model)

Hyperparameter Value
Number of LSTM layers 1
Number of LSTM units 32
Number of training samples 2,000,000
Batch size 1,000
Risk factor e 0.05
Minimal expression length 4
Maximal expression length 64
Learning rate 0.0005

Weight of entropy regularization 0.03

Restricting searching space. We employ specific constraints within our framework to streamline
the exploration of expression spaces effectively and ensure they remain within practical and man-
ageable bounds:

1. Bounds on expression length. To strike a balance between complexity and manageability,
we set boundaries for expression lengths: a minimum of 4 and a maximum of 64 characters.
This ensures that expressions are neither overly trivial nor excessively complicated.

2. Constant combination. We restrict expressions such that the operands of any binary op-
erator are not both constants. This is out of the simple intuition that, if both operands
are constants, the combination of the two can be precomputed and replaced with a single
constant.

19

Under review as a conference paper at ICLR 2025

3. Inverse operator exclusion. We preclude unary operators from having their inverses
as children to avoid redundant computations and meaningless expressions, such as in

log(exp(z)).

4. Trigonometric Constraints. Expressions involving trigonometric operators should not
include descendants within their formulation. For instance, sin(x + cos(z)) is restricted
because it combines trigonometric operators in a way that is uncommon in scientific con-
texts.

E SUPPLEMENTARY EXPERIMENTS

E.1 INTERPRETABLE ANALYSIS DETAILS

Table 8: Symbolic expressions learned from the main experiments

Precondition Dataset Symbolic expression

SOR Biharmonic 1.04+1.0/(4.04+1.0/z2) + 1.0/z;
SOR Elliptic PDE 1.0 4+ 1.0/(z2 + 1.0 + 1.0/(z2 + 4.0))
SOR Darcy Flow 1.0+ 1.0/(za + 1.0)

SSOR Elliptic PDE 1.0+ 1.0/(z2 +1.2)

AMG Elliptic PDE (x123 +1)/7

As shown in Table B], the variables are defined as follows: in the first row, 1 and zo represent
the size of the boundary for PDE solutions; in the second row, xo represents the coefficient of a
second-order coupling term; in the third row, x4 is the coefficient of the fourth x-term multiplied
by the first y-term in a two-dimensional Chebyshev polynomial; in the fourth row, x5 again denotes
the coefficient of a second-order coupling term; in the fifth row, z1x3 signifies the coefficient of a
second-order non-coupling term.

E.2 ANALYSIS OF HYPERPARAMETERS
The performance of SymMaP is primarily influenced by the learning rate of the RNN, batch size,
and dataset size. We conducted experiments to study the impact of these hyperparameters.

Symbolic Learning RNN Parameters:

Table 9: Performance comparison of SymMaP under various symbolic learning RNN parameters
(lower condition numbers are preferable). The experiment focuses on optimizing AMG precondi-
tioning coefficients in the Darcy Flow dataset.

Learning Rate Batch Size Condition number Training time(s)

500 6780 1173.09
0.01 1000 5168 863.51
2000 6898 522.80
500 5935 1104.16
0.001 1000 11774 676.40
2000 5935 505.85
500 4718 1026.45
0.0005 1000 5935 703.17
2000 5935 549.36
500 12228 1324.00
0.0001 1000 7508 837.18
2000 6884 603.62

20

Under review as a conference paper at ICLR 2025

Results in Table [9]indicate that an appropriate combination of RNN learning rate and batch size can
enhance performance.

Dataset size:
Table 10: Performance comparison of SymMaP across varying dataset sizes (lower condition num-

bers indicate better performance). The experiment evaluates the optimization of AMG precondition-
ing coefficients for the Darcy Flow dataset.

Dataset size Condition number Training time (s)

10 7032 669.68
50 6980 737.80
100 4892 812.02
500 3811 699.54
1000 5345 703.17

Table [I0] demonstrates that increasing the dataset size enhances the performance of symbolic ex-
pressions learned by SymMaP, as expected.

21

	Introduction
	Preliminaries
	Matrix Preconditioning Technique
	Prefix Notation and Genetic Programming

	Motivation
	Motivation for Optimizing Preconditioning Parameters
	Challenges in Predicting Efficient Preconditioning Parameters
	Symbolic Learning to Preconditioning Parameter Selection

	Method
	Input Features and Training Data Generation
	The Generation of Symbolic Expressions
	The Reward Function
	The Training Algorithm
	Deployment in Linear Solver

	Experiments
	Main Experiments
	Comparison with Neural Network Performance
	Interpretable analysis
	Ablation Experiments

	Conclusions and Future Work
	Code of Ethics and Ethics Statement
	Reproducibility
	Related work
	Machine Learning for Algorithm Discovery
	Neural Networks for Matrix Preconditioning

	Detailed introduction of matrix preconditioning
	Overview of Matrix Preconditioning Methods
	Parameters in Matrix Preconditioning
	Relaxation Factor in SOR and SSOR Methods
	Threshold Parameters T in AMG

	Algorithm Pseudocode
	Experiment Settings
	Datasets
	Environment
	Training Data Generation
	Parameters of the SymMAP

	Supplementary Experiments
	Interpretable Analysis Details
	Analysis of Hyperparameters

