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Abstract

The exploit of the semantic structure in the
visual question answering (VQA) task is a
trending topic where researchers are interested
in leveraging internal semantics and bringing
in external knowledge to tackle more com-
plex questions. The prevailing approaches
either encode the external knowledge sepa-
rately from the local context, which magnif-
icently increases the complexity of the ensem-
ble system, or use graph neural networks to
model the semantic structure in the context,
which suffers from the limited reasoning ca-
pability due to the relatively shallow network.
In this work, we propose a question-led struc-
ture extraction scheme using external knowl-
edge and explore multiple training methods, in-
cluding direct attention supervision, SGHMC-
EM Bayesian multitask learning, and masking
strategies, to aggregate the structural knowl-
edge into deep models without changing the ar-
chitectures. We conduct extensive experiments
on two domain-specific but challenging sub-
tasks of VrR-VG dataset and demonstrate that
our proposed methods achieve significant im-
provements over strong baselines, showing the
promising potentials of applicability.

1 Introduction

In recent years, visual question answering (VQA)
attracts an increasing attention benefiting from the
great success of the neural networks. Having made
the remarkable achievements on the early bench-
marks like (Agrawal et al., 2016; Lin et al., 2015;
Johnson et al., 2016), researchers are now inter-
ested in more challenging tasks such as (Zellers
et al., 2019; Hudson and Manning, 2019) where
the external knowledge and the commonsense are
additionally required in order to provide the correct
answer to the question about an image. For exam-
ple in Fig. 1, to correctly answer what materials
are used, a system needs to be aware of the spatial
relationships among individual objects and find the

exact wall “behind the red flowers”. It leads to a
higher requirement for a neural model to make use
of the structural information in inference.

Researchers have proposed to use graph neural
networks (GNNs) to incorporate the visual context
and the external knowledge. (Xu et al., 2017; Li
et al., 2017b; Zellers et al., 2018) generate a scene
graph to represent the visual context, where the
nodes are the objects and the edges are either events
or the attributes. The graph-based models are natu-
rally friendly to the external knowledge from the
large-scale knowledge graphs (Speer et al., 2017;
Bollacker et al., 2008) because both share the same
graph-structured format. However, due to the over-
smoothing issue during the training process (Oono
and Suzuki, 2019; Chen et al., 2020a), GNNs do
not generally allow to build up layers or scale up
in depth, hindering their reasoning capabilities to
grow, which explains the fact that the state-of-the-
art performances on the benchmarks are dominated
by the conventional non-graph deep models (Li
et al., 2019c¢,a; Chen et al., 2020b; Li et al., 2020Db).
In parallel, some other works (Li et al., 2017a; Su
et al., 2018; Li et al., 2020a) make effort to encode
the external knowledge separately and fuse with
the local context through an additional memory net-
work or graph network, whereas they either lose
the semantic structure or add too much complexity
to the overall system.

Q: What substance is the wall behind the red flowers made froml ?

Figure 1: An Example of a complex question requiring
the structure semantics and external knowledge.



An enormous effort has been made towards mod-
eling the dependencies among the contextual ob-
jects and words within the conventional neural net-
work. The attention mechanism is one of the most
influential ones, which was first introduced by (Cho
et al., 2014) to machine translation tasks and en-
courage the emergence of many variants, includ-
ing general attention (Luong et al., 2015), the dot-
product attention (Luong et al., 2015), the scaled
dot-product attention (Vaswani et al., 2017), etc.
Now the attention has been an indispensable part
of the latest models for VQA tasks. We notice
that the attention operations and the graph oper-
ations share a lot in common, and in particular
the nature of the self-attention can be viewed as
a fully-connected graph. Thus the attention layer
can be potentially used to model the structure infor-
mation. Meanwhile, despite the consistent gain
brought by the attention mechanism, the atten-
tion weights are mostly learned in an unsupervised
scheme and a prominent benefit is expected from
further optimization. In this work, we focus on the
scaled dot-product attention which is the core of
the transformer block (Vaswani et al., 2017) and
being widely used in the state-of-the-art models.

To this end, a question-initiated semantic struc-
ture extraction method is designed, following hu-
man thinking process, and aggregated into the atten-
tion layer in the transformer block through weak
supervision and masking. The extracted seman-
tic structure is further enhanced by the scene graph
and the external knowledge such as word synonyms
and object relevancy. Then we explore three novel
strategies to improve the attention learning: (1)
indirectly optimize the attention weights in the
multi-task learning framework with Bayesian infer-
ence, by adding an auxiliary task of the attention
object prediction to the model; (2) directly super-
vise the scaled dot-product attention weights with
the enriched structural semantics in an explicit way;
(3) selectively mask out the attention weights of
the irrelevant objects during training based on the
semantic structure. Compared to other works (Li
et al., 2017a; Su et al., 2018; Kim et al., 2020;
Huang et al., 2020; Zhu et al., 2020), our efforts
do not change the backbone models. Our main
contributions can be summarized as follows:

* We propose the direct and indirect attention
supervision methods for the VQA task that
are applicable to a more general situation.

* We introduce a debiased multitask training

method with Bayesian inference to the VQA
task for the first time that increases the
model’s stability.

* We propose a question-led semantic structure
extraction schema, simulating human behav-
iors and boosting the model’s interpretability.

* We apply our approaches to multiple state-of-
the-art transformer-based models and show
compelling results on two challenging sub-
tasks of the VIR-VG dataset, demonstrating
the encouraging potentials for future use.

2 Related Work

VQA Models With External Knowledge The
traditional approaches to incorporate the external
knowledge into the local context can be summa-
rized into two categories. The works like (Li et al.,
2017a; Su et al., 2018) first encode the local con-
text and the external knowledge separately in their
own representation space, and then perform a late
fusion by projecting two spaces into a common
hidden space through an additional neural network.
The network usually contains a large number of
parameters for decent performance and therefore
bring more complexities to the base models.

More recently, researchers leverage GNNs to
model the structure within the context. (Li et al.,
2019b) uses a graph attention network(GAT) to
enocde the semantic, spatial and implicit relations
among the visual objects. (Kim et al., 2020) con-
structs two symbolic graphs to separately encode
the questions with dependency-tree structure and
the objects with attribute-and-predicate-based struc-
ture. Similarly, (Huang et al., 2020; Zhu et al.,
2020) proposes multiple independent graph convo-
lutional networks(GCNs) to capture embed intra-
and cross-modal relations using external knowl-
edge. (Singh et al., 2019; Li et al., 2020a) perform
an early fusion to merge the local context and the
external knowledge into an entity graph, and lever-
age a graph neural network (GNN) to conduct en-
coding and reasoning. The shortcomings of this
category mainly lie on the comparably weak rea-
soning capability of GNN restricted by its relatively
shallow depth. Most recently, we have observed
the boom of the Vision-and-Language(V+L) mul-
timodal large-scale pre-trained models (Su et al.,
2020; Liet al., 2019c,a; Chen et al., 2020b; Li et al.,
2020b) and their great success in the VQA tasks.

In this work, we choose three state-of-the-art
models as our competitive baselines. Since they are



all transformer-based, the methods should be seam-
lessly applied to other Transformer-based models.

Attention Supervision & Masking (Liu et al.,
2016; Gan et al., 2017; Qiao et al., 2017) achieve
the attention supervision for VQA task by explic-
itly generating an attention map as an additional
output of the model and optimizing it under the
multitask learning framework. Inspired by the idea,
we make adjustment for transformer-based models
to predict the indices of the attention objects in
the input, which is considered to be easier to learn
because of its comparably smaller parameter space.
(Patro et al., 2019) directly regularizes the attention
weights in the model using the gradient informa-
tion from Grad-CAM (Selvaraju et al., 2017) as the
supervision signals at each training step. The atten-
tion is optimized iteratively under the adversarial
learning framework. However, Grad-CAM can be
only applied to a CNN-based model and makes it
inapplicable to the latest state-of-the-art models.
Therefore, we propose a direct weight supervision
strategy for transformer-based models.

The masking is applied to incorporate the struc-
tural information into the transformer block for var-
ious tasks in the latest works. (Ahmad et al., 2020)
uses the word distance as the reference to form the
mask matrix to reflect word relations in a sentence
for event extraction task; (Guo et al., 2020) pro-
poses a new pre-trained model for programming
language which uses the masked attention to rep-
resent the dependency among the programming
variables; (Shao et al., 2020) use the masked atten-
tion to encode the parsing-tree-based structure into
a sentence representation so that each work token
only interact with its corresponding parents and not
with nodes in different sub-trees. Considering the
gain from the masking technique, we include it as
one of our strategies.

3 Attention Enhancement Strategies

In this section, we provide the theories and the de-
tails of our indirect, direct and masking strategies,
as shown in Fig. 2.

The original task of VQA is to predict the answer
A given the question Q and the visual context C.
In this work, C is a list of object and whole image
representations. Letting 6 be the parameters of the
base model and Dy be the training samples for the
original task, we learn # by maximizing its log-
likelihood as follows with a binary cross-entropy

loss following the settings in (Yu et al., 2019).

*

orig — arg m9aX Ing(DQ‘H) (D

3.1 Indirect Strategy: Multitask Learning
With Bayesian Inference

We add an auxiliary task of predicting the expected
attention object(s) in the input with respect to each
(Q, C) pair, and formulate it as a multi-label multi-
class classification problem. Assuming the newly-
added auxiliary-task-specific parameters is ¢, we
arrive at the objective function for our multitask
learning:

0" = arg max [logp(Dsl0) + log p(Deld, )]  (2)

where Dy is the training data for the auxiliary task.

Normally, multitask learning optimizes the pa-
rameters for the best overall performances of all
downstream tasks on the cost of the performance
drop on the individual task. However, in our indi-
rect strategy, only the main task matters'. From
this perspective, we take ¢ in Eq. 2 as a bias to
the estimation of 6*. According to Bayes’ theorem,
p(¢|0) is needed to remove ¢ from Eq. 2 which,
however, is either unknown or require some strong
assumptions on p(¢|6).

To diminish the bias and maximize the benefits
of the auxiliary task to the original task, we claim
that a better objective function is as follows:

0" = arg max [log p(Dg|0) + log p(Dy |0, bv(f))} 3)

where lf);, is another set of data used to estimate the
posterior distribution p(¢|6, m) The underlying
motivation is that, instead of making a strong as-
sumption on the prior distribution of ¢ and relying
on its sensitive initialization procedure, we intro-
duce D and estimate the posterior distribution of
¢ from data.

To estimate p(Dy|6, b\;) in Eq. 3, we apply
Bayesian inference to the optimization procedure
following

log p(Dy0, D)

—log /¢ (D0, &, Dy)p(616, Dy) dep 4

> / p(616, Dy) log p(Dy|6, ¢) db )
]

:Ep(¢>\9,5;) [log p(Dsy |0, )]

I'The auxiliary task is a proxy task to guide the attention
weight during training, but is not considered in inference phase.
This is what indirect means.
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Figure 2: Illustration of three attention enhancing methods on MCAN. The boxes with red dashed line visualize
the details of different attention structures. The grey cells in the attention map represent no link; the purple cells

represent a valid link.

| X .
AN’EE logp(Dyl0, dr), ¢ ~ p(4l0,Dy)  (6)
k=1

where Eq. 5 is drawn from Jensen’s inequality and
the independence between Dy and Dy given ¢.
Eq. 4 is considered computationally intractable due
to the huge parameter space for ¢, but can be esti-
mated by Monte Carlo sampling as shown in Eq. 6.
In this work, we use stochastic gradient Hamilto-
nian Monte Carlo (SGHMC) (Chen et al., 2014)
to achieve sampling from p(¢|0, Dy). Specifically,
we freeze ¢ during sampling and only update ¢
through maximizing p(Dy|0, ¢), following Eq. 7:

¢ =¢'+ La Vo 0
N
La1(x) = N Z l[yn log p(ynl6, ¢*, x)
+ (1 = yn) log(1 — p(ynlf, ¢, x))] ®)

where L, is the binary cross-entropy loss of the
auxiliary task; IV is the number of objects at input
and output; {z,y1.n} € Dy. The burn-in proce-
dure of the sampling first ensures ¢ to be converged
to a local optimal region and the actual samples
{1} are collected from the local optimal region.

Substituting Eq. 6 into Eq. 3 reaches Eq. 9,
whose optimal solution can be approached by
Expectation-Maximization (EM) algorithm.

0" = argmax {log p(De|0) + log p(Ds|0, Do)}
A arg max {logp(Dy|0) + Zlogp Dy|0,9r)} (9)

We
{4119},

learn 6 by iteratively sampling

p(gﬁ]@t,ﬁ;))} at time ¢ to esti-

~y

mate E[log p(Dy|0", ¢")] following Eq. 6, and
then updating 6 to be #'*! following Eq. 9 with
the objective function as Eq. 10:

Hlein ﬁorig(e : D@) =+ a£a1(0,<b : D¢’l/j;) (10)

Considering the efficiency of the algorithm in prac-
tice, we do not sample {¢y} every training step
for 6, because the burn-in process of SGHMC sam-
pling takes time. Instead, we sample { ¢y, } for every
L steps.

3.2 Direct Strategy: Transformer Supervision

Scaled Dot-product Attention By definition
in (Vaswani et al., 2017), the scaled dot-product
attention can be expressed as

KT

A(Q,K,V) :softmax(Q\/g

=softmax(W,)V

Qv = WV

11

where A(-) is the scaled dot-product attention func-
tion; Q € R"*4 K ¢ R™%*4 and V e R™xd
(ny = my) are the matrices that contain n, query
vectors, ng key vectors and ny, value vectors; W,
can be regarded as the unnormalized affinity matrix
with W,’ representing the affinity score between
the ¢-th query and the j-th key. Assuming K =V,
normalizing the affinity matrix along the row axis
with a SoftMax function makes the output a co-
attention map. As a result, Qi € R™*? becomes
an attended query matrix containing n, attended
query vectors with respect to ny key vectors or n,
value vectors since V' = K. For simplicity, we
call A(Q, K, K) co-attention module for @) and K



in the rest of the paper and call A(Q, @, Q) self-
attention module for Q).

We add the regularization directly to the affinity
matrix W, and formulate it as a multi-label multi-
class classification problem of predicting whether
the row vectors in () and K are pair-wise associ-
ated, leading to the final loss function of our direct
attention supervision strategy as follows:

min Long(0 : Do) + BLax(s(Wa), WE)  (12)

where s5(-) is a sigmoid function; W§' is the ground-
truth attention map based on the structural seman-
tics that will be discussed in the next section; L2
is mean squared error(MSE) loss; /3 is a weight to
be tuned. Note that KL divergence between s(1W,)
and W& also has been tried for £,, but only pro-
vides weaker results.

3.3 Masking Strategy: Masked Attention

Following (Ahmad et al., 2020; Guo et al., 2020;
Shao et al., 2020), we give the definition of the
masked attention as in Eq. 13 on the basis of Eq. 11:

T

Vd

where M% = ( if the i-th query and the j-th key
are linked and M = —oc if the i-th query and the
j-th key are considered irrelevant. The top-down
semantic structure maneuvers the back-propagation
procedure through the mask M to only optimize the
weights where there are valid interactions between
two nodes.

Qv = softmax( + M)V (13)

4 Semantic Structure Extraction

In this section, we discuss how we form our
question-led intra- and inter-structures for atten-
tion supervision.

We divide the structural semantics in VQA
into three types: word-to-word(W2W), region-to-
region(R2R) and word-to-region(W2R). Different
from the independent generic intra-modality struc-
tures in (Li et al., 2019b; Kim et al., 2020; Teney
et al., 2017), we look for question-led semantics
with the help of the external knowledge from the
language models in Spacy (Honnibal and Mon-
tani, 2017) and the commonsense from Concept-
Net (Speer et al., 2017), following the human be-
havior in answering a VQA question. Our goal is
to impose the structural semantics into the attention
modules.

4.1 Question-led Semantic Structure

W2W  We first detect the keywords in the ques-
tions based on the dependency and constituency
parsing results, including the noun words in the
noun phrases and their corresponding adjectival
modifiers. Then we build a fully connected sub-
graph among all the keywords and generate an ad-
jacent matrix W for the question self-attention.

W2R Led by the question keywords, we search
for essential regions in the image according to the
conceptual relations. Assuming the availability of
the object names or the caption of each candidate
region?, each value in W2R matrix is determined
by the pair-wise affinity function f (W, R) between
a question keyword and a region description. In the
cases where the keyword or the description consists
of multiple words, we use the maximum word-level
score for the whole phrase. The affinity score is
measured from four perspectives, including string
matching, the Euclidean distance in word vector
space’, the relevancy score supported by Concept-
Net, a customized mapping function. The score
from each perspective is normalized to the scale
of 1 and the maximum score in the four perspec-
tives will be taken as the final word-wise affinity.
Thresholding method is then adopted to generate
the final W2R adjacent matrix Wagf, i.e.

W(‘%(’L,]) _ {17 f(W'LaRJ) >0

0, otherwise
where o is a hyperparameter; W; is the ¢-th word
in the question; I?; is the j-th region in the image.
More details are included in Append. A.

(14)

R2R Similar to W2R, we build the R2R adjacent
matrix Wf; for region self-attention based on their
conceptual relations from the four perspectives. To
keep W, question-led, we only consider the can-
didate relations centered on the essential regions
detected in W2R. Different from (Teney et al.,
2017; Li et al., 2019b; Huang et al., 2020; Zhu
et al., 2020), we do not consider spatial relation.
Based on the results in (Yang et al., 2019) and our
empirical observations, we claim the automatically
extracted 2D/3D spatial relations are too noisy to
be valuable attention groundings.

In our work, Wf; , Wff, and Wf; are used as the
attention groundings in direct supervision and as
the mask in attention augmentation.

The object name or region caption can be either obtained

by hand annotation or inferred by pre-trained models.
3We use the “en_core_web_md” model provided by Spacy.



4.2 Answer-Led Semantic Structure

In indirect supervision, a set of ground-truth atten-
tion regions are required for the multi-class multi-
label auxiliary task. To guarantee the quality of the
weak labels, we look for the essential regions that
are best described or most related to the answers.
Specifically, we follow the same procedure used
for W2W structure of measuring the conceptual
closeness between the answer words and the region
descriptions, and selected the top ranked region(s)
from all the candidates as the weak labels for the
auxiliary task.

5 Experimental Setting

5.1 Dataset

We use Visual-relevance Relationships (VIR-VG)
dataset (Liang et al., 2019) which is a subset of
Visual Genome (VG) dataset (Krishna et al., 2017)
for the experiments. According to (Liang et al.,
2019), VrR-VG discards those highly predictable
and biased question-answer pairs in VG dataset
and therefore becomes a more challenging task.
Moreover, the annotated scene graph for each im-
age allows higher-quality labels for our attention
supervision. We find that a large percentage of
question-answer pairs in VrR-VG do not require
the fine-grained relations in the context and are not
expected to benefit from our extracted semantic
structure. Examples are provided in Append. B.
To better verify our proposed methods, we further
distill two subsets from VrR-VG and have “What-
Color” and “What-There” questions through simple
string matching methods.

the models and methods are evaluated by the QA

accuracy®.

6 Evaluation

6.1 Annotation Results

What-Color | What-There
# of question keywords 1.53 1.72
# of attention regions 1.16 1.20
# of relevant regions 5.26 5.02
MFB 45.53 (52.78) | 23.69 (26.48)
MCAN 45.45 (53.43) | 24.87 (29.13)
MMnasNet 45.35 (53.40) | 24.21 (29.30)
LXMERT 46.55 (52.68) | 26.22 (28.22)

What-Color | What-There
# of questions in train 50726 33736
# of questions in val 17234 11120
# of questions in test 17465 11398
# of answers (classes) 248 1049

Table 1: Statistics of two subsets.

5.2 Baselines & Metrics

We take three Transformer-based models,
MCAN (Yu et al., 2019), MMnasNet (Yu et al.,
2020) and LXMERT (Tan and Bansal, 2019),
as our strong baselines, to demonstrate both the
effectiveness and applicability of our proposed
methods. We also run the experiments with
MFB (Yu et al., 2017) under the baseline setting
which is commonly compared in VQA task. All

Table 2: Validation of the extracted attentions in train-
ing set. The upper side shows the average amount of
the items per question. The lower side compares the
accuracy on the dev set with the baseline and attention-
region-only inputs. The numbers in the brackets corre-
spond to the latter.

It is difficult to directly examine the quality of
our weak attention annotations. In this work, we
evaluate it from two aspects. The upper side of
Table 2 includes the average number” of attention
words and objects for each question. Those close-
to-1 mean values show that our question-led struc-
ture scheme is capable of finding the concrete and
specific question keywords and the essential visual
regions in both subsets. Additionally, we also con-
duct experiments where we train the baseline mod-
els using only our extracted attention regions as the
visual input. The corresponding performance on
the dev set is included in the brackets in the lower
side of Table 2. The significant improvement over
the baseline performance (outside the brackets) val-
idates the quality and feasibility of our question-led
semantic structure extraction scheme.

6.2 VQA Results

Effect of Training Methods The small differ-
ence among baseline results in Table 2 reveals the
limited profit from model architectures on two chal-
lenging subsets. Comparably, Table 3 shows the ar-
resting benefits from the integrated structure knowl-
edge in most cases, especially with the masking
techniques bringing a maximum of 19% rise in QA
accuracy. Direct supervision on attention weights
can also bring significant improvement over the
baseline in the cases where the masking technique

*The implementation details are included in Append. C.
Saverage = # found / (# of question - # of empty annotation)



MCAN MMnasNet LXMERT
Color | There | Combined | Color | There | Combined | Color | There | Combined
Baseline 4545 | 24.87 33.19 4535 | 24.21 32.78 46.55 | 26.22 34.72
+ Indirect 45.62 | 25.07 33.57 45.38 | 24.97 33.17 46.30 | 26.68 34.90
+ Direct 48.30 | 25.22 34.56 48.94 | 25.06 35.07 46.65 | 26.33 34.63
+ Masking | 45.82 | 28.27 38.44 45.57 | 28.85 39.19 53.04 | 29.67 38.37

Table 3: The effect of our training methods. The numbers are the maximum accuracy (%) on the dev set out of

multiple runs.

is not as effective. The finding may imply poten-
tial complementation between two methods and
encourage users to try the other if one does not
show promising results in future applications. Our
indirect supervision strategy only provides a mod-
est improvement, which matches our observations
in the works (Qiao et al., 2017; Zhang et al., 2019)
where only a tiny gain is earned from similar indi-
rect supervision methods.

Another interesting finding is that both direct
attention supervision and masking should not in-
fluence the learning of the dense representation
for each modality. Different from MCAN and
MMnasNet that use the pre-trained GloVe (Pen-
nington et al., 2014) embeddings for the textual
input, LXMERT uses Transformer blocks to learn
the textual representations simultaneously before
multimodal fusion. We experiment with LXMERT
by adding the supervision and the masking to the
Transformer blocks before and at the fusion mod-
ule. A significant performance drop is observed if
we supervise or mask the attention weights before
the fusion module, which indicates that our seman-
tic structures capture the high-level relations and
should only be used to guide the attention learning
in the deeper layers.

Color | There | Combined
MMnasNet 45.35 24.21 32.78
+ R2R Direct 4539 | 24.37 33.15
+ W2W Direct 45.35 | 24.75 33.16
+ W2R Direct 48.94 | 25.06 35.07
+ Full Direct 46.20 | 24.68 34.55
+ Masked R2R 45.51 | 24.53 33.02
+ Masked W2W | 45.23 | 24.54 33.10
+ Masked W2R | 4542 | 27.17 36.14
+ Masked Full 45.57 | 28.85 39.19

Table 4: Accuracy(%) on the dev set with different se-
mantic structures. Reported numbers are the maximum
out of multiple runs.

Effect of Semantic Structures An ablation study
is conducted on the different types of semantic
structures in Sec. 4.1. Table 4 reveals that the inter-
modal semantics(W2R) play a more important role
than the inner-modal semantics(W2W, R2R) in all

conditions with MMnasNet model. Similar results
are also found with MCAN and LXMERT mod-
els, which conform to our intuition and can be
instructive to the future effort on increasing the
information exchange for VQA tasks.

Effect of Bayesian Inference Table 5 compares
the performance of the indirect strategy on the test
set with and without Bayesian inference. We re-
peat our experiments with the MCAN model and
K = 50 for 10 times and compute the mean and
standard deviation of the QA accuracy. We notice
that our debiased multitask learning increases the
model stability with a much smaller variation in
test performance, which attributes to the fact that
we use the posterior distribution of ¢ during the
optimization rather than its likelihood, while still
enjoying the performance growth from the indirect
supervision.

Color There
MCAN 4454 +0.23 | 23.92 £0.14
+ Multitask 44.80 +0.28 | 24.45 +0.30
+ Multitask + B.I. | 44.70 &= 0.16 | 24.23 £0.16

Table 5: Accuracy(%) on the test set. “B.I”” stands for
Bayesian inference.

6.3 Supervised Attention Results

To validate the effect of the supervision in in-
ference, we visualize the visualizes the attention
weights of the last transformer layer in the encoder
and decoder of MCAN. Fig. 3 is on a “What-There”
question from the dev set®. We find that the indirect
supervision does not make a significant difference
to the attention weight against the baseline, which
can partially explain its limited contribution to the
accuracy.

Comparatively, the direct supervision guides the
textual self-attention module to focus more on the
structure-aware keywords in the question. For the
example in Figure 3, the baseline focuses on “green’

’

®Visualization for a “What-Color” question is available in
Append. D.
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Figure 3: Visualization of the horizontally-normalized attention weights of the last transformer layer in the encoder
and decoder of MCAN. For textual and visual self-attentions, they are normalized along the horizontal axis. “V-to-T”
means Visual-to-Textual attention. The brighter the cell, the higher weight it carries. The larger font of the text in
yellow box, the higher weight it carries. The green box is the true attention object, the blue boxes are candidate
objects. The direct supervision is the model trained with full attention supervision; the indirect supervision is the
model trained with SGHMC-EM multitask learning. The sparsity in text-related attention results from the small
number of keyword annotations per question as it is shown in Table 2.

and the indirect-supervised model focuses on “lady
in green”. Only the direct-supervised model re-
alizes the true keywords of “head”, “lady” and
“green”, and consequently leads the visual self-
attention module to find the attention object “head-
band”. As a result of imposing the semantic struc-
ture into the attention, the direct supervision also
helps the visual self-attention module concentrate
more on individual objects rather than the global
context’, which explains the greater improvements
on the end-goal performance from our direct super-
vision strategy.

What’s more, our extracted semantic structure
boost the interpretability of the model through at-
tention weights. With our supervision methods, the
textual self-attention finds candidate keywords in
questions and the V-to-T attention further filters
out those less related to the visual context. On the

"The first item(column) in visual self-attention is the vector
representation of the whole image.

contrary, the baseline model leaves it unclear about
why the textual attentions shift from “green” to
“head”.

7 Conclusion

In this work, we develop three strategies to en-
hance attention training with the question-led se-
mantic structure without any changes to the back-
bone models. Both direct supervision and masking
techniques lead to notable improvements with struc-
tural knowledge, but the magnitude may be subject
to data and model. The debiased multitask learning
is beneficial to increase a model’s stability during
inference. Our further ablation study reveals that
the cross-modal semantics performs a more criti-
cal role in the VQA task. We value our work as
a systematic study on boosting attention with the
semantic structure for VQA tasks and may inspire
future work towards this direction.
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A Conceptual Relation Measuring

The conceptual relations are used in creating W2R, R2R graphs and the attention region annotations.
It is determined by the conceptual closeness between two words or phrases, which is estimated by the
word-wise affinity. Given two phrases P = [p1, ..., pm] and Q = [q1, ..., ¢»] Where p,,, and g, are the
tokens in the phrases, the affinity .S between P and () are defined as

SPQ = max(f(pla q1)a f(pl) qZ), ) f(p2a Q1), (XY f(pma qn)) (15)

where f(-,-) is a word-wise affinity function. As aforementioned, the word-wise affinity is measured
from the perspectives of string matching, word vector distance, ConceptNet relevancy score, a customized
mapping function, i.e.

f(a’ b) = max(gstr(aa b)7 gwm‘d(a) b)7 gnet(aa b)’ gmap(a7 b)) (16)

where gty (-, -) and gmap(-, -) are binary functions returning 0 or 1 depending on whether two strings are
matched and whether a certain mapping is defined. gyqp(-, ) is customized to handle some dataset-specific
biases, e.g. in VIR-VG dataset, “computer” is much more frequently described as “CPU” than in reality.
gnet(a, b) represents the ConceptNet relevancy function that computes the relevancy score between a and
b; we normalize the score as follows

relevancy score

gnet(a>b) = min(lv ) (17)

1.3
where 1.3 is our empirical scale value. g,orq(a, b) is defined in word vector space, i.e.
b
gword(aa b) N (18)
|a][b]

where @ and b represent a’s and b’s word vectors.

B Examples of VrR-VG QA Pairs

When examining the data samples, we find that the majority of QA pairs in VrR-VG dataset do not rely on
the detailed semantic relations among the objects. Below are some samples whose answers are unlikely to
be learned from the semantic structures.

* Q: “Where are the trees?”  A: “Right.”

* Q: “What time of day is it?”  A: “Mid morning.”
¢ Q: “How are the cars?” A: “Parked.”

¢ Q: “How is the weather?”  A: “Fair.”

Comparatively, our extracted “what-color” and “what-there” subset are more representative of the
important role that the semantic structures are playing. For example,

* Q: “what color is the building the L&M ad is on?”  A: “Tan.”
* Q: “What color is the car parked closest to the people?” A: “Silver.”
* Q: “What is on the man’s face wearing the red shirt?”  A: “Glasses.”

* Q: “What is behind the boy”  A: “Buildings.”

C Implementation Details

Dataset We use a pre-trained wide ResNet model® to create the vector representation for both image
and regions in the image. We further clean up the data samples in the subsets, removing the images that
contains over 60 regions and the questions whose answer frequency is lower than 5. We randomly split
the resulting samples into train, dev and test sets with the ratioof 3 : 1 : 1.

8Precisely, we use “wide_resnet101_2" model provided by Pytorch
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Hyperparameters During annotation generation, we take the whole image as the attention if no attention
object is detected; and to allow some degree of fuzziness in natural expressions, we set the thresholds for
the Spacy similarity score and the ConceptNet "RelatedTo" score to be 0.7 and 1.3 respectively.

During training, We leverages the OpenVQA’s’ implementations of MFB, MCAN and MMnasNet
models and the original implementation'? of LXMERT for the baselines. Specifically, we choose the
small version of MCAN and MMnasNet with fewer layers of transformer blocks. The maximum length of
the questions token is 24. we use K = 30 in Eq. 9 and sample { ¢y} every 20 training steps (i.e. L = 20)
when performing EM algorithm. Following (Zhang et al., 2019), we adopt dynamic weights for o and /3
in Eq. 10 and Eq. 12, i.e.

a(e) =20 % (14 cos %) (19)
B(e) = 100000 * (1 + cos %) (20)

where e is the current epoch and F is the total number of training epochs. When constructing semantic
graphs, we use 0 = 0.7 in Eq. 14.

*https://github.com/MILVLG/openvqa
https://github.com/airsplay/lxmert
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D More Examples of Attention Inference

(a) For Fig. 3: "What is on the head of the lady in green?"

(b) For Fig. 5: "What color is the cat’s eye?"

Figure 4: Original images for the attention visualization of "What-Color" and "What-There" questions.

Similar to the example of the "What-There" question, We find the model trained with the direct
supervision constantly focus on more specific visual regions. Specifically, the visual self-attention weights
from the baseline and the indirect supervision are almost equally distributed, while that from the direct
supervision provides a more meaningful distribution with peaks and troughs. It illustrates the efficiency of
our direct supervision. Contrarily, no difference as significant as in "What-There" questions is observed
among the V-to-T attention results. A plausible explanation is that since the structure of the color question
is simpler than the "What-There" question overall, the model tends to just simply pay attention to the most
important keyword in the question.
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Figure 5: Visualization of the horizontally-normalized attention weights of the last transformer layer in the encoder
and decoder of MCAN. For textual and visual self-attentions, they are normalized along the horizontal axis. "V-to-T"
means Visual-to-Textual attention. The brighter the cell, the higher weight it carries. The larger font of the text in
yellow box, the higher weight it carries. The green box is the true attention object, the blue boxes are candidate
regions. Multiple objects with the same name may exist in the image. The direct supervision is the model trained
with full attention supervision; the indirect supervision is the model trained with SGHMC-EM multitask learning.
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