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Abstract

The exploit of the semantic structure in the001
visual question answering (VQA) task is a002
trending topic where researchers are interested003
in leveraging internal semantics and bringing004
in external knowledge to tackle more com-005
plex questions. The prevailing approaches006
either encode the external knowledge sepa-007
rately from the local context, which magnif-008
icently increases the complexity of the ensem-009
ble system, or use graph neural networks to010
model the semantic structure in the context,011
which suffers from the limited reasoning ca-012
pability due to the relatively shallow network.013
In this work, we propose a question-led struc-014
ture extraction scheme using external knowl-015
edge and explore multiple training methods, in-016
cluding direct attention supervision, SGHMC-017
EM Bayesian multitask learning, and masking018
strategies, to aggregate the structural knowl-019
edge into deep models without changing the ar-020
chitectures. We conduct extensive experiments021
on two domain-specific but challenging sub-022
tasks of VrR-VG dataset and demonstrate that023
our proposed methods achieve significant im-024
provements over strong baselines, showing the025
promising potentials of applicability.026

1 Introduction027

In recent years, visual question answering (VQA)028

attracts an increasing attention benefiting from the029

great success of the neural networks. Having made030

the remarkable achievements on the early bench-031

marks like (Agrawal et al., 2016; Lin et al., 2015;032

Johnson et al., 2016), researchers are now inter-033

ested in more challenging tasks such as (Zellers034

et al., 2019; Hudson and Manning, 2019) where035

the external knowledge and the commonsense are036

additionally required in order to provide the correct037

answer to the question about an image. For exam-038

ple in Fig. 1, to correctly answer what materials039

are used, a system needs to be aware of the spatial040

relationships among individual objects and find the041

exact wall “behind the red flowers”. It leads to a 042

higher requirement for a neural model to make use 043

of the structural information in inference. 044

Researchers have proposed to use graph neural 045

networks (GNNs) to incorporate the visual context 046

and the external knowledge. (Xu et al., 2017; Li 047

et al., 2017b; Zellers et al., 2018) generate a scene 048

graph to represent the visual context, where the 049

nodes are the objects and the edges are either events 050

or the attributes. The graph-based models are natu- 051

rally friendly to the external knowledge from the 052

large-scale knowledge graphs (Speer et al., 2017; 053

Bollacker et al., 2008) because both share the same 054

graph-structured format. However, due to the over- 055

smoothing issue during the training process (Oono 056

and Suzuki, 2019; Chen et al., 2020a), GNNs do 057

not generally allow to build up layers or scale up 058

in depth, hindering their reasoning capabilities to 059

grow, which explains the fact that the state-of-the- 060

art performances on the benchmarks are dominated 061

by the conventional non-graph deep models (Li 062

et al., 2019c,a; Chen et al., 2020b; Li et al., 2020b). 063

In parallel, some other works (Li et al., 2017a; Su 064

et al., 2018; Li et al., 2020a) make effort to encode 065

the external knowledge separately and fuse with 066

the local context through an additional memory net- 067

work or graph network, whereas they either lose 068

the semantic structure or add too much complexity 069

to the overall system. 070

Figure 1: An Example of a complex question requiring
the structure semantics and external knowledge.
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An enormous effort has been made towards mod-071

eling the dependencies among the contextual ob-072

jects and words within the conventional neural net-073

work. The attention mechanism is one of the most074

influential ones, which was first introduced by (Cho075

et al., 2014) to machine translation tasks and en-076

courage the emergence of many variants, includ-077

ing general attention (Luong et al., 2015), the dot-078

product attention (Luong et al., 2015), the scaled079

dot-product attention (Vaswani et al., 2017), etc.080

Now the attention has been an indispensable part081

of the latest models for VQA tasks. We notice082

that the attention operations and the graph oper-083

ations share a lot in common, and in particular084

the nature of the self-attention can be viewed as085

a fully-connected graph. Thus the attention layer086

can be potentially used to model the structure infor-087

mation. Meanwhile, despite the consistent gain088

brought by the attention mechanism, the atten-089

tion weights are mostly learned in an unsupervised090

scheme and a prominent benefit is expected from091

further optimization. In this work, we focus on the092

scaled dot-product attention which is the core of093

the transformer block (Vaswani et al., 2017) and094

being widely used in the state-of-the-art models.095

To this end, a question-initiated semantic struc-096

ture extraction method is designed, following hu-097

man thinking process, and aggregated into the atten-098

tion layer in the transformer block through weak099

supervision and masking. The extracted seman-100

tic structure is further enhanced by the scene graph101

and the external knowledge such as word synonyms102

and object relevancy. Then we explore three novel103

strategies to improve the attention learning: (1)104

indirectly optimize the attention weights in the105

multi-task learning framework with Bayesian infer-106

ence, by adding an auxiliary task of the attention107

object prediction to the model; (2) directly super-108

vise the scaled dot-product attention weights with109

the enriched structural semantics in an explicit way;110

(3) selectively mask out the attention weights of111

the irrelevant objects during training based on the112

semantic structure. Compared to other works (Li113

et al., 2017a; Su et al., 2018; Kim et al., 2020;114

Huang et al., 2020; Zhu et al., 2020), our efforts115

do not change the backbone models. Our main116

contributions can be summarized as follows:117

• We propose the direct and indirect attention118

supervision methods for the VQA task that119

are applicable to a more general situation.120

• We introduce a debiased multitask training121

method with Bayesian inference to the VQA 122

task for the first time that increases the 123

model’s stability. 124

• We propose a question-led semantic structure 125

extraction schema, simulating human behav- 126

iors and boosting the model’s interpretability. 127

• We apply our approaches to multiple state-of- 128

the-art transformer-based models and show 129

compelling results on two challenging sub- 130

tasks of the VrR-VG dataset, demonstrating 131

the encouraging potentials for future use. 132

2 Related Work 133

VQA Models With External Knowledge The 134

traditional approaches to incorporate the external 135

knowledge into the local context can be summa- 136

rized into two categories. The works like (Li et al., 137

2017a; Su et al., 2018) first encode the local con- 138

text and the external knowledge separately in their 139

own representation space, and then perform a late 140

fusion by projecting two spaces into a common 141

hidden space through an additional neural network. 142

The network usually contains a large number of 143

parameters for decent performance and therefore 144

bring more complexities to the base models. 145

More recently, researchers leverage GNNs to 146

model the structure within the context. (Li et al., 147

2019b) uses a graph attention network(GAT) to 148

enocde the semantic, spatial and implicit relations 149

among the visual objects. (Kim et al., 2020) con- 150

structs two symbolic graphs to separately encode 151

the questions with dependency-tree structure and 152

the objects with attribute-and-predicate-based struc- 153

ture. Similarly, (Huang et al., 2020; Zhu et al., 154

2020) proposes multiple independent graph convo- 155

lutional networks(GCNs) to capture embed intra- 156

and cross-modal relations using external knowl- 157

edge. (Singh et al., 2019; Li et al., 2020a) perform 158

an early fusion to merge the local context and the 159

external knowledge into an entity graph, and lever- 160

age a graph neural network (GNN) to conduct en- 161

coding and reasoning. The shortcomings of this 162

category mainly lie on the comparably weak rea- 163

soning capability of GNN restricted by its relatively 164

shallow depth. Most recently, we have observed 165

the boom of the Vision-and-Language(V+L) mul- 166

timodal large-scale pre-trained models (Su et al., 167

2020; Li et al., 2019c,a; Chen et al., 2020b; Li et al., 168

2020b) and their great success in the VQA tasks. 169

In this work, we choose three state-of-the-art 170

models as our competitive baselines. Since they are 171
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all transformer-based, the methods should be seam-172

lessly applied to other Transformer-based models.173

Attention Supervision & Masking (Liu et al.,174

2016; Gan et al., 2017; Qiao et al., 2017) achieve175

the attention supervision for VQA task by explic-176

itly generating an attention map as an additional177

output of the model and optimizing it under the178

multitask learning framework. Inspired by the idea,179

we make adjustment for transformer-based models180

to predict the indices of the attention objects in181

the input, which is considered to be easier to learn182

because of its comparably smaller parameter space.183

(Patro et al., 2019) directly regularizes the attention184

weights in the model using the gradient informa-185

tion from Grad-CAM (Selvaraju et al., 2017) as the186

supervision signals at each training step. The atten-187

tion is optimized iteratively under the adversarial188

learning framework. However, Grad-CAM can be189

only applied to a CNN-based model and makes it190

inapplicable to the latest state-of-the-art models.191

Therefore, we propose a direct weight supervision192

strategy for transformer-based models.193

The masking is applied to incorporate the struc-194

tural information into the transformer block for var-195

ious tasks in the latest works. (Ahmad et al., 2020)196

uses the word distance as the reference to form the197

mask matrix to reflect word relations in a sentence198

for event extraction task; (Guo et al., 2020) pro-199

poses a new pre-trained model for programming200

language which uses the masked attention to rep-201

resent the dependency among the programming202

variables; (Shao et al., 2020) use the masked atten-203

tion to encode the parsing-tree-based structure into204

a sentence representation so that each work token205

only interact with its corresponding parents and not206

with nodes in different sub-trees. Considering the207

gain from the masking technique, we include it as208

one of our strategies.209

3 Attention Enhancement Strategies210

In this section, we provide the theories and the de-211

tails of our indirect, direct and masking strategies,212

as shown in Fig. 2.213

The original task of VQA is to predict the answer214

A given the question Q and the visual context C.215

In this work, C is a list of object and whole image216

representations. Letting θ be the parameters of the217

base model and Dθ be the training samples for the218

original task, we learn θ by maximizing its log-219

likelihood as follows with a binary cross-entropy220

loss following the settings in (Yu et al., 2019). 221

θ∗orig = argmax
θ

log p(Dθ|θ) (1) 222

3.1 Indirect Strategy: Multitask Learning 223

With Bayesian Inference 224

We add an auxiliary task of predicting the expected 225

attention object(s) in the input with respect to each 226

(Q,C) pair, and formulate it as a multi-label multi- 227

class classification problem. Assuming the newly- 228

added auxiliary-task-specific parameters is ϕ, we 229

arrive at the objective function for our multitask 230

learning: 231

θ∗ = argmax
θ

[log p(Dθ|θ) + log p(Dϕ|θ, ϕ)] (2) 232

where Dϕ is the training data for the auxiliary task. 233

Normally, multitask learning optimizes the pa- 234

rameters for the best overall performances of all 235

downstream tasks on the cost of the performance 236

drop on the individual task. However, in our indi- 237

rect strategy, only the main task matters1. From 238

this perspective, we take ϕ in Eq. 2 as a bias to 239

the estimation of θ∗. According to Bayes’ theorem, 240

p(ϕ|θ) is needed to remove ϕ from Eq. 2 which, 241

however, is either unknown or require some strong 242

assumptions on p(ϕ|θ). 243

To diminish the bias and maximize the benefits 244

of the auxiliary task to the original task, we claim 245

that a better objective function is as follows: 246

θ∗ = argmax
θ

[log p(Dθ|θ) + log p(Dϕ|θ, D̃ϕ)] (3) 247

where D̃ϕ is another set of data used to estimate the 248

posterior distribution p(ϕ|θ, D̃ϕ). The underlying 249

motivation is that, instead of making a strong as- 250

sumption on the prior distribution of ϕ and relying 251

on its sensitive initialization procedure, we intro- 252

duce D̃ϕ and estimate the posterior distribution of 253

ϕ from data. 254

To estimate p(Dϕ|θ, D̃ϕ) in Eq. 3, we apply 255

Bayesian inference to the optimization procedure 256

following 257

log p(Dϕ|θ, D̃ϕ) 258

= log

∫
ϕ

p(Dϕ|θ, ϕ, D̃ϕ)p(ϕ|θ, D̃ϕ) dϕ (4) 259

≥
∫
ϕ

p(ϕ|θ, D̃ϕ) log p(Dϕ|θ, ϕ) dϕ (5) 260

=Ep(ϕ|θ,D̃ϕ)[log p(Dϕ|θ, ϕ)] 261

1The auxiliary task is a proxy task to guide the attention
weight during training, but is not considered in inference phase.
This is what indirect means.
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Figure 2: Illustration of three attention enhancing methods on MCAN. The boxes with red dashed line visualize
the details of different attention structures. The grey cells in the attention map represent no link; the purple cells
represent a valid link.

≈ 1

K

K∑
k=1

log p(Dϕ|θ, ϕk), ϕk ∼ p(ϕ|θ, D̃ϕ) (6)262

where Eq. 5 is drawn from Jensen’s inequality and263

the independence between Dϕ and D̃ϕ given ϕ.264

Eq. 4 is considered computationally intractable due265

to the huge parameter space for ϕ, but can be esti-266

mated by Monte Carlo sampling as shown in Eq. 6.267

In this work, we use stochastic gradient Hamilto-268

nian Monte Carlo (SGHMC) (Chen et al., 2014)269

to achieve sampling from p(ϕ|θ, D̃ϕ). Specifically,270

we freeze θ during sampling and only update ϕ271

through maximizing p(D̃ϕ|θ, ϕ), following Eq. 7:272

ϕi+1 = ϕi + La1∇ϕ (7)273

La1(x) = − 1

N

N∑
n=1

[yn log p(yn|θ, ϕi, x)274

+ (1− yn) log(1− p(yn|θ, ϕi, x))] (8)275

where La1 is the binary cross-entropy loss of the276

auxiliary task; N is the number of objects at input277

and output; {x, y1:N} ∈ D̃ϕ. The burn-in proce-278

dure of the sampling first ensures ϕ to be converged279

to a local optimal region and the actual samples280

{ϕk} are collected from the local optimal region.281

Substituting Eq. 6 into Eq. 3 reaches Eq. 9,282

whose optimal solution can be approached by283

Expectation-Maximization (EM) algorithm.284

θ∗ = argmax
θ

{log p(Dθ|θ) + log p(Dϕ|θ, D̃ϕ)}285

≈ argmax
θ

{log p(Dθ|θ) +
1

K

K∑
k=1

log p(Dϕ|θ, ϕk)} (9)286

We learn θ by iteratively sampling287

{ϕt
k|ϕt

k ∼ p(ϕ|θt, D̃ϕ)} at time t to esti-288

mate E[log p(Dϕ|θt, ϕt)] following Eq. 6, and 289

then updating θ to be θt+1 following Eq. 9 with 290

the objective function as Eq. 10: 291

min
θ

Lorig(θ : Dθ) + αLa1(θ, ϕ : Dϕ, D̃ϕ) (10) 292

Considering the efficiency of the algorithm in prac- 293

tice, we do not sample {ϕk} every training step 294

for θ, because the burn-in process of SGHMC sam- 295

pling takes time. Instead, we sample {ϕk} for every 296

L steps. 297

3.2 Direct Strategy: Transformer Supervision 298

Scaled Dot-product Attention By definition 299

in (Vaswani et al., 2017), the scaled dot-product 300

attention can be expressed as 301

QV = A(Q,K, V ) =softmax(
QK⊤
√
d

)V 302

=softmax(Wa)V (11) 303

where A(·) is the scaled dot-product attention func- 304

tion; Q ∈ Rnq×d, K ∈ Rnk×d and V ∈ Rnv×d 305

(nv = nk) are the matrices that contain nq query 306

vectors, nk key vectors and nk value vectors; Wa 307

can be regarded as the unnormalized affinity matrix 308

with W ij
a representing the affinity score between 309

the i-th query and the j-th key. Assuming K = V , 310

normalizing the affinity matrix along the row axis 311

with a SoftMax function makes the output a co- 312

attention map. As a result, QV ∈ Rnq×d becomes 313

an attended query matrix containing nq attended 314

query vectors with respect to nk key vectors or nv 315

value vectors since V = K. For simplicity, we 316

call A(Q,K,K) co-attention module for Q and K 317

4



in the rest of the paper and call A(Q,Q,Q) self-318

attention module for Q.319

We add the regularization directly to the affinity320

matrix Wa and formulate it as a multi-label multi-321

class classification problem of predicting whether322

the row vectors in Q and K are pair-wise associ-323

ated, leading to the final loss function of our direct324

attention supervision strategy as follows:325

min
θ

Lorig(θ : Dθ) + βLa2(s(Wa),W
gt
a ) (12)326

where s(·) is a sigmoid function; W gt
a is the ground-327

truth attention map based on the structural seman-328

tics that will be discussed in the next section; La2329

is mean squared error(MSE) loss; β is a weight to330

be tuned. Note that KL divergence between s(Wa)331

and W
gt
a also has been tried for La, but only pro-332

vides weaker results.333

3.3 Masking Strategy: Masked Attention334

Following (Ahmad et al., 2020; Guo et al., 2020;335

Shao et al., 2020), we give the definition of the336

masked attention as in Eq. 13 on the basis of Eq. 11:337

QV = softmax(
QK⊤
√
d

+M)V (13)338

where M ij = 0 if the i-th query and the j-th key339

are linked and M ij = −∞ if the i-th query and the340

j-th key are considered irrelevant. The top-down341

semantic structure maneuvers the back-propagation342

procedure through the mask M to only optimize the343

weights where there are valid interactions between344

two nodes.345

4 Semantic Structure Extraction346

In this section, we discuss how we form our347

question-led intra- and inter-structures for atten-348

tion supervision.349

We divide the structural semantics in VQA350

into three types: word-to-word(W2W), region-to-351

region(R2R) and word-to-region(W2R). Different352

from the independent generic intra-modality struc-353

tures in (Li et al., 2019b; Kim et al., 2020; Teney354

et al., 2017), we look for question-led semantics355

with the help of the external knowledge from the356

language models in Spacy (Honnibal and Mon-357

tani, 2017) and the commonsense from Concept-358

Net (Speer et al., 2017), following the human be-359

havior in answering a VQA question. Our goal is360

to impose the structural semantics into the attention361

modules.362

4.1 Question-led Semantic Structure 363

W2W We first detect the keywords in the ques- 364

tions based on the dependency and constituency 365

parsing results, including the noun words in the 366

noun phrases and their corresponding adjectival 367

modifiers. Then we build a fully connected sub- 368

graph among all the keywords and generate an ad- 369

jacent matrix W
gt
at for the question self-attention. 370

W2R Led by the question keywords, we search 371

for essential regions in the image according to the 372

conceptual relations. Assuming the availability of 373

the object names or the caption of each candidate 374

region2, each value in W2R matrix is determined 375

by the pair-wise affinity function f(W,R) between 376

a question keyword and a region description. In the 377

cases where the keyword or the description consists 378

of multiple words, we use the maximum word-level 379

score for the whole phrase. The affinity score is 380

measured from four perspectives, including string 381

matching, the Euclidean distance in word vector 382

space3, the relevancy score supported by Concept- 383

Net, a customized mapping function. The score 384

from each perspective is normalized to the scale 385

of 1 and the maximum score in the four perspec- 386

tives will be taken as the final word-wise affinity. 387

Thresholding method is then adopted to generate 388

the final W2R adjacent matrix W
gt
av i.e. 389

W gt
av(i, j) =

{
1, f(Wi, Rj) ≥ σ

0, otherwise
(14) 390

where σ is a hyperparameter; Wi is the i-th word 391

in the question; Rj is the j-th region in the image. 392

More details are included in Append. A. 393

R2R Similar to W2R, we build the R2R adjacent 394

matrix W
gt
ax for region self-attention based on their 395

conceptual relations from the four perspectives. To 396

keep W
gt
ax question-led, we only consider the can- 397

didate relations centered on the essential regions 398

detected in W2R. Different from (Teney et al., 399

2017; Li et al., 2019b; Huang et al., 2020; Zhu 400

et al., 2020), we do not consider spatial relation. 401

Based on the results in (Yang et al., 2019) and our 402

empirical observations, we claim the automatically 403

extracted 2D/3D spatial relations are too noisy to 404

be valuable attention groundings. 405

In our work, W gt
at, W

gt
av and W

gt
ax are used as the 406

attention groundings in direct supervision and as 407

the mask in attention augmentation. 408

2The object name or region caption can be either obtained
by hand annotation or inferred by pre-trained models.

3We use the “en_core_web_md” model provided by Spacy.
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4.2 Answer-Led Semantic Structure409

In indirect supervision, a set of ground-truth atten-410

tion regions are required for the multi-class multi-411

label auxiliary task. To guarantee the quality of the412

weak labels, we look for the essential regions that413

are best described or most related to the answers.414

Specifically, we follow the same procedure used415

for W2W structure of measuring the conceptual416

closeness between the answer words and the region417

descriptions, and selected the top ranked region(s)418

from all the candidates as the weak labels for the419

auxiliary task.420

5 Experimental Setting421

5.1 Dataset422

We use Visual-relevance Relationships (VrR-VG)423

dataset (Liang et al., 2019) which is a subset of424

Visual Genome (VG) dataset (Krishna et al., 2017)425

for the experiments. According to (Liang et al.,426

2019), VrR-VG discards those highly predictable427

and biased question-answer pairs in VG dataset428

and therefore becomes a more challenging task.429

Moreover, the annotated scene graph for each im-430

age allows higher-quality labels for our attention431

supervision. We find that a large percentage of432

question-answer pairs in VrR-VG do not require433

the fine-grained relations in the context and are not434

expected to benefit from our extracted semantic435

structure. Examples are provided in Append. B.436

To better verify our proposed methods, we further437

distill two subsets from VrR-VG and have “What-438

Color” and “What-There” questions through simple439

string matching methods.440

What-Color What-There
# of questions in train 50726 33736
# of questions in val 17234 11120
# of questions in test 17465 11398
# of answers (classes) 248 1049

Table 1: Statistics of two subsets.

5.2 Baselines & Metrics441

We take three Transformer-based models,442

MCAN (Yu et al., 2019), MMnasNet (Yu et al.,443

2020) and LXMERT (Tan and Bansal, 2019),444

as our strong baselines, to demonstrate both the445

effectiveness and applicability of our proposed446

methods. We also run the experiments with447

MFB (Yu et al., 2017) under the baseline setting448

which is commonly compared in VQA task. All449

the models and methods are evaluated by the QA 450

accuracy4. 451

6 Evaluation 452

6.1 Annotation Results 453

What-Color What-There
# of question keywords 1.53 1.72
# of attention regions 1.16 1.20
# of relevant regions 5.26 5.02
MFB 45.53 (52.78) 23.69 (26.48)
MCAN 45.45 (53.43) 24.87 (29.13)
MMnasNet 45.35 (53.40) 24.21 (29.30)
LXMERT 46.55 (52.68) 26.22 (28.22)

Table 2: Validation of the extracted attentions in train-
ing set. The upper side shows the average amount of
the items per question. The lower side compares the
accuracy on the dev set with the baseline and attention-
region-only inputs. The numbers in the brackets corre-
spond to the latter.

It is difficult to directly examine the quality of 454

our weak attention annotations. In this work, we 455

evaluate it from two aspects. The upper side of 456

Table 2 includes the average number5 of attention 457

words and objects for each question. Those close- 458

to-1 mean values show that our question-led struc- 459

ture scheme is capable of finding the concrete and 460

specific question keywords and the essential visual 461

regions in both subsets. Additionally, we also con- 462

duct experiments where we train the baseline mod- 463

els using only our extracted attention regions as the 464

visual input. The corresponding performance on 465

the dev set is included in the brackets in the lower 466

side of Table 2. The significant improvement over 467

the baseline performance (outside the brackets) val- 468

idates the quality and feasibility of our question-led 469

semantic structure extraction scheme. 470

6.2 VQA Results 471

Effect of Training Methods The small differ- 472

ence among baseline results in Table 2 reveals the 473

limited profit from model architectures on two chal- 474

lenging subsets. Comparably, Table 3 shows the ar- 475

resting benefits from the integrated structure knowl- 476

edge in most cases, especially with the masking 477

techniques bringing a maximum of 19% rise in QA 478

accuracy. Direct supervision on attention weights 479

can also bring significant improvement over the 480

baseline in the cases where the masking technique 481

4The implementation details are included in Append. C.
5average = # found / (# of question - # of empty annotation)
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MCAN MMnasNet LXMERT
Color There Combined Color There Combined Color There Combined

Baseline 45.45 24.87 33.19 45.35 24.21 32.78 46.55 26.22 34.72
+ Indirect 45.62 25.07 33.57 45.38 24.97 33.17 46.30 26.68 34.90
+ Direct 48.30 25.22 34.56 48.94 25.06 35.07 46.65 26.33 34.63
+ Masking 45.82 28.27 38.44 45.57 28.85 39.19 53.04 29.67 38.37

Table 3: The effect of our training methods. The numbers are the maximum accuracy (%) on the dev set out of
multiple runs.

is not as effective. The finding may imply poten-482

tial complementation between two methods and483

encourage users to try the other if one does not484

show promising results in future applications. Our485

indirect supervision strategy only provides a mod-486

est improvement, which matches our observations487

in the works (Qiao et al., 2017; Zhang et al., 2019)488

where only a tiny gain is earned from similar indi-489

rect supervision methods.490

Another interesting finding is that both direct491

attention supervision and masking should not in-492

fluence the learning of the dense representation493

for each modality. Different from MCAN and494

MMnasNet that use the pre-trained GloVe (Pen-495

nington et al., 2014) embeddings for the textual496

input, LXMERT uses Transformer blocks to learn497

the textual representations simultaneously before498

multimodal fusion. We experiment with LXMERT499

by adding the supervision and the masking to the500

Transformer blocks before and at the fusion mod-501

ule. A significant performance drop is observed if502

we supervise or mask the attention weights before503

the fusion module, which indicates that our seman-504

tic structures capture the high-level relations and505

should only be used to guide the attention learning506

in the deeper layers.507

Color There Combined
MMnasNet 45.35 24.21 32.78

+ R2R Direct 45.39 24.37 33.15
+ W2W Direct 45.35 24.75 33.16
+ W2R Direct 48.94 25.06 35.07
+ Full Direct 46.20 24.68 34.55
+ Masked R2R 45.51 24.53 33.02
+ Masked W2W 45.23 24.54 33.10
+ Masked W2R 45.42 27.17 36.14
+ Masked Full 45.57 28.85 39.19

Table 4: Accuracy(%) on the dev set with different se-
mantic structures. Reported numbers are the maximum
out of multiple runs.

Effect of Semantic Structures An ablation study508

is conducted on the different types of semantic509

structures in Sec. 4.1. Table 4 reveals that the inter-510

modal semantics(W2R) play a more important role511

than the inner-modal semantics(W2W, R2R) in all512

conditions with MMnasNet model. Similar results 513

are also found with MCAN and LXMERT mod- 514

els, which conform to our intuition and can be 515

instructive to the future effort on increasing the 516

information exchange for VQA tasks. 517

Effect of Bayesian Inference Table 5 compares 518

the performance of the indirect strategy on the test 519

set with and without Bayesian inference. We re- 520

peat our experiments with the MCAN model and 521

K = 50 for 10 times and compute the mean and 522

standard deviation of the QA accuracy. We notice 523

that our debiased multitask learning increases the 524

model stability with a much smaller variation in 525

test performance, which attributes to the fact that 526

we use the posterior distribution of ϕ during the 527

optimization rather than its likelihood, while still 528

enjoying the performance growth from the indirect 529

supervision. 530

Color There
MCAN 44.54 ± 0.23 23.92 ± 0.14

+ Multitask 44.80 ± 0.28 24.45 ± 0.30
+ Multitask + B.I. 44.70 ± 0.16 24.23 ± 0.16

Table 5: Accuracy(%) on the test set. “B.I” stands for
Bayesian inference.

6.3 Supervised Attention Results 531

To validate the effect of the supervision in in- 532

ference, we visualize the visualizes the attention 533

weights of the last transformer layer in the encoder 534

and decoder of MCAN. Fig. 3 is on a “What-There” 535

question from the dev set6. We find that the indirect 536

supervision does not make a significant difference 537

to the attention weight against the baseline, which 538

can partially explain its limited contribution to the 539

accuracy. 540

Comparatively, the direct supervision guides the 541

textual self-attention module to focus more on the 542

structure-aware keywords in the question. For the 543

example in Figure 3, the baseline focuses on “green” 544

6Visualization for a “What-Color” question is available in
Append. D.
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Figure 3: Visualization of the horizontally-normalized attention weights of the last transformer layer in the encoder
and decoder of MCAN. For textual and visual self-attentions, they are normalized along the horizontal axis. “V-to-T”
means Visual-to-Textual attention. The brighter the cell, the higher weight it carries. The larger font of the text in
yellow box, the higher weight it carries. The green box is the true attention object, the blue boxes are candidate
objects. The direct supervision is the model trained with full attention supervision; the indirect supervision is the
model trained with SGHMC-EM multitask learning. The sparsity in text-related attention results from the small
number of keyword annotations per question as it is shown in Table 2.

and the indirect-supervised model focuses on “lady545

in green”. Only the direct-supervised model re-546

alizes the true keywords of “head”, “lady” and547

“green”, and consequently leads the visual self-548

attention module to find the attention object “head-549

band”. As a result of imposing the semantic struc-550

ture into the attention, the direct supervision also551

helps the visual self-attention module concentrate552

more on individual objects rather than the global553

context7, which explains the greater improvements554

on the end-goal performance from our direct super-555

vision strategy.556

What’s more, our extracted semantic structure557

boost the interpretability of the model through at-558

tention weights. With our supervision methods, the559

textual self-attention finds candidate keywords in560

questions and the V-to-T attention further filters561

out those less related to the visual context. On the562

7The first item(column) in visual self-attention is the vector
representation of the whole image.

contrary, the baseline model leaves it unclear about 563

why the textual attentions shift from “green” to 564

“head”. 565

7 Conclusion 566

In this work, we develop three strategies to en- 567

hance attention training with the question-led se- 568

mantic structure without any changes to the back- 569

bone models. Both direct supervision and masking 570

techniques lead to notable improvements with struc- 571

tural knowledge, but the magnitude may be subject 572

to data and model. The debiased multitask learning 573

is beneficial to increase a model’s stability during 574

inference. Our further ablation study reveals that 575

the cross-modal semantics performs a more criti- 576

cal role in the VQA task. We value our work as 577

a systematic study on boosting attention with the 578

semantic structure for VQA tasks and may inspire 579

future work towards this direction. 580
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A Conceptual Relation Measuring806

The conceptual relations are used in creating W2R, R2R graphs and the attention region annotations.807

It is determined by the conceptual closeness between two words or phrases, which is estimated by the808

word-wise affinity. Given two phrases P = [p1, ..., pm] and Q = [q1, ..., qn] where pm and qn are the809

tokens in the phrases, the affinity S between P and Q are defined as810

SPQ = max(f(p1, q1), f(p1, q2), ..., f(p2, q1), ..., f(pm, qn)) (15)811

where f(·, ·) is a word-wise affinity function. As aforementioned, the word-wise affinity is measured812

from the perspectives of string matching, word vector distance, ConceptNet relevancy score, a customized813

mapping function, i.e.814

f(a, b) = max(gstr(a, b), gword(a, b), gnet(a, b), gmap(a, b)) (16)815

where gstr(·, ·) and gmap(·, ·) are binary functions returning 0 or 1 depending on whether two strings are816

matched and whether a certain mapping is defined. gmap(·, ·) is customized to handle some dataset-specific817

biases, e.g. in VrR-VG dataset, “computer” is much more frequently described as “CPU” than in reality.818

gnet(a, b) represents the ConceptNet relevancy function that computes the relevancy score between a and819

b; we normalize the score as follows820

gnet(a, b) = min(1,
relevancy score

1.3
) (17)821

where 1.3 is our empirical scale value. gword(a, b) is defined in word vector space, i.e.822

gword(a, b) =
a⃗ · b⃗
|⃗a||⃗b|

(18)823

where a⃗ and b⃗ represent a’s and b’s word vectors.824

B Examples of VrR-VG QA Pairs825

When examining the data samples, we find that the majority of QA pairs in VrR-VG dataset do not rely on826

the detailed semantic relations among the objects. Below are some samples whose answers are unlikely to827

be learned from the semantic structures.828

• Q: “Where are the trees?” A: “Right.”829

• Q: “What time of day is it?” A: “Mid morning.”830

• Q: “How are the cars?” A: “Parked.”831

• Q: “How is the weather?” A: “Fair.”832

Comparatively, our extracted “what-color” and “what-there” subset are more representative of the833

important role that the semantic structures are playing. For example,834

• Q: “what color is the building the L&M ad is on?” A: “Tan.”835

• Q: “What color is the car parked closest to the people?” A: “Silver.”836

• Q: “What is on the man’s face wearing the red shirt?” A: “Glasses.”837

• Q: “What is behind the boy” A: “Buildings.”838

C Implementation Details839

Dataset We use a pre-trained wide ResNet model8 to create the vector representation for both image840

and regions in the image. We further clean up the data samples in the subsets, removing the images that841

contains over 60 regions and the questions whose answer frequency is lower than 5. We randomly split842

the resulting samples into train, dev and test sets with the ratio of 3 : 1 : 1.843

8Precisely, we use “wide_resnet101_2” model provided by Pytorch
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Hyperparameters During annotation generation, we take the whole image as the attention if no attention 844

object is detected; and to allow some degree of fuzziness in natural expressions, we set the thresholds for 845

the Spacy similarity score and the ConceptNet "RelatedTo" score to be 0.7 and 1.3 respectively. 846

During training, We leverages the OpenVQA’s9 implementations of MFB, MCAN and MMnasNet 847

models and the original implementation10 of LXMERT for the baselines. Specifically, we choose the 848

small version of MCAN and MMnasNet with fewer layers of transformer blocks. The maximum length of 849

the questions token is 24. we use K = 30 in Eq. 9 and sample {ϕk} every 20 training steps (i.e. L = 20) 850

when performing EM algorithm. Following (Zhang et al., 2019), we adopt dynamic weights for α and β 851

in Eq. 10 and Eq. 12, i.e. 852

α(e) = 20 ∗ (1 + cos
e

E
) (19) 853

β(e) = 100000 ∗ (1 + cos
e

E
) (20) 854

where e is the current epoch and E is the total number of training epochs. When constructing semantic 855

graphs, we use σ = 0.7 in Eq. 14. 856

9https://github.com/MILVLG/openvqa
10https://github.com/airsplay/lxmert
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D More Examples of Attention Inference857

(a) For Fig. 3: "What is on the head of the lady in green?"

(b) For Fig. 5: "What color is the cat’s eye?"

Figure 4: Original images for the attention visualization of "What-Color" and "What-There" questions.

Similar to the example of the "What-There" question, We find the model trained with the direct858

supervision constantly focus on more specific visual regions. Specifically, the visual self-attention weights859

from the baseline and the indirect supervision are almost equally distributed, while that from the direct860

supervision provides a more meaningful distribution with peaks and troughs. It illustrates the efficiency of861

our direct supervision. Contrarily, no difference as significant as in "What-There" questions is observed862

among the V-to-T attention results. A plausible explanation is that since the structure of the color question863

is simpler than the "What-There" question overall, the model tends to just simply pay attention to the most864

important keyword in the question.865
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Figure 5: Visualization of the horizontally-normalized attention weights of the last transformer layer in the encoder
and decoder of MCAN. For textual and visual self-attentions, they are normalized along the horizontal axis. "V-to-T"
means Visual-to-Textual attention. The brighter the cell, the higher weight it carries. The larger font of the text in
yellow box, the higher weight it carries. The green box is the true attention object, the blue boxes are candidate
regions. Multiple objects with the same name may exist in the image. The direct supervision is the model trained
with full attention supervision; the indirect supervision is the model trained with SGHMC-EM multitask learning.
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