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Abstract

Computing a comprehensive and robust visual repre-
sentation of an arbitrary object or category of objects
is a complex problem. The difficulty increases when
one starts from a set of uncalibrated images obtained
from different sources. We propose a self-supervised ap-
proach, Multi-Image Latent Embedding (MILE), which
computes a single representation from such an image set.
MILE operates incrementally, considering one image at
a time, while processing various depictions of the class
through a shared gated cross-attention mechanism. The
representations are progressively refined as more avail-
able images are incorporated, without requiring addi-
tional training. Our experiments on Amazon Berkeley
Objects (ABO) and iNaturalist demonstrate the effective-
ness in two tasks: object or category-specific image re-
trieval and unsupervised context-conditioned object seg-
mentation.  Moreover, the proposed multi-image input
setup opens new frontiers for the task of object retrieval.
Our studies indicate that our models can capture descrip-
tive representations that better encapsulate the intrinsic
characteristics of the objects. Our code is available at
https://github.com/amazon-science/mile.

1. Introduction

Traditional object retrieval applications [2,61] and image
search engines [14,22] operate by capturing a single repre-
sentation of the search subject and matching it against the
model’s internal category representation. Although this pro-
cess is generally straightforward, the system may face dif-
ficulties when confronted with irregular structures, uncon-
ventional angles or viewpoints, and intricate scenes. More-
over, the appearance of objects can undergo transformations
over time. While robustness and generalizability are es-
sential qualities of an embedding, it is imperative to have
a system capable of adapting its internal representation to
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Figure 1. The MILE framework demonstrates a progressive ca-
pability to perceptually understand the common object within the
input sequence. As the number of available images increases (blue
rectangle), the framework is able to assimilate complementary vi-
sual attributes w.r.t. the specific image of interest (green rectan-
gle). This, in turn, enables the discovery and representation of the
common object across the diverse input images.

accommodate natural shifts or variations in the distribution
of object appearances. Most works that appeared as a solu-
tion to this ambiguous visual disentanglement task propose
using large amounts of data to obtain such qualities. How-
ever, continuously updating the representations implies ad-
ditional training along with the difficulty of finding super-
vised data, especially for low-resource categories.

In this paper we propose a framework capable of pro-
ducing holistic embeddings of visual concepts from multi-
image inputs by leveraging the self-supervised learning
(SSL) paradigm [4, 6, 17]. The key novelties we intro-
duce are: (a) a single structured multi-image embedding
achieved via a sequential latent space modelling flow oper-
ating on sets of images of undefined lengths, (b) an implicit
mechanism to incrementally update the object representa-
tion (see Figure 1) during inference time as more images
depicting the object are provided, (c) an SSL training frame-
work specifically adapted to handle multi-image inputs and
(d) a novel formulation of the object retrieval task based on
image sets. We leverage the visual information present in
multiple images by learning the embedding of objects or
categories of objects through an implicit disentanglement
of their structural characteristics. One of the key challenges
we encountered was the non-trivial extension of the SSL
paradigm to the multi-image setup, as previous approaches
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focused around the single-image scenario. Moreover, it is
worth mentioning that rather than aiming to advance the
SSL paradigm itself, our focus was on utilizing the capa-
bilities of the SSL approach and integrating it within our
proposed computational framework.

An overview for the proposed processing framework is
illustrated in Figure 2, while the SSL flow can be observed
in Figure 3. The incremental embedding refinement ca-
pability is achieved dynamically during inference time as
more visual information is fed to the model, without the
necessity to perform any additional training on larger se-
quence sizes. Another important remark regarding our work
is the ability to overcome the implicit geometrical con-
straints imposed by the rigid nature of the analyzed ob-
ject when processing it from a multi-image setup. Our
proposed framework is validated on the challenging ABO
[7] and iNaturalist [52] datasets, outperforming competitive
self and weakly supervised frameworks on the task of object
retrieval. This was achieved using the ViT family [9] back-
bones, however any image encoder can be employed. We
specifically emphasize that our proposed solution is multi-
image and not necessarily multi-view, as it can incorporate
sources of information depicting the same object in various
visual distributions. The multi-image setup is inherently
more generic compared to stereo or multi-view, since the
only requirement is that the input samples are related to the
object of interest, without any constraints on their correla-
tion or viewpoint consistency.

Utilising the constraint of having as input an image set
depicting a single object, one might argue about the usabil-
ity of contrastive learning approaches [27, 31, 39,51, 59].
However, this implies a weakly supervised learning setup,
necessitating at least 2 pairs of matching and non-matching
items during the learning process. We acknowledge that we
could potentially leverage objects with a significant num-
ber of associated images to obtain multiple image sets per
object. However, this would significantly prune the over-
all training set, which we wanted to avoid. Our goal was
to develop an approach that could effectively learn from a
broader and more diverse training set.

2. Related Work

In recent years, the rapid growth of unlabeled visual data
has fueled a surge of interest in self-supervised learning
(SSL) techniques. This is particularly relevant for tasks like
image and object retrieval [16, 24,35, 54, 58], where con-
structing robust, pattern-rich representations is crucial - es-
pecially for industry-scale applications.

Within the SSL landscape, researchers have explored
various approaches [3, 1 1,28,29,32, 33,49, 50, 53, 56, 57]
that leverage multi-view image data to learn more compre-
hensive visual representations. A common theme among
these methods is the use of contrastive learning, which aims

to maximize the similarity between embeddings of the same
object seen from different viewpoints, while simultaneously
increasing the distance between embeddings of distinct ob-
jects. One such approach, introduced in [30] , is closely re-
lated to the work presented in this paper. The authors’ tech-
nique uses contrastive learning to capture cross-view simi-
larities of depicted objects, while also increasing the sepa-
ration between embeddings of different objects. However,
a key limitation of their method, as well as the other multi-
view SSL approaches [29, 33, 53, 56], is that they provide
a single embedding per image, without a dedicated strat-
egy for aggregating the information contained in an entire
image set. This lack of a comprehensive image-set aggre-
gation mechanism is a notable shortcoming, as real-world
applications often involve working with diverse collections
of images depicting the same object or scene. Capturing the
holistic, multi-faceted nature of such visual information re-
quires a more sophisticated approach than simply producing
independent embeddings for each individual image.

Figure 2. Overview of MILE. Given an arbitrary uncalibrated set
of images Z = (I;)~_, depicting an object (top row), our method
produces a holistic latent representation L which gets incremen-
tally refined by processing each image input, I;. The representa-
tion is viewed as the state (L;)~, of a dynamic system (a recur-
rent network). Each image is independently processed by a shared
image encoding backbone ®™®. The first state Lo is initialised
with the embedding of the first image, ®*®(I). The following
states L;, ¢ > 0 are computed using a sequence of shared gated
cross-attention operations (bottom row), o and ®%*%5, The final
latent state Lz = L is taken as the holistic object encoding of
the multi-image input Z. Detailed algorithmic steps are described
in Section 3.1. The entire ensemble of computational units (i.e.
OPE 5 and ®U9) is trained end-to-end in a self-supervised fash-
ion (see Section 3.2 and Figure 3).

Our work seeks to address this gap by introducing the
MILE framework, a self-supervised technique that can con-
struct a single, comprehensive embedding from a set of
multi-view images. Inspired by a more dynamic form of
SSL, exemplified by recent works [4, 15, 36], the MILE
approach employs a student-teacher distillation framework
to learn generic visual attribute representations in a self-
supervised manner. Additionally, the MILE framework
draws inspiration from the tasks of salient object co-
segmentation [20, 44, 45], co-detection [12, 37, 60], and
object/landmark matching [13, 21, 42, 46, 55, 62]. How-
ever, unlike these approaches, which rely on implicit fore-
ground/background statistics and are constrained by the un-



derlying object/scene geometry, the MILE framework oper-
ates in an incremental fashion, adaptively refining the object
representation as more images are processed.

3. Methodology

Let there be an image set Z = {I; | I; € RM*wix3 =
0...N} with depictions of an object, where N is the to-
tal number of images. Our objective is to obtain a la-
tent representation L € R? corresponding to the common
object surfaced across Z. This is achieved through a se-
quential processing flow (inspired from [26,41]) of the or-
dered sequence of images, (I;)Y,. Essentially, we iter-
ate over multiple state representations of the latent vari-
able L by projecting the embedding of each image I;, re-
trieved using a shared image encoding backbone, denoted
as BB . Rhxwx3 4 R4 In our experimental setup, we
use architecture variations of the ViT [10] for ®2¥B, how-
ever the method is not bound in any way to this design
choice therefore any other encoding backbones [18,48] can
be employed. Intuitively, L transitions over different states,
(L;)X,, as it incorporates complementary cues of the ob-
ject. We use the final state Ly containing holistic sequence
encoding, referred as L.

3.1. MILE

We illustrate the algorithmic steps of our proposed
framework in Figure 2. For each image, we retrieve the
embedding associated with the [CLS] token, as it contains
information from the entire image space. Firstly, we ini-
tialize the latent variable with the embedding of the first
image, Lo = ®®*8(1,)). The second step consists in sequen-
tially parsing the items from Z, thus obtaining the associ-
ated states of the latent embedding by cross-attending to the
embedding of the image from step 4, ®5*E(I;). Therefore,
we utilize the cross-attention [5,25] operation denoted with
®CROSS More specifically, the output of BB represents the
keys and values and the latent state from the previous step
represents the queries. Inspired by [1, 19], we incorporate
a learnable gating operation, denoted with 0 : R — R,
which combines the ®°*95% output with the previous state of
the latent variable. In essence, this acts as a gradual shift-
ing mechanism in terms of visual information assimilation,
which helps maintaining the right balance between the al-
ready processed latent embedding and the visual informa-
tion processed at the current step. Another implicit benefit
of this approach, is the ability to incrementally scale to se-
quences of undefined lengths with no additional training.
Consequently, the state of the latent variable L; at iteration
7 > 0 is defined as

L, = - 3%5(@"*(L,), L)) + (1 —0) - Ly (1)

Lastly, we utilise the final state (i.e. L) of the sequen-
tial pass denoted as Lz containing the holistic embedding
of the common object within the image-set.

3.2. SSL Training Procedure

To train the entire ensemble we use SSL through knowl-
edge distillation (SSLKD). This paradigm is inspired by
prior works such as [15], [4], and [49], which we have ex-
tended to handle multi-image inputs. An overview of the
process is illustrated in Figure 3.

The learning pipeline is initialised by setting up the
MILE framework in a Siamese configuration, with MILEr
and MILEg representing the teacher and the student. We
use an MLP head for each instance, denoted with ®35t,
performing a succession of higher and lower dimensional
projections of the latent embedding representations, LS and
LY. It is worth mentioning that this head is used solely for
the purpose of the SSL training, after which it is discarded
prior to the inference stage. Next, a softmax normalization
is applied over the output of each head, ®55 and ®£5L, thus
obtaining the teacher and student probabilities {25 and 2.

The learning objective is to align the student - teacher
probability distributions by minimising the cross-entropy
loss w.r.t. the student weights. Practically, we search the
optimal joint parameter configuration ®§°° o MILEg via
cross-entropy loss. Operator o denotes the composition be-
tween the two modules, ®55F and MILEs. This happens in a
distillation context, with a fixed teacher configuration.

Starting from the original image set Z, we randomly gen-
erate a collection of image sets, having a one-to-one cor-
respondence at individual image level with Z, containing
crops from Z. The obtained collection is split into two, with
(Z¢ )?io containing N, image sets of global view crops and
(I;)?lzo containing N; image sets of local view crops. The
distribution alignment imposed by loss Lyr is performed
while constraining the student network to analyse micro and

macro context through (Z)}2 U (Zh)L, while the teacher

networks analyse the bigger picture only via (If)?io. By
doing this, we encourage the networks to discover implic-
itly local-to-global correspondences within the latent em-
bedding, thus highlighting discriminative aspects of the ob-
ject across the multi-image setup.

The collection of image sets containing global views are
fed to the teacher ensemble, P35 o MILEr, while the collec-
tion with all views to the student ensemble, P5>- o MILE;.
The resulting sets of latent embeddings are denoted with
LSBL and ILECYCBL. In essence, the resulting latent sets
which we aim to align correspond to the IV, global and NV,
local crops generated from the original image set Z. Thus,
we add a new complexity dimension to the original global to
local single-image alignment task described in [4], allowing
us to learn a more discriminative representation of an image
set (i.e. 7). However, it comes with the cost of increasing
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Figure 3. Self-supervised training flow of MILE framework. The module obtained from the composition of MILE, described in Section
3.1, and the SSL projection head ® is cloned into a Siamese student-teacher setup. The outputs of both are normalized using softmax,
thus producing two probability maps, Qs and Q7. For simplicity, we illustrate the SSL flow by feeding global crops (I )]:“’ o to the teacher

and local crops (I);L

o to the student, however, in reality the student processes both local and global crops. The student is optimised

using gradient backpropaganon (see Equation 2) while the teacher ensemble is updated using an exponential-moving average of the student

weights.

the instability of the SSL training process. More in depth
training details are described in the supplementary.
Therefore, the multi-image Ly; loss is defined as

Lo = min YooY Qllg(9r) @

Li G]LI-ECL L_7’ GJLIé.CLuGBL

This loss steers the student towards the optimal configu-
ration via stochastic gradient descent. The teacher weights
are updated during the training procedure using an expo-
nential moving average over the student weights following
a momentum encoder A based on a cosine scheduler.

O 0 MILEr = \(®F%" o MILE;)+(1—\)(®5%" o MILE)

Using this learning paradigm, the teacher network sta-
bilizes and simultaneously guides the student towards an
optimal exploration through the embedding as the training
progresses. This is also encouraged by the fact that we ran-
domly sample different global and local views with each
iteration, along with feeding a different input sequence per-
mutation at each iteration. Practically, we decouple the P35
head and use only the MILEr module. This can be used as
pretrained backbone for any other downstream tasks requir-
ing as input an indefinitely long sequences of images. In our
evaluation setup, we experiment with the object retrieval
task and, as a byproduct we illustrate regions segmentations
of the implicitly inferred common object.

4. Experiments

Experimental Setup. We are interested in the object re-
trieval task. Traditionally, this is achieved using single-

image support which we extend in our setup to multi-image
support. This implies that the evaluation set is split in
two categories - query, containing image sets depicting the
searched objects with one set per object, and gallery, con-
taining a collection of image sets representing the object
search space. The objects from query have a one-to-one
correspondence to the objects from gallery. This is a non-
trivial task, as the search space encodes a high variety of
object categories, usually following a fine-grained distribu-
tion. Moreover, for a single object the corresponding im-
ages are uncalibrated, showing the object in different poses.
The objective is to build a ranking of the elements from the
gallery according to their similarity against each query item.

We experiment on the challenging ABO [7] and iNatu-
ralist [52] datasets. ABO contains products (objects) show-
cased in the Amazon catalogue from a wide range of cate-
gories. The iNaturalist dataset is comprised of a dense col-
lection of macro categories from the flora and fauna king-
doms, each structured as a wide range of sub-categories de-
noting animals, insects, plants or other living creatures ob-
served in various natural habitats.

Evaluation Protocol & Baseline Setup. We use the
Recall@ K (RQK) metric which measures if the relevant
item is within the top- K retrieved items. Intuitively, by in-
creasing or decreasing the K threshold, the metric should
be more relaxed or enforced, respectively. To understand
the robustness of our approach, we measure the average re-
call at 10 (AR@10). Since there was no readily available
baseline comparison that could generate a single embedding
for each image-set, regardless of the sequence length, it be-



Model Architecture | AR@10 Model | Architecture | AR@10
DINO [4] ViT-$S 17.38 DINO [1] ViT-$S 67.2
DINO [4] ViT-8 57.9 EvaClip [47] ViT-B 80.85
EvaClip [47] ViT-B 48.13 © EvaClip [47] ViT-L 84.71
EvaClip [47] ViT-L 55.43 ] DINOV2 [30] ViT-$S 77.21
) DINOV2 [30] ViT-S 57.40 B DINOV2 [36] ViT-B 82.79
g DINOV2 [36] ViT-B 61.5 L DINOV2 [36] ViT-L 84.81
Iy DINOV2 [36] ViT-L 66.93 g DINO-REG [§] ViT-L 84.15
e fi-DINOV2 [36] ViT-L 80.49 fi-MAWS [43] ViT-B 83.90
@ DINO-REG [5] ViT-L 70.81 J-MAWS [43] ViT-L 85.27
ft-DINO-REG [5] ViT-L 84.72 St-MAWS [43] ViT-H 86.40
MAWS [43] ViT-B 47.81 MILE w. DINOV2 ViT-S 7777
MAWS [43] ViT-L 48.54 » MILE w. DINOv2 ViT-B 86.57
MAWS [43] ViT-H 47.04 é‘) MILE w. DINOv2 ViT-L 90.96
MILE w. DINO ViT-S 63.25 = MILE w. DINO-REG ViT-L 93.2
MILE w. DINOv2 ViT-$ 65.8 = MILE w. MAWS ViT-B 85.85
&% MILE w. DINOv2 ViT-B 76.61 = MILE w. MAWS ViT-L 90.71
E MILE w. DINOv2 ViT-L 79.66 MILE w. MAWS ViT-H 94.02
= MILE w. DINO-REG ViT-L 86.33
] MILE w. MAWS ViT-B 72.51 . . .
= MILE w. MAWS ViToL 8251 Table 2. iNaturalist Category Retrieval Results. Our best ap-
MILE w. MAWS ViT-H 81.65 proach, MILE w. MAWS with a ViT-Huge backbone is able to

Table 1. ABO Object Retrieval Results. Prefix ft denotes the
fine-tuned version of the single-image model setup on ABO. We
fine-tuned only to the best performing pretrained backbones. All
the approaches are self-supervised except EvaClip which uses
weak-supervision in the form of image and text pairs. Our ap-
proach achieves superior performance for the AR@10 metric, thus
proving robustness to setups where the structure of the matched
object suffers changes between query and gallery visual content.

came necessary to utilize an aggregation technique. Thus,
in the single-image setup, for each pair of query and gallery
items (image-sets) we compute the pairwise cosine simi-
larity between all the image combinations between the two
multi-image sets and aggregate the final similarity result us-
ing MAX pooling. Practically, for a gallery and query item
pair with n and m elements, respectively, we obtain a ma-
trix of cosine similarities of size n X m collapsed to a single
scalar value via the MAX pooling operation. This value cor-
responds to the cosine similarity of the best aligned pair of
images in the embedding space from the two sets. For eval-
uation consistency, the results are obtained with n = 4 and
m = 4 for query and gallery for both single and multi image
setups.

4.1. ABO

Originally built for 3D object representation, ABO in-
cludes an object retrieval benchmark perfectly fit for our
setup. For training, given that our approach is self-
supervised and does not require external supervision, we
use the joint training and validation sets containing 325, 075
images which correspond to a total of 50, 756 objects. For
evaluation we use the proposed test set which is split by de-
fault in query and target (gallery), containing 23, 328 and
4,313 image samples, respectively, both with a one-to-one
correspondence (836 unique objects) in terms of image-sets.

Numerical results are available in Table 1. To ensure
a fair comparison, we fine-tuned the best performing pre-

outperform all single-image baselines by a large margin. For this
setup, we use the ft prefix for the MAWS baselines as they are
already fine-tuned on iNaturalist. Our method is superior for all
reporting metrics, as the nature of the data enforces robustness of
the embeddings with respect to structural variations of the matched
classes of object and large shift in background distributions.

Dataset | Single-Image MAX-POOL | 4-Images Stitch | MILE
ABO | 84.72 [ 8322+020 |[86.33+0.23
iNaturalist | 86.4 | 87774025 [94.02+0.27

Table 3. Learnable Aggregated Single-Image Baseline Results.
Using the best performing single-image models from each dataset,
ft-DINO-REG for ABO and f--MAWS w. ViT-Huge for iNaturalist
we learned a 4-images stitched baseline. For the learnable base-
line, we apply 10 random shuffles and report the average AR@Q10
and the standard deviation. Our approach emerged superior on
both evaluation setups, thus ensuring a fair comparison against a
learning-based baseline. Furthermore, the standard deviation val-
ues highlight the permutation invariance capability of MILE.

trained single-image variants on ABO. It is worth men-
tioning that MILE achieves superior performance over all
backbone sizes. This highlights the robustness of the pro-
posed embedding technique across different image encod-
ing backbones. The MILE approach was able to capture
more comprehensive and distinctive visual representations
of the objects, even when working with diverse sets of un-
calibrated images. The best overall performing approach is
MILE w. DINO-REG ViT-Large.

4.2. iNaturalist

For the experiments on iNaturalist, we use a similar
query / gallery retrieval setup as for ABO. This is obtained
by sampling 100 random classes from all 13 super-classes
resulting in 992 unique classes of objects. For each class,
the associated images are randomly split in two subsets, one
for query and the other for gallery, thus ensuring a one-to-
one correspondence between searched classes. Experimen-
tal results are illustrated in Table 2. In this scenario, the
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Figure 4. Ablation on impact of input size on model performance. We considered two ways of increasing the input size: (a) larger
image sets with more depictions of the object, corresponding to X-axis and (b) cloning the input sequence multiple times, thus simulating
a cascading effect, corresponding to the Y-axis. The cascading effect cannot be applied for the single-image setup. The impact is visibly
higher on the X-axis, as there is a higher chance for the latent to incorporate unseen (complementary) characteristics of the analysed object.
The cascading effect is the equivalent of a second opinion heuristic which recovers missing attributes omitted from the previous passes. Its

impact is more visible on iNaturalist due to its more complex nature.

Metric AR@10 | ARGM 10 | ARGM - [10/M]
Agg. Function | MEAN | MAX | MAX | MAX | MAX
Agg. Source Embedding ‘ Pairwise Cosine Similarities

ABO [ 82.67 | 74.67 | 8472 | 92.20 [ 85.60

iNatralist_ || 83.73 | 80.47 | 8640 | 96.04 \ 90.59

Table 4. Additional Single-Image Baselines. Columns 2 and 3
illustrate the performance achieved by applying MAX and MEAN
pooling operations across the embeddings of the input image set.
In contrast, columns 5 and 6 contain the upper bound performance
when joining all the the top-K retrieval results for each image
query. For consistency, we use M = 4 and the best single-image
models from Tables 1 and 2, respectively, highlighted in column
4.

Dataset | SI-Query/SI-Gallery | MI-Query/SI-Gallery | MI-Query / MI-Gallery
ABO | 75.07 I 77.07 I 86.33
iNaturalist ‘ 87.75 ‘ 89.36 ‘ 93.2

Table 5. Ablation on Query / Gallery setup configurations.
Rather than focusing solely on multi-image items in both the query
and gallery collections, we assess the impact of incorporating
multi-image inputs in the context of a single-image retrieval. The
results show that using multi-image queries still outperforms the
single-image to single-image search setup (columns 2 and 3), how-
ever, both inferior to multi-image to multi-image (column 2). We
use best the MILE configs from Tables 1 and 2 for this study.

MAWS [43] single-image baseline is fine-tuned with iNat-
uralist data. Similar to the trends observed on the ABO
dataset, the MILE approach consistently outperformed the
associated single-image baseline counterparts. However,
for this setup, the wide spectrum of visual diversity present
in iNaturalist seems to have favored the high generalizabil-
ity of the MILE w. MAWS ViT-Huge configuration.

4.3. Additional Studies

Incremental embedding refinement. During the multi-
image training, the models are fed with image sets with
length equal to 4 which are randomly sampled from the
pool of images available for that particular object. Nev-
ertheless, this does not limit the size of the input image set
during inference. Therefore, one significant feature of our
approach is its ability to process indefinitely long sequences
of images by using the built-in capacity enabled by the o (")
and ®CRUSS(.) functions. This effect is visually emphasized
in Figure 1. By analysing MILE w. DINO-REG for both
datasets, we empirically discovered (see Figure 4) that the
addition of iterative cascading passes over the same image-
sequence brings a surplus in performance. Allegedly, this
heuristic helps to paint a more complete picture embedding-
wise, by incrementally refining the latent representation and
picking up missing visual cues of the object.

Search for a better baseline. One might argue that the
comparison from Tables 1 and 2 is unfair as MILE is a
learned aggregation technique operating at item level, com-
pared to the single-image baselines which perform a MAX-
pool operation over off-the-shelf independently obtained
single-image embeddings. Consequently, we considered
extending the best performing single-image baselines to a
learnable 4-images stitch baseline. This strategy involves
the usage of fixed sequences with 4 images, followed by
a canvas stitching in a 2 x 2 grid. Next, during the self-
supervised learning algorithm, the global and local views
are sampled using crops from each cell of the grid.

The resulting embedding contains aggregated informa-
tion from all 4 views and the self-supervised learning strat-
egy enforces visual correlation across the images within the
grid. Numeric results are illustrated in Table 3. For both
datasets, our approach showcases superior results. More-
over, the 4-images stitch strategy imposes a limitation of
the multi-image sequence to a length of 4 images, whereas



MILE can be extended to an arbitrarily large number.

We also consider several aggregated single-image base-
lines. In Table 4, column 2 and 3, we apply a MAX and MEAN
pooling operation across the individual image embeddings
from the input multi-image set. This operation was per-
fomed over the best single-image baselines from Tables 1
and 2. The obtained performance was lower suggesting that
a simple pooling operation is not a viable solution towards
obtaining an aggregated object level embedding. Interest-
ingly, the MEAN-pooling operation performed better than
MAX-pooling, likely capturing the common representation
of the depicted object across the image set. In columns 4
and 5, we searched the upper bound performance of the
single-image baselines. We came with a different heuris-
tic where for each image within the query item, we selected
the top-K closest gallery items. Next, we measured the to-
tal ARQM - 10 metric. Since this is unfair compared to
MILE, we measured alternatively ARQM - [10/M], by
keeping the first [10/M | items for each image within the
query item.

In Table 5 we explore the impact of treating the gallery
items as single images rather than image sets. Thus, we
progressively measure the ARQ10 for the query / gallery
setup considered as single-image / single-image (column
2), multi-image / single-image (column 3) and multi-image
/ multi-image (column 4). For this experiment we use the
best MILE model configuration on both ABO and iNatural-
ist. It is worth noting that we achieved superior performance
with the multi / single configuration compared to the single
/ single setup.

Extended capabilities of MILE. The main body of ex-
periments are performed around the task of object retrieval
as it is a natural fit for the proposed setup, however as a re-
sult of the SSL flow we obtained other derived capabilities,
anchored in the visual exploratory domain. In this regard,
one observation is that the latent variable enforces an incre-
mental holistic representation of the common object with
respect to the number of images being processed. Conse-
quently, this should be visually encoded within the cross-
attention map generating the latent states, thus sketching a
soft segmentation mask of the object of interest. This is
achieved by fine-tuning the cross-attention head to attend
all the image tokens including the [CLS] token, to anchor
the latent information directly in the image space. We il-
lustrate this effect in Figure 6 (right heatmap) by inspecting
the cross-attention map between the last image (green rect-
angle) and the previous images (blue rectangle) from the
same input sequence. Using this implicit conditioning, we
obtain an almost complete representation of the common
object, compared to the single-image setup, where the atten-
tion is dispersed throughout the image space (left heatmap),
not focusing on a clear element.

Keys and Values of $CROSS | HBKE | ARQ10
ABO

[cLs] Learned 82.51

[CLS] U [T3]}msme Frozen 83.11

[T, ] e Frozen 85.05

iNaturalist

[cLs] Learned 90.71

[CLS] U [T rotens Frozen 92.47

[T ]§rosme Frozen 92.47

Table 6. Performance impact on multiple ®cross variations for
MILE w. MAWS using ViT-L. By learning a student config-
uration from a frozen teacher configuration, we unlock granular
level information encoded within patch-level embeddings bring-
ing a performance gain in AR@10 for both ABO and iNaturalist.

Another derived capability of MILE is implicit corre-
spondence among the semantics of the regions across the
multi-image input sequence. We selected different sample
image sets from ABO and iNaturalist and generated token
(image-patch) level embeddings obtained with the image
encoding backbone ®B*E. We applied principal components
analysis (PCA) on the resulting collection of patch-level
embeddings and projected the 3 most dominant dimensions.
By plotting the normalized projected dimensions, we notice
a strong semantic region correspondence at image set level.
This acts as an implicit soft-clustering mechanism, which
groups image regions based on their similarity structure.
Visual results with this correspondence effect are shown in
Figures 7 for both ABO and iNaturalist. These success-
fully highlight the derived capabilities of the framework for
handling other downstream tasks such as region correspon-
dence or semantic region segmentation.

Impact of Macro vs. Micro embeddings for MILE. The
MILE models variations from the main Tables with re-
sults were trained using the embedding associated with the
[CLS] token as keys and values within the cross-attention
module 055, We made several training attempts using the
entire image information obtained with ®BXB, specifically
the embedding associated with the [CLS] (macro level)
plus the granular embeddings (micro level) from all the im-
age tokens, [T;|NTekens. The EMA student-teacher distil-
lation framework manifested overfitting behaviour from the
beginning due to the high instability of the information flow
passing from ®BXB to ®CROSS Therefore, once the training
using the [CLS] token converged to an optimal configu-
ration, we applied a frozen distillation learning setup to the
best performing MILE configurations by keeping frozen the
teacher configuration using [CLS], while distilling it with
a student configuration using [CLS] U [T;]Nrekens as keys
and values, resulting in a performance increase on ARQ10
for both iNaturalist and ABO (see Table 6). Our hypothesis
is that although the cross-attention ensemble managing all
image information manifested instability during simultane-
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Figure 5. Sensitivity of object recall performance w.r.t. input noise. We measure the robustness of the generated object representation
when the input sequence is altered on inputs with length 14 using MILE w. DINO-REG and its single-image counterpart. We progressively
altered between 0% and 63% of the query input on both setups, single and multi, by replacing the query image from the best matched
(via cosine similarity) query-gallery image pairs from single-image setup with random ones. Our approach showcases a much slower
degradation rate on the overall evaluation board, demonstrating noise stability. Furthermore, notice the significant performance drop (
~ 15 points) for R@1 and R@Q2 for ABO on the single-image evaluation setup when the input sequence is altered by a single image, while

for MILE there is almost no degradation.

Figure 6. Visualisations of latent cross-attentions on iNatural-
ist. We highlight different attentions maps obtained via differ-
ent mechanisms for the image within the green rectangle. The
heatmap to the left is the average attention provided by ®®*%. The
middle heatmap comes from the in-place cross-attention (replac-
ing the latent with [CLS] embedding), thus not having any previ-
ous information. The heatmap to the right is the attention resulting
from the cross between the latent built from images within the blue
rectangle and patch embeddings of the image in question.

sl

Figure 7. Color coded region correspondence (left ABO and
right iNaturalist) emphasised via PCA. We apply PCA decom-
position on the patch-level embeddings from all images within the
sequence and project in RGB space the 3 most relevant compo-
nents. The region correspondence is highlighted by the same color
across all input images. Despite pose changes, out-of-focus place-
ment within the scene, foreground-background color distribution
similarities or placement in the proximity of similar class of ob-
jects, the common objects share the same PCA-induced color rep-
resentation.

ous student-teacher training via distillation, by learning the
student from a frozen teacher we were able to break the bot-
tleneck flow caused by using only the [CLS] embedding
and enabled harnessing granular information which resides
at image patch level.

Robustness to noise. Another important property of our
approach is the resilience to noise within the multi-image
input, as illustrated in Figure 5. To assess this, we altered
the image content in the query items responsible for the
MAX similarity scores by replacing them with random im-
ages. This allowed us to measure the noise resilience of
our approach compared to the best single-image baselines.
Our approaches showcased more stable performance across
the entire evaluation board (i.e. RQ1, R@Q2, RQ4, RQY)
compared to the MAX—-POOL aggregated single-image base-
lines. This demonstrated the robustness of our approach and
the capability to self-stabilize even when the input image
sequence does not contain exclusively images of the same
object. It is worth mentioning that the positions of the re-
placed images within the original sequences are random,
thus showcasing implicit permutation invariance capabili-
ties of our approach. Interestingly, for the zero-noise setup,
we noticed a slight increase in R@1 and R@2 scores, which
we believe was caused by the presence of near-identical im-
age pairs across the query-gallery pairs.

5. Conclusions

This paper introduces the MILE framework, designed
to create a single holistic embedding visually descriptive
elements from a multi-image input sequence depicting an
object. This is achieved through a self-distillation learn-
ing framework, thus enabling the scaling capability of our
framework to huge data corpuses. Through extensive abla-
tion studies, we demonstrate the key capabilities of MILE,
including its incremental embedding construction mecha-
nism, noise resilience, and implicit permutation invariance.
Importantly, the MILE approach outperforms single-image
baselines that leverage both learnable and non-learnable
embedding aggregation techniques, across multiple archi-
tectural configurations evaluated on ABO and iNaturalist.
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