Under review as a conference paper at ICLR 2026

COGITAO: A PROCEDURAL OBJECT-CENTRIC FRAME-
WORK TO EVALUATE COMPOSITIONAL GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to compose learned concepts and apply them in novel settings is key to human
intelligence, but remains a key challenge in state-of-the-art machine learning models. To
address this issue, we introduce COGITAQO, a modulable data-generation framework to
evaluate compositional and systematic generalization in object-centric domains. Draw-
ing inspiration from ARC-AGI’s environment and problem-setting, COGITAO constructs
rule-based tasks to be solved by applying a set of transformations to objects in grid-based
environments. It supports composition over a set of 28 interoperable transformations, at
adjustable composition-depth, along with extensive control over grid parametrization and
object properties. This flexibility enables the creation of millions of unique task rules
— surpassing existing datasets by several orders of magnitude — across a broad range of
difficulties, while allowing virtually unlimited sample generation per rule. Alongside
open-sourcing our flexible data-generation framework, we release benchmark datasets
and provide baseline results with several state-of-the-art architectures that incorporate
inductive biases well-suited for compositionality, such as diffusion-based Transformers
(LLaDA) or recurrent Transformers with Adaptive Computation Time (Universal Trans-
former/PonderNet). Despite strong in-domain performance, these models consistently
fail to generalize to novel combinations of familiar elements — highlighting a persistent
challenge in compositional and systematic generalization, which COGITAO allows to
precisely characterize.

1 INTRODUCTION

Compositional and systematic generalization are core principles of human cognition (1). From a few examples
of ‘atomic’ concepts, humans can later effortlessly combine these in exponentially many new ways and apply
them in contexts far removed from those in which they were learned. As Lake and Baroni illustrate, “Once a
person learns the meaning of a new verb ‘dax,” they can immediately understand the meaning of ‘dax twice’
or ‘sing and dax”’ (2)). Machine learning systems still struggle with these forms of generalization, making
them a central research challenge (35 14 |55 (65 (7} [8)).

To foster progress in this direction, several benchmarks have been proposed, both in language (2} 95 [7 [10; [11))
and vision (125135145 155165 [17). Yet in vision, existing benchmarks lack the flexibility of their language
counterparts: they provide limited control over compositional structure, offer a narrow range of tasks,
and conflate visual complexity with relational structure — distracting from the essence of compositional
generalization.

To close this gap, we introduce COmpositional Generalization In Transformations And Objects: COGI-
TAOQO - a procedural object-centric framework designed to generate simple, controllable datasets to probe
compositional and systematic generalization in an abstract visual domain. Our generator’s strength stems
from its capacity to compose freely, at arbitrary compositional depth, a set of 28 atomic transformations —



Under review as a conference paper at ICLR 2026

thus enabling to create millions of unique transformation sequences, with a virtually infinite amount of task
samples, across a wide range of difficulties.

In our COGITAO framework, models can learn to apply a given sequence of object-transformations and
generate an ‘output grid’ given an ‘input grid’ and a transformation sequence (see Figure[T)). Furthermore,
models can be implemented in various environment configurations (e.g., with different numbers or types of
objects, or grid dimensions).

Example Task A Example Task B Example Task C
‘ RN EEN N |
[T
I |
| mmmm Input
[T [] | Grid
il i >
[ 1] ©
[T 11 L °
<
) 1. mirror_horizonta() 5
. 1. empty_inside() 2. fill_holes() =]
t i) G 2. duplicate_up() 3. crop_top_side() gﬂ
) 4. rotate_90() g
0 = . g
NN @
} (| N
I |D\ Output
- Grid
[ N | I
i M| (G

Figure 1: Set of input-output pair examples from our COGITAO generator, with input grids on top rows, and
corresponding output grids (after transforming input) on the bottom rows. Each input-output pair follows a
different transformation sequence (see boxes on middle row) and a given grid/object parametrization.

The key test of compositionality comes from varying transformation sequences and environment parameters
between training and testing time. Analogous to the linguistic example “dax twice” or “sing and dax” (2)), a
model trained to “rotate” objects once should generalize to “rotate twice” or “rotate and translate,” provided it
has seen the individual rotate and translate transformations during training.

COGITAO is deliberately abstract and synthetic, which enables to precisely isolate core compositional
reasoning from confounding visual complexity. Despite its simplicity and grid-based nature, it captures
compositional and systematic generalization in ways essential for real-world vision tasks. Indeed, the object-
centric, order-dependent operations exemplified in COGITAO- such as selectively modifying or relocating
objects while preserving the surrounding scene — mirror the challenges studied in robotics (18) and world-
model research (19; 20} 21} 22). We therefore position COGITAO not only as a static image benchmark, but
also as an image-and-action framework that explicitly links perception to interaction (see Appendix [A). To
facilitate transfer to natural vision, COGITAO additionally offers RGB renderings of its tasks to train standard
computer-vision models (see Appendix [B), while preserving all its diagnostic power.



Under review as a conference paper at ICLR 2026

To demonstrate our framework’s utility and support further research, we release a suite of benchmark
datasets built from different COGITAO configurations. We train state-of-the-art architectures that incorporate
inductive biases well suited for systematic and compositional generalization (Diffusion Transformers (23) and
Pondering Looped Transformers (245 25)). We also compare to baseline Transformers (optionally infused with
object-centric inductive biases (26) and ResNet (27). Our experiments intentionally target the raw inductive
biases of well-specified architectures rather than large foundation models, whose training data and precise
design details often remain opaque [H Despite solid in-domain performance, we report that these models
consistently fail to generalize to novel combinations of familiar visual elements. Our findings highlight the
need for architectures that move beyond pattern matching and memorization (285 29; 305 31)) towards truly
structured, compositional understanding — COGITAOprovides a simple framework to foster progress in this
direction.

In this paper, our main contributions are:

1. We introduce COGITAO: a procedural, grid-based and object-centric framework that freely composes
28 atomic object-transformations to generate millions of unique, controllable input—output rules at
adjustable composition depth.

2. We extend COGITAO beyond simple grids to RGB renderings for real-world vision transfer, and
from single input—output pairs to sequences of images and actions for world-model research.

3. We create and release multiple benchmark datasets targeting specific aspects of compositional and
systematic generalization, enabling reproducible and scalable experimentation.

4. We provide cohesive baselines with state-of-the-art models known for their reasoning capabilities,
and show that they consistently fail to generalize to out-of-distribution compositions — highlighting
the open challenge of systematic compositional generalization in object-centric domains.

2 RELATED WORK

Our proposed framework builds upon prior research in compositional and systematic generalization — applied
to both language and vision data. While these areas are often interconnected, we find that compositional
generalization benchmarks in the visual domain lag behind their language counterpart in and flexibility and
scope. This is mainly due to the difficulty of procedurally generating visual data of adequate task fidelity
compared to language-like data.

Compositional Generalization in Language Several datasets and benchmarks have enabled targeted focus
on systematic and compositional generalization in deep learning architectures for natural language processing.
The SCAN dataset (2)) is most akin to our work — it consists of commands mapped to action sequences. Models
must compose commands, both within and outside the training distribution, to execute them correctly. Our
dataset is similar to SCAN in that it contains various experimental settings in which the difference between
training and testing distribution varies (across primitives, combinations, or sequence length). Several works
have shown that models can achieve good performance on SCAN with specific architectures, representation
methods, or data augmentation techniques (32; 33513451355 130), as well as different training strategies such as
meta-learning (6), but there is still no consensus on the best architecture for compositional tasks. Analogous
to Scan, COGS (10) or PCFG (11) also leverage a modular language to construct compositional tasks. In
a similar but more formal spirit, the CFQ dataset (7)) is designed to maximize compound divergence while
minimizing atomic divergence between train and test sets, which the authors argue is an optimal setting
to study compositional generalization. Our approach follows this logic, as primitive elements are shared,

'We note that by evaluating Transformers and Diffusion based models, we cover the architectures of most foundation
models.



Under review as a conference paper at ICLR 2026

but their combinations differ between training and test time. Other datasets reproduce this logic in other
sequential modalities, such as within the SQL language (36) or mathematical reasoning (37).

Compositional Generalization in Vision Compositional generalization in vision is often studied in pairs
with visual reasoning, which has gained significant traction in recent years. Most aligned to our work are
benchmarks such as ARC-AGI (38)), Raven’s Progressive Matrices (39), and Procedurally Generated Matrices
(14)), which use handcrafted shapes and environments to simplify visual processing in light of reasoning.
With similar handcrafted shapes and environments, but with a more targeted focus on compositional and
systematic generalization as opposed to reasoning, we find other important datasets such as dSprites (40),
CLEVR (12)), Compositional Visual Reasoning (13), SVRT (15), and SVIB (41). These datasets are all built
out of procedurally generated shapes with varying properties (e.g., color, size, texture) and make use of
different types of rules, as well as composition of properties to evaluate models’ compositional capabilities and
object-centric representations. Most aligned with our objectives are the CVR (13)) and SYGAR (16) datasets.
CVR targets compositional visual relations in an odd-one-out classification format, whereas SYGAR requires
grid prediction but adopts the Meta-Learning (MLC) framework (6) and does not providing clear benchmarks.
Both are more limited in scope and compositional and environmental control compared to COGITAOOther
datasets, such as CATER (17)), contrary to the aforementioned datasets which use procedurally generated
shapes, focus on compositional generalization in the real-world visual domain. However, we believe these
inevitably conflate compositional reasoning ability with visual complexity, preventing a focused study on
compositional generalization.

3 COGITAO GENERATOR

Our motivation stemmed from attempting to make progress at the original ARC challenge (38)). Similar
to the authors of conceptARC (42)), we observed that the data regime of the ARC-AGI was too small (low
data availability), too diverse (high variance between individual tasks) to make sound scientific progress on
some of the abilities crucial to the challenge and lacking from modern deep learning approaches. While
other researchers adopted the path of scale, big-data regime and novel inference-time methods such as
test-time-training and chain of thoughts reasoning to tackle the challenge (43} 44 45), we chose instead to
follow a more principled approach, as this allows us to directly evaluate the capabilities of raw architectures
and inductive biases to compose and generalize on basic sets of problems. As such, we designed a generator
tailored to gauge the systematic and compositional generalization abilities of models, specifically through
composing object-centric transformations. Our primary tasks consist of rule-based input-output pairs, where
each rule is defined by applying a sequence of transformations to objects arranged on grids of variable sizes.
This setup enables the creation of a wide spectrum of tasks with a large difficulty range. Our framework
becomes valuable when varying the transformation sequences and environment parametrizations between
training and testing sets — which is how we propose to gauge models’ compositional. Specifically, we control
systematic and compositional generalization along two axes:

* Compositional Generalization: COGITAO enables the composition of multiple object transformations
at various levels of depth (i.e., the number of transformations applied sequentially) through a set of 28
primitive transformations (e.g., translations, rotations, and mirroring).

* Environmental Generalization: COGITAO allows control over additional parameters to assess the gener-
alization capabilities of models, i.e., their ability to apply learned transformations in varied environments.
Users can modify the number of objects per grid, the complexity, size, and color of shapes, and the grid
size, enabling the generation of different environment versions between training and testing phases.

Both axes of research are also enabled through our RGB rendering and sequential rendering, which are
respectively introduced in appendix [B|and |Al While we view these two extensions as essential for future



Under review as a conference paper at ICLR 2026

development in natural vision and World-Model research, the main manuscript focuses primarily on the
simpler, grid-based input-transformation-output framework.

3.1 GENERATOR OVERVIEW

COGITAO Objects: COGITAO samples from a collection of 23,000 pre-generated objects varying in size,
shape, symmetry, connectivity, and color pattern. Each object uses pixel colors 1-9 (0 is reserved for the
background) and is placed to avoid overlap and contact with other objects, ensuring clear boundaries between
them (see for details).

COGITAO Transformations: We provide a set of 28 simple object-transformations (such as translations,
padding, duplicating.. see[C.2] Each transformation was crafted to respect two core rules: 1) each transfor-
mation should be composable with all other transformations, and 2) each transformation should modify the
object in a way that should not be systematically equivalent to a combination of other transformations. Rule
1 is critical to ensure that our generator maximizes the number of possible tasks that can be generated and
avoids degenerate cases. Rule 2 avoids redundancy in the transformations (see Appendix for details). We
ensure each transformation is individually learnable by all models used for training (seeﬁlr further details).

Step 1: Compose Tasks of Interest Step 2: Generate Arbitrary Number of Samples per Task
>
Select Transformation Sequences Assemble Input Grid Apply Transformation Sequence

Pool of atomic \
transformations
« translate_up()
« rotate_90() Input
« duplicate_left() Grid
+ pad_shape()
« change_color()
« fill_holes()
—
A n Apply Transformations »
Ci tr i o
( with depth d =k J 1. translate_up() é
T | 2. fill_holes() o
5 s .~ Position objects in grid
o i (without contact)
Ses 4 “ca
Example 1 Example 2 Example 3
a=1 =2 d=4
Transformation
Sequence Sequence Sequence Oét%m
ri
1. rotate_90() 1. translate_up() 1. change_color()
2. fill_holes() 2. translate_up()
3. pad_shape()
4. duplicate_left() /

Figure 2: COGITAO is a Python-based procedural and object-centric data generator, inspired by the ARC-AGI
(38)) grid-based environment. COGITAO samples transformation sequences, then, given the configuration
requested by the user and the sampled transformations, randomly samples and position objects in an input
grid. Once objects are positioned in the input grid, each transformation is sequentially applied to each object.



Under review as a conference paper at ICLR 2026

COGITAO Generation The generator can either randomly sample a sequence of transformations from
a specified pool or use a user-defined sequence. After selecting the transformation sequence, it assembles
random objects (w.r.t. config parameters) on the input grid, allowing each transformation to be applied to
an output grid. Because some transformations (e.g., cropping) are irreversible and certain combinations are
non-commutative, the order of transformations matters. With 28 available transformations and a maximum
transformation depth k, the theoretical upper bound on the number of distinct tasks is N = nf, o= 28%.
For example, at dept d = 5 and an adequateE] number of objects and grid size, the generator could theoretically
create nygs = 28° &~ 1.7 x 10® unique tasks. Provided the grid is sufficiently large and generation time is
not a limiting factor, the depth of compositional transformations can be arbitrarily large, making the space of
possible tasks effectively unbounded. Further details on the generation method can be found in|[C.3]

4 EXPERIMENTS

To illustrate the utility of the COGITAO generator, we designed a set of benchmark experiments that highlight
its potential for studying compositional and systematic generalization in the visual domain. These experiments
define the initial benchmark for the community to beat, while also serving as illustrative examples -COGITAO
can generate far richer and more challenging tasks than those presented here. In the Discussion section, we
outline additional configurations and encourage researchers to explore this broader task space once the current
benchmark is mastered.

4.1 EXPERIMENT DETAILS

We outline two "studies" - one focusing on the composition of transformations, the Compositional General-
ization (CompGen) study, and the other on environment variations (with fixed transformation sequence): the
Environmental Generalization (EnvGen) study. In each case, we measure the capacity of models to perform
tasks that differ in some way from the tasks seen during training — either with respect to transformation
composition in the CompGen study or with respect to environment parametrization in the EnvGen study.

For both studies, we define different experiment settings which focus on different aspects of compositional
and systematic generalization. For each experiment setting we create 5 "experiments" - these are different
instances of the experiment settings in which we only vary the transformation sequences. This is to ensure
that the results we report are robust across different transformation combinations (e.g., translation-based
transformation sequences might be easier than rotation-based ones - see Appendix [D).

For each experiment, we train on 100,000 unique training samples, and test on two unique and distinct sets of
1,000 samples; one test-set follows the same distribution (i.e., in-domain (ID) set) as the training set, and the
other is out-of-distribution (OOD), from which we evaluate generalization.

In the CompGen study, we train and test a model on multiple transformation sequences within a single
experiment. This contrasts with the EnvGen study, where models are trained on only a single transformation
per experiment. To handle this complexity, we provide context that indicates to the model which sequence to
perform. We do so by appending a task embedding to the input sequence, similar to the approach in CVR
(13). This embedding is a sequence of tokens that specifies the transformations in the correct order. For
example, the task “translate_up-rotate_90” would have an embedding like ['T’, ’R’], while the inverse task
"rotate_90-translate_up" would be ['R’, "T’]. For OOD testing, the models may be evaluated on new or longer
sequences of these transformations. However, every individual token would have been seen during training.

We provide below an outline of each experiment setting for each of our two studies, and refer the reader to
the Appendix [E|for more details.

%Adequate” refers to grid and object configurations that avoid frequent generation failures—for instance, attempting
to place ten objects in a 5 x 5 grid while performing four object transformations is impractical.



Under review as a conference paper at ICLR 2026

CompGen — Compositional Generalization

C1 — Atomic + Composite — Unseen Composite: Train on atomic (depth 1) and composite (depth 2) tasks;
test on unseen depth 2 composites built out of the same atomic transformations (tf.) as training.

C2 — Restricted Composite — Unseen Composite: Train only on a subset of composites (depth 2); test on
unseen depth 2 composites built out of the same atomic as training.

C3 — Atomic + Composite — Deeper Composite: Train on atomic and depth 2 composites; test on depth 3
composites built out of the same atomics as training.

EnvGen — Environmental Generalization

G1 — More Objects: Train with 1-2 objects; test with 3—4 objects (fixed grid size and object complexity).
G2 — Larger Grids: Train on 10x10-15x15 grids; test on 16x16-20x20 grids (fixed object number and
complexity).

G3 — Larger Objects: Train on objects sized 1x1-5x5; test on objects sized 6x6—10x10 (fixed grid size and
number of objects).

G4 — More Complex Objects: Train on symmetric, single-colored objects; test on asymmetric, multi-colored
(fixed grid size and number of objects).

G5 — Combined: Train on simple cases (1-2 objects, 10x10-15x15 grids, symmetric single-colored
1x1-5x5 objects); test on all harder variants simultaneously (3-4 objects, 16x16-20x20 grids, multi-colored
asymmetric objects).

4.2 MODELS

We evaluate four encoder architectures, each paired with a two-layer MLP head for grid tokens classifica-
tion. All models are of comparable size (approximately 1 million parameters) to ensure a fair evaluation.
Empirically, increasing the model size did not substantially improve generalization.

Vanilla TF: We use a standard Vanilla Transformer (TF)(46)) with learned absolute positional encodings
(47). Vision transformers are considered state-of-the-art for vision tasks and offer a strong baseline for
COGITAO tasks.

Grid TF: To better capture the structure of grid-based reasoning tasks, we introduce a Grid TF, an adapted
version of ViITARC (26) that incorporates task-specific biases: object positional encoding (OPE) (26)),
PEMixer modules (26)), register tokens (48), and modified positional encoding schemes (49;50). These
additions are designed to support spatial reasoning over structured grid-based data.

Pondering Looped TF (PL-TF): Based on PonderNet (24} 25), we evaluate a Transformer architecture
that incorporates recurrence through iterative weight sharing and adaptive computation time. This archi-
tecture aims to reflect an inductive bias towards iterative reasoning and composition through multi-step
transformations, making it particularly well suited for compositional tasks.

LLaDA: In addition to vision-like and grid-specific architectures, as well as models with a recurrent
architecture, we investigate the performance of language models. Specifically, we evaluate LLaDA (23), a
diffusion-based language model yielding state-of-the-art performance on symbolic and logical tasks.

The selected models encompass a diverse set of architectural paradigms based on the current state-of-the-art
in both vision and sequence modeling. This selection is designed to address the heterogeneous computational
requirements of abstract visual reasoning tasks and spans a wide spectrum of modeling characteristics, thus
providing baselines for COGITAO. Comprehensive architectural details are provided in Appendix [F|



Under review as a conference paper at ICLR 2026

4.3 TRAINING

All models are traine,(ﬂ from scratch using supervised learning. For each experiment, we evaluate and test
in-domain (ID) and out-of-domain (OOD) data. We aim to train all models as similar as possible to have a fair
comparison among them. The models are trained for 10 epochs (except for LLaDA, which is trained for 20
epochs, as on average 50% of the tokens are masked). We select the best models based on their performance
on the validation OOD split before evaluating them on the test sets.

All models are trained using the AdamW optimizer (51) with a linear warm-up for 200 steps, followed by
cosine annealing of the learning rate. We use a batch size of 64 for training and 50 for evaluation and testing.
Further training details for all models are provided in Appendix [G]

4.4 EXPERIMENT RESULTS

To provide robust empirical baselines for the COGITAObenchmark and to systematically evaluate the
compositional and generalization capabilities of different model architectures, we apply the baseline models
to the three CompGen settings (C1-C3) and the five EnvGen settings (GI-G5) described in Section [d.1]

Table [4.4] provides an overview of the results across these settings, reporting both in-domain (ID) and out-of-
domain (OOD) grid accuracy. Grid accuracy is defined as the percentage of samples for which the predicted
grid structure matches the ground truth exactly (i.e., the entire grid is predicted correctly). Performance values
are averaged across 5 variations of the experiment setting (i.e., different transformation sequences - see E] for
more details) with 3 seeds each.

Vanilla-TF Grid-TF PL-TF LLaDA

ES ID (010))] A ID (010))] A ID (010)); A ID (010)); A

Cl 16.5 0.0 165 59.8 0.0 598 81.0 0.1 80.9 449 0.0 449
C2 17.8 0.0 178 685 0.0 685 79.0 0.1 78.9  46.2 0.0 46.2
C3 29.4 40 254 633 83 95.0  82.0 72 748 841 78 76.3

Gl 984 789 195 993 90.1 9.2 938 855 83 995 90.1 94
G2 82.0 21 79 980 770 210 926 549 376 985 62.4  36.1
G3 576 225 351 8.0 266 584 92.0 27.2 64.8 824  26.8 55.6
G4 462 21.8 244 869 190 679 868 375 49.3 813 32.0 49.3
G5 725 0.0 725 95.0 02 948  80.7 89 718 700 101 60.0

Table 1: Performance of models on experiments across experiment settings (ES) of the main studies. We
report the ID (in-domain) and OOD (out-of-domain) results for test grid accuracy (i.e., % of perfect matches)
and the ID to OOD relative drop A averaged over all experiments within the experiment setting.

The experimental results reveal several key trends (Table d.4). Grid-TF, our grid-specialized transformer,
provides strong in-domain (ID) accuracy across most settings and remains the most stable baseline overall
- particularly in the EnvGen study. However, the PL-TF model consistently matches or surpasses Grid-TF
in several critical out-of-domain (OOD) tests. In the CompGen study, PL-TF attains the best ID accuracy
in C1 and C2 and competitive OOD performance in C3. It is the only model that solves a task on C1 and
C2 OOD. Within the EnvGen settings, PL-TF delivers the best OOD scores in G3 (27.2) and G4 (37.5), and
strong ID results in G3—G4, indicating improved robustness to object scale and complexity changes. LLaDA

3Training of the Vanilla and Grid-TF models was performed using an NVIDIA GeForce RTX 3090 GPU. Traiing of
PL-TF was performed on NVIDIA A100 GPU. Training of LLaDA used an NVIDIA V100 GPU.



Under review as a conference paper at ICLR 2026

remains a strong performer, achieving the highest OOD accuracy in G1 and competitive results in G2 and G5,
Vanilla-TF, by contrast, performs pooly, with sharp ID-OOD drops across nearly all tasks. Overall, these
findings underscore both the difficulty of the COGITAO benchmark and the promise of PL-TF’s architectural
choices for compositional and environmental generalization, while confirming that no current model fully
solves the challenge.

5 DISCUSSION

Summary COGITAO offers a controlled and targeted framework for studying compositional and systematic
generalization, specifically in object-centric environments. With millions of possible tasks and abundant
training samples, COGITAO provides an unmatched degree of compositional control in abstract visual
domains. By leveraging simple grid-based environments and object-centric transformations, it enables
isolating core compositional capabilities while avoiding the visual and data complexity of more naturalistic
datasets. Indeed, our core hypothesis is that models that cannot exhibit compositional generalization in this
controlled, simple and abstract environment are unlikely to succeed in the far noisier and less structured
settings of real-world vision. Nevertheless, to bridge the gap to real-world vision, we provide an RGB
extension to COGITAO onto which both the CompGen and EnvGen benchmarks can be applied.

Unlike classification-based benchmarks such as CVR (13), RPM (39), SVRT (15), and PGM (14), our
generator requires models to generate output grids - a real test of compositional understanding. It aligns more
closely with challenges like ARC-AGI (38) and its successors (52 [16; 42 53). We also extend our input-
output generation framework to a sequential framework (Appendix [A), with set of frames and object-centric
"actions", thus making it highly relevant sequential manipulation tasks.

In our benchmark experiments, we evaluate Vanilla TF, Grid TF, Pondering Looped TF, and LLaDA across
the COGITAO tasks. These models were chosen to represent the state-of-the-art in vision and sequence
modeling, including both general-purpose and grid-specialized architectures. While they provide a diverse
and strong baseline, future work should explore additional architectures. The experiments reveal a consistent
trend: while these models perform well on in-domain tasks, they fail dramatically in out-of-distribution
scenarios requiring compositional understanding. In our CompGen study, while models learned to learn ID
transformations sequences, they all failed when faced with unseen OOD transformation sequences. Similarly,
EnvGen performance degrades significantly with increased task complexity. These results support growing
evidence that current state-of-the-art sequence and vision models rely heavily on pattern recognition rather
than systematic compositional reasoning (29). COGITAO provides a controlled environment to diagnose
these fundamental limitations and guide the development of more robust, generalizable architectures and
inductive biases.

Future Work COGITAO offers a compelling platform for driving progress in compositional generalization,
and it supports several promising research directions. First, extending the framework to in-context learning,
for example, by providing demonstration examples, could allow evaluation of generalization in settings known
to benefit from longer contexts (44), particularly in large foundation models (54; 55 156). Second, due to its
controllable environment and adjustable difficulty, COGITAO is well-suited for curriculum learning, where
task complexity is gradually increased to guide learning. Third, analyzing internal model representations
trained on COGITAO may reveal whether and how models develop object-centric or transformation-centric
abstractions.

Outlook Mastering the existing hardest COGITAO settings would be a significant milestone toward
genuinely compositional architectures. More so - doing so using only generator-produced data would show
that a model can identify primitive operations, apply them sequentially, and recombine them in novel settings
— akin to a core human cognition (1))



Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that our results are fully reproducible. Detailed descriptions of the
COGITAO generator, object creation process, and transformation suite are provided in Sections 3—4 of the
main paper, with additional implementation details, algorithmic pseudo-code, and full experimental settings
in Appendix 7-9. All training hyper-parameters, model architectures, and evaluation procedures are explicitly
specified (Sections 4.1-4.4 and Appendix 8-9). To facilitate independent verification, we release the complete
source code and data generation framework as anonymous supplementary material, with the same version
available at our GitHub repository ﬂ The benchmark datasets used in our experiments can be reproduced
or directly accessed via HuggingFace. These resources include scripts to regenerate all figures, tables, and
experimental results reported in the paper.

REFERENCES

[1] Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3-71, March 1988.

[2] Brenden Lake and Marco Baroni. Generalization without Systematicity: On the Compositional Skills of
Sequence-to-Sequence Recurrent Networks. In The 35th International Conference on Machine Learning
(ICML), volume 80 of Proceedings of Machine Learning Research, pages 2873-2882. PMLR, July
2018.

[3] Lukas Galke, Yoav Ram, and Limor Raviv. Deep neural networks and humans both benefit from
compositional language structure. Nature Communications, 15(1):10816, December 2024.

[4] Tarek R. Besold and Ute Schmid. Why Generality Is Key to Human-Level Artificial Intelligence.
Advances in Cognitive Systems, 4:13-24, 2016.

[5] Thadddus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Compositional
Generalization from First Principles. In Advances in Neural Information Processing Systems (NeurIPS),
volume 36, pages 6941-6960. Curran Associates, Inc., 2023.

[6] Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-learning
neural network. Nature, 623(7985):115-121, 2023.

[7] Daniel Keysers, Nathanael Schérli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. Measuring Compositional Generalization: A Comprehensive
Method on Realistic Data. In The 8th International Conference on Learning Representations (ICLR),
2020.

[8] Zhenlin Xu, Marc Niethammer, and Colin A Raffel. Compositional Generalization in Unsupervised
Compositional Representation Learning: A Study on Disentanglement and Emergent Language. In
Advances in Neural Information Processing Systems (NeurIPS), volume 35, pages 25074-25087. Curran
Associates, Inc., 2022.

[9] Simon Schug, Seijin Kobayashi, Yassir Akram, Maciej Wolczyk, Alexandra Maria Proca, Johannes von
Oswald, Razvan Pascanu, Joao Sacramento, and Angelika Steger. Discovering modular solutions that
generalize compositionally. In The 12th International Conference on Learning Representations (ICLR),
2024.

*Code is available at the following URL: https://anonymous.4open.science/t/COGITAO-4E72

10



Under review as a conference paper at ICLR 2026

[10] Najoung Kim and Tal Linzen. COGS: A Compositional Generalization Challenge Based on Semantic
Interpretation. In The 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 9087-9105. Association for Computational Linguistics, 2020.

[11] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How do
neural networks generalise? Journal of Artificial Intelligence Research, 67:757-795, 2020.

[12] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross Girshick. CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual
Reasoning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[13] Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A Benchmark
for Compositional Visual Reasoning. In Advances in Neural Information Processing Systems (NeurIPS),
volume 35, pages 29776-29788. Curran Associates, Inc., 2022.

[14] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring abstract
reasoning in neural networks. In The 35th International Conference on Machine Learning (ICML),
volume 80 of Proceedings of Machine Learning Research, pages 511-520. PMLR, July 2018.

[15] Frangois Fleuret, Ting Li, Charles Dubout, Emma K. Wampler, Steven Yantis, and Donald Geman.
Comparing machines and humans on a visual categorization test. Proceedings of the National Academy
of Sciences, 108(43):17621-17625, October 2011.

[16] Philipp Mondorf, Shijia Zhou, Monica Riedler, and Barbara Plank. Enabling systematic generalization in
abstract spatial reasoning through meta-learning for compositionality. arXiv preprint arXiv:2504.01445,
2025.

[17] Rohit Girdhar and Deva Ramanan. Cater: A diagnostic dataset for compositional actions and temporal
reasoning. arXiv preprint arXiv:1910.04744, 2019.

[18] Deb Roy, Kai-Yuh Hsiao, and Nikolaos Mavridis. Mental imagery for a conversational robot. /[EEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(3):1374-1383, 2004.

[19] David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2(3), 2018.

[20] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models. arXiv preprint arXiv:2301.04104, 2023.

[21] Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative interactive
environments. In Forty-first International Conference on Machine Learning, 2024.

[22] Stefano Ferraro, Pietro Mazzaglia, Tim Verbelen, and Bart Dhoedt. Focus: object-centric world models
for robotic manipulation. Frontiers in Neurorobotics, 19:1585386, 2025.

[23] Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-Rong
Wen, and Chongxuan Li. Large Language Diffusion Models. arXiv preprint arXiv:2502.09992, 2025.
Version Number: 2.

[24] Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. arXiv preprint
arXiv:2107.05407, 2021.

[25] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers, 2019.

11



Under review as a conference paper at ICLR 2026

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

Wenhao Li, Yudong Xu, Scott Sanner, and Elias Boutros Khalil. Tackling the Abstraction and Reasoning
Corpus with Vision Transformers: the Importance of 2D Representation, Positions, and Objects. arXiv
preprint arXiv:2410.06405, 2024. Version Number: 1.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, Las Vegas, NV, USA, June 2016. IEEE.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and
Aaron Courville. Systematic generalization: what is required and can it be learned? arXiv preprint
arXiv:1811.12889, 2018.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature Machine Intelligence,
2(11):665-673, November 2020.

Robert Csordds, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks improve
systematic generalization of transformers. arXiv preprint arXiv:2108.12284, 2021.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang (Lorraine) Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena Hwang, Soumya Sanyal, Xiang
Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and Fate: Limits of Transformers on
Compositionality. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages
70293—70332. Curran Associates, Inc., 2023.

Roberto Dessi and Marco Baroni. CNNs found to jump around more skillfully than RNNs: Com-
positional Generalization in Seq2seq Convolutional Networks. In The 57th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 3919-3923, Florence, Italy, 2019. Association
for Computational Linguistics.

Jacob Andreas. Good-Enough Compositional Data Augmentation. In The 58th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 7556—7566. Association for Computational
Linguistics, 2020.

Michal Auersperger and Pavel Pecina. Solving SCAN Tasks with Data Augmentation and Input
Embeddings. In The International Conference on Recent Advances in Natural Language Processing
(RANLP), pages 86-91. INCOMA Ltd., September 2021.

Jodo Loula, Marco Baroni, and Brenden Lake. Rearranging the Familiar: Testing Compositional
Generalization in Recurrent Networks. In The 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 108—114, Brussels, Belgium, 2018. Association for
Computational Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. Improving Text-to-SQL Evaluation Methodology. In The 56th Annual
Meeting of the Association for Computational Linguistics (ACL), volume 1, pages 351-360, Melbourne,
Australia, 2018. Association for Computational Linguistics.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing Mathematical Reasoning
Abilities of Neural Models. In The 7th International Conference on Learning Representations (ICLR),
2019.

Francgois Chollet. On the Measure of Intelligence. arXiv preprint arXiv:1911.01547, 2019. Version
Number: 2.

12



Under review as a conference paper at ICLR 2026

[39] John and Jean Raven. Raven Progressive Matrices. In Handbook of Nonverbal Assessment, pages
223-237. Springer US, Boston, MA, 2003.

[40] Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. MONet: Unsupervised Scene Decomposition and Representation. arXiv
preprint arXiv:1901.11390, 2019. Version Number: 1.

[41] Yeongbin Kim, Gautam Singh, Junyeong Park, Caglar Gulcehre, and Sungjin Ahn. Imagine the Unseen
World: A Benchmark for Systematic Generalization in Visual World Models. In The 27th Conference
on Neural Information Processing Systems (NeurlPS): Datasets and Benchmarks Track, 2023.

[42] Arsenii Kirillovich Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The ConceptARC
Benchmark: Evaluating Understanding and Generalization in the ARC Domain. Transactions on
Machine Learning Research (TMLR), 2023.

[43] Ryan Greenblatt. Getting 50% (SOTA) on ARC-AGI with GPT-40, June 2024.

[44] Jack Cole and Mohamed Osman. Don’t Throw the Baby Out With the Bathwater: How and Why Deep
Learning for ARC, March 2025.

[45] Francois Chollet. OpenAl 03 Breakthrough High score on ARC-AGI-Pub, December 2024.

[46] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In The
9th International Conference on Learning Representations (ICLR), 2021.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, . ukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information Processing
Systems (NeurIPS), volume 30. Curran Associates, Inc., 2017.

[48] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision Transformers Need
Registers. In The 12th International Conference on Learning Representations (ICLR), 2024.

[49] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-Attention with Relative Position Representations.
In The 2018 Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL): Human Language Technologies, volume 2, pages 464—468, New Orleans, Louisiana, 2018.
Association for Computational Linguistics.

[50] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. RoFormer: Enhanced
transformer with Rotary Position Embedding. Neurocomputing, 568:127063, February 2024.

[51] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In The 7th International
Conference on Learning Representations (ICLR), 2019.

[52] Michael Hodel. Addressing the Abstraction and Reasoning Corpus via Procedural Example Generation.
arXiv preprint arXiv:2404.07353, 2024. Version Number: 1.

[53] Rim Assouel, Pau Rodriguez, Perouz Taslakian, David Vazquez, and Yoshua Bengio. Object-centric
Compositional Imagination for Visual Abstract Reasoning. In ICLR 2022 Workshop on the Elements of
Reasoning: Objects, Structure and Causality, 2022.

[54] Shengnan An, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou, and Dongmei Zhang.
How Do In-Context Examples Affect Compositional Generalization? In The 61st Annual Meeting of
the Association for Computational Linguistics (ACL), volume 1, pages 11027-11052, Toronto, Canada,
2023. Association for Computational Linguistics.

13



Under review as a conference paper at ICLR 2026

[55] Xingxuan Zhang, Haoran Wang, Jiansheng Li, Yuan Xue, Shikai Guan, Renzhe Xu, Hao Zou, Han Yu,
and Peng Cui. Understanding the Generalization of In-Context Learning in Transformers: An Empirical
Study. In The 13th International Conference on Learning Representations (ICLR), 2025.

[56] Andrew K. Lampinen, Arslan Chaudhry, Stephanie C. Y. Chan, Cody Wild, Diane Wan, Alex Ku, Jorg
Bornschein, Razvan Pascanu, Murray Shanahan, and James L. McClelland. On the generalization
of language models from in-context learning and finetuning: a controlled study. arXiv preprint
arXiv:2505.00661, 2025. Version Number: 2.

[57] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

[58] Abien Fred Agarap. Deep learning using rectified linear units (relu), 2019.

[59] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong, and Lidia S. Chao.
Learning deep transformer models for machine translation, 2019.

[60] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer architecture, 2020.

[61] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[62] Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation, 2022.

[63] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learning with Slot Attention.
In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 11525-11538.
Curran Associates, Inc., 2020.

[64] Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can looped
transformers learn to implement multi-step gradient descent for in-context learning?, 2024.

[65] Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers, 2023.

[66] Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are better
at learning learning algorithms, 2024.

[67] Biao Zhang and Rico Sennrich. Root Mean Square Layer Normalization. In Advances in Neural
Information Processing Systems (NeurIPS), volume 32. Curran Associates, Inc., 2019.

[68] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural Networks, 107:3—11, November 2018.

14



Under review as a conference paper at ICLR 2026

A  SEQUENTIAL-COGITAO

Step 1: Compose Tasks of Interest Step 2: Sequentially Apply Transformations
D>
Select Transformation Sequence Apply Transformation Seq While Saving All Frames and Transformations Of The Episod

and grid Parametrization

10 (initial) t1 ] 13 (final)
e 1 11 I
1.rotate_90() i # Le H U H
Episode 1 2.duplicate_right()
3.pad_shape(). o " = w
— - v
ot 80) dupicas.ight pad shape)

10 (initial) t 2 3 t4 15 (final)
1.mirror_vertical() eeel H‘ ‘ # i * uun " F”Tﬂﬁ :":r
2.extend_contours() k I:H—' " Eﬁ

Episode 2 3.empty_inside() IEH
4.translate_up() ﬁﬂ m l:{ | |. | |
5.crop_top_side() H H - s lﬂl
mirror vertical) extend contours) empty, inside wansiate, up0 crop. top. side)

Figure 3: Overview of Sequential-COGITAO. Episodes of are generated from an initially sampled transfor-
mation sequence and grid parametrization. Each individual frame is saved, along with its corresponding
transformations. We note that transitions for each individual objects are also available, but not shown here for
visualization constraints.

Standard COGITAO tasks present a single input grid and expect a model to generate the final output after
a composed transformation sequence. Sequential COGITAO extends this by exposing every intermediate
state in the transformation chain. Instead of training solely on start—end pairs, models must either predict
each intermediate grid or reason over an explicit temporal trajectory of transformations. This is particularly
relevant for World Model research (19), where applying action to objects while preserving the environment is
of particular importance (20; 21} 22)). Both CompGen and EnvGen methodologies can seamlessly be applied
to Sequential-COGITAO (also in a RGB rendering - see [B)) - enabling targeted and compositionality-focused
research on perception and interaction tasks - a needed addition to the field.

15



Under review as a conference paper at ICLR 2026

B RGB RENDERING OF COGITAO

Example Naturalistic

Example Naturalistic

Example Naturalistic

1.

Task A Task B Task C
I Input
LN RGB
0 RpE B — Image
5}
1. mirror_horizontal() L ST CEg

pad_shape()

empty_inside()

2.
3.

rotate_90()
change_shape_color()

suonewJojsuel] Addy

Output
RGB
Image

0

W |

Figure 4: Set of input-output pair examples from our RGB rendering of COGITAO with input images on
top rows, and corresponding output images (after transforming input) on the bottom rows. The images are
128x128x3, saved as .jpeg. Gray borders are added for visualization purposes only - they are not present on the
images. Note: Objects are purposely blurry to outline their RGB nature - crisper rendering are straightforward.

To assess how compositional generalization persists beyond synthetic grids, we introduce COGITAO-RGB, a
rendering of the benchmark in standard RGB images. Each sample is a 128 x 128 RGB image (configurable
if desired) in which the discrete grid visualization is removed and objects are drawn on a plain white (or
black) background. We convert the benchmark datasets presented in[d.1]to this format, excluding G1-2 and
G1-5 where variable grid sizes are essential; G1-1, G1-3, and G1-4 translate directly. All 28 transformations
from §C.2] remain fully applicable, but models must now infer object location and scale without explicit
grid cues, increasing perceptual difficulty. Generation and train/test splits follow the original procedure.
COGITAO-RGB thus bridges abstract grid worlds and natural image statistics, enabling researchers to test
whether compositional and systematic generalization tested in the grid setting carries over to more realistic
visual conditions.

16



Under review as a conference paper at ICLR 2026

C FURTHER DETAILS ON COGITAO CORE GENERATOR

C.1 COGITAO OBJECTS

i

Figure 5: Random example of generated objects. The objects are generated with a variety of properties,
including size, symmetry, connectivity, colors, color patterns, and footprints. Note: objects are not allowed to
overlap, touch, or be inside one another in our generator environment, as reflected in the above image.

Rather than generating objects on the fly, which can be more costly computationally, we favour a method
where we pre-generate a large set of 23000 object, and compute a table of properties or that these objects
satisfy. This allows us to efficiently sort through objects at generation time with-respect-to the constraints
specified by the user, as well as the object constraints that the transformation suite may impose. We share
the file with these objects along with our code release, as well as the code used to generate these, so the
community can expand the number of objects at will. Below, are all the properties through which we iterate,
creating combination of every single parameter, up until a max object dimension of 15x15 pixels.

* Size: Number of rows, columns, and pixels.

e Symmetry: Horizontal, vertical, diagonal, point, and no symmetry.

* Connectivity: "4 connected” (only connected through adjacent edges), "8 connected" (only connected
through adjacent or diagonal edges), or even "distance" (object can be composed of unconnected blocks).

* Colors: Single colored or multi-colored.

* Color Pattern: Uniform (single color), column stripes, row stripes, diagonal stripes, top-bottom coloring
(object split in two colors), right-left coloring (object split in two colors), or random.

* Footprints: Predefined objects such as Rectangle, disk, square, diamond, or ellipse.

C.2 COGITAO TRANSFORMATIONS

We provide a set of 28 object-transformations, which the community can further expand. As noted in
the main manuscript, each transformation was chosen to respect two core rules: 1) each transformation
should be composable with all other transformations, and 2) each transformation should modify the object
in a way that should not be systematically equivalent to a combination of other transformations. Rule 1
is critical to ensure that our generator maximizes the number of possible tasks that can be generated and

17



Under review as a conference paper at ICLR 2026

avoids degenerate cases. Rule 2 avoids redundancy in the transformations - for instance, we could have
implemented an individual transformation t ranslate_up_right, but this would always be equivalent to
the transformation sequence translate_up and translate_right. Rule 2, however, doesn’t imply
that each transformation suite necessarily yields a unique output grid that could not have been reached with
another transformation suite. For instance, for symmetric objects, applying mirror transformations could yield
the same output objects as applying the rotation transformations twice - this is not the case for non-symmetric
objects, thereby still satisfying Rule 2. We refer the reader to Appendix [D|for an evaluation of the learnibility
of each of the transformations.

We summarize below all 10 families of transformations available in the generator, and a description of the
available variations.

* Translate (Up, Down, Left, and Right): Translates the entire object by one pixel in any of the 4 dimensions.

* Mirror (Horizontal and Vertical): Mirrors the object with respect to the vertical or the horizontal symmetry
axis.

* Rotate (90 degrees): Rotates the object by 90 degrees.

* Crop (Top Side, Bottom Side, Right Side, Left Side, Contours): Crops the object’s specified side(s).

¢ Change Color (mod 9 + 1): Changes object color to new_color = original_colormod 941
(e.g., if the object’s color is 7, it is changed to the color 8).

* Fill (Same Color, Different Color): Fills object holes with its color, or the mod 9 + 1 color.

* Empty: Empties inside of the object, and leaves contours.

¢ Extend(Same Color, Different Color): Extends the outermost edges of the object with either the same
color or (mod 9 + 1) color.

» Pad (Top, Bottom, Left, Right, Full object): Pads in the specified direction with a fixed color.

* Duplicate (Top, Bottom, Left, Right, Quadruple): Duplicates the object in the specified direction.

C.3 COGITAO GENERATION ALGORITHM

Below is an outline pseudocode of the COGITAO generation framework.

Algorithm 1 GenerateCogitaoTask (init_params) - Below is a simplified pseudo-code for the
general algorithmic logic of the COGITAO generator: Generator

1: for d in transformation_depth do
: | transformation_suite < sampleTransformations(init_params, possible_transformations)
while trial_n < max_trials & example_n < wanted_examples do

input_grid, objects «— setInitialGrid(init_params, transform)

output_grid <— input_grid

for object in objects do

for transformation in transformation_suite do

L | output_grid < transformAndPosition(output_grid, object, transformation)

task < (input_grid, output_grid, transformation_suite)
: Return: task, transform

SR UNRELR

The sampleTransformations () function simply iterates through the pool of transformations at
the desired depth d to create the transformation sequence. An important function of our algorithm is
setInitialGrid (), which sets up the randomly sampled objects in the grid given the init_params (e.g.
number of objects, desired object properties) and the sampled transformation sequence. Indeed, each transfor-
mation is defined with a set of object constraints, which are object properties for which the transformation
can be applied without ambiguity. This function thus ensures that the random sampling of objects aligns
with the sampled transformation sequence to avoid unexpected errors. The setInitialGrid () function

18



Under review as a conference paper at ICLR 2026

positions objects to keep them fully within the grid and to avoid contact with other objects. Finally, the
transformAndPosition function applies the transformations to objects and positions them back to the
grid. Importantly, this function verifies that the transformed objects are still fully within grid dimension and
do not collide with other objects (although adjacent contact is allowed at the transformation stage). If contact
occurs, or objects go out of bounds, the entire input-output pair is discarded and generation is restarted.

For a standard 20x20 grid, with 4 objects (smaller than 6x6) and a sequence of 2 transformations applied, the
average input-output pair generation time is at 0.005s 4= 0.002s E} Some configurations are more difficult and
therefore more time-consuming to generate. For instance, decreasing the grid size and increasing the number
of objects can significantly increase the generation time. Some transformation combinations are also more
challenging to generate, such as series of object duplications which quickly yield objects too large for the
grids.

These figures were obtained on an Ubuntu 22.04.5 LTS machine equipped with two AMD EPYC 7742 64-Core
Processors (128 cores total) running at up to 2.25 GHz, and 256 GB of system RAM

19



Under review as a conference paper at ICLR 2026

D COGITAO TRANSFORMATIONS LEARNABILITY

To assess the learnability of each transformation introduced, we performed experiments to evaluate how
effectively the models in the paper learn to apply transformations to new objects. This was conducted through
a "Sample Efficiency" study, where models were given varying amounts of training data to determine the data
required to master each transformation. This approach provides direct insights into 1) how easily each model
learns each transformation and 2) what models are more efficient at learning given transformations. The latter
idea is useful to evaluate the inductive biases of models.

For this purpose, we designed four experimental settings with different numbers of distinct training samples:
100, 1,000, 10,000, and 100,000 examples. These sample sizes were selected based on the known sample
inefficiency of Transformer models. While 100 examples are generally insufficient for Transformers to learn
effectively—a limitation not observed in humans—100,000 examples approach a scale where Transformers
typically achieve competitive performance.

Each setting involves the same set of tasks, with each task corresponding to an elementary or atomic
transformation from one of 10 distinct transformation families (e.g., the t ranslate_up task represents the
"translation" family, which also includes translate_down, translate_left, etc.). We conducted
10 experiments per setting, each focusing on a single transformation family, resulting in a comprehensive
evaluation across all families. We train for 10 epochs on all experiment settings. The environment for all
experiments was standardized: a fixed 15 x 15 grid with two objects per grid, each no larger than 6 x 6. For
evaluation, we tested each model on 1,000 unseen samples of the same transformation used during training,
maintaining consistent environment and object parameters.

The experiments are organized into settings labeled S-x-i, where i denotes the specific transformation and x
indicates the number of training samples (e.g., S-1-i for 100 samples, S-2-i for 1,000 samples, S-3-i for 10,000
samples, and S-4-i for 100,000 samples). In the below outline, we keep x to denote the varying experiment
setting (and number of training samples). Below, we outline the experimental setup for the sample-efficiency
study.

D.1 SAMPLE-EFFICIENCY EXPERIMENTS

e S-x-1: Train and test on the atomic transformation translate_up as a proxy for all translate
transformation family.

e S-x-2: Train and test on the atomic transformation rot_90 as a proxy for all rotate transformation
family.

¢ S-x-3: Train and test on the atomic transformation mirror_horizontal as a proxy forallmirror
transformation family.

e S-x-4: Train and test on the atomic transformation extend_contours_different_color as a
proxy for all extend transformation family.

e S-x-5: Train and test on the atomic transformation empty_inside_pixels as a proxy for all empty
transformation family.

* S-x-6: Train and test on the atomic transformation crop_top_side as a proxy for all crop transforma-
tion family.

e S-x-7: Train and test on the atomic transformation fill_holes_different_color as a proxy for
all £i11 transformation family.

¢ S-x-8: Train and test on the atomic transformation double_up as a proxy for all duplicate transfor-
mation family.

* S-x-9: Train and test on the atomic transformation change_shape_color as a proxy for all
change_color transformation family.

20



Under review as a conference paper at ICLR 2026

¢ S-x-10: Train and test on the atomic transformation pad_shape as a proxy for all pad transformation
family.

For a full list of transformations, we refer the reader back to section [C.2}

In the most constrained setting (S1), all models, including the more sophisticated Transformer-based ones,
completely fail to learn and generalize in-domain. All reported test accuracies being 0.0 suggests that it
is likely that none of the models possess the ability to truly conceptualize simple spatial transformations
in a data-scarce setting; this is unlike humans, who are able to generalize from only a few COGITAO
examples. This result may reinforce the well-known sample-inefficiency of Deep Learning approaches, and
more specifically of Transformers, as they appear to continue to rely on statistical pattern matching, which
cannot easily emerge from training on only 100 samples while testing on 1000 samples of high (in-domain)
diversity.

In S2, we begin to observe a divergence in model performance. The models imbued with strong inductive
biases greatly increase their performance with more than an additional 50% accuracy increase. The Vanilla-TF,
possessing only a weak inductive bias, achieves only 11.2%. The worse performance (19.9%) of LLaDA
compared to the other Transformer-based models is possibly due to nature of its diffusion mechanism as well
as the lack of a stronger inductive bias such as through the use of visual tokens.

In S3 the next order of magnitude of 10’000 training examples, all models show a marked improvement.
ResNet reaches 96.1%, and Grid-TF achieves 97.1%. The P-L-TF model shows the beginning of decrease in
improvement at 88.2%, while LLaDA shows a significant gain at 66.5%. Interestingly, Vanilla-TF also catches
up (59.3%), but still lags behind models with stronger inductive biases. This narrowing of the performance
gap indicates that Transformer-based models being to learn well past some threshold of amount of data, at
which point they begin to robustly extract structures and create useful representations from symbolic grids.
The fact that the Grid-TF model outperforms even the ResNet model at this scale—typically considered far
smaller than Transformer data regimes—suggests a benefit of Transformer models enhanced with grid-aware
tokens and relational inductive biases through object and relative positional encodings for abstract visual
reasoning tasks.

In the highest data regime S4, all models reach high performance. Grid-TF nearly saturates accuracy at
99.9%, while the simpler baseline models. ResNet and Vanilla-TF, perform even better than the Pondering
Looped TF and LLaDA. The greater complexity of the learning mechanism of the Pondering Looped TF and
LLaDA models may partly explain why they slightly underperform compared to the other models. Moreover,
the results confirm that Transformer models, even in their vanilla form, can ultimately learn atomic visual
transformations when given larger-scale data.

The Sample-Efficiency table in[D.T|with all the experiments also shows that some atomic transformations
are more difficult to learn than others. For instance, a translation is efficiently learned while a rotation or an
extension of contours appears more difficult for all the models.

Overall, the experiments demonstrate that all models are capable of learning all the atomic transformations
currently offered by COGITAO. This implies that the individual tasks are not a limitation for the more
involved and complex tasks of the experiments part of the other two studies of Systematic Generalization and
Compositionality.

21



Under review as a conference paper at ICLR 2026

ResNet Vanilla-TF Grid-TF PL-TF LLaDA

Setting Transf. Family ID ID ID ID ID
translate 0.0 0.0 0.0 0.0 0.0
rotate 0.0 0.0 0.0 0.0 0.0
mirror 0.0 0.0 0.0 0.0 0.0
S1 extend 0.0 0.0 0.0 0.0 0.0
empty 0.0 0.0 0.0 0.0 0.0
crop 0.0 0.0 0.0 0.0 0.0
fill 0.0 0.0 0.0 0.0 0.0
duplicate 0.0 0.0 0.0 0.0 0.0
change_color 0.0 0.0 0.0 0.0 0.0
pad 0.0 0.0 0.0 0.0 0.0
translate 100.0 0.0 100.0 83.7 78.6
rotate 5.7 0.0 0.0 0.0 0.0
mirror 27.4 2.3 2.9 4.6 0.1
S2 extend 32.0 0.0 16.1 23.1 0.0
empty 100.0 9.2 100.0 80.8 8.4
crop 97.9 0.1 94.0 84.4 34.0
fill 100.0 0.0 98.1 82.6 6.2
duplicate 16.4 0.0 0.2 19.7 0.0
change_color 100.0 100.0 100.0 100.0 79.1
pad 97.1 0.0 95.3 89.0 0.0
translate 100.0 100.0 100.0 100.0 99.9
rotate 94.4 0.0 96.6 88.0 28.1
mirror 98.3 3.8 97.0 82.6 50.8
S3 extend 95.8 36.6 80.3 79.9 28.5
empty 100.0 91.2 100.0 99.5 97.7
crop 99.6 90.5 98.8 89.0 95.9
£fill 100.0 67.8 99.9 79.2 94.9
duplicate 72.9 13.5 98.6 84.8 65.1
change_color 100.0 100.0 100.0 100.0 99.9
pad 100.0 89.6 100.0 79.5 94.0
translate 100.0 100.0 100.0 99.4 100.0
rotate 99.7 96.9 99.8 98.5 99.0
mirror 99.8 98.8 100.0 99.1 98.9
S4 extend 100.0 95.9 99.4 79.8 90.5
empty 100.0 99.9 100.0 100.0 99.9
crop 100.0 99.3 100.0 99.7 99.9
£fill 100.0 99.6 100.0 87.4 99.9
duplicate 86.3 99.1 100.0 91.7 97.8
change_color 100.0 100.0 100.0 100.0 100.0
pad 100.0 100.0 100.0 82.2 100.0

Table 2: In-domain (ID) test grid accuracy for the Sample-Efficiency settings S1-S4, across the models
ResNet, Vanilla-TF, Grid-TF, PL-TF and LLaDA for each transformation family. S1 trains with 100 samples,
S2 trains with 1,000 samples, S3 trains with 10,000 samples, and S4 trains with 100,000 samples.

22



Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

We designed our benchmark experiment to exemplify the use of our generator, and show how state-of-the-art
vision models still consistently fail at such elementary tasks as they require compositionality. We provide in
this appendix further details into each experiment.

Compositional Generalization Study (CompGen) For all CompGen study, we fix the number of objects
to 2, the grid size to 20x20, the object dimension to be smaller or equal to 6x6, and all objects to be fully
connected (no unconnected parts - see |C.1| "Connectivity"). For each CompGen experiment setting, we
generate 100000 training samples, 1000 in-distribution validation samples, 1000 out-of-distribution (OOD)
validation samples, 1000 test samples, and 1000 OOD test samples. The results we report are based on the
two aforementioned test sets. Based on these parameters, we then design all experiment settings in such
a way that the training and testing sets are built from different "transformation sequences" (i.e. sequence
of transformations). In the CompGen study, the transformation sequence varies within and between data
samples. We thus provide the model with information on which transformation sequence it must apply by
appending a task code to the input sequence. The task code is a sequence of tokens that indicates to the model
the transformations it must apply (in the correct order). To account for varying "depth" of transformation
sequence, we simply pad the input sequence with "identity transformation" tokens - as such, we always
append a task code of depth 4 - which is the maximum depth of transformation sequence we consider in the
entirety of our experiments. We chose the transformations sequences to be from different transformation
families, and to be easily composable with one another within the constrained object and grid dimensions.
Below is a detailed summary of our experiment settings and experiments.

¢ C1 - From Restricted Composite Tasks and Atomic Tasks to Unseen Composite: We train on a set of
composite tasks made of some atomic transformations, and test on composite tasks of the same depth, but
not seen during training

— CI1-1: Train on the atomic transformations translate_up, rotate90, mirror_horizontal
and all of their mutual compositions (depth d = 2), except the specific composition translate_up —
rotate90 (and its commutable reverse), which we leave for OOD testing.

- C1-2: Train on the atomic transformations change_object_color, pad_right,
fill_holes_different_color and all of their mutual compositions (depth d = 2), ex-
cept the specific composition change_object_color — pad_right, which we leave for OOD
testing.

— C1-3: Train on the atomic transformations crop_bottom_side, rotate_90, pad_top and
all of their mutual compositions (depth d = 2), except the specific composition rotate_90 —
crop_bottom_side, which we leave for OOD testing.

- Cl1-4: Train on the atomic transformations double_right, crop_contours,
change_shape_color and all of their mutual compositions (depth d = 2), except the
specific composition double_right — crop_contours, which we leave for OOD testing.

- Cl1-5: Train on the atomic transformations extend_contours_same_color,
mirror_vertical, pad_left and all of their mutual compositions (depth d = 2), except
the specific composition pad_left — extend_contours_same_color, which we leave for
OOD testing.

¢ C2 - From Restricted Composite Tasks to Unseen Composite: We train on a set of composite tasks
made of some atomic transformations, and test on composite tasks of the same depth, but not seen during
training.
— C2-1: Train on all the mutual compositions (depth d = 2) of translate_up, rotate90,
mirror_horizontal, except the specific composition translate_up — rotate90 (and its
commutable reverse), which we leave for OOD testing.

23



Under review as a conference paper at ICLR 2026

C2-2: Train on all the mutual compositions (depth d = 2) of change_object_color, pad_right,
fill _holes_different_color, except the specific composition change_object_color —
pad_right, which we leave for OOD testing.

C2-3: Train on all the mutual compositions (depth d = 2) of crop_bottom_side, rotate_90,
pad_top, except the specific composition rotate_90 — crop_bottom_side, which we leave
for OOD testing.

C2-4: Train on the mutual compositions (depth d = 2 transformations double_right,
crop_contours, change_shape_color, except the specific composition double_right —
crop_contours, which we leave for OOD testing.

C2-5: Train on all the mutual compositions (depth d = 2) of extend_contours_same_color,
mirror_vertical, pad_left, except the specific composition pad_left —
extend_contours_same_color, which we leave for OOD testing.

¢ C3 - From Composite Tasks to Deeper Composite Tasks: We train on a set of composite tasks made
of some atomic transformations, and test on composite tasks with the same transformations, but with one
additional level of depth.

C3-1: Train on all the atomic transformations and mutual compositions (depth d = 2) of
translate_up, rotate90, mirror_horizontal, and OOD test on all the compositions of
depth d = 3 of these transformations.

C3-2: Train on all the atomic transformations and mutual compositions (depth d = 2) of
change_object_color, pad_right, fill_holes_different_color, and OOD test on
all the compositions of depth d = 3 of these transformations..

C3-3: Train on all the atomic transformations and mutual compositions (depth d = 2) of
crop_bottom_side, rotate_90, pad_top, and OOD test on all the compositions of depth
d = 3 of these transformations.

C3-4: Train on all the atomic transformations and mutual compositions (depth d = 2) of
double_right, crop_contours, change_shape_color, and OOD test on all the compo-
sitions of depth d = 3 of these transformations.

C3-5: Train on all the atomic transformations and mutual compositions (depth d = 2) of
extend_contours_same_color, mirror_vertical, pad_left, and OOD test on all the
compositions of depth d = 3 of these transformations.

¢ C4 - From Growing Restricted Composite Tasks and Atomic Tasks to Unseen Composite: We train
on a growing pool of atomic transformations and all of their single and double mutual compositions (depth
d = 2), and test on an unseen double composition. The hypothesis is that the more variety a model sees
during training, the more it would learn to compose. Specifically, for each experiment we exclude the
composition double_right—rot 90 (and its commutable reverse) from the training set and reserve it
for OOD testing. The transformation pool grows with each experiment:

C4-1: Trainonmirror_horizontal, rot 90, double_right and all their single/double compo-
sitions except double_right—-rot90.

C4-2: Extend the pool to 6 transformations by adding translate_up, crop_top_side,
mirror_vertical.

C4-3: Extend to 9 transformations by further adding pad_top, translate_right, pad_right.
C4-4: Extend to 12 transformations by adding fill holes_same_color,
fill_holes_different_color, change_shape_color.

C4-5: Extend to 15 transformations by adding empty_inside_pixels, double_down,
extend_contours_same_color.

24



Under review as a conference paper at ICLR 2026

Environment Generalization Study (EnvGen) For each EnvGen experiment setting, we generate 100000
training samples, 1000 in-distribution validation samples, 1000 out-of-distribution (OOD) validation samples,
1000 test samples, and 1000 OOD test samples. The results we report are based on the two aforementioned
test sets. For each EnvGen experiment, we fix the transformation sequence (as described below depending on
the experiment) and vary some parameters, such as the grid size, the number of objects, the object dimensions
or the object properties. The varying parameters constitutes what changes between the in-distribution and
OOD testing sets, and forms the basis of the "generalization" experiment. As opposed to the CompGen
setting, where there are multiple transformation sequences per set, we do not need to provide a task code to
the model, but only a single grid on which it must perform the transformation based on the grid settings. To
account for varying grid sizes in some of the experiments, we simply pad the the input sequence to the max
size which can be observed during the experiment.

* G1 - Number of Objects Difficulty: We train on grids with 1 or 2 objects, and OOD test on grids with 3
or 4 objects. We fix the grid size to 15x15.
— Gl-1: Perform experiment with the t ranslate_up transformation.
— G1-2: Perform experiment with the rotate_ 90 transformation.
— G1-3: Perform experiment with the mirror_horizontal transformation.
— G1-4: Perform experiment with the crop_top_side transformation.
— G1-5: Perform experiment with the extend_contours_same_color transformation.

* G2 - Grid Size Difficulty: We train on grid sizes between 10x10 and 15x15, and OOD test on grid sizes
between 16x16 and 20x20. We fix the number of objects to 2.
— G2-1: Perform experiment with the t ranslate_up transformation.
— G2-2: Perform experiment with the rotate_ 90 transformation.
— G2-3: Perform experiment with the mirror_horizontal transformation.
— G2-4: Perform experiment with the crop_top_side transformation.
— G2-5: Perform experiment with the extend_contours_same_color transformation.

* G3 - Object Dimension Difficulty. We train on grids with objects of size between 1x1 and 5x5, and OOD
test on grids with objects of size between 6x6 and 10x10.
— G3-1: Perform experiment with the t ranslate_up transformation.
— G3-2: Perform experiment with the rotate_ 90 transformation.
— G3-3: Perform experiment with the mirror_horizontal transformation.
— G3-4: Perform experiment with the crop_top_side transformation.
— G3-5: Perform experiment with the extend_contours_same_color transformation.

* G4 - Object Complexity Difficulty We train on grids with symmetric and single-colored objects, and
OOD test on grids with asymmetric and multi-colored objects. We fix the number of objects to 2, the grid
size to 15x15, and the object dimension to smaller than 6x6.

— G4-1: Perform experiment with the t ranslate_up transformation.

— G4-2: Perform experiment with the rotate_ 90 transformation.

— G4-3: Perform experiment with the mirror_horizontal transformation.

— G4-4: Perform experiment with the crop_top_side transformation.

— G4-5: Perform experiment with the extend_contours_same_color transformation.

* G5 - All Difficulties Combined We train on grids with symmetric, single-colored objects of size between
1x1 and 5x5, with 1 or 2 objects, and grid sizes between 10x10 and 15x15. We OOD test on grids with
asymmetric, multi-colored objects of size between 6x6 and 10x10, with 3 or 4 objects, and grid sizes
between 16x16 and 20x20.

25



Under review as a conference paper at ICLR 2026

G5-1: Perform experiment with the t ranslate_up transformation.

G5-2: Perform experiment with the rotate_ 90 transformation.

G5-3: Perform experiment with the mirror_horizontal transformation.

— G5-4: Perform experiment with the crop_top_side transformation.

G5-5: Perform experiment with the extend_contours_same_color transformation.

26



Under review as a conference paper at ICLR 2026

F MODELS

The selection of encoder networks includes both standard baselines (ResNet, Vanilla TF) and more specialized
architectures (Grid TF, Pondering Looped TF, LLaDA) designed to better capture abstract and spatial
reasoning, compositionality, and generalization capabilities.

Table [3| summarizes some of the notable architectural and modeling characteristics used for each encoder
network part of the models. The models were designed to roughly have the same size of 1.2 Million of
parameters in order to propose a fairer performance comparison, in spite of being aware that different
architectures may have different modeling requirements to optimize their performance.

Table 3: Overview of the encoder networks for the different architectural and modeling techniques considered.
APE: Absolute Positional Encoding. OPE: Object Positional Encoding. RPE: Relative Positional Encoding.
VT: Visual Tokens. Registers: Register tokens. PEMixer: Positional Encoding Mixer, where "vec weighted
sum" signifies a vector-weighted sum.

Architectural Modeling
Encoder APE RPE PEMixer Recurrence Diffusion VT Registers
ResNet — — — — — — —
Vanilla-TF learned — sum — — — —
Grid-TF 2D-sincos w/OPE  RoPE  vec weighted sum — — v v
PL-TF 2D-sincos RoPE sum v — v —
LLaDA — RoPE — — v v —

F.1 RESNET

We employ an architecture based on ResNet(27) as a standard baseline notable for its strong historical
performances on vision tasks, principally distinguishing itself from the other models evaluated here by its
convolutional inductive bias and lack of attention mechanism.

In our implementation, the input grid is processed as a low-resolution image after an artificial channel
dimension is created through one-hot encoding of the token categories that can possibly be predicted (i.e.,
num_token_categories). Then, the core of the encoder consists of a sequence of residual blocks.
Crucially, all convolutional operations within these blocks are performed without any spatial downsampling
(e.g., using stride 1 convolutions and no pooling layers). Despite missing on a slightly more global receptive
field, this design choice is important for our tasks, as it strictly preserves the spatial dimensions of the
feature maps throughout the network and thus does not require an approach of upsampling. The stacking of
convolutional layers without downsampling should also allow the effective receptive field for each individual
output pixel to grow, enabling the model to better capture useful context regions while retaining more precise
spatial information.

Our specific ResNet architecture comprises:

* An initial convolutional layer to project the input grid channels to the model’s hidden dimension:
num_token_categories input channels, 32 output channels, kernel size of 1, stride of 1, padding of
0. This is followed by Batch Normalization (57) and a ReL.U activation function (58).

¢ A series of 5 residual blocks:

1. 32 input channels, 64 output channels, kernel size of 3, stride of 1, padding of 1.
2. 64 input channels, 128 output channels, kernel size of 3, stride of 1, padding of 1.

27



Under review as a conference paper at ICLR 2026

3. 128 input channels, 128 output channels, kernel size of 1, stride of 1, padding of 0.
4. 128 input channels, 256 output channels, kernel size of 3, stride of 1, padding of 1.
5. 256 input channels, 128 output channels, kernel size of 1, stride of 1, padding of 0.

* A final convolutional layer (1x1 convolution) to map the features from the last residual block to the required
embed dimension per pixel/token: 128 input channels, embed_dim output channels, kernel size of 1,
stride of 1, padding of 0.

F.2 VANILLA TF

We adapt the standard Vision Transformer architecture, as defined in (46), to our grid-based tasks. The
(padded and one-hot encoded) input grid is divided into a sequence of non-overlapping patches, which are
effectively single tokens since we use a patch size and stride of 1 when linearly projecting the grid image into
the embedding dimension using a 2D convolution.

A basic approach to incorporate spatial information is to use (randomly initialized) 1D learnable positional
embeddings to add to the embedded input sequence before it is passed to the encoder network.

This vanilla Transformer encoder consists of multiple layers, each containing a multi-head self-attention
(MHSA) mechanism followed by a position-wise feed-forward network. We use Pre-Layer Normalization
(Pre-LN) (59)(60) and thus apply Layer Normalization before both the MHSA and feed-forward sub-layers.
Residual connections are also used around each sub-layer, as is standard. To be able to produce the output
grid using an MLP head, a linear layer is applied to each output token of the sequence (from which the special
extra tokens have been truncated) at the end of the encoder network in order to map the embedding dimension
to that of the MLP head which will then predict the logits for all of the tokens which, once softmax applied
and spatially reshaped, form the output grid.

Notable hyperparameters are:

* Input grid partitioning: Patch size of 1, stride of 1. The grid is partitioned at the pixel-level.

* Embedding dimension: 128.

* Number of encoder layers: 6.

* Number of attention heads in MHSA: 4.

* Dimensionality of the feed-forward layer: Factor of 4 times the embedding dimension, thus 512.

¢ Activation Functions: GELU (61).

* Output projection: A linear layer maps each embed_dim-dimensional output token (excluding the extra
tokens such as the register tokens or the task embedding) to num_classes logits, where num_classes depends
on the number of tokens to predict (e.g., 15 if Visual Tokens are used, 11 otherwise, as there are ten for the
0-9 symbols and one for padding).

F.3 GRID TF

The Grid-TF is a variant of the Vision Transformer architecture adapted to improve performance on abstract
visual reasoning tasks, especially in grid-like environments, similar to the COGITAO data. It incorporates
several modifications to improve spatial and abstract visual reasoning. Similar to the Vanilla TF, the input grid
is embedded as patches at the pixel level (i.e., patch size and stride of 1 when performing the 2D convolution
to transform the grid into an embedded sequence).

The key architectural modifications from the Vanilla-TF are:

* Positional Encodings:

28



Under review as a conference paper at ICLR 2026

— 2D Absolute Positional Encoding (APE): We use 2D sinusoidal absolute positional encodings, extended
from the 1D sinusoidal absolute positional encodings used in (47), which are fixed (i.e., not learned) and
directly reflect the 2D nature of the input grid. They are added to the patch embeddings following the
PEMixer strategy.

— Object Positional Encoding (OPE): OPE is used as part of the APE, as described in (26) where half
of the APE dimension is allocated to the object positions while the other half is used for the x and y
positions in the grid. The OPE is also typically coupled with an appropriate PEMixer strategy, such as a
vector-weighted sum. We make the choice to compute the object positions after having padded (whether
with Visual Tokens or with simple padding) the input grid, as opposed to before.

— Positional Encoding Mixer (PEMixer): The PEMixer presented in (26) defines the strategy by which
we encode the absolute positional information into the input embeddings from the absolute positional
embeddings. It allows different strategies such as a sum (the standard one), a weighted sum, a vector-
weighted sum, etc.

— Relative Positional Encoding (RPE): Due to the importance of the relative positions of the grid tokens
when transforming objects, an RPE scheme comes in as a natural consideration. Among possible
techniques of RPE, we choose to use Rotary Position Embedding (RoPE) (50), incorporated into the
self-attention mechanism in order to inject relative spatial information between the grid tokens. After
initial experiments with ALiBi (62), another RPE method, extended to 2D as in (26), we found that
ROPE yields comparable performance on our tasks and thus decided to use RoPE for its simplicity.

* Registers: We prepend (6) register tokens to the input sequence, following results from (48)) and a drawn
parallel to slots for object-centric learning in (63). Those registers are additional, randomly initialized
and learnable tokens appended to the sequence of patch embeddings in order to possibly improve model
performance by functioning as containers for less informative "background" regions of the grid. Thus,
they do not correspond to any specific input informing the model and should be leveraged by the attention
mechanism to improve global context aggregation and internal representations. The positional encodings
are not used for those extra tokens.

Another modification to the Vanilla-TF is the use of dropout. We apply dropout with a rate of 0.1 after the
multi-head self-attention layer and after the feed-forward layer in each Transformer encoder block.

The remaining notable hyperparameters are the same as for the Vanilla-TF.

F.4 PONDERING LOOPED TF (PL-TF)

The Pondering Looped Transformer model closely follows the PonderNet paper by Banino et al. (24)), using a
looped Transformer with weight-sharing as the encoder.

The PL-TF fundamentally differs from the other transformer models in two aspects:

* It possesses an inductive bias of recurrent architecture leveraging weight-sharing through an iterative
looping process over the same block structure (25;164; 165 166). At each step, the model updates the latent
representation, which can be useful to mimic a multi-stage reasoning process for tasks that require multiple
sequential operations on objects.

It makes use of a carefully designed adaptive compute time framework—named PonderNet—controlling the
number of iterations and computation effort spent on each data sample (24). Essentially, the model learns
a halting probability at each iterative step from an aggregated representation of the current hidden state,
which allows it to dynamically and probabilistically decide the number of iterations needed for a given
input.

29



Under review as a conference paper at ICLR 2026

Since parameter-efficiency is not a primary goal, in order to obtain a learnable parameter count comparable to
that of the other models, the embedding dimension is set to d;,oqe; = 256—instead of ;04 = 128 as in the
other transformers—and the number of attention heads is set to eight. We use a single encoder block (although
more can be used) with weight-sharing.

The computational resource constraints led to the setting of a relatively low maximum number of pondering
steps, although a larger maximum number of steps is likely required to fully harness the capabilities of the
recurrent and pondering modules. We note that with those decisions the total number of passes through an
encoder block is not too far off from that of the other transformers. Furthermore, the pondering-specifc
hyperparameters used are: 2-layer halting node with hidden dimension of 128, € of 0.01, A, of 0.05, 3 of
0.01.

The encoder block is the same as the Grid-TF with pre-LN, additive skip connections, dropout of 0.1 and a
RoPE RPE scheme in the MHSA module. The PL-TF leverages Visual Tokens as the Grid-TF but it uses a
2D sincos APE scheme without object positional encoding or PEMixer.

F.5 LLADA

We include LLaDA (23) in our set of models due to its demonstrated strength on logical and arithmetic tasks.
LLaDA operates non-autoregressively and exploits bidirectional dependencies over masked target sequences,
making it well-suited for structured input-output mappings. We adapt the original LLaDA setup skipping
pretraining and training it from scratch via supervised learning. Each instance of input data is represented
as a flattened concatenation of a task embedding, input sequence, and a partially masked target sequence.
During training, a random portion of target tokens is masked (mask ratio sampled uniformly in [0, 1]), and the
model is trained to reconstruct the masked tokens. At inference, the target is fully masked, and reconstruction
proceeds over 32 denoising steps, each resolving a fraction of the masked tokens based on confidence.

In contrast to the original architecture, We use a lightweight 6-layer version with approximately 1.3M
parameters. The architecture uses an embedding dimension of 128, a feedforward hidden size of 384 (MLP
ratio of 4), and 4 attention heads. The model incorporates RMSNorm (67)) with affine parameters and uses
SiLU activation functions (68)). Rotary positional embeddings (RoPE) (50) are applied independently within
each transformer layer, using a shared base frequency parameter of = 500,000. Weights are initialized via
the Mitchell method with a standard deviation of 0.02. No dropout is used throughout training. The model’s
vocabulary comprises 12 tokens, reflecting the tokenized representation used in COGITAO, and includes
special tokens for padding and masking.

30



Under review as a conference paper at ICLR 2026

G TRAINING PROCEDURE

To ensure a fairer comparison across different models, we adopted a consistent training and evaluation
framework whenever possible. Key aspects are detailed as follows:

¢ Training Procedure and Data: All models were trained from scratch using supervised learning. We used a
dataset of 100’000 unique samples. Training proceeded for 10 epochs with a batch size of 64, meaning
each model saw a total of 1’000°000 samples, This implies a sample-efficient mode of experimentation, as
observed through the training learning curves hinting at a non-terminal convergence for several experiments
and considering the typical quantity of samples that Transformer-based models require.

* Validation and Testing: Model performance was monitored during training on a validation set of 1’000
samples. After training, models were evaluated on a distinct held-out test set of 1’000 samples. We always
compute the performance on ID and OOD val/test sets.

* Modeling Strategy:
— An input grid with shape [H, W] is converted to an artificial image of shape [C, H, W] by the
creation of a channel dimension through one-hot encoding of the categories of tokens that can be
predicted.

— For the experiments within the CompGen study, the transformations sequence vary within the trainin
set (and w.r.t. the OOD sets). We therefore provide the model with some context in the form of a
task embedding in order to inform it of what task it should perform given the input grid. For that
purpose, we considered two approaches: task tokens and in-context example. We decided to use the first
approach, where we provide the model with a sequence of tokens representing the atomic transformations
composing the task to perform. The second approach was to provide the model with an example (i.e., an
input-output pair of grids) of the task to perform. However, it was not experimented with due to time
and resource constraints.

 Early Stopping and Model Selection: No early stopping was performed as the number of epochs was
restricted and in most experiments the models showed steady convergence throughout the 10 epochs. The
checkpoint used for final testing was chosen based on the best (lowest) validation loss achieved on the
OOD validation set.

* Loss Function: We employed a pixel-wise cross-entropy loss, calculated between the entire predicted token
grid and the ground-truth target grid, both padded to a maximum size equal to the largest grid size within
the dataset.

* Evaluation Metric: The primary metric for reporting performance is grid accuracy. This is the percentage of
predicted grids that perfectly match the ground-truth target grids. Both grids were padded to the maximum
grid size observed in the dataset before comparison. The padding is either composing of usual padding
tokens or of special padding tokens named "Visual Tokens" (VTs)(26)). This means that when VTs are
used as part of the modeling strategy for Transformer-based models, the model has to predict correctly the
whole padded grid, with its special padding tokens, in order to perform well since the metric computation
does not discard the tokens/pixels outside of the boundaries denoted by the true grid size.

* Optimizer and Learning Rate: The AdamW optimizer (51) was used, with a learning rate following a
Cosine Annealing schedule that monitors the OOD validation loss at each epoch.

* Weight Initialization: Model weights were initialized from a truncated normal distribution.

31



Under review as a conference paper at ICLR 2026

* Training Precision: Training was conducted using FP16 mixed precision.

¢ Training Duration: A training run lasted between 7 minutes and 1 hour depending on the model, hardware
and specific experiment.

G.1 RESNET

The learning rate and weight decay used for ResNet are of le-3, same as for the Vanilla-TF and Grid-TF
models.

ResNet is trained without Visual Tokens, as their purpose is mainly to mitigate the loss of the 2D spatial
structure when going from a 2D grid to a flattened sequence, as it is the case for Transformer models, as well
as defining more explicit grid boundaries.

For the Compositionality experiments, the task embedding is appended (along the spatial dimension) to the
spatially flattened output of the ResNet encoder network. This means that the task embedding only enters
the input transformation process at a late stage, similar to what is done in (13)), compared to how the task
embedding is used with the Transformer-based models working with sequences. Practically, it is the MLP
head that has to leverage the information provided by the task embedding in order to make better-informed
predictions.

G.2 VANILLA-TF & GRID-TF

The two transformer models use exactly the same hyperparameters. The learning rate and weight decay are
le-3. Before the initial learning rate is set to change with the Cosine Annealing schedule, a linear warm-up
phase takes place for 200 steps.

A key difference between the Vanilla-TF and the Grid-TF is that the latter uses Visual Tokens while the
former does not.

The input sequence to the transformer results from the one-hot encoding of the input grid for which embedding
patches are created using a 2D convolution with patch size of 1 and stride of 1.

For the Compositionality experiments, the task embedding is appended (along the spatial dimension) to
the input sequence before being encoded by the ViT. This provides the full task context at the start of the
processing of the input by the model, thus increasing the information about the task to perform propagated
through the model.

G.3 PONDERING LOOPED TF

The PL-TF is trained similarly to the two previous transformer models and follows the PonderNet paper
(e.g., with regard to the update of the reconstruction and regularization losses). It mainly uses the same
hyperparameters as the aforementioned models, but with a smaller batch size of 32 due to the possible increase
in computations and resource constraints. It uses data modeled with Visual Tokens as for the Grid-TF.

G.4 LLADA

We train the LLaDA model using the same hyperparameter configuration as that employed for the vision
transformer baselines, including the Vanilla ViT and Grid ViT architectures. However, we introduce two key
modifications: Firstly, while retaining the AdamW optimizer (51)), we reduce the learning rate to 2 x 104
and set the weight decay to 0.01. Empirically, this lower learning rate leads to significantly faster convergence
for LLaDA during training. Second, we extend the training schedule to 20 epochs, doubling the number

32



Under review as a conference paper at ICLR 2026

of training epochs compared to the baseline setup. This adjustment compensates for the fact that LLaDA
masks only approximately 50% of the target tokens on average, thereby ensuring that all models are trained
to predict a comparable total number of tokens and enabling a fair evaluation.

33



Under review as a conference paper at ICLR 2026

H RESULTS

We present a set of results for each model and each of the 40 individual experiments considered in the studies
of CompGen and EnvGen. The results reported are the average of three runs with different random seeds.
A few experiments showed a high sensitivity to the random seed, up to a 15% difference, while the others
yielded similar results for different runs. Tables display the in-domain (ID) and out-of-domain
(OOD) test grid accuracies (i.e., the predicted grid and the ground-truth target grid, both padded to a max.
size, should perfectly match) for all models considered across all the experiment settings (i.e., C1-C3 and
G1-G5). While the main paper provides a summary in the form of averaged results over each setting for
clarity and space constraints, the exhaustive results here enable a more granular understanding of model
behavior given different transformations and compositions thereof.

We include here results of a ResNet-like model baseline, which is omitted from the main text table and
discussion. As a standard convolutional neural network performing well on vision tasks - even when it
includes a level of reasoning (13)), ResNet is poorly designed for compositionality tasks, and is more sample
efficient than Transformer-based architectures (13). Consequently, it was not deemed to be of focus in this
paper, alth-ough it could provide few insights. Its inclusion here also serves to put into perspective the
performance of models with clearly different inductive biases. In the main paper, we focus on models better
designed for abstraction and generalization, with a Vanilla-TF as starting point, followed by Grid-TF, PL-TF
and LLaDA models.

The results clearly highlight that compositional generalization remains a major challenge, which COGITAO
allows to explore. Across most CompGen experiments, models perform poorly in the OOD setting. Notably,
some transformations stand out as yielding easier or more difficult tasks. For example, t ranslate_up is by
far the easier transformation followed for example by extend_contours_same and crop_top_side.
More difficult transformations include mirror_horizontal and rotate90 which empirically, but also
intuitively, are seen to be more complex. A transformation such as crop_top_side may be easier as
it mainly introduces localized changes, allowing models, especially those with strong inductive biases for
locality, to generalize more effectively. In contrast, transformations such as mirror_horizontal and
rotate90 result in drastic spatial reconfigurations of visual features, which can severely disrupt learned
representations, in particular when not explicitly trained on such variations.

In the EnvGen experiments, ResNet performed competitively, and even better for settings focused on changes
of grid size and number of objects. These experiments involve systematic variations of properties of the grid
environment and scene (e.g., the grid size, the number of objects, their spatial distribution) which can still
be captured through localized pixel/symbol statistics and spatial patterns that do not require compositional
abilities. ResNet’s strong performance here could be attributed to its architectural inductive biases: overlapping
receptive fields, translation invariance from convolutions, and the ability to encode detailed local structures
without aggressive downsampling (as per our implementation). We suspect that these properties enable it to
effectively maintain useful representations when the domain shift involves more spatially coherent variations,
as opposed to more abstract ones based on a compositional prior.

These detailed tables serve not only as a complement to the averaged results in the main paper, but also as a
valuable diagnostic tool for evaluating the specific generalization challenges posed by different transformations.
They reinforce the necessity of designing models and training regimes that can robustly handle a wide
range of compositional and systematic shifts in visual input with respect to diverse transformations implying
fundamentally different types of changes in the grid. Consequently, an exhaustive table with more experiments
for all the transformations enabled by COGITAO would be a natural extension of those results.

34



Under review as a conference paper at ICLR 2026

ResNet Vanilla-TF
Setting Experiment ID (010))] ID (010));
experiment-1  0.1+0.1 00+£0.0 233+56 0.0+£0.0
experiment-2 89+3.1 00£00 227+31 0.0+£0.0

“ experiment-3  1.0£0.1 00+£0.0 54+£0.7 0.0+£0.0
experiment-4 23+09 00£00 16753 0.0£0.0
experiment-5 0.6+0.3 00+£0.0 144+04 0.0£0.0
experiment-1 0.7+0.2 00£00 268+05 0.0+£0.0

2 experiment-2 12.2+6.5 00£00 14.6+0.5 0.0£0.0
experiment-3 0.6+£0.2 00£00 88+12 0.0+£0.0
experiment-4  7.7+20 00+00 1734+03 0.0£0.0
experiment-5 0.2+£0.1 00£00 21.6+15 0.0£0.0
experiment-1 0.0+£00 0.04+00 138+12 0.84+0.1

C3 experiment-2 104 +3.2 32+1.1 374+£58 55£2.1

experiment-3  3.0+0.6 0.1+0.0 126+2.0 1.1+£0.3
experiment-4  0.7£0.3 00=£00 683+81 12.3+3.3
experiment-5 0.1+0.1 0.0+£0.0 151+£6.1 03=£0.1

Table 4: ID and OOD test grid accuracy with SEM (Standard Error of the Mean) for the CompGen experiments
(C1-C3) across the models ResNet and Vanilla-TF.

35



Under review as a conference paper at ICLR 2026

Grid-TF PL-TF LLaDA
Setting Experiment ID (010))] ID (010))) ID 00D
experiment-1 43.5+16.9 0.0+ 0.0 658+ 1.0 03+ 02 277+ 14 0.0+ 0.0
experiment-2  47.2 + 18.6 00+ 0.0 828+ 0.6 00+ 0.0 670+ 04 0.0+ 0.0

“ experiment-3  56.7+ 7.7 0.0+ 00 8.7+ 1.3 00+ 00 333+ 25 0.0+ 0.0
experiment-4  91.7+ 0.3 0.0+ 00 89.0+ 1.5 00+ 0.0 64.0+29.1 0.0+ 0.0
experiment-5  59.7 £ 11.9 00+ 0.0 837+ 0.5 00+ 00 326+ 7.5 0.0+ 0.0
experiment-1 ~ 56.2+ 5.8 0.0£ 00 593+ 1.0 05+ 05 312+ 038 0.0+ 0.0

2 experiment-2 943+ 1.5 0.0+ 00 7614128 00+ 00 720+ 1.2 0.0+ 0.0
experiment-3  56.6 = 5.8 00+ 0.0 874+ 0.7 00+ 00 272+ 1.2 0.0+ 0.0
experiment-4 923+ 2.2 00+ 0.0 863+ 3.5 0.0+ 0.0 683+£226 0.0+ 0.0
experiment-5 429+ 9.6 00+ 0.0 8.1+ 1.0 0.0+ 00 322+ 3.6 0.0+ 0.0
experiment-1 ~ 40.5 +18.8 1.2+ 05 851+ 1.6 1.8+ 0.1 917+ 3.3 1.2+ 0.1

c3 experiment-2  68.14+29.5 150+ 7.5 79.0x 47 198+ 1.8 984+ 06 245% 1.1

experiment-3 514+ 1.2 26+ 04 775+ 3.2 26+ 03 827+ 59 5.5+ 0.8
experiment-4  89.7+ 8.9 220+ 47 8.3% 1.5 113+ 1.5 63.3+10.3 6.0+ 4.6
experiment-5  66.7 £ 14.1 06+ 0.3 829+ 3.2 05+ 00 843+ 99 1.8+ 0.7

Table 5: ID and OOD test grid accuracy with SEM (Standard Error of the Mean) for the CompGen experiments
(C1-C3) across the models Grid-TF, PL-TF, and LLaDA.

36



Under review as a conference paper at ICLR 2026

ResNet Vanilla-TF
Setting Experiment ID (010))) ID (010)))
experiment-1 100.0 £0.0 100.0 £0.0 100.0 £ 0.0 100.0 £ 0.0
G1 experiment-2 99.8+0.0 96.5+0.1 973+0.2 554+6.6
experiment-3  99.8+0.1 985+0.2 975+0.6 77.5+3.4
experiment-4 100.0£0.0 99.9+0.0 989+0.6 779+£35
experiment-5 99.9+0.1 99.3+0.1 98.24+0.3 83.7+t14
experiment-1 100.0£0.0 99.9+0.1 987+0.3 19+£19
G2 experiment-2 88.9+1.3 782+7.2 571415 02+£0.2
experiment-3  99.3+0.3 982+0.8 81.1H1.3 82+£54
experiment-4 100.0 £ 0.0 100.0£0.0 963+1.5 0.0£0.0
experiment-5 100.0£0.0 100.0£0.0 769+23 0.2+£0.2
experiment-1 100.0 £0.0 100.0£0.0 100.0+0.0 88.6+£9.6
G3 experiment-2 93.7+£0.5 00+£0.0 00+£0.0 0.0£0.0
experiment-3  96.2 £+ 1.9 0.1£0.1 2.3£0.3 0.1 £0.0
experiment-4 989+1.0 00+£0.0 93.0£22 0.0£0.0
experiment-5 99.4+0.0 353+27 926+14 23.8+3.3
experiment-1 100.0£0.0 23.7+£5.8 100.0£0.0 90.6£0.9
G4 experiment-2 30.7£1.2 0000 38%+29 0.0£0.0
experiment-3 58.8+29 0.1+£0.1 148+£1.0 0.0£0.0
experiment-4 95.2+0.6 64.1+£4.0 519+28 9.0+1.4
experiment-5 97.1+0.9 36.9+0.5 604H4.7 94+£23
experiment-1 100.0£0.0 9.1£20 97.7+£0.2 0.0£0.0
G5 experiment-2 983 +0.3 00+£0.0 91.9+£33 0.0£0.0
experiment-3 98.3+0.6 00=£00 32.7H45 0.0£0.0
experiment-4 100.0£0.0 0.0+£0.0 983+£09 0.0£0.0
experiment-5 99.7+0.2 06+£0.2 419484 0.0£0.0

Table 6: ID and OOD test grid accuracy with SEM (Standard Error of the Mean) as error bars for the EnvGen

experiments (G1-G5) across the models ResNet and Vanilla-TF.

37



Under review as a conference paper at ICLR 2026

Grid-TF PL-TF LLaDA
Setting Experiment ID (010))) ID (010))) ID 00D
experiment-1 100.0+ 0.0 100.0+ 0.0 100.0£ 0.0 999+ 0.1 1000+ 0.0 999+ 0.1
experiment-2 997+ 0.0 927+ 13 902+ 5.0 90.0+ 42 990+ 0.3 835+ 3.6

¢t experiment-3 99.8+ 0.1 95.3+ 04 84.1+ 1.7 820+ 14 99.1+ 0.1 842+ 2.6
experiment-4 992+ 0.1 8.5+ 25 967+ 1.3 725+ 96 996+ 00 889+ 14
experiment-5  97.8+ 0.5 739+ 49 980+ 0.8 829+ 22 998+ 0.1 941+ 1.5
experiment-1 100.0+ 0.0 905+ 49 1000+ 0.0 384+11.2 1000+ 0.0 606+ 6.6

G2 experiment-2  97.1+ 1.8 685+ 3.6 964+ 34 759+ 28 955+ 1.3 453+ 34
experiment-3 979+ 2.1 90.6+ 58 8.7+ 73 654+173 977+ 1.8 47.8+16.8
experiment-4  99.5+ 0.2 942+ 1.1 985+ 1.1 6724+ 50 99.7+ 0.1 89.7+ 1.2
experiment-5  95.6+ 1.1 4144+ 6.2 8224 41 277+ 61 996+ 0.2 68.7% 7.8
experiment-1 100.0+ 0.0 99.7+ 0.3 100.0£ 0.0 100.0+ 0.0 100.0+ 0.0 99.1+ 0.5

G3 experiment-2  33.4 £+ 33.2 0.0£ 00 900+ 1.1 00+ 00 188+185 0.0+ 0.0
experiment-3 975+ 0.3 0.1+ 0.0 83.1%+10.9 0.1+ 01 968+ 0.6 0.1+ 0.1
experiment-4  98.2+ 1.0 00+ 0.0 984+ 0.6 00+ 00 972+ 1.3 0.0+ 0.0
experiment-5 9574+ 1.4 33.14+ 24 883+ 58 359+ 31 992+ 05 34.7£ 038
experiment-1 100.0+ 0.0 794+ 9.2 1000+ 0.0 100.0+ 0.0 100.0+ 0.0 99.6+ 0.3

G4 experiment-2  79.6 = 5.2 00+ 0.0 875+ 14 0.1+ 0.1 2834282 0.0+ 0.0
experiment-3  61.8 4 30.9 0.0+ 00 8.0+ 0.7 193+ 42 8.5+ 3.6 09+ 0.2
experiment-4  97.0+ 1.0 1524+ 6.3 823+ 04 358+ 35 916+ 22 247+ 29
experiment-5  96.0 = 0.8 0.1+ 0.1 7804103 323+£10.0 983+ 0.7 347+ 6.7
experiment-1  100.0 = 0.0 1.1+ 05 1000+ 0.0 444+£127 999+ 0.1 504=+11.1

G5 experiment-2  77.8 £13.6 00+ 0.0 57.8+259 0.0+ 00 126+ 83 0.0+ 0.0

experiment-3  98.8+ 0.4 0.0£ 0.0 56.0£25.7 0.0+ 0.0 43.3+£10.3 0.0+ 0.0
experiment-4  100.0 = 0.0 0.0+ 00 981+ 0.8 00+ 00 950+ 14 0.0+ 0.0
experiment-5  98.3+ 0.5 0.0+ 00 916+ 04 00+ 00 993+ 04 0.0+ 0.0

Table 7: ID and OOD test grid accuracy with SEM (Standard Error of the Mean) for the EnvGen experiments
(G1-G5) across the models Grid-TF, PL-TF, and LLaDA.

38



	Introduction
	Related Work
	COGITAO Generator
	Generator Overview

	Experiments
	Experiment details
	Models
	Training
	Experiment Results

	Discussion
	Reproducibility Statement
	Sequential-COGITAO
	RGB Rendering of COGITAO
	Further Details on COGITAO Core Generator
	COGITAO Objects
	COGITAO Transformations
	COGITAO Generation Algorithm

	COGITAO Transformations Learnability
	Sample-Efficiency Experiments

	Experiment Details
	Models
	ResNet
	Vanilla TF
	Grid TF
	Pondering Looped TF (PL-TF)
	LLaDA

	Training Procedure
	ResNet
	Vanilla-TF & Grid-TF
	Pondering Looped TF
	LLaDA

	Results

