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ABSTRACT

While several techniques have been proposed to enhance the generalization of
deep learning models for classification problems, limited research has been con-
ducted on improving generalization for regression tasks. This is primarily due
to the continuous nature of regression labels, which makes it challenging to di-
rectly apply classification-based techniques to regression tasks. Conversely, exist-
ing regression methods overlook feature-level generalization and primarily focus
on data augmentation using linear interpolation, which may not be an effective
approach for synthesizing data for regression. In this paper, we introduce a novel
generalization method for regression tasks based on the metric learning assump-
tion that the distance between features and labels should be proportional. Unlike
previous approaches that solely consider the scale prediction of this proportion and
disregard its variation among samples, we argue that this proportion is not constant
and can be defined as a mapping function. Additionally, we propose minimizing
the error of this function and stabilizing its fluctuating behavior by smoothing
out its variations. The t-SNE visualization of the embedding space demonstrates
that our proposed loss function generates a more discriminative pattern with re-
duced variance. To enhance Out-of-Distribution (OOD) generalization, we lever-
age the characteristics of the spectral norm (i.e., the sub-multiplicativity of the
spectral norm of the feature matrix can be expressed as Frobenius norm of the
output), and align the maximum singular value of the feature matrices across dif-
ferent domains. Experimental results on the MPI3D benchmark dataset reveal
that aligning the spectral norms significantly improves the unstable performance
on OOD data. We conduct experiments on eight benchmark datasets for domain
generalization in regression, and our method consistently outperforms state-of-
the-art approaches in the majority of cases. Our code is available in an anonymous
repository, and it will be made publicly available upon acceptance of the paper:
https://github.com/workerasd/SCR.

1 INTRODUCTION

Continuous label prediction, known as regression, is widely utilized across various domains, includ-
ing computer vision (Zhang et al., 2015; Chen et al., 2016), medical testing (Gilsanz & Ratib, 2011;
Agatston et al., 1990), and financial analysis (Happersberger, 2021). Unlike classification, which
seeks to determine optimal decision boundaries, regression involves fitting outputs to a continuous
function (Lee & Landgrebe, 1993). Therefore, when addressing challenges such as uncertainty es-
timation (Hiillermeier & Waegeman, 2021) and generalization (Yao ef al., 2022) in regression, it is
crucial to consider the relationships between the labels.

While out-of-distribution generalization has received significant attention for classification (Wang
et al., 2022), regression generalization remains relatively underexplored. Particularly, the existing
representation learning based methods like IRM (Arjovsky et al., 2019) are primarily designed for
classification tasks. The augmentation-based approach of C-Mixup (Yao et al., 2022) has recently
been proposed to enhance generalization by mixing training pairs based on the probability associated
with label distances. While the aforementioned approaches are applied or can be adapted for regres-
sion generalization, their performance is limited because they do not account for the contrastive
interdependence between features and labels.

To tackle the aforementioned problem and with the aim of learning a generalizable representation
from the source domains, we introduce a contrastive learning loss specifically designed for regres-
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sion. This loss brings features with smaller label distances closer together in the learned representa-
tion, while simultaneously pushing features with larger label distances farther apart, ultimately help-
ing to separate representations learned from different domains and enhancing the generalization per-
formance in the target domain. Contrary to the assumption in Regression Metric Loss (RML) (Chao
et al., 2022) that the ratio between feature distance and label distance is constant, we propose that
this ratio varies and only equals a constant under certain ideal conditions. We argue that RML, by
overlooking the variability in this ratio, may obscure the pattern of feature distributions in certain
cases, as demonstrated in our experiments.

Specifically, motivated by augmentation-based techniques (Xu et al., 2021; Sicilia et al., 2023; Yao
et al., 2022) for domain generalization in regression and classification, we propose to generate new
distributions by mixing pairs of training data. For each distribution, we create a metric penalty to
identify discriminative patterns within the feature distribution. We align the real and synthesized
distributions by minimizing the difference between the spectral norms of their feature representa-
tions. With the property of spectral norm, the minimization keeps the output scale from standing
out, while lowering the upper bound of distribution discrepancy in regression.

The main contributions of this paper are three-folded:

1. Unlike prior methods that treat the feature-label distance proportion as fixed, we propose
to model this as a variable mapping function and address the instability arising from fluc-
tuations in this mapping.

2. To improve the OOD generalization, we expand the training distribution by generating
new samples Yao et al. (2022), and then align the real and synthesized distributions by
minimizing the difference between the spectral norm of their feature representations.

3. We conduct experiments on eight benchmark regression datasets and show that our method
outperforms the state-of-the-art in most cases. The t-SNE visualization of the feature em-
bedding illustrates the effectiveness and stability of our proposed metric loss.

2 RELATED WORK

2.1 METRIC LEARNING

Metric learning has been shown to be effective when related to methods that rely on distances
and similarities (Kulis et al., 2013). Traditionally, methods like PCA (Pearson, 1901) and KNN
are widely used in the area of machine learning. With the development of deep learning, net-
works (Schroff et al., 2015; Bromley et al., 1993) related to pair distances are designed to cor-
relate among samples while using shared weights in deep learning (Kaya & Bilge, 2019). Then,
prototype-based metric losses (Wen et al., 2016; Deng et al., 2019) were proposed based on con-
trastive motivation. In regression tasks, the metric learning loss has not been well-defined because
it is hard to build the connection between the metric distance and continuous labels. Recently, Chao
et al. (2022) proposed an assumption that there is a constant proportion between the feature distance
and the label distance. However, the method based on this assumption only considers the scale of
the feature matrix, ignoring fluctuations in the proportion map. To solve this issue, this paper as-
sumes that the proportion is a mapping function in the training process and proposes a metric loss
to smooth fluctuations.

2.2 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-distribution (OOD) generalization aims at generalizing the model from the training distri-
bution to an unseen distribution. Mostly, the methods can be divided into 3 parts (Wang et al.,
2022): data augmentation, representation learning, and training strategy. Data augmentation meth-
ods (Zhang et al., 2018; Zhou et al., 2021) utilize linear interpolation to fill the distribution gap,
and some methods (Xu et al., 2021; Sicilia et al., 2023) also generate a new distribution to enrich
the convex hull supported by the source distributions. Representation learning (Arjovsky et al.,
2019; Albuquerque et al., 2019) aims at generating distribution-invariant feature representations
from source distributions. Recently, methods like SWAD (Cha et al., 2021) proposed some novel
training and model selection strategies, significantly improving performance in OOD generalization.
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2.3 GENERALIZATION IN REGRESSION

Recent research targeting generalization in regression tasks is based on data augmentation in which
mixup pairs are selected based on the probability related to label distances (Yao et al., 2022; Yang
et al.,2021). Even though limited research has been proposed on this topic, some methods designed
for regression tasks can be transferred to generalization purposes. For instance, due to the function of
metric learning, the metric loss in regression (Chao et al., 2022; Gong et al., 2022) can be regarded as
an in-distribution generalization method. Also, distribution alignment methods in regression (Nejjar
et al., 2023; Chen et al., 2021) can be updated as OOD generalization methods. However, these
distribution alignment methods are not related to the label functions, which are supposed to be very
important in regression tasks.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Regression in deep learning. Let {(x;,7;)}, be the dataset with N samples, with z; € X being
the input sample ¢ € R™ and y; €  its corresponding label, and X and ) denoting the input space
and the continuous label space, respectively. In the training phase, the network learns a projection
function g : X — F and a regression function p : F — ). The projection function g transforms
the input data into the feature space, and the regression function p maps the compact feature repre-
sentation to the label space. The objective of the regressor is to bring the output prediction g; close
to the ground truth label y;. Ideally, the optimal predictor p is a fully connected layer that satisfies
yi = i = W fi + by, where f; = g(z;) is the extracted feature, W is the optimal weight, and by,
is the optimal bias.

Distribution discrepancy in regression. Cortes & Mohri (2011) defines a theory of learning from
different distributions in regression. Given the hypothesis & being a map from input space X to the
label space ), the discrepancy distance disc between two distributions P and @ is defined as:

: _ / o /
disc(P,Q) = maz [Lp(h,h) = Lo(H.h)|

Here, the hypothesis H is a subspace of the reproducing kernel Hilbert space (RKHS) H and
Lp(h',h) = Ex~p|L(h(x), ' (x))], with L being a MSE loss.

3.2 RELATIONAL CONTRASTIVE LEARNING

Prior works show that by leveraging the discrete labels to define positive and negative pairs in classi-
fication models, contrastive learning aims to learn feature representations with low intra-class vari-
ance and high inter-class separation, which can improve the generalization ability of the learned
model. However, this motivation is based on the fact that the labels are discrete. In regression
tasks, given an input-label pair of (z;,y;), Ve > 0, with input ;4. and its continuous label y; .,
it’s proven that p should be a continuous bijection (Chao et al., 2022), with homeomorphic label
and feature distributions. Intuitively, there is a positive relationship between the distances of labels
and distances of features - as the distance between two labels increases, the distance between their
corresponding features should also increase, meaning that when two examples have labels that are
farther apart, their representations in feature space should also be farther apart, and vice versa for
labels that are closer together.

Remark 1. d(ywyj) < d(y27yk) — d(fzafj) < d(flvfk)7V7’7J7k S RJ’_

Note that, for any bounded open subset in F, p should be convergent and bounded, which means p
should be uniformly continuous on any bounded open subset (Rudin, 1976). Then, Remark 1 should
be updated.

Remark 2. d(ylayj) < d(ytayk) <~ d(flafj) < d(ftafk)7Viaj7kat S R+

Remark 2 is not trivial. Since F is a compact space and label ) is continuous, then for Ve > 0, we
can find labels ', y”" with d(y’, ") = €. Then, 3§ = d(f', f"") > 0, such that Vd(f,, f») < 6, we
have d(yq, y») < €. So, Remark 2 keeps p uniformly continuous.
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In light of the discussion above, we argue that the distance between labels can not be ignored in the
regression tasks. In particular, we propose learning a feature-label proportional distance instead of
the traditional distance, e.g. Euclidean distance between features:

d'r‘(f'mf) = 7jv (l)

T d(yi ;)

Here, d(-,-) represents Euclidean distance and d,.(-,-) denotes the proportional distance induced
from d(-,-). In addition, d,.(-,-) should be a bounded distance, which can be illustrated by the
following theorem.

Theorem 1. Given any two data points (x;,y;) and (xj,y;), we have || f; — f;||, < HW*g1||p||yi -
Yjllp. Here, W, is the optimal weight of the fully connected layer. f;, f; are the features extracted
from x;, x; through model g, and || - ||,, is the norm under L,, space.

Proof 1. Given the optimal weight W, bias b, and data (z;,y;), (z;,Yy;), we have
yi = Wy fi+b5,y; = W) f; + by
where f;, f; are extracted features from x;, xj, respectively. Then,

1 = Filly = W5~ (yi = wi)llp < W™ lpllys — w5l

Theorem 1 gives the upper bound of d,.(-,-) which is |[W~!||5. In addition, when the equal sign
in Theorem 1 holds, it can explain the assumption of regression metric loss (Chao et al., 2022) that
the distance between the features should be proportional to the distance between their corresponding
labels. Specifically, Chao et al. (2022) uses a learnable parameter to restrain the proportion between
feature distance and label distance. However, according to Theorem 1, this proportion should be
related to the optimal weight W, and the equation may not hold when the labels are continuous.
Moreover, representing the proportion with a constant ignores its fluctuations and variances among
different samples. To alleviate this issue, we formulate this proportion as a mapping function and
minimize its standard deviation to constrain the distance between the features to be uniform along
the samples.

According to Theorem 1, the result of d..(+,) should be a bounded proportion map and can be a
constant function in some ideal situation. Hence, we minimize the standard deviation of d,.(-,-) to
acquire a flatter proportion map in a mini-batch. The loss function should be:

Ny Ny

Lot =\ 57— 2 D@ (i ) — ) @
b i j

Here, d, is a constant function equal to the mean of the relative distances in the batch and N, is
the batch size. Clearly, L4 constrains the predictor p as a Lipschitz continuous function satisfying
Remarks 1 and 2.

3.3 SPECTRAL ALIGNMENT OF DOMAINS

Existing works (Xu et al., 2021; 2023) in domain generalization have demonstrated that the diver-
sity and amount of training examples are positively correlated with the generalizability of a ma-
chine learning model. To expand the training set, we employ the data augmentation technique of c-
mixup (Yao et al., 2022) to generate additional samples from unseen distributions. However, without
imposing a constraint of domain invariance, the learned feature space might include domain-specific
information and thus become noisy (Liu et al., 2023). This could hinder obtaining the optimal gen-
eralization power of the model.

To impose domain invariance constraint, the existing work of Chen er al. (2021) suggests not to
minimize the difference between the Frobenius norm of feature representations of different domains,
since the Frobenius norm may cause unstable performance. We assume that this instability can
come from the fact that the Frobenius norm may encode the average of variances (i.e., singular
values) along all orthogonal feature projections. We argue that the transferability of the feature
representations mainly lies in aligning the highest variability directions corresponding to the largest
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singular values Chen et al. (2019). Therefore, in our formulation, the Frobenius norm is substituted
by the spectral norm, which only encodes the highest variability direction. We further show that the
difference between spectral norms of features can be related to domain discrepancy.

Notations As Cortes & Mohri (2011), the expected loss in regression is Lp(h',h) =
Eo~p|L(h(z), W (x))] with L being the MSE loss. We have the Lp(h,0) = = [|YA]%, with N

being the number of samples, and YE}; being the output with hypothesis A under distribution D. 0
represents the hypothesis mapping to zero element in ).

Theorem 2. Given two distributions P and Q), we have
. 1 A o
dise(P,Q) < - maz [IVAIE — V413
, where disc represents the difference between distributions and N denotes the number of the sam-
ples.
Proof 2. Generally speaking, we have
L(W,h)=L(h—Hh,0)
Since h, h' are in the subspace H of Hilbert Space H, we have h" = h — I/ € H. Then, we have
Vh'" € H, disc(P, Q) < maz |L(R",0) — L(h",0)]
//e

So, the proof'is concluded.

Theorem 2 shows the relation between the difference of feature representations and their distribution
discrepancy. To determine the relation between the norm of the feature matrix and the output scale!,

we consider the spectral norm of the feature space, || F'||2 = sup,,_ ”@“"IHQ If W; is a row vector of

the weight W in the fully connected layer, then ||V} ||la < ||V — bll2 + [bi| < || F|l2][Will2 + [bil,
Yh is the ¢-th vector of the output matrix Y™ and b; is the i-th value of the bias vector b in the fully
connected layer. If we define \;(F) = || F||2||Wil2 4 |bs], we will have ||Y"]| < || A(F)|2.

From the discussion above, the spectral norm is related to the upper bound of the output scale. So
aligning the spectral norms can prevent the output scales from differing greatly, which can also
align two distributions as per Theorem 2. In this case, we propose a loss based on singular value
decomposition (SVD) as follows:

Lgya = [maz(srear) — max(ssyn)|, 3)

where s,..q; and sy, are the set of the singular values of the feature matrices from the real and
synthesized distributions. The largest singular values of matrices are selected for calculating the
loss. Note that || F'||a = max(sF), where s is the set of the singular values of matrix F.

3.4 OVERALL OBJECTIVE FUNCTION

We combine our objectives for relational contrastive learning and spectral alignment, and optimize
them in an end-to-end training fashion. Formally, we have:

L= Lmse + aLstd + 5stda (4)

where « and [ represent hyper-parameters to balance the contribution of their corresponding loss
functions. We further optimize the supervised loss of Lmse, formulated as:

1 ‘? S
Lppse = 7(Z(p(g(x;jeal) _ real _|_ Z yn —y yn)2) 5)
i=1
with p(g(x7¢4)) and p(g(x;"")) being the prediction of input 27°* and the augmented sample x;*",
respectively. Here, y7°* and y;”" denote the ground truth label corresponding to 7°% and ;"

respectively .

'The Frobenius norm of the output ||Y}||r represents the scale of the output in distribution P. Unlike
classification, in regression, the target for each sample can be a vector. That means, if we have /N samples, each
with M dimensional target vectors, then YP isan N x M matrix.



Under review as a conference paper at ICLR 2024

4 EXPERIMENTAL RESULTS
4.1 IMPLEMENTATION DETAILS

Recent research (Kumar et al., 2022; Kirichenko et al., 2023) reveals a phenomenon that fine-tuning
the whole network on a new task can improve the in-distribution (ID) performance of the new task, at
the price of its out-of-distribution (OOD) accuracies. This is because fine-tuning the whole network
changes the feature space spanned by the training data of a new task, which distorts the pretrained
features. While linear probing can be an alternative solution to fine-tuning, due to its inability to
adapt the features to the downstream task, it may degenerate the performance on in-distribution
tasks. To mitigate this ID-OOD trade-off, motivated by the discussion in (Kumar et al., 2022;
Kirichenko et al., 2023), we freeze the top of the C-mixup (Yao et al., 2022) pretrained network
(excluding the last block and the linear layers) during the training process. Specifically, we only
fine-tune the bottom layer to preserve the low-level features from the pretrained model and unfreeze
the last block to avoid degeneracy in the in-distribution tasks. In the following part, we use FT as an
abbreviation for fine-tuning.

4.2 IN-DISTRIBUTION GENERALIZATION

Datasets and experimental settings. We evaluate the in-distribution (ID) generalization ability
of our method on two tabular datasets (i.e., Airfoil (Kooperberg, 1997), No2 (Kooperberg, 1997)),
and one time-series dataset (i.e., Exchange-Rate (Lai et al., 2018a)). Airfoil contains 1503 data of
aerodynamic and acoustic test results for different sizes of airfoil type NACAO0012, while No2 is a
collection of 500 data of air pollution related to traffic volume and meteorological variables. The
Exchange-Rate dataset is a time-series dataset with a length of 7588, consisting of daily exchange
rate data of eight countries from 1990 to 2016. Following Yao et al. (2022), we use a three-layer
linear layer network for Airfoil and No2, and LST-Attn (Lai et al., 2018b) for Exchange-rate. The
preprocessing method on each dataset is the same as Yao et al. (2022). We also provide the result
of RML (Chao et al., 2022) combined with our fine-tuning method in the experiments of ID gen-
eralization. Additionally, we have conducted comparisons with the Feature Distribution Smoothing
(FDS) method Yang et al. (2021), as well as with RankSim Gong et al. (2022). In it metric loss,
RankSim considers the discrepancy between the order of feature distances and the order of label
distances, rather than their proportion. Two evaluation metrics are considered for the performance
on in-distribution tasks, namely Root Mean Square Error (RMSE) and Mean Averaged Percentage
Error (MAPE). The results of our method and reproduced results are obtained by averaging three
runs with different random seeds.

Airfoil No2 Exchange-Rate
RMSE| MAPE (%) | RMSE] MAPE (%) | RMSE|  MAPE (%))

ERM+ 2.901 1.753 0.537 13.615 0.0236 2.423
ERM* 2.755 1.690 0.529 13.402 0.0257 2.613
k-Mixup+ (Greenewald er al., 2021) | 2.938 1.769 0.519 13.173 0.0236 2.403
Mixup? (Zhang et al., 2018) 3.730 2.327 0.528 13.534 0.0239 2.441
Mani-Mixupt (Verma et al., 2019) | 3.063 1.842 0.522 13.382 0.0242 2475
C-Mixup (Yao et al., 2022) 2717 1.610 0.509 12.998 0.0203 2.041
C-Mxiup* 2.736 1.639 0.516 13.069 0.0235 2415
FT 2.541 1.474 0.519 13.201 0.0233 2.387
FT+RML 2.560 1.496 0.537 13.801 0.0179 1.838
FT+RankSim 2.635 1.537 0.520 13.188 - -
FT+FDS 2.663 1.529 0.589 14.986 0.0235 2.397
FT+Lstq 2.586 1.501 0.510 12.879 0.0161 1.529
FT+Lsya 2.489 1.443 0.517 13.161 0.0233 2.391
FT+Lsta+Lsva 2.516 1.460 0.506 12.896 0.0176 1.691

Table 1: Comparison on in-distribution datasets. The bold number is the best result and the
underlined number is the second best result. The results of methods with 1 are reported by Yao
et al. (2022) and the results of methods with * are reproduced based on the source code of Yao et
al. (2022).

Performance comparison. We evaluate the ID generalization over three datasets and show the
performance in Table 1. As we can see from the table, our method outperforms all the comparison
methods in the ID generalization tasks. We find that the performance of L4 outperforms RML in
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most cases. As discussed above, RML only considers the scale of the proportion and ignores the
variance which may not be able to have a better performance than F'T' 4 L:4. In addition, since
the scales of the three datasets are not large enough, the pretrained model and our F'T" + Lg,q with
synthesized distribution can also contribute to the improvement of in-distribution generalization on
these datasets in some cases.

t-SNE visualization It is well known that traditional contrastive learning methods aim at learn-
ing compact feature clusters in the embedding space (Wen et al., 2016; Schroff et al., 2015). As
aforementioned in the section on method, such clustering motivation may not be suitable for the
regression tasks, but there are still connections between metric learning methods in regression and
classification. According to our discussion, L4 is trying to get a flatter d,., which means the feature
distribution should follow a discriminative pattern with less variance. To test the effect of contrastive
learning in regression on embedding space, we visualize the feature distribution without metric loss,
with RML, and with L4 on Figure 4. This visualization can strongly support our assumption and
discussion above. As Figure 4 shows, the feature distribution is more dispersed and the distribution
pattern is clearer with Lg.4. In addition, as we discussed, RML focuses on learning a scale of the
matrix feature and ignores the variance in the proportion. So, in some situations, the pattern will
be blurred with RML, which is the same as the one shown in Figure 4. Note that L4 maintains
the property of being Lipschitz continuous for the predictor, which enhances the continuity of the
feature distribution with less steep slopes. Figures 1c and 1d illustrate this difference: ulike Lgq,
RankSim Gong et al. (2022), which focuses solely on the distance between orders, does not pre-
serve Lipschitz continuity. This characteristic might contribute to Lg.4’s superior performance over
RankSim in most scenarios, as shown in Tables 1 and 2. It will also contribute to breakpoints in
Figure 1c, which supports this hypothesis. Additional visualizations on Lg,q and Lg;g + Lg,q are
provided in the Appendix.
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Figure 1: T-SNE visualization of the embedding space on DTI dataset. The visualizations from
left to right are (a) The baseline model that is fine-tuned to minimize MSE loss, (b) The model
that is fine-tuned to minimize both MSE and RML objectives, (c) the model that is finetuned to
minimize both MSE and RankSim, and (d) The model that is fine-tuned to minimize both MSE and
our developed Lg;4. The red points represent the features extracted from the train set and the blue
points represent the features extracted from the test set. It is obvious that the pattern of the feature
distribution is clearer with L ;4.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION

Datasets The out-of-distribution (OOD) generalization ability of models is evaluated over five
datasets, including three real-world datasets (i.e, Communities&Crimes (Redmond, 2009), Skill-
Craft (Mark Blair & Chen, 2013), Drug-targetInteractions (DTI) (Huang et al., 2021)), one synthetic
dataset (i.e., RCF-MNIST (Yao et al., 2022)), and one dataset contains both synthetic and real im-
ages (i.e., MPI3D Gondal et al. (2019)). The Crimes and SkillCraft are two tabular datasets. The
crimes dataset combines 1994 socio-economic data from three different sources and SkillCraft con-
tains 3,395 video game telemetry data of real-time strategy (RTS) games from eight leagues. DTI is
designed to predict the binding activity score between each small molecule and the corresponding
target protein by collecting 232,458 data on the drug and target protein information. RCF-MNIST is
a dataset with 60,000 images built on FashionMNIST (Xiao et al., 2017) with spurious correlations
between colours and rotation angles. MPI3D is a benchmark dataset of 1,036,800 images with three
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distributions to predict intrinsic factors. In our experiments, we only consider the prediction of the
rotation around a vertical and horizontal axis.

Experimental settings We evaluate our method on four datasets, namely RCF-MNIST, Crime,
SkillCraft, and DTI. We leverage a three-layer linear layer network on Community&Crime and
SkillCraft. Resnet18 (He ef al., 2016) is incorporated as the feature extractor for RCF-MNIST, and
we employ DeepDTA (Oztiirk et al., 2018) on DTL

Following the original paper of DTI (Huang et al., 2021), we evaluate the methods on R value. For
the other three datasets, the evaluation metric is Root Mean Square Error (RMSE). When evaluating
the out-of-distribution robustness, same as Yao et al. (2022), we report both average and worst-
domain performance for the OOD experiments. Also, all the experiments are run over 3 seeds.

Performance comparison. The performance of OOD robustness on the four datasets is shown in
Table 2. As the table shows, our method can achieve superior performance in most cases. For the
datasets with small sizes, the pretained model plays an important role in improving generalization,
since the scarcity of data is the key problem in these datasets. Also, the distribution alignment with
L, can enhance the OOD robustness as well. In addition, we find that L4 also has the ability
to generalize the spurious correlation as shown by the results of RCF-MNIST. We assume that the
spurious correlation increases the variance in the proportion, which can be generalized by Lq.

RCF-MNIST Crime SkillCraft DTI

RMSE] RMSE| RMSE| RT
Avg. Avg.  Worst | Avg.  Worst | Avg. Worst
ERMT 0.162 0.134  0.173 | 5.887 10.182 | 0.464 0.429
ERM* 0.160 0.135 0.172 | 6.151 7916 | 0475 0.438
IRM7 (Arjovsky et al., 2019) § 0.153 0.127 0.155 | 5937 7.849 | 0478 0.432
IB-IRM7 (Ahuja et al., 2021) 0.167 0.127 0.153 | 6.055 7.650 | 0.479 0.435
CORALT (Li et al., 2018) 0.163 0.133  0.166 | 6.353 8272 | 0483 0.432
GroupDROT (Sagawa et al., 2019) 0.232 0.138 0.168 | 6.155 8.131 | 0.442 0.407
mixupt (Zhang et al., 2018) 0.176 0.128 0.154 | 5.764 9.206 | 0.465 0.437
C-Mxiup* (Yao et al., 2022) 0.153 0.131 0.166 | 5.860  8.795 | 0.483  0.449
FT 0.146 0.129  0.156 | 5592 8358 | 0479 0.458
FT+RML 0.167 0.129  0.153 | 5496 8249 | 0480 0.446
FT+RankSim 0.239 0.135 0.164 | 5.324 7.577 | 0479 0.464
FT+FDS 0.147 0.129  0.160 | 5201  6.908 | 0.479  0.445
FT+Lsta 0.145 0.128 0.157 | 5592 8355 | 0491 0479
FT+Lsya 0.147 0.129  0.159 | 5591 8358 | 0479 0.444
FT+Lgtq+Lsvd 0.146 0.127 0.161 | 5592 8355 | 0484 0.469

Table 2: Comparison on out-of-distribution datasets. The bold number is the best result and the
underlined number is the second best. The results of methods with { are reported by Yao et al.
(2022). The results of methods with * are reproduced based on the source code of Yao et al. (2022).

Results on MPI3D dataset We analyze our method under the setting of domain generalization on
MPI3D dataset, which is a benchmark dataset for Domain Adaptation in Regression. We adapt a
domain generalization settings (Gulrajani & Lopez-Paz, 2021) by evaluating our method over three
generalization tasks on MPI3D dataset: rl, rc — t; t,rc — rl; rl, t — rc. We use the test sets of
source distributions as the validation sets for the model selection. All the experiments are run over
three random seeds, and we follow Cha et al. (2021) for random seed and hyper-parameter seed
selection. The evaluation metrics on this task are Mean Square Error (MSE) and Mean Absolute
Error (MAE). Since MPI3D is a large dataset containing 1,036,800 examples, we do not use our
fine-tuning method on this dataset and there is no frozen parameter during the training process.

The MSE and MAE results are shown in Table 3 and 4 respectively. The comparison between
Lgtq and RML (Chao et al., 2022) shows the advantage of regarding the proportion as a fluctuating
map instead of a constant. In addition, the performance also shows that the alignment with L,
can significantly improve the generalization ability in some cases. We also provide the results of
alignment with Nuclear-norm || - ||, and Frobenius norm || - || 7. With norm equivalence (Cai er al.,
2016), || - ll2 < || - llr < || - ||« » the spectral norm can give a tighter upper bound. This can explain
the reason that L, can get the best performance among them.
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MPI3D-MSE
rc rl t Avg.
ERM 0.08132 £9.6e=% 0.09819+ 6.2¢=°  0.007004+ 5.4¢=Y | 0.06217
C-Mixup 0.092264 4.2¢7°  0.104954+ 1.8e=*  0.014453+5.9¢% | 0.07055
RML 0.08596+ 5.6e7>  0.094124+ 6.3¢=5  0.020132+ 1.3¢% | 0.06676
Nuclear-norm | 0.09490+ 8.1e7®  0.09536+ 5.8¢=*  0.011940+ 3.1¢6 | 0.06740
F-norm 0.09565+1.2¢75  0.105484+2.4e72  0.0083184+4.0e=% | 0.06981
Lgtq 0.07984+ 8.2¢7°  0.09624+2.7¢~% 0.006996+ 1.1e=8 | 0.06103
Lgyqg 0.07942+ 4.9¢7>  0.08355+ 1.1e=*  0.006016+ 1.3¢~7 | 0.05633
Lgiqg + Lsya 0.07956+ 4.0e>  0.07885+2.0¢~® 0.006017+ 1.6e~7 | 0.05481

Table 3: Comparison on MPI3D dataset with the setting of domain generalization under the MSE

index. The bold number is the best result. The unseen domains are labeled on the top.

MPI3D-MAE
rc rl t Avg.
ERM 0.3163+3.3¢=® 03511+ 3.2¢ % 0.0922+ 6.7¢~7 | 0.2532
C-Mixup 0.3367+ 1.6e*  0.3666+ 5.5¢*  0.1296+ 5.1¢=6 | 0.2776
RML 0.33154+ 1.3e=* 0.3448+ 1.8¢75 0.1661+ 4.4¢=° | 0.2808
Nuclear-norm | 0.3270+ 2.4e=*  0.3313+ 1.7¢=2  0.1181+ 5.3¢° | 0.2588
F-norm 0.32264+4.6e=5  0.3411+6.2¢=3  0.0985+ 2.2¢75 | 0.2541
Lgia 03149+ 3.2¢=* 03478+ 1.3e=*  0.0919+ 9.6e=7 | 0.2515
Lsva 0.3016+ 9.8¢75  0.3225+5.0e=*  0.0856+ 1.1e=® | 0.2366
Lsta + Lsva 0.3058+ 1.0e~* 0.3137+ 1.1e=*  0.0858+ 1.4¢—% | 0.2351

Table 4: Comparison on MPI3D dataset with the setting of domain generalization under MAE index.
The bold number is the best result. The unseen domains are labeled on the top.

4.4 HYPER-PARAMETER SENSITIVITY ANALYSIS

We analyze the hyper-parameters on « and 3 in Equation 4. Since the value of L,,, . is always much
smaller than the value of L4 and L, 4, we hope the two hyper-parameters can be smaller than 1.
So, we analyze the trend of the performance of Ly and Lg,q with a and 3 in the range between
[le? 1e*]. Figure 2 shows the sensitivity of the hyper-parameters on in-distribution dataset No2
and out-of-distribution dataset DTI respectively. We find that the L4 is much more sensitive since
the value of L4 is usually much larger than L,,s. and L,4. More analysis of 5 on MPI3D dataset
is shown in the Appendix.

RMSE RMSE R

0.521

0.481
0.488

0.56 0.520

0.480
0519 0.480

0.52 0518

0.472
1e-9 1 1e3 1le-6 1e-9 1 1e3 1e-6 1le9

(a) @ on No2 (b) 8 on No2 (c) « on DTI (d) 8 on DTI

Figure 2: Hyper-parameter analysis on No2 and DTI datasets. For RMSE, the smaller value means
the better result. For R, the larger value means the better result.

5 CONCLUSION

This paper discusses two main objectives that are required to improve generalization in regression.
For In-Distribution generalization, we propose relational contrastive learning loss, based on the
assumption that the distance between features and their corresponding labels should be correlated.
We assume that the proportion between feature distance and label distance is a mapping function.
Through this loss, we show that the variance in the embedding space is decreased, resulting in more
discriminative patterns. To improve the transferability of the model on out-of-distribution data, we
propose to augment the original data and then align the synthesized and real distributions through
minimizing the difference between spectral norm of features.
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APPENDIX

A T-SNE VISUALIZATION

(a) FT+svd (b) FT+std+svd

Figure 3: T-SNE visualization of the embedding space on DTI dataset with L, 4 and Lg;g+Lgyq-

B HYPERPARAMETER ANALYSIS
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(a) MSE on MPI3D (b) MAE on MPI3D

Figure 4: Analysis of 5 on MPI3D when 1l is the test domain
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