MAML-CL: Edited Model-Agnostic Meta-Learning for Continual Learning

Anonymous ACL submission

Abstract

Recent continual learning (CL) models use meta learning to enable efficient cross-domain knowledge transfer and thus enhance sparse experience rehearsal (or called episodic memory replay). Whereas, the knowledge transfer can be constrained by its episodically occurrence, especially when the training sets are small or and the replay frequency is low (usually 1%). This paper studies the feasibility of solely using meta learning to address CL problems. In particular, we devise an optimization-based meta learning framework for CL in accordance with MAML, where query samples are edited for generalisation of learned knowledge. We conduct extensive experiments on text classification in a low resource CL setup, where we downsize the training set to its 10%. The experimental results demonstrate the superiority of our method in terms of stability, fast adaptation, memory efficiency and knowledge retention across various domains.

1 Introduction

Existing sequential learning poses a challenge. Weights or parameters constantly vary along with the change of probability distribution, in which important information from earlier tasks can be easily erased or overwritten by information from the latest tasks. Consequently, catastrophic forgetting (McCloskey and Cohen, 1989) occurs and harms performance on preceding tasks. To address catastrophic forgetting, CL aims to guarantee the stability of handling various tasks that have been learned, while showing plasticity on the novel domain via previously acquired knowledge.

Recently, meta learning has facilitated the work of CL, especially by Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) model. Existing CL models exploit meta learning as a means of augmenting CL techniques in lifelong NLP tasks. For instances, OML-ER (Holla et al., 2020) and PMR (Ho et al., 2021) utilise MAML framework to enhance sparse experience replay; Meta-MbPA (Wang et al., 2020) adapts generic representation to episodic memory in the inner loop of meta training and performs local adaptation. However, the performance of these methods depends heavily on the replay rate.

Whereas, we argue that meta learning is capable of addressing catastrophic forgetting independently. In a meta learning process, an inner loop algorithm models over a task, namely task-specific learning, while an outer loop algorithm governs the optimisation process of the inner loop algorithm, thereby realising the meta objective. In CL, limitation on shifting of weights or parameters to retain knowledge from prior tasks is one of the mainstream methods. In this case, we adapt meta learning framework to CL and propose a framework, namely MAML-CL. Specifically, we restrict the task-specific learning on current task by the outer loop algorithm, in which the outer objective is defined as the generalisation of prior tasks and the current task. By providing favourable query information in each learning episode, the model is hardly prone to catastrophic forgetting.

Recent literature (Ho et al., 2021) has manifested that the performance of existing CL models in addressing catastrophic forgetting severely depends on the order of training sets, which yields a hurdle, i.e., the deficiency of existing CL models can be easily masked or neglected in experiments. Therefore, we conduct extensive experiments on Yelp, AGNews and Amazon datasets (Zhang et al., 2015) and testify not only the model performance but also the stability of MAML-CL. Additionally, further analysis on MAML-CL exhibits its outstanding performance as a CL model.

We summarize our main contributions as:

- We propose MAML-CL that solely leverages meta learning to address CL problems by simply editing query information, without the need for any extra CL techniques.
• Under the same data selection scheme and same MAML framework, we prove that editing query information is more efficient than sparse experience rehearsal, a commonly used CL technique in lifelong NLP tasks.

• Under the same MAML framework, we prove that MAML-CL achieves sample efficiency and further optimises memory footprints.

• In a low resource setup, we prove the superiority of MAML-CL in terms of stability, fast adaptation, forgetting mitigation and memory efficiency.

2 Related Work

Existing CL methods can be categorised into two mainstreams, i.e., memory replay-based approaches (de Masson d’Autume et al., 2019; Chaudhry et al., 2019) and regularization-based approaches (Aljundi et al., 2018; Huang et al., 2021). In general, memory replay-based methods address catastrophic forgetting by revisiting old samples. Regularization-based methods employ gradients or parameters constraints to achieve generalization, thereby retaining knowledge. Due to the complexity of deep neural networks, memory replay-based approaches are broadly deemed as a plausible means for continual learning in NLP. Recently, meta learning has been introduced into CL models, considering its ability of fast adaptation and knowledge transfer. Recent works employ MAML to improve the initial parameters of the model, such that it can fast adapt to various domains with few learning samples (Holla et al., 2020; Ho et al., 2021). Meta-MbPA (Wang et al., 2020) performs local adaptation with episodic memory playback and uses meta learning to find a better initialization for local adaptation. Reptile (Nichol et al., 2018) is also leveraged in some CL models to regularize the objective of experience replay (Riemer et al., 2019) or meta updates parameters via augmented training set (Obamuyide and Vlachos, 2019). In addition, in the field of computer vision, Joseph and Balasubramanian (2020) uses preceding task-specific priors from meta distribution to replay previous parameters and consolidate the CL model. (Acar et al., 2021) introduces quadratic penalty to debias and regularise loss of a meta model, such that it could bypass the need to recall prior seen instances.

3 Problem Formulation

A CL model f with a learnable parameters θ over a parameters space Θ sequentially ingests a stream of labeled samples $\{(x, y)\}$ drawn from various data distributions over one pass. Concretely, it considers a sequence of K tasks $\{T_1, T_2, ..., T_K\}$. Given a task T_k and a ground truth label set L_k, the initial parameters in T_k, namely θ_k, is a parameters set that have been finetuned in the last task T_{k-1}, i.e., $\hat{\theta}_{k-1}$. Ideally, we expect a CL learner f: (1) to update parameters from θ_{k-1} to $\hat{\theta}_k$ for T_k, such that the loss \mathcal{L}_{T_k} on the set of labeled instances $\{(x_k, y_k)\}$ is minimal,

$$\hat{\theta}_k = \arg\min_{\theta_k \in \Theta} \mathcal{L}_{T_k}(\theta_k), \quad \text{where} \quad \theta_k = \hat{\theta}_{k-1}$$

(1)

(2) to perform well with the learned $\hat{\theta}_k$ on all preceding tasks $\{T_1, T_2, ..., T_{k-1}\}$ without the need of presenting all previously seen training data.

Assuming that all tasks are equally important, the objective is thereby minimising the expected risk of $|k|$ tasks that have seen so far, with respect to $\hat{\theta}_k$,

$$\min_{\theta_k} \sum_{i=1}^{k} \mathbb{E}_{\mathcal{T}_i}[\mathcal{L}_{\mathcal{T}_i}(\hat{\theta}_k)]$$

(2)

CL setup allows models to preserve a certain amount of training samples from previous tasks. Whereas, optimizing memory footprint is also regarded as one major research problem in CL. Therefore, we limit the memory budget of f to a constant size B. That is, at step k, we allow the learner f to only store samples from $\{T_1, T_2, ..., T_{k-1}\}$ with the amount less than or equals to B.

3.1 Online MAML

Meta learning is able to "think in advance", by learning an optimal initial state of an algorithm. Given a task \mathcal{T}, a set of initial parameters ϕ is over a parameters space Φ. We expect ϕ that facilitates the model to yield a low loss after m updates in \mathcal{T}. That is,

$$\min_{\phi} \mathbb{E}_{\mathcal{T}}[\mathcal{L}_{\mathcal{T}}(U^m_{\mathcal{T}}(\phi))]$$

(3)

where $U^m_{\mathcal{T}}$ is the update operation that performs m times gradient-based updates on parameters ϕ, using samples drawn from $p(\mathcal{T})$. In MAML, test samples that specified problems in our loop algorithm is referred to as query samples Q. While, the
training samples are known as support samples S. The meta objective is,

$$\min_{\phi} \mathbb{E}_T[\mathcal{L}_{T,Q}(U_{T,S}(\phi))] \quad (4)$$

In an online MAML setup, each episode contains m batches as the support set and each task has multiple episodes as multiple training iterations. Note that the initial parameters ϕ_k is $\tilde{\phi}_{k-1}$, i.e., the optimal initial state derived after learning T_{k-1}. In an inner loop optimization process, MAML performs m steps of SGD on parameters ϕ_k.

$$\phi_k^* = U_{T_k,S_k}(\phi_k)$$

$$= \phi_k - \alpha \nabla_{\phi_k} \mathcal{L}_{T_k}(\phi_k)$$

$$= \phi_k - \alpha \nabla_{\phi_k} \sum_{i=1}^{m} \mathcal{L}(f_{\phi_k}(S_k^i)) \quad (5)$$

where α denotes the step size as a hyperparameter. ϕ_k is finetuned by gradients of loss on the support set S_k for task-specific learning on T_k. Then, the updated ϕ_k^* are further optimised using the query set Q_k to achieve the meta objective.

3.2 Catastrophic Forgetting

Recent CL models, namely OML-ER (Holla et al., 2020) and PMR (Ho et al., 2021), exploit MAML framework as part of the solution for catastrophic forgetting, whereas the preceding tasks still suffer from performance degradation in sequential learning. We argue the reason for this phenomenon is they withhold query information that facilitates cross-domain knowledge transfer in each learning episode. Specifically, when memory replay is not performed, the query sample that OML-ER and PMR use is the training instances for the next episode from the same domain. Since their replay rates do not exceed 1%, the occurrence of cross-domain knowledge transfer is limited by episodic memory replay. Hereby, catastrophic forgetting still occurs in these recent CL models.

4 Edited MAML for Continual Learning

We propose a meta learning framework for CL, namely MAML-CL. In MAML-CL, query information is edited into the generalisation of all learned knowledge. In such a way, we enable knowledge transfer, fast adaptation and representation alignment, hereby alleviating catastrophic forgetting.

Algorithm 1: Meta Training

Input: Initial model parameters $\theta = \phi_{proto} \cup \phi_{pred}$, support set S, support set buffer size m, memory buffer M, inner-loop learning rate α, outer-loop learning rate β.

Output: Trained model parameters θ

```python
for i = 1, 2, ... do
    [Inner Loop]
    $S_i \leftarrow m$ batches from the stream
    $\mathcal{L}_{proto} \leftarrow$ MemoryModule($\phi_{proto}, S_i, M, n$)
    $\mathcal{L}_{inner} = \mathcal{L}_{proto} + \mathcal{L}_{CE}(\mathcal{L}_{inner}, \phi_{proto})$
    $\phi_{pred} = \text{SGD}(\mathcal{L}_{inner}, \phi_{proto}, \phi_{pred}, S_i, \alpha)$

    [Read Function]
    $Q_i \leftarrow \text{Sample}(M, all)$ or $Q_i \leftarrow \text{RandomSample}(M, m)$

    [Outer Loop]
    $J(\theta) = \mathcal{L}_{CE}(\phi_{pred}, \phi_{pred}, Q_i)$
    $\theta \leftarrow \text{Adam}(J(\theta), \beta)$
    if all the training data is seen then
        Stop Iteration
    end
end
```

Query Information Editing To retain consistency on objectives under MAML framework with CL, query information is pivotal. We expect query set Q_k to contain examples that could generalise the learned tasks, namely $T_1, ..., T_{k-1}, T_k$. To optimise memory footprint, efficient sample selection criteria should opt for representative samples for each task. Such that, $Q_k = \sum_{i=1}^{k} Q_{k,i}$ where $Q_{k,i}$ is a set of representative examples for T_i when learning T_k. The meta-objective with respect to ϕ_k is,

$$\min_{\phi_k} \mathbb{E}_T[\mathcal{L}_{T,Q_k}(U_{T_k,S_k}(\phi_k))]$$

$$= \min_{\phi_k} \sum_{i=1}^{k} \mathbb{E}_{T_i}[\mathcal{L}_{T_i,Q_{k,i}}(U_{T_k,S_k}(\phi_k))]$$

$$\approx \min_{\phi_k} \sum_{i=1}^{k} \mathbb{E}_{T_i}[\mathcal{L}_{T_i}(\tilde{\phi}_k)] \quad (6)$$

By simply editing the query information, the expected loss of MAML-CL is the same as that of CL. Whereas, the optimisation object is different, indicating MAML-CL learns in a meta-learning manner.

4.1 Knowledge Transfer

A CL model should acquire the ability of knowledge transfer between different tasks. While, transfer learning aims to ensure the learning process of a task can benefit from acquired knowledge from another domain. Thereby, transfer learning is sub-
254

253

255

252

249

247

245

244

243

241

239

238

237

236

\textbf{Algorithm 2:} MemoryModule($\phi_{\text{proto}}, S_t, M, n$)

\textbf{Input:} Initial model parameter ϕ_{proto}, support set S_t, memory buffer M, number of selected samples per class n.

\textbf{Output:} Prototypical network loss L_p, updated memory buffer M

\[\text{for} \text{ class } l \text{ in } S_t \text{ do}
\]

\[S_t \leftarrow \text{RandomSample}(S_t, N_S) \]

\[Q_t \leftarrow \text{RandomSample}(S_t \setminus S_t, N_Q) \]

\[c_t \leftarrow \frac{1}{|S_t|} \sum_{(x, y) \in S_t} h_{\phi_{\text{proto}}}(x, y) \]

\[\text{for} \ (x, y) \in Q_t \text{ do}
\]

\[L_p \leftarrow L_p + \frac{1}{|Q_t|} \sum_{(x, y) \in Q_t} \log \sum_{f} \exp(-d(h_{\phi_{\text{proto}}}(x, y), c_t)) \]

\[\text{end} \]

\[\text{Write or update } c_t \text{ in } M \]

\[\text{end} \]

\textbf{[Samples Selection]}

\[\text{for} \text{ class } l \text{ in } M \text{ do}
\]

\[X_t \leftarrow \text{KNN}(D_{\text{test}} \cup S_t, c_t, n) \]

\[\text{Updates } X_t \text{ in } M \]

\[\text{end} \]

\textbf{Algorithm 3:} Meta Inference

\textbf{Input:} Initial model parameters $\theta = \phi_{\text{proto}} \cup \phi_{\text{pred}}$, support set buffer size m, memory M, batch size b, inner-loop learning rate α, test set T.

\textbf{Output:} Predictions on the test set

\[S \leftarrow \text{Sample}(M, m \cdot b) \]

\[Q \leftarrow T \]

\[\phi_{\text{pred}} = \text{SGD}(\mathcal{L}, \phi_{\text{proto}}, \phi_{\text{pred}}, S, \alpha) \]

\[\text{Predict}(Q, \phi_{\text{proto}}, \phi_{\text{pred}}) \]

stantial in CL. \cite{Andrychowicz2016} state that the problem of transfer learning can be cast as one of the generalisation problems from the perspective of meta learning. Hereby, MAML-CL interprets outer loop optimization as a generalization problem on all tasks that have been learned, so as to realise cross-domain knowledge transfer. Concretely, the inner loop algorithm performs local adaptation, resulting in the updated parameters ϕ^*_k containing information that is heavily biased towards the distribution of the current domain $p(T_k)$. Then, meta objective requires this biased parameters to perform well in all learned tasks, which depicts a CL scenario as shown in Equation 1 and Equation 2. We argue that MAML-CL interprets CL into a form of meta learning and deems generalisation problem as meta objective, which further enables cross-domain knowledge transfer.

4.2 Fast Adaptation

The optimizer in MAML-CL is initial parameters ϕ_k, where the meta objective that contains generalised information for all learned tasks governs its optimisation process. MAML-CL aims to find an optimal initial state for all learned tasks. Particularly, the learning goal is to yield a minimal expected loss with few update steps on all learned tasks. It indicates MAML-CL can maintain good performance with its ability of fast adaptation given a small number of training examples.

4.3 Representation Alignments

In lifelong NLP tasks, representation alignment also requires our attention, especially when we use single-head neural networks. In MAML-CL, the outer loop algorithm learns discriminative information of $T_1, T_2, ..., T_k$ in the embedding space and controls the task-specific learning inside the inner loop, including representation learning of the current task T_k. To some extent, the outer loop algorithm transfers discriminative information of all learned tasks to the inner loop and guide representation learning of T_k. Hence, MAML-CL does not need any extra technique to achieve representation alignment.

5 Model

We incorporate the devised MAML framework with a prototypes-guided samples selection strategy \cite{Ho2021}. We employ FOMAML \cite{Finn2017} to reduce computational complexity.

The proposed CL model f_0 consists of a representation learning network (RLN), $h_{\phi_{\text{proto}}}$ with parameters ϕ_{proto}, and a prediction network (PN) ϕ_{pred} with parameters ϕ_{pred}. In particular, RLN trains a model $h_{\phi_{\text{proto}}}(\cdot) : X \rightarrow c \in \mathbb{R}^{D \times N}$ where c denotes a prototype with a D-dimensional representation and N is the number of classes. While, $\phi_{\text{pred}}(\cdot)$ learns a mapping : $c \rightarrow \mathcal{Y} \in \mathbb{R}^N$. We add a single-hidden-layer feed-forward neural network on top of a encoder to formulate a prototypical network and use a single linear layer as the prediction learning network.

5.1 Meta Training and Inference

The inner optimization performs task-specific funetuning only on parameters ϕ_{pred} in PN, where inner loop loss L_{inner} contains cross entropy loss L_{CE} and prototypical network loss L_{proto}. The inner loop algorithm performs local adaptation of the current task T_k. The outer loop regularizes RLN and PN over all learned tasks, $T_1, ..., T_{k-1}, T_k$, by meta learning model parameters θ and using stored
that have been learned. Then, these newly-selected representatives samples that can generalize all tasks.

\[\mathcal{D} \]

Euclidean distance \(d(\cdot) \) from prototypes in a ranking-based manner, and deems these examples as representatives samples that can generalize all tasks that have been learned. Then, these newly-selected instances are saved into Memory \(\mathcal{M} \) until used as query examples or updated in the next learning episodes. Note that prototypes are also dynamically updated in each learning iteration. Following the memory constraint in the CL setup, we limit the number of stored samples for each class (i.e., 5 in this paper). We propose two read functions: (1) read all from memory; (2) read randomly from memory. This data selection process is shown in Algorithm 2.

6 Experiments

6.1 Datasets

Following prior work on class-incremental learning, we leverage the benchmark datasets introduced by de Masson d’Autume et al. (2019), where each dataset contains 115,000 training samples and 7,600 test samples. Each dataset is seen as a separate supervised learning task. We use three datasets (Zhang et al., 2015) from two different domains, i.e., AGNews (news classification; 4 classes), Yelp (sentiment analysis; 5 classes) and Amazon (sentiment analysis; 5 classes). Hereby, we can observe CL models performance between tasks from the same or different domains.

6.2 Setup

Considering the real-world scenario, we use a low resource CL setup where we reduce the size of the training set to its 10%, i.e., 11,500 per task and 34,500 in total. We further limit our memory budget to a constant size \(B = 45 \), i.e., storing up to 5 samples per class. The encoder for all models is a pretrained ALBERT-Base-v2 (Lan et al., 2020) from Hugging Face Transformers, where the input sequence length is pruned to 200. The setup for models using MAML framework is as follows.

<table>
<thead>
<tr>
<th>Method</th>
<th>Order 1</th>
<th>Order 2</th>
<th>Order 3</th>
<th>Order 4</th>
<th>Order 5</th>
<th>Order 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAML</td>
<td>34.58 ± 6.98</td>
<td>38.80 ± 11.19</td>
<td>32.36 ± 16.81</td>
<td>29.32 ± 14.23</td>
<td>22.55 ± 12.93</td>
<td>27.96 ± 3.88</td>
</tr>
<tr>
<td>Replay</td>
<td>42.52 ± 3.87</td>
<td>29.81 ± 0.19</td>
<td>29.64 ± 0.43</td>
<td>46.50 ± 5.31</td>
<td>40.43 ± 2.29</td>
<td>38.71 ± 2.26</td>
</tr>
<tr>
<td>AGEM</td>
<td>38.36 ± 3.12</td>
<td>29.84 ± 0.14</td>
<td>29.86 ± 0.18</td>
<td>40.35 ± 1.15</td>
<td>37.34 ± 1.39</td>
<td>37.82 ± 1.16</td>
</tr>
<tr>
<td>OML-ER</td>
<td>47.80 ± 3.41</td>
<td>25.43 ± 2.71</td>
<td>31.41 ± 4.19</td>
<td>40.76 ± 9.27</td>
<td>48.52 ± 5.58</td>
<td>39.20 ± 12.16</td>
</tr>
<tr>
<td>OML-ER\textsubscript{limit}</td>
<td>36.78 ± 8.61</td>
<td>31.42 ± 4.78</td>
<td>37.19 ± 11.70</td>
<td>44.54 ± 4.38</td>
<td>39.19 ± 4.72</td>
<td>42.25 ± 10.43</td>
</tr>
<tr>
<td>PMR</td>
<td>26.89 ± 3.51</td>
<td>26.44 ± 1.68</td>
<td>21.57 ± 3.58</td>
<td>26.33 ± 1.44</td>
<td>19.84 ± 5.53</td>
<td>25.20 ± 3.61</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{all}</td>
<td>56.25 ± 2.03</td>
<td>53.59 ± 2.79</td>
<td>49.41 ± 4.59</td>
<td>54.23 ± 3.15</td>
<td>47.93 ± 3.70</td>
<td>45.56 ± 3.71</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{random}</td>
<td>52.09 ± 0.23</td>
<td>47.06 ± 5.74</td>
<td>41.44 ± 2.27</td>
<td>49.04 ± 8.55</td>
<td>42.98 ± 9.20</td>
<td>39.09 ± 1.85</td>
</tr>
</tbody>
</table>

Table 1: Performance Using Different Training Set Permutation in Terms of Accuracy.

<table>
<thead>
<tr>
<th>Memory Size</th>
<th>Method</th>
<th>Overall Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Seen Data</td>
<td>MAML</td>
<td>30.93 ± 5.64</td>
</tr>
<tr>
<td></td>
<td>Replay</td>
<td>37.94 ± 6.87</td>
</tr>
<tr>
<td></td>
<td>AGEM</td>
<td>35.60 ± 4.57</td>
</tr>
<tr>
<td></td>
<td>OML-ER</td>
<td>38.85 ± 9.09</td>
</tr>
<tr>
<td></td>
<td>OML-ER\textsubscript{limit}</td>
<td>36.90 ± 3.73</td>
</tr>
<tr>
<td></td>
<td>PMR</td>
<td>24.38 ± 2.95</td>
</tr>
<tr>
<td>45 Samples</td>
<td>MAML-CL\textsubscript{all}</td>
<td>51.16 ± 4.15</td>
</tr>
<tr>
<td></td>
<td>MAML-CL\textsubscript{random}</td>
<td>45.28 ± 4.94</td>
</tr>
</tbody>
</table>

Table 2: Overall Performance in Terms of Accuracy.

samples from \(D_M \) as query samples. Note that \(\theta = \phi\text{\textsubscript{proto}} \cup \phi\text{\textsubscript{pred}} \). The meta training and inference process are shown in Algorithm 1 and Algorithm 3 respectively.

5.2 Query information Editing

To optimize memory footprint and achieve sample efficiency, we expect the samples saved in \(D_M \) to be representative examples for each seen class.

Such that, when they serve as the query set \(Q_k \), the query information contains the generalisation information of all seen tasks. In this paper, we apply prototypical network (Snell et al., 2017) to generate prototypes and use prototypes as selection criteria.

Prototypes-guided Sample Selection Schemes

Akin to Prototypes-Guided Memory Replay Network (Ho et al., 2021), we use the same data selection scheme. Each prototype stands for the feature representation of a specified problem (e.g., a class for a classification task). The model chooses a specific amount of examples from the current support set \(S_i \) and Memory \(\mathcal{M} \) based on the shortest Euclidean distance \(d(\cdot) \) from prototypes in a ranking-based manner, and deems these examples as representatives samples that can generalize all tasks that have been learned. Then, these newly-selected

\[\mathcal{D} \]
The inner loop optimizer is SGD with learning rate, $\alpha = 3e^{-3}$. The outer loop optimizer is Adam with learning rate, $\beta = 3e^{-5}$. The baselines without a prototypical network utilise a random sampler with batch size, $b = 25$. The models with a prototypical network use a sampler that randomly selects 5 training samples from each class for each epoch without replacement, where $b = 20$ for AGNews and $b = 25$ for Yelp and Amazon.

All models are executed on Linux platform with 1 Nvidia Tesla A100 GPU and 40 GB of RAM. All experiments are performed using PyTorch (Paszke et al., 2019).

6.3 Baselines

We use the following CL models as baselines:

- **MAML** (Finn et al., 2017) refers to FOMAML model without extra means of forgetting mitigation in our evaluations.
- **Replay** performs one gradient update on randomly selected samples from memory. Replay model utilises the sparse experience replay strategy with 1% replay rate.
- **A-GEM** (Chaudhry et al., 2019) imposes one gradient constraint to restrict current task gradient projection regions. A-GEM randomly reads samples and decides the direction of optimization constraints.
- **OML-ER** (Holla et al., 2020) is a recent CL model, which uses FOMAML framework with episodic experience replay. OML-ER writes all seen samples into memory and randomly chooses samples for episodic replay. Note that OML-ER refers to OML-ER with limited memory budgets.
- **PMR** (Ho et al., 2021) uses the same samples selection scheme as MAML-CL for episodic memory replay with less than 1% replay rate under FOMAML framework.

6.4 Results

We evaluate model performance in terms of test set accuracy. Specifically, we test model performance for each task after completing the learning of the last task. Note that the test set has the same permutation of tasks as the training set. Each result is the average accuracy of the 3 best results in 5 permutations of tasks as the training set. Each result is the average accuracy of the 3 best results in 5 runs with standard deviation. Table 1 presents the evaluation results of all baselines and the proposed models in all 6 different training set sequences. The orders of training sets are shown in Appendix A.2. Table 2 shows the overall performance and standard deviations across all training set sequences.

As shown in Table 1 and Table 2, the proposed model, MAML-CL$_{all}$ yields the highest average accuracy in almost all training set order. Its overall performance surpasses the strong baseline, namely OML-ER, by more than 12%, with only 45 samples occupied in memory. Its standard deviations are all less than 5%, which indicates strong stability of performance in both random seeds and

<table>
<thead>
<tr>
<th>Method</th>
<th>Yelp</th>
<th>AGNews</th>
<th>Amazon</th>
<th>Average Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML-ER$_{limit}$</td>
<td>39.26 (-12.27)</td>
<td>13.04 (-20.44)</td>
<td>40.74 (-11.43)</td>
<td>31.02 (-14.71)</td>
</tr>
<tr>
<td>PMR</td>
<td>41.61 (-13.02)</td>
<td>0.19 (-66.62)</td>
<td>38.87 (-18.08)</td>
<td>26.89 (-32.57)</td>
</tr>
<tr>
<td>MAML-CL$_{all}$</td>
<td>44.73 (-8.99)</td>
<td>79.54 (+5.28)</td>
<td>44.48 (-10.47)</td>
<td>56.25 (-4.73)</td>
</tr>
<tr>
<td>MAML-CL$_{random}$</td>
<td>41.29 (-9.92)</td>
<td>74.32 (-0.77)</td>
<td>40.65 (-10.46)</td>
<td>52.09 (-7.05)</td>
</tr>
</tbody>
</table>

Table 3: Per Task and Overall Performance Using Training Set Order 1, Order 3 and Order 5. Note that the values in brackets represent the accuracy difference, where “+” indicates an increase in accuracy after downsizing training set and vice versa.
all training set permutations. The other proposed method, MAML-CL\textsubscript{random} also exhibits good results across all permutations of the training set, with the second-highest average accuracy. But its standard deviations vary from 0.23% to 9.20%, implying relatively weak stability. Remarkably, the two proposed models even outperform baselines that have unlimited memory budgets. In addition, we surprisingly noted that PMR underperforms other models. With a replay rate below 1%, PMR is inadequate to address catastrophic forgetting in sequential learning given fewer training instances. The reason might be an immature prototypical network gives inaccurate prototypical information and negatively impacts model performance under the episodic memory replay setting. But our models do not have the same problem with the same prototypical network. It manifests the benefit of applying query information editing under MAML framework in CL with insufficient training instances. We report more evaluation results in Appendix A.3, including per-task performance, performance using five different datasets from four domains.

6.5 Analysis

Fast Adaptation

Table 3 shows per task and overall performance in Order 1, Order 3 and Order 5 respectively \(^2\). To evaluate in terms of fast adaptation, we compare the model performance of ingesting full and downsized training sets. The accuracy differences are given in brackets. PMR shows its vulnerability of model performance with insufficient training instances. The accuracy is even down to 0 for some preceding tasks. OML-ER\textsubscript{limit} also exhibits a large decline in performance. Even though its performance in the latest tasks are competitive, OML-ER\textsubscript{limit} does not perform well in all earlier tasks, suggesting its lack of ability to ease forgetting. MAML-CL\textsubscript{all} yields the best performance on almost all tasks by a relatively small degradation. Intriguingly, MAML-CL\textsubscript{all} can even improve the accuracy of some preceding tasks given fewer training data. Especially, MAML-CL\textsubscript{all} rises accuracy of preceding tasks to more than 10% in Order 3 and Order 5, indicating its impressive ability of fast adaptation. Similarly, MAML-CL\textsubscript{random} also poses a small degradation of performance or improvements in previously seen tasks. It testifies the superior of the proposed framework, MAML-CL in terms of fast adaptation and forgetting mitigation. The reason behind this might be immature prototypical network solves the over-fitting problem (i.e., over-fitting towards training samples), thereby more generalised samples are selected as query samples.

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory Size</th>
<th>Yelp</th>
<th>AGNews</th>
<th>Amazon</th>
<th>Average Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OML-ER</td>
<td></td>
<td>49.81</td>
<td>19.38</td>
<td>49.06</td>
<td>39.4</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{all}</td>
<td>27</td>
<td>44.04</td>
<td>67.58</td>
<td>43.75</td>
<td>51.79</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{random}</td>
<td>36.16</td>
<td>63.57</td>
<td>35.10</td>
<td></td>
<td>44.94</td>
</tr>
<tr>
<td>OML-ER</td>
<td></td>
<td>47.96</td>
<td>13.05</td>
<td>49.31</td>
<td>36.78</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{all}</td>
<td>45</td>
<td>44.73</td>
<td>79.54</td>
<td>44.48</td>
<td>56.25</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{random}</td>
<td>41.29</td>
<td>74.32</td>
<td>40.65</td>
<td></td>
<td>52.09</td>
</tr>
<tr>
<td>OML-ER</td>
<td></td>
<td>52.67</td>
<td>24.63</td>
<td>50.25</td>
<td>42.51</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{all}</td>
<td>63</td>
<td>55.05</td>
<td>86.21</td>
<td>52.21</td>
<td>64.59</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{random}</td>
<td>40.89</td>
<td>69.33</td>
<td>39.25</td>
<td></td>
<td>49.83</td>
</tr>
<tr>
<td>OML-ER</td>
<td></td>
<td>46.83</td>
<td>49.24</td>
<td>47.32</td>
<td>47.80</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{all}</td>
<td>All Seen Data</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MAML-CL\textsubscript{random}</td>
<td>All Seen Data</td>
<td>55.05</td>
<td>86.21</td>
<td>52.21</td>
<td>64.59</td>
</tr>
</tbody>
</table>

Table 4: Per Task and Overall Performance Using Various Memory Limitations.

\(^2\)Similar results found between Order 1 and Order 4, Order 2 and Order 3, and Order 5 and Order 6.
<table>
<thead>
<tr>
<th>Method</th>
<th>Technique</th>
<th>Yelp</th>
<th>AGNews</th>
<th>Amazon</th>
<th>Average Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMR</td>
<td>Episodic Memory Replay</td>
<td>41.61</td>
<td>0.19</td>
<td>38.87</td>
<td>26.89</td>
</tr>
<tr>
<td>MAML-CL<sub>all</sub></td>
<td>Query Information Editing</td>
<td>44.73</td>
<td>79.54</td>
<td>44.48</td>
<td>56.25</td>
</tr>
<tr>
<td>MAML-CL<sub>random</sub></td>
<td>Episodic Memory Replay</td>
<td>46.83</td>
<td>49.24</td>
<td>47.32</td>
<td>47.80</td>
</tr>
<tr>
<td></td>
<td>Query Information Editing</td>
<td>55.05</td>
<td>86.21</td>
<td>52.21</td>
<td>64.59</td>
</tr>
</tbody>
</table>

Table 5: Comparison Between Episodic Memory Replay and Query Information Editing

<table>
<thead>
<tr>
<th>Sample Selection Method</th>
<th>Yelp</th>
<th>AGNews</th>
<th>Amazon</th>
<th>Average Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>20.98</td>
<td>0.0</td>
<td>21.72</td>
<td>14.23</td>
</tr>
<tr>
<td>Prototypes-Guided</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity<sup>†</sup></td>
<td>41.29</td>
<td>74.32</td>
<td>40.65</td>
<td>52.09</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>28.8</td>
<td>63.43</td>
<td>28.77</td>
<td>40.33</td>
</tr>
</tbody>
</table>

Table 6: Per Task and Overall Performance Using Various Sample Selection Methods. † The proposed method.

to its outstanding ability to retain knowledge at different memory sizes, MAML-CL model achieves memory efficiency.

Effect of Query Information Editing MAML-CL_{all} has the same prototypes-guided sample selection scheme and the same read mechanisms (i.e., read all samples from memory) as PMR. We compare these two models to analyze the effect of query information editing and memory replay. Table 5 illustrates that MAML-CL_{all} surpasses PMR in all tasks. In particular, MAML-CL_{all} outperforms PMR in terms of average accuracy by nearly 30%. As for the ability of knowledge retention from various domains, the performance of MAML-CL_{all} on AGNews exceeds that of PMR by more than 75%. Additionally, we replace the prototypes-guided selection strategy with OML-ER's selection strategy in MAML-CL_{random} to maintain the consistency of read and write mechanisms between these two methods. Table 5 displays that MAML-CL_{random} still manage to outperform OML-ER in all tasks and overall performance, showing a strong continual learning ability for various tasks. It is obvious that MAML-CL successfully beats the most widely-used CL techniques, namely episodic memory replay. The proposed MAML-CL framework exhibits its superiority of alleviating catastrophic forgetting by simply editing query information given a small number of training instances.

Effect of Prototypes-Guided Sample Selection For the effect of the proposed sample selection criteria, we evaluate MAML-CL using different strategies, given limited memory size (i.e., \(B = 45 \)). We consider two main samples selection strategies, i.e., random selection and prototypes-guided selection. As for the prototypes-guided sample selection, we further deliberate two popular paradigms in active learning, namely the diversity-based method and the uncertainty-based method. We consider selecting representative samples of all classes as a diversity-based method. Opting for samples that are far away from prototypes is an uncertainty-based method. Table 6 displays that prototypes-guided selection methods clearly outperform random selection, especially diversity-based criteria.

Random selection is seen as a simple but efficient sample selection strategy in memory replay (de Masson d’Autume et al., 2019; Wang et al., 2020). But, we find that random selection is incompetent for query information editing of MAML-CL, when training resources are limited. Arguably, not enough training iterations for the random selection strategy leads to inadequate generalisation, thereby prone to forgetting. Furthermore, the uncertainty-based method is inferior to the diversity-based method. It proves that the proposed selection strategy is competent to solve CL problems. We leave the investigation of the effect of more different data selection criteria on MAML-CL to future work.

7 Conclusion MAML-CL aims to exploit MAML's potential of solving CL problems, by deeming the generalisation of all seen tasks as query information. In this paper, we edit query information following prototypes-guided sample selection criteria. Given limited training resources, MAML-CL shows its robustness in terms of stability, fast adaptation, memory efficiency and knowledge retention across various domains. A future research direction can be exploring and redesigning other meta learning frameworks that are conducive to CL.
References

A Appendix

A.1 Comparison of Continual Learning, MAML and MAML-CL

As shown in Table 7, we illustrate the differences and similarities of CL, MAML and MAML-CL, to better explain how MAML-CL augments knowledge transfer and fast adaptation across various domains so as to prevent catastrophic forgetting in Section 4.

A.2 Different Training Set sequences for Evaluations

For model stability evaluation, we use three datasets, i.e., Yelp, AGNews and Amazon and form a total of 6 different training set sequences as follows:

1. Yelp → AGNews → Amazon
2. Yelp → Amazon → AGNews
3. Amazon → Yelp → AGNews
4. Amazon → AGNews → Yelp
5. AGNews → Yelp → Amazon
6. AGNews → Amazon → Yelp

A.3 Extra Evaluations Using Downsized Training set

We conduct extra evaluations on the proposed models using the downsize training set.

Per Task Performance Figure 1 demonstrates that the proposed methods outstanding ability to retain knowledge across various domains. In particular, both MAML-CL_all and MAML-CL_random only store 45 samples in memory and significantly outperform the strong baseline, OML-ER, where OML-ER writes all training data into memory. It suggests that MAML-CL models achieve samples efficiency. Clearly, MAML-CL_all and MAML-CL_random exhibit impressive performance in terms of stability, forgetting mitigation and memory efficiency across various domains.

Performance Using Five Different Datasets From Four Domains We further examine our models using five different datasets (Zhang et al., 2015) from four domains, i.e., AGNews (news classification; 4 classes), Yelp (sentiment analysis; 5 classes), Amazon (sentiment analysis; 5
Paradigm Continual Learning MAML MAML-CL

Initial Parameters	\(\theta_k \)	\(\phi_k \)	\(\phi_k \)
Finetuned Parameters	\(\tilde{\theta}_k \)	\(\tilde{\phi}_k \)	\(\tilde{\phi}_k \)
Expected Loss	\(\sum_{i=1}^{k} E_T [L_T(\tilde{\theta}_k)] \)	\(E_T [L_T(\tilde{\phi}_k)] \)	\(\sum_{i=1}^{k} E_T [L_T(\tilde{\phi}_k)] \)
Optimizee	\(\theta_k \)	\(\phi_k \)	\(\phi_k \)
Optimization Direction	\(\tilde{\theta}_k - \theta_k \)	\(\tilde{\phi}_k - \phi_k \)	\(\tilde{\phi}_k - \phi_k \)
Transferred Parameters	\(\tilde{\theta}_k \)	\(\tilde{\phi}_k \)	\(\tilde{\phi}_k \)

Table 7: Comparison of Continual Learning, MAML and MAML-CL.

Figure 1: Per Task and Overall Performance Using Various Training Set Permutations (Downsized Training set).

Table 8: The Orders for Five Different Training Sets

<table>
<thead>
<tr>
<th>No.</th>
<th>Datasets Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yelp → AGNews → DBpedia → Amazon → Yahoo</td>
</tr>
<tr>
<td>2</td>
<td>DBpedia → Yahoo → AGNews → Amazon → Yelp</td>
</tr>
<tr>
<td>3</td>
<td>Yelp → Yahoo → Amazon → DBpedia → AGNews</td>
</tr>
<tr>
<td>4</td>
<td>AGNews → Yelp → Amazon → Yahoo → DBpedia</td>
</tr>
</tbody>
</table>

Table 8: The Orders for Five Different Training Sets

classes), DBpedia (Wikipedia article classification; 14 classes) and Yahoo (questions and answers categorization; 10 classes). The input set sequences follows the prior work (de Masson d’Autume et al., 2019) as shown in Table 8. The encoder for all models is BERT BASE (Devlin et al., 2019), in which we prune the input sequence length to 200. The mini-batch size is 16. The experimental results are shown in Table 9 and Table 10.

Memory Insight To further analyze the effect of Prototypes-Guided Sample Selection, we visualize unigram distribution change inside memory in three different learning iterations, i.e., Episode 50, Episode 150 and Episode 250. In Figure 2, the y-axis presents the counts of each unigram. While the x-axis presents the unigram index. It shows that the saved samples provide a good diversity of information. Consequently, we testify that the prototypical-guided selection strategy enables samples efficiency, thereby optimizing memory footprints. Note that we perform this evaluation using training set permutation follows Order 1.

A.4 Evaluations Using Full Training set

We further conduct evaluations on the proposed models given the full training set.

Overall Performance Table 11 shows performance using different training set permutations given the full training set. The proposed model, MAML-CL_{all} yields the highest average accuracy in Order 1, Order 2, Order 4 and overall performance. Its standard deviation is relatively small, compared to two strong baselines, OML-ER_{limit} and PMR. While, the other proposed method,
Table 9: Overall Performance Using Five Training Set in Terms of Accuracy. Note that the input sequence sequences follow the datasets permutations in Table 8.

<table>
<thead>
<tr>
<th>Model</th>
<th>Memory Size</th>
<th>Order 1</th>
<th>Order 2</th>
<th>Order 3</th>
<th>Order 4</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAML</td>
<td>0 Seen Data</td>
<td>6.54</td>
<td>12.48</td>
<td>12.13</td>
<td>13.30</td>
<td>11.11</td>
</tr>
<tr>
<td>AGEM</td>
<td>100% Seen Data</td>
<td>23.93</td>
<td>30.14</td>
<td>26.81</td>
<td>23.35</td>
<td>26.06</td>
</tr>
<tr>
<td>OML-ER</td>
<td>0.29% Seen Data</td>
<td>34.19</td>
<td>49.54</td>
<td>33.59</td>
<td>27.70</td>
<td>36.25</td>
</tr>
<tr>
<td>MAML-CL\text{random}</td>
<td>0.29% Seen Data</td>
<td>50.54</td>
<td>50.70</td>
<td>42.41</td>
<td>20.28</td>
<td>43.28</td>
</tr>
</tbody>
</table>

Table 10: Per Task Performance Using Five Training Set in Terms of Accuracy.

<table>
<thead>
<tr>
<th>Method</th>
<th>Order 1</th>
<th>Order 2</th>
<th>Order 3</th>
<th>Order 4</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAML</td>
<td>Yelp</td>
<td>AGNews</td>
<td>DBpedia</td>
<td>Amazon</td>
<td>Yahoo</td>
</tr>
<tr>
<td>AGEM</td>
<td>0.02</td>
<td>0.0</td>
<td>9.30</td>
<td>0.0</td>
<td>23.4</td>
</tr>
<tr>
<td>OML-ER</td>
<td>0.01</td>
<td>14.70</td>
<td>0.24</td>
<td>95.24</td>
<td>0.0</td>
</tr>
<tr>
<td>MAML-CL\text{random}</td>
<td>38.23</td>
<td>75.35</td>
<td>90.71</td>
<td>39.60</td>
<td>8.83</td>
</tr>
<tr>
<td>MAML</td>
<td>DBpedia</td>
<td>Yahoo</td>
<td>AGNews</td>
<td>Amazon</td>
<td>Yelp</td>
</tr>
<tr>
<td>AGEM</td>
<td>1.42</td>
<td>0.0</td>
<td>10.44</td>
<td>25.79</td>
<td>26.03</td>
</tr>
<tr>
<td>OML-ER</td>
<td>10.34</td>
<td>0.01</td>
<td>25.68</td>
<td>56.18</td>
<td>58.5</td>
</tr>
<tr>
<td>MAML-CL\text{random}</td>
<td>95.8</td>
<td>32.45</td>
<td>75.94</td>
<td>23.2</td>
<td>26.12</td>
</tr>
<tr>
<td>MAML</td>
<td>Order 3</td>
<td>Yelp</td>
<td>AGNews</td>
<td>Amazon</td>
<td>DBpedia</td>
</tr>
<tr>
<td>AGEM</td>
<td>0.21</td>
<td>0.0</td>
<td>0.10</td>
<td>0.77</td>
<td>59.54</td>
</tr>
<tr>
<td>OML-ER</td>
<td>3.21</td>
<td>0.02</td>
<td>2.57</td>
<td>37.24</td>
<td>91.0</td>
</tr>
<tr>
<td>MAML-CL\text{random}</td>
<td>37.7</td>
<td>46.16</td>
<td>40.12</td>
<td>69.25</td>
<td>18.81</td>
</tr>
<tr>
<td>MAML</td>
<td>Order 4</td>
<td>AGNews</td>
<td>Yelp</td>
<td>Amazon</td>
<td>DBpedia</td>
</tr>
<tr>
<td>AGEM</td>
<td>10.91</td>
<td>0.29</td>
<td>0.2</td>
<td>0.99</td>
<td>54.08</td>
</tr>
<tr>
<td>OML-ER</td>
<td>0.04</td>
<td>2.64</td>
<td>0.57</td>
<td>14.93</td>
<td>98.58</td>
</tr>
<tr>
<td>MAML-CL\text{random}</td>
<td>71.66</td>
<td>15.6</td>
<td>19.1</td>
<td>30.81</td>
<td>9.24</td>
</tr>
</tbody>
</table>

MAML-CL\text{random} exhibits strong stability across all various permutations of tasks, with the second-highest average accuracy and the smallest standard deviations among all methods. Notably, the two proposed methods surpass OML-ER\text{limit} and PMR, which also use FOMAML framework, by approximately 1 ~ 4% in accuracy and 3 ~ 7% in standard deviations.

Per Task Performance As shown in Figure 3, the proposed methods demonstrate a stable performance on each task, in comparison of OML-ER\text{limit} and PMR. Especially, MAML-CL\text{all} obtains a higher than 50% accuracy for each task in Order 1, Order 4, Order 5 and Order 6. It manifests that the proposed method provides stability for solving catastrophic forgetting in CL.

Impact of Memory Size Limitations We evaluate the proposed models using various memory size limitations as shown in Table 12. We spot a phenomenon that the variation of performance is not obvious between MAML-CL\text{all} and MAML-CL\text{random} regardless of memory limitation size. When the memory constraint reaches 45 samples and above (i.e., $B >= 45$), performance are not improved or improved by a small margin. Note that MAML-CL\text{all} has a restriction on the size of the saved sample set, given the size of the query set in each iteration should not be large. Hence, we only conduct this evaluation with the memory size of 27, 45, and 63 samples.
Figure 2: Visualization of Unigram Distribution Shift in Memory. Note that y-axis is in the range [1, 26]. The data points on the x-axis indicate the count of the corresponding unigram is 1.

(a) Unigram Distribution of Saved Samples in Episode 50

(b) Unigram Distribution of Saved Samples in Episode 150

(c) Unigram Distribution of Saved Samples in Episode 250

(d) Comparison of Unigram Distributions in Episode 50, Episode 150 and Episode 250

Table 11: Performance Using Different Training Set Permutation in Terms of Accuracy. Note that the same memory limitation apply to all methods shown above. † Results obtained from (Ho et al., 2021).

<table>
<thead>
<tr>
<th>Method</th>
<th>Overall Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEM†</td>
<td>36.61 ± 5.02</td>
</tr>
<tr>
<td>Replay†</td>
<td>38.79 ± 6.68</td>
</tr>
<tr>
<td>OML-ERlimit</td>
<td>50.71 ± 8.57</td>
</tr>
<tr>
<td>PMR†</td>
<td>52.09 ± 11.50</td>
</tr>
</tbody>
</table>

Table 12: Per Task and Overall Performance Using Various Memory Limitations
Figure 3: Per Task and Overall Performance Using Various Training Set Permutations (Full Training set).