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Abstract

Recent continual learning (CL) models use001
meta learning to enable efficient cross-domain002
knowledge transfer and thus enhance sparse003
experience rehearsal (or called episodic mem-004
ory replay). Whereas, the knowledge trans-005
fer can be constrained by its episodically oc-006
currence, especially when the training sets are007
small or/and the replay frequency is low (usu-008
ally 1%). This paper studies the feasibility of009
solely using meta learning to address CL prob-010
lems. In particular, we devise an optimization-011
based meta learning framework for CL in ac-012
cordance with MAML, where query samples013
are edited for generalisation of learned knowl-014
edge. We conduct extensive experiments on015
text classification in a low resource CL setup,016
where we downsize the training set to its 10%.017
The experimental results demonstrate the supe-018
riority of our method in terms of stability, fast019
adaptation, memory efficiency and knowledge020
retention across various domains.021

1 Introduction022

Existing sequential learning poses a challenge.023

Weights or parameters constantly vary along with024

the change of probability distribution, in which025

important information from earlier tasks can be026

easily erased or overwritten by information from027

the latest tasks. Consequently, catastrophic for-028

getting (McCloskey and Cohen, 1989) occurs and029

harms performance on preceding tasks. To address030

catastrophic forgetting, CL aims to guarantee the031

stability of handling various tasks that have been032

learned, while showing plasticity on the novel do-033

main via previously acquired knowledge.034

Recently, meta learning has facilitated the035

work of CL, especially by Model-Agnostic Meta-036

Learning (MAML) (Finn et al., 2017) model. Exist-037

ing CL models exploit meta learning as a means of038

augmenting CL techniques in lifelong NLP tasks.039

For instances, OML-ER (Holla et al., 2020) and040

PMR (Ho et al., 2021) utilise MAML framework041

to enhance sparse experience replay; Meta-MbPA 042

(Wang et al., 2020) adapts generic representation 043

to episodic memory in the inner loop of meta train- 044

ing and performs local adaptation. However, the 045

performance of these methods depends heavily on 046

the replay rate. 047

Whereas, we argue that meta learning is capa- 048

ble of addressing catastrophic forgetting indepen- 049

dently. In a meta learning process, an inner loop 050

algorithm models over a task, namely task-specific 051

learning, while an outer loop algorithm governs 052

the optimisation process of the inner loop algo- 053

rithm, thereby realising the meta objective. In CL, 054

limitation on shifting of weights or parameters to 055

retain knowledge from prior tasks is one of the 056

mainstream methods. In this case, we adapt meta 057

learning framework to CL and propose a frame- 058

work, namely MAML-CL. Specifically, we restrict 059

the task-specific learning on current task by the 060

outer loop algorithm, in which the outer objective 061

is defined as the generalisation of prior tasks and 062

the current task. By providing favourable query 063

information in each learning episode, the model is 064

hardly prone to catastrophic forgetting. 065

Recent literature (Ho et al., 2021) has manifested 066

that the performance of existing CL models in ad- 067

dressing catastrophic forgetting severely depends 068

on the order of training sets, which yields a hurdle, 069

i.e., the deficiency of existing CL models can be 070

easily masked or neglected in experiments. There- 071

fore, we conduct extensive experiments on Yelp, 072

AGNews and Amazon datasets (Zhang et al., 2015) 073

and testify not only the model performance but also 074

the stability of MAML-CL. Additionally, further 075

analysis on MAML-CL exhibits its outstanding 076

performance as a CL model. 077

We summarize our main contributions as: 078

• We propose MAML-CL that solely leverages 079

meta learning to address CL problems by sim- 080

ply editing query information, without the 081

need for any extra CL techniques. 082
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• Under the same data selection scheme and083

same MAML framework, we prove that edit-084

ing query information is more efficient than085

sparse experience rehearsal, a commonly used086

CL technique in lifelong NLP tasks.087

• Under the same MAML framework, we prove088

that MAML-CL achieves sample efficiency089

and further optimises memory footprints.090

• In a low resource setup, we prove the superi-091

ority of MAML-CL in terms of stability, fast092

adaptation, forgetting mitigation and memory093

efficiency.094

2 Related Work095

Existing CL methods can be categorised into096

two mainstreams, i.e., memory replay-based ap-097

proaches (de Masson d’Autume et al., 2019;098

Chaudhry et al., 2019) and regularization-based ap-099

proaches (Aljundi et al., 2018; Huang et al., 2021).100

In general, memory replay-based methods address101

catastrophic forgetting by revisiting old samples.102

Regularization-based methods employ gradients or103

parameters constraints to achieve generalization,104

thereby retaining knowledge. Due to the com-105

plexity of deep neural networks, memory replay-106

based approaches are broadly deemed as a plausi-107

ble means for continual learning in NLP. Recently,108

meta learning has been introduced into CL models,109

considering its ability of fast adaptation and knowl-110

edge transfer. Recent works employ MAML to im-111

prove the initial parameters of the model, such that112

it can fast adapt to various domains with few learn-113

ing samples (Holla et al., 2020; Ho et al., 2021).114

Meta-MbPA (Wang et al., 2020) performs local115

adaptation with episodic memory playback and116

uses meta learning to find a better initialization for117

local adaptation. Reptile (Nichol et al., 2018) is118

also leveraged in some CL models to regularize the119

objective of experience replay (Riemer et al., 2019)120

or meta updates parameters via augmented training121

set (Obamuyide and Vlachos, 2019). In addition, in122

the field of computer vision, Joseph and Balasubra-123

manian (2020) uses preceding task-specific priors124

from meta distribution to replay previous param-125

eters and consolidate the CL model. (Acar et al.,126

2021) introduces quadratic penalty to debias and127

regularise loss of a meta model, such that it could128

bypass the need to recall prior seen instances.129

3 Problem Formulation 130

A CL model f with a learnable parameters θ over 131

a parameters space Θ sequentially ingests a stream 132

of labeled samples {(x, y)} drawn from various 133

data distributions over one pass. Concretely, it 134

considers a sequence of K tasks {T1, T2, ..., TK}. 135

Given a task Tk and a ground truth label set Lk, the 136

initial parameters in Tk, namely θk, is a parameters 137

set that have been finetuned in the last task Tk−1, 138

i.e., θ̃k−1. Ideally, we expect a CL learner f : (1) 139

to update parameters from θ̃k−1 to θ̃k for Tk, such 140

that the loss LTk on the set of labeled instances 141

{(xk, yk)} is minimal, 142

θ̃k = arg min
θk∈Θ

LTk(θk), where θk = θ̃k−1

(1) 143

(2) to perform well with the learned θ̃k on all pre- 144

ceding tasks {T1, T2, ..., Tk−1} without the need of 145

presenting all previously seen training data. 146

Assuming that all tasks are equally important, 147

the objective is thereby minimising the expected 148

risk of |k| tasks that have seen so far, with respect 149

to θ̃k, 150

min
θ̃k

k∑
i=1

ETi [LTi(θ̃k)] (2) 151

CL setup allows models to preserve a certain 152

amount of training samples from previous tasks. 153

Whereas, optimizing memory footprint is also re- 154

garded as one major research problem in CL. There- 155

fore, we limit the memory budget of f to a constant 156

size B. That is, at step k, we allow the learner f 157

to only store samples from {T1, T2, ..., Tk−1} with 158

the amount less than or equals to B. 159

3.1 Online MAML 160

Meta learning is able to "think in advance", by 161

learning an optimal initial state of an algorithm. 162

Given a task T , a set of initial parameters ϕ is over 163

a parameters space Φ. We expect ϕ that facilitates 164

the model to yield a low loss after m updates in T . 165

That is, 166

min
ϕ

ET [LT (U
m
T (ϕ))] (3) 167

where Um
T is the update operation that performs 168

m times gradient-based updates on parameters ϕ, 169

using samples drawn from p(T ). In MAML, test 170

samples that specified problems in out loop algo- 171

rithm is referred to as query samples Q. While, the 172
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training samples are known as support samples S.173

The meta objective is,174

min
ϕ

ET [LT ,Q(U
m
T ,S(ϕ))] (4)175

In an online MAML setup, each episode contains176

m batches as the support set and each task has mul-177

tiple episodes as multiple training iterations. Note178

that the initial parameters ϕk is ϕ̃k−1, i.e., the opti-179

mal initial state derived after learning Tk−1. In an180

inner loop optimization process, MAML performs181

m steps of SGD on parameters ϕk.182

ϕ∗
k = Um

Tk,Sk
(ϕk)

= ϕk − α∇ϕk
LTk(ϕk)

= ϕk − α∇ϕk

m∑
i=1

L(fϕk
(Si

k))

(5)183

where α denotes the step size as a hyperparameter.184

ϕk is finetuned by gradients of loss on the support185

set Sk for task-specific learning on Tk. Then, the186

updated ϕ∗
k are further optimised using the query187

set Qk to achieve the meta objective.188

3.2 Catastrophic Forgetting189

Recent CL models, namely OML-ER (Holla190

et al., 2020) and PMR (Ho et al., 2021), exploit191

MAML framework as part of the solution for catas-192

trophic forgetting, whereas the preceding tasks still193

suffer from performance degradation in sequential194

learning. We argue the reason for this phenomenon195

is they withhold query information that facilitates196

cross-domain knowledge transfer in each learn-197

ing episode. Specifically, when memory replay198

is not performed, the query sample that OML-ER199

and PMR use is the training instances for the next200

episode from the same domain. Since their replay201

rates do not exceed 1%, the occurrence of cross-202

domain knowledge transfer is limited by episodic203

memory replay. Hereby, catastrophic forgetting204

still occurs in these recent CL models.205

4 Edited MAML for Continual Learning206

We propose a meta learning framework for CL,207

namely MAML-CL. In MAML-CL, query informa-208

tion is edited into the generalisation of all learned209

knowledge. In such a way, we enable knowledge210

transfer, fast adaptation and representation align-211

ment, hereby alleviating catastrophic forgetting.212

Algorithm 1: Meta Training
Input: Initial model parameters θ = ϕproto ∪ ϕpred,

support set S, support set buffer size m,
memory bufferM, inner-loop learning rate α,
outer-loop learning rate β.

Output: Trained model parameters θ
1 for i = 1, 2, ... do
2 [Inner Loop]
3 Si ← m batches from the stream
4 Lproto ← MemoryModule(ϕproto, Si,M, n)

5 Linner = Lproto + LCE(θ, Si)

6 ϕ̃pred = SGD(Linner,ϕproto,ϕpred, Si, α)

7 [Read Function]
8 Qi ← Sample(M, all)
9 or Qi ← RandomSample(M,m)

10 [Outer Loop]
11 J(θ) = LCE(ϕproto, ϕ̃pred, Qi)

12 θ ← Adam(J(θ), β)
13 if all the training data is seen then
14 Stop Iteration
15 end
16 end

Query Information Editing To retain consis- 213

tency on objectives under MAML framework with 214

CL, query information is pivotal. We expect query 215

set Qk to contain examples that could generalise 216

the learned tasks, namely T1, ..., Tk−1, Tk. To opti- 217

mise memory footprint, efficient sample selection 218

criteria should opt for representative samples for 219

each task. Such that, Qk =
∑k

i=1Qk,i where Qk,i 220

is a set of representative examples for Ti when 221

learning Tk. The meta-objective with respect to ϕk 222

is, 223

min
ϕk

ET [LT ,Qk
(Um

Tk,Sk
(ϕk))]

= min
ϕk

k∑
i=1

ETi [LTi,Qk,i
(Um

Tk,Sk
(ϕk))]

≈ min
ϕk

k∑
i=1

ETi [LTi(ϕ̃k)]

(6) 224

By simply editing the query information, the ex- 225

pected loss of MAML-CL is the same as that of 226

CL. Whereas, the optimisation object is different, 227

indicating MAML-CL learns in a meta-learning 228

manner. 229

4.1 Knowledge Transfer 230

A CL model should acquire the ability of knowl- 231

edge transfer between different tasks. While, trans- 232

fer learning aims to ensure the learning process of 233

a task can benefit from acquired knowledge from 234

another domain. Thereby, transfer learning is sub- 235
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Algorithm 2: MemoryModule(ϕproto, Si,M, n)

Input: Initial model parameter ϕproto, support set
Si, memory bufferM, number of selected
samples per class n.

Output: Prototypical network loss LP , updated
memory bufferM

1 [Prototypical Network]
2 for class l in Si do
3 Sl ← RandomSample(Si,l, NS)
4 Ql ← RandomSample(Si,l\Sl, NQ)

5 cl ← 1
|Sl|

∑
(xi,yi)∈Sl

hϕproto
(xi)

6 for (x, y) in Ql do
7 LP ← LP + 1

NQ
[d(hϕproto

(x), cl) +

log
∑
l′
exp(−d(hϕproto

(x), cl))]

8 end
9 Write or update cl inM

10 end
11 [Samples Selection]
12 for class l inM do
13 Xl← KNN (DM ∪ Si, cl, n)
14 Updates Xl inM
15 end

Algorithm 3: Meta Inference
Input: Initial model parameters θ = ϕproto ∪ ϕpred,

support set buffer size m, memoryM, batch
size b, inner-loop learning rate α, test set T .

Output: Predictions on the test set
1 S ← Sample(M,m · b)
2 Q← T

3 ϕ̃pred = SGD(L,ϕproto,ϕpred, S, α)

4 Predict(Q,ϕproto, ϕ̃pred)

stantial in CL. Andrychowicz et al. (2016) state that236

the problem of transfer learning can be cast as one237

of the generalisation problems from the perspective238

of meta learning. Hereby, MAML-CL interprets239

outer loop optimization as a generalization problem240

on all tasks that have been learned, so as to realise241

cross-domain knowledge transfer. Concretely, the242

inner loop algorithm performs local adaptation, re-243

sulting in the updated parameters ϕ∗
k containing244

information that is heavily biased towards the dis-245

tribution of the current domain p(Tk). Then, meta246

objective requires this biased parameters to per-247

form well in all learned tasks , which depicts a248

CL scenario as shown in Equation 1 and Equation249

2. We argue that MAML-CL interprets CL into250

a form of meta learning and deems generalisation251

problem as meta objective, which further enables252

cross-domain knowledge transfer.253

4.2 Fast Adaptation254

The optimizee in MAML-CL is initial param-255

eters ϕk, where the meta objective that contains256

generalised information for all learned tasks gov- 257

erns its optimisation process. MAML-CL aims to 258

find an optimal initial state for all learned tasks. 259

Particularly, the learning goal is to yield a minimal 260

expected loss with few update steps on all learned 261

tasks. It indicates MAML-CL can maintain good 262

performance with its ability of fast adaptation given 263

a small number of training examples. 264

4.3 Representation Alignments 265

In lifelong NLP tasks, representation alignment 266

also requires our attention, especially when we use 267

single-head neural networks. In MAML-CL, the 268

outer loop algorithm learns discriminative infor- 269

mation of T1, T2, ..., Tk in the embedding space 270

and controls the task-specific learning inside the 271

inner loop, including representation learning of the 272

current task, Tk. To some extent, the outer loop al- 273

gorithm transfers discriminative information of all 274

learned task to the inner loop and guide represen- 275

tation learning of Tk. Hence, MAML-CL does not 276

need any extra technique to achieve representation 277

alignment. 278

5 Model 279

We incorporate the devised MAML framework 280

with a prototypes-guided samples selection strategy 281

(Ho et al., 2021). We employ FOMAML (Finn 282

et al., 2017) to reduce computational complexity. 283

The proposed CL model fθ consists of a rep- 284

resentation learning network (RLN), hϕproto
with 285

parameters ϕproto , and a prediction network (PN) 286

gϕpred
with parameters ϕpred. In particular, RLN 287

trains a model hϕproto
(·) : X → c ∈ RD×N where 288

c denotes a prototype with a D-dimensional repre- 289

sentation and N is the number of classes. While, 290

gϕpred
(·) learns a mapping : c → Y ∈ RN . We add 291

a single-hidden-layer feed-forward neural network 292

on top of a encoder to formulate a prototypical net- 293

work and use a single linear layer as the prediction 294

learning network. 295

5.1 Meta Training and Inference 296

The inner optimization performs task-specific 297

funetuning only on parameters ϕpred in PN, where 298

inner loop loss Linner contains cross entropy loss 299

LCE and prototypical network loss Lproto. The 300

inner loop algorithm performs local adaptation of 301

the current task Tk. The outer loop regularizes RLN 302

and PN over all learned tasks, T1, ..., Tk−1, Tk, by 303

meta learning model parameters θ and using stored 304
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Method Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

MAML 34.58± 6.98 38.80± 11.19 32.36± 16.81 29.32± 14.23 22.55± 12.93 27.96± 3.88

Replay 42.52± 3.87 29.81± 0.19 29.64± 0.43 46.50± 5.31 40.43± 2.29 38.71± 2.26

AGEM 38.36± 3.12 29.84± 0.14 29.86± 0.18 40.35± 1.15 37.34± 1.39 37.82± 1.16

OML-ER 47.80± 3.41 25.43± 2.71 31.41± 4.19 40.76± 9.27 48.52± 5.58 39.20± 12.16

OML-ERlimit 36.78± 8.61 31.42± 4.78 37.19± 11.79 34.54± 4.38 39.19± 4.72 42.25± 10.43

PMR 26.89± 3.51 26.44± 1.68 21.57± 3.58 26.33± 1.44 19.84± 5.53 25.20± 3.61

MAML-CLall 56.25± 2.03 53.59± 2.79 49.41± 4.59 54.23± 3.15 47.93± 3.70 45.56± 3.71

MAML-CLrandom 52.09± 0.23 47.06± 5.74 41.44± 2.27 49.04± 8.55 42.98± 9.20 39.09± 1.85

Table 1: Performance Using Different Training Set Permutation in Terms of Accuracy.

Memory Size Method Overall Accuracy

0 Seen Data MAML 30.93± 5.64

All Seen Data
Replay 37.94± 6.87

AGEM 35.60± 4.57

OML-ER 38.85± 9.09

45 Samples

OML-ERlimit 36.90± 3.73

PMR 24.38± 2.95

MAML-CLall 51.16± 4.15

MAML-CLrandom 45.28± 4.94

Table 2: Overall Performance in Terms of Accuracy.

samples from DM as query samples. Note that θ =305

ϕproto ∪ ϕpred. The meta training and inference306

process are shown in Algorithm 1 and Algorithm 3307

respectively.308

5.2 Query information Editing309

To optimize memory footprint and achieve sam-310

ple efficiency, we expect the samples saved in DM311

to be representative examples for each seen class.312

Such that, when they serve as the query set Qk,313

the query information contains the generalisation314

information of all seen tasks. In this paper, we315

apply prototypical network (Snell et al., 2017) to316

generate prototypes and use prototypes as selection317

criteria.318

Prototypes-guided Sample Selection Schemes319

Akin to Prototypes-Guided Memory Replay Net-320

work (Ho et al., 2021), we use the same data selec-321

tion scheme. Each prototype stands for the feature322

representation of a specified problem(e.g., a class323

for a classification task). The model chooses a spe-324

cific amount of examples from the current support325

set Si and MemoryM based on the shortest Eu-326

clidean distance d(·) from prototypes in a ranking-327

based manner, and deems these examples as rep-328

resentatives samples that can generalize all tasks329

that have been learned. Then, these newly-selected330

instances are saved into Memory M until used as 331

query examples or updated in the next learning 332

episodes. Note that prototypes are also dynami- 333

cally updated in each learning iteration. Following 334

the memory constraint in the CL setup, we limit 335

the number of stored samples for each class (i.e., 336

5 in this paper). We propose two read functions: 337

(1) read all from memory; (2) read randomly from 338

memory. This data selection process is shown in 339

Algorithm 2. 340

6 Experiments 341

6.1 Datasets 342

Following prior work on class-incremental learn- 343

ing, we leverage the benchmark datasets intro- 344

duced by de Masson d’Autume et al. (2019), where 345

each dataset contains 115,000 training samples and 346

7,600 test samples. Each dataset is seen as a sepa- 347

rate supervised learning task. We use three datasets 348

(Zhang et al., 2015) from two different domains, 349

i.e., AGNews (news classification; 4 classes), Yelp 350

(sentiment analysis; 5 classes) and Amazon (senti- 351

ment analysis; 5 classes). Hereby, we can observe 352

CL models performance between tasks from the 353

same or different domains. 354

6.2 Setup 355

Considering the real-world scenario, we use a 356

low resource CL setup where we reduce the size of 357

the training set to its 10% , i.e., 11, 500 per task 358

and 34, 500 in total. We further limit our memory 359

budget to a constant size B = 45, i.e., storing up 360

to 5 samples per class. The encoder for all models 361

is a pretrained ALBERT-Base-v2 (Lan et al., 2020) 362
1 from Hugging Face Transformers, where the in- 363

put sequence length is pruned to 200. The setup 364

for models using MAML framework is as follows. 365

1https://github.com/google-research/ALBERT, Apache Li-
cense 2.0
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Method Yelp AGNews Amazon Average Accuracy

OML-ERlimit 39.26 (-12.27) 13.04 (-20.44) 40.74 (-11.43) 31.02 (-14.71)
PMR 41.61 (-13.02) 0.19 (-66.62) 38.87 (-18.08) 26.89 (-32.57)
MAML-CLall 44.73 (-8.99) 79.54 (+5.28) 44.48 (-10.47) 56.25 (-4.73)
MAML-CLrandom 41.29 (-9.92) 74.32 (-0.77) 40.65 (-10.46) 52.09 (-7.05)
Method Amazon Yelp AGNews Average Accuracy

OML-ERlimit 10.41 (-9.63) 11.81 (-6.31) 84.17 (-2.72) 35.46 (-6.22)
PMR 0.0 (-9.75) 0.0 (-21.57) 64.72 (-23.07) 21.57 (-18.13)
MAML-CLall 38.61 (+16.37) 44.22 (+11.68) 65.39 (-19.88) 49.41 (+2.73)
MAML-CLrandom 34.37 (+6.60) 38.93 (-4.69) 51.01 (-32.08) 41.44 (-10.05)
Method AGNews Yelp Amazon Average Accuracy

OML-ERlimit 47.04 (-31.03) 37.29 (-12.98) 36.14 (-18.03) 40.16 (-20.67)
PMR 0.0 (-65.11) 28.15 (-27.21) 31.38 (-26.08) 19.84 (-39.47)
MAML-CLall 67.99 (+13.71) 38.18 (-11.78) 37.62 (-12.42) 47.93 (-3.49)
MAML-CLrandom 74.11 (+9.70) 26.85 (-15.49) 27.96 (-14.5) 42.98 (-6.75)

Table 3: Per Task and Overall Performance Using Training Set Order 1, Order 3 and Order 5. Note that the values in
brackets represent the accuracy difference, where “+” indicates an increase in accuracy after downsizing training
set and vice versa.

The inner loop optimizer is SGD with learning rate,366

α = 3e−3. The outer loop optimizer is Adam with367

learning rate, β = 3e−5. The baselines without a368

prototypical network utilise a random sampler with369

batch size, b = 25. The models with a prototyp-370

ical network use a sampler that randomly selects371

5 training samples from each class for each epoch372

without replacement, where b = 20 for AGNews373

and b = 25 for Yelp and Amazon.374

All models are executed on Linux platform with375

1 Nvidia Tesla A100 GPU and 40 GB of RAM. All376

experiments are performed using PyTorch (Paszke377

et al., 2019).378

6.3 Baselines379

We use the following CL models as baselines:380

• MAML (Finn et al., 2017) refers to FO-381

MAML model without extra means of for-382

getting mitigation in our evaluations.383

• Replay performs one gradient update on ran-384

domly selected samples from memory. Replay385

model utilises the sparse experience replay386

strategy with 1% replay rate.387

• A-GEM (Chaudhry et al., 2019) imposes one388

gradient constraint to restrict current task gra-389

dient projection regions. A-GEM randomly390

reads samples and decides the direction of391

optimization constraints.392

• OML-ER (Holla et al., 2020) is a recent393

CL model, which uses FOMAML framework394

with episodic experience replay. OML-ER 395

writes all seen samples into memory and ran- 396

domly chooses samples for episodic replay. 397

Note that OML-ERlimit refers to OML-ER 398

with limited memory budgets. 399

• PMR (Ho et al., 2021) uses the same samples 400

selection scheme as MAML-CL for episodic 401

memory replay with less than 1% replay rate 402

under FOMAML framework. 403

6.4 Results 404

We evaluate model performance in terms of test 405

set accuracy. Specifically, we test model perfor- 406

mance for each task after completing the learning 407

of the last task. Note that the test set has the same 408

permutation of tasks as the training set. Each result 409

is the average accuracy of the 3 best results in 5 410

runs with standard deviation. Table 1 presents the 411

evaluation results of all baselines and the proposed 412

models in all 6 different training set sequences. The 413

orders of training sets are shown in Appendix A.2. 414

Table 2 shows the overall performance and standard 415

deviations across all training set sequences. 416

As shown in Table 1 and Table 2, the proposed 417

model, MAML-CLall yields the highest average 418

accuracy in almost all training set order. Its overall 419

performance surpasses the strong baseline, namely 420

OML-ER, by more than 12%, with only 45 sam- 421

ples occupied in memory. Its standard deviations 422

are all less than 5%, which indicates strong sta- 423

bility of performance in both random seeds and 424
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Method Memory Size Yelp AGNews Amazon Average Accuracy

OML-ER
27

49.81 19.38 49.06 39.4
MAML-CLall 44.04 67.58 43.75 51.79
MAML-CLrandom 36.16 63.57 35.10 44.94
OML-ER

45
47.96 13.05 49.31 36.78

MAML-CLall 44.73 79.54 44.48 56.25
MAML-CLrandom 41.29 74.32 40.65 52.09
OML-ER

63
52.67 24.63 50.25 42.51

MAML-CLall 55.05 86.21 52.21 64.59
MAML-CLrandom 40.89 69.33 39.25 49.83
OML-ER

All Seen Data
46.83 49.24 47.32 47.80

MAML-CLall − − − −
MAML-CLrandom 55.05 86.21 52.21 64.59

Table 4: Per Task and Overall Performance Using Various Memory Limitations.

all training set permutations. The other proposed425

method, MAML-CLrandom also exhibits good re-426

sults across all permutations of the training set,427

with the second-highest average accuracy. But its428

standard deviations vary from 0.23% to 9.20 %,429

implying relatively weak stability. Remarkably, the430

two proposed models even outperform baselines431

that have unlimited memory budgets. In addition,432

we surprisingly noted that PMR underperforms433

other models. With a replay rate below 1%, PMR434

is inadequate to address catastrophic forgetting in435

sequential learning given fewer training instances.436

The reason might be an immature prototypical net-437

work gives inaccurate prototypical information and438

negatively impacts model performance under the439

episodic memory replay setting. But our models do440

not have the same problem with the same prototyp-441

ical network. It manifests the benefit of applying442

query information editing under MAML frame-443

work in CL with insufficient training instances.444

We report more evaluation results in Appendix445

A.3, including per-task performance, performance446

using five different datasets from four domains.447

6.5 Analysis448

Fast Adaptation Table 3 shows per task and over-449

all performance in Order 1, Order 3 and Order 5 re-450

spectively 2. To evaluate in terms of fast adaptation,451

we compare the model performance of ingesting452

full and downsized training sets. The accuracy dif-453

ferences are given in brackets. PMR shows its vul-454

nerability of model performance with insufficient455

training instances. The accuracy is even down to456

0 for some preceding tasks. OML-ERlimit also ex-457

2Similar results found between Order 1 and Order 4, Order
2 and Order 3, and Order 5 and Order 6.

hibits a large decline in performance. Even though 458

its performance in the latest tasks are competitive, 459

OML-ERlimit does not perform well in all earlier 460

tasks, suggesting its lack of ability to ease forget- 461

ting. MAML-CLall yields the best performance on 462

almost all tasks by a relatively small degradation. 463

Intriguingly, MAML-CLall can even improve the 464

accuracy of some preceding tasks given fewer train- 465

ing data. Especially, MAML-CLall rises accuracy 466

of preceding tasks to more than 10% in Order 3 467

and Order 5, indicating its impressive ability of 468

fast adaptation. Similarly, MAML-CLrandom also 469

poses a small degradation of performance or im- 470

provements in previously seen tasks. It testifies the 471

superior of the proposed framework, MAML-CL 472

in terms of fast adaptation and forgetting mitiga- 473

tion. The reason behind this might be immature 474

prototypical network solves the over-fitting prob- 475

lem (i.e., over-fitting towards training samples), 476

thereby more generalised samples are selected as 477

query samples. 478

Memory Efficiency Seeing the competitive per- 479

formance of OML-ER, we choose OML-ER for 480

comparison. We use Order 1 to conduct evalua- 481

tion and the results are shown in Table 4. With 482

the same random read function and memory size, 483

MAML-CL models are superior to OML-ER, es- 484

pecially in the average accuracy and accuracy of 485

the second task. Notably, the second task, AG- 486

News (News classification) is from a different do- 487

main compared to the first task, Yelp (sentiment 488

analysis) and the second task, Amazon (sentiment 489

analysis). We argue that MAML-CL can retain 490

previously learned knowledge from different do- 491

mains, not just the most recently learned one. Due 492
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Method Technique Yelp AGNews Amazon Average Accuracy

PMR Episodic Memory Replay 41.61 0.19 38.87 26.89
MAML-CLall Query Information Editing 44.73 79.54 44.48 56.25
OML-ER Episodic Memory Replay 46.83 49.24 47.32 47.80
MAML-CLrandom Query Information Editing 55.05 86.21 52.21 64.59

Table 5: Comparison Between Episodic Memory Replay and Query Information Editing

Sample Selection Method Yelp AGNews Amazon Average Accuracy

Random 20.98 0.0 21.72 14.23

Prototypes-Guided
Diversity† 41.29 74.32 40.65 52.09
Uncertainty 28.8 63.43 28.77 40.33

Table 6: Per Task and Overall Performance Using Various Sample Selection Methods. † The proposed method.

to its outstanding ability to retain knowledge at dif-493

ferent memory sizes, MAML-CL model achieves494

memory efficiency.495

Effect of Query Information Editing MAML-496

CLall has the same prototypes-guided sample se-497

lection scheme and the same read mechanisms (i.e.,498

read all samples from memory) as PMR. We com-499

pare these two models to analyze the effect of query500

information editing and memory replay. Table 5501

illustrates that MAML-CLall surpasses PMR in502

all tasks. In particular, MAML-CLall outperforms503

PMR in terms of average accuracy by nearly 30%.504

As for the ability of knowledge retention from vari-505

ous domains, the performance of MAML-CLall on506

AGNews exceeds that of PMR by more than 75%.507

Additionally, we replace the prototypes-guided se-508

lection strategy with OML-ER’s selection strategy509

in MAML-CLrandom to maintain the consistency510

of read and write mechanisms between these two511

methods. Table 5 displays that MAML-CLrandom512

still manage to outperform OML-ER in all tasks513

and overall performance, showing a strong contin-514

ual learning ability for various tasks. It is obvious515

that MAML-CL successfully beats the most widely-516

used CL techniques, namely episodic memory re-517

play. The proposed MAML-CL framework ex-518

hibits its superiority of alleviating catastrophic for-519

getting by simply editing query information given520

a small number of training instances.521

Effect of Prototypes-Guided Sample Selection522

For the effect of the proposed sample selection cri-523

teria, we evaluate MAML-CL using different strate-524

gies, given limited memory size (i.e., B = 45).525

We consider two main samples selection strategies,526

i.e., random selection and prototypes-guided selec-527

tion. As for the prototypes-guided sample selection,528

we further deliberate two popular paradigms in ac- 529

tive learning, namely the diversity-based method 530

and the uncertainty-based method. We consider 531

selecting representative samples of all classes as a 532

diversity-based method. Opting for samples that 533

are far away from prototypes is an uncertainty- 534

based method. Table 6 displays that prototypes- 535

guided selection methods clearly outperform ran- 536

dom selection, especially diversity-based criteria. 537

Random selection is seen as a simple but effi- 538

cient sample selection strategy in memory replay 539

(de Masson d’Autume et al., 2019; Wang et al., 540

2020). But, we find that random selection is incom- 541

petent for query information editing of MAML-CL, 542

when training resources are limited. Arguably, not 543

enough training iterations for the random selection 544

strategy leads to inadequate generalisation, thereby 545

prone to forgetting. Furthermore, the uncertainty- 546

based method is inferior to the diversity-based 547

method. It proves that the proposed selection strat- 548

egy is competent to solve CL problems. We leave 549

the investigation of the effect of more different data 550

selection criteria on MAML-CL to future work. 551

7 Conclusion 552

MAML-CL aims to exploit MAML’s potential 553

of solving CL problems, by deeming the general- 554

isation of all seen tasks as query information. In 555

this paper, we edit query information following 556

prototypes-guided sample selection criteria. Given 557

limited training resources, MAML-CL shows its 558

robustness in terms of stability, fast adaptation, 559

memory efficiency and knowledge retention across 560

various domains. A future research direction can 561

be exploring and redesigning other meta learning 562

frameworks that are conducive to CL. 563
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A Appendix 689

A.1 Comparison of Continual Learning, 690

MAML and MAML-CL 691

As shown in Table 7, we illustrate the differences 692

and similarities of CL, MAML and MAML-CL, to 693

better explain how MAML-CL augments knowl- 694

edge transfer and fast adaptation across various 695

domains so as to prevent catastrophic forgetting in 696

Section 4. 697

A.2 Different Training Set sequences for 698

Evaluations 699

For model stability evaluation, we use three 700

datasets, i.e., Yelp, AGNews and Amazon and form 701

a total of 6 different training set sequences as fol- 702

lows: 703

1. Yelp → AGNews → Amazon 704

2. Yelp → Amazon → AGNews 705

3. Amazon → Yelp → AGNews 706

4. Amazon → AGNews → Yelp 707

5. AGNews → Yelp → Amazon 708

6. AGNews → Amazon → Yelp 709

A.3 Extra Evaluations Using Downsized 710

Training set 711

We conduct extra evaluations on the proposed 712

models using the downsize training set. 713

Per Task Performance Figure 1 demonstrates 714

that the proposed methods outstanding ability to 715

retain knowledge across various domains. In par- 716

ticular, both MAML-CLall and MAML-CLrandom 717

only store 45 samples in memory and significantly 718

outperform the strong baseline, OML-ER, where 719

OML-ER writes all training data into memory. It 720

suggests that MAML-CL models achieve samples 721

efficiency. Clearly, MAML-CLall and MAML- 722

CLrandom exhibit impressive performance in terms 723

of stability, forgetting mitigation and memory effi- 724

ciency across various domains. 725

Performance Using Five Different Datasets 726

From Four Domains We further examine our 727

models using five different datasets (Zhang et al., 728

2015) from four domains, i.e., AGNews (news 729

classification; 4 classes), Yelp (sentiment analy- 730

sis; 5 classes), Amazon (sentiment analysis; 5 731
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Paradigm Continual Learning MAML MAML-CL
Initial Parameters θk ϕk ϕk

Finetuned Parameters θ̃k ϕ̃k ϕ̃k

Expected Loss
∑k

i=1 ETi [LTi(θ̃k)] ET [LT (ϕ̃k)]
∑k

i=1 ETi [LTi(ϕ̃k)]

Optimizee θ̃k ϕk ϕk

Optimization Direction θ̃k − θk ϕk − ϕ̃k ϕk − ϕ̃k

Transferred Parameters θ̃k ϕk ϕk

Table 7: Comparison of Continual Learning, MAML and MAML-CL.

(a) Order 1 (b) Order 2 (c) Order 3

(d) Order 4 (e) Order 5 (f) Order 6

Figure 1: Per Task and Overall Performance Using Various Training Set Permutations (Downsized Training set).

No. Datasets Order

1 Yelp→ AGNews→ DBpedia→ Amazon→ Yahoo
2 DBpedia→ Yahoo→ AGNews→ Amazon→ Yelp
3 Yelp→ Yahoo→ Amazon→ DBpedia→ AGNews
4 AGNews→ Yelp→ Amazon→ Yahoo→ DBpedia

Table 8: The Orders for Five Different Training Sets

classes), DBpedia (Wikipedia article classification;732

14 classes) and Yahoo (questions and answers cat-733

egorization; 10 classes). The input set sequences734

follows the prior work (de Masson d’Autume et al.,735

2019) as shown in Table 8. The encoder for all mod-736

els is BERTBASE (Devlin et al., 2019), in which737

we prune the input sequence length to 200. The738

mini-batch size is 16. The experimental results are739

shown in Table 9 and Table 10.740

Memory Insight To further analyze the effect741

of Prototypes-Guided Sample Selection, we visu-742

alize unigram distribution change inside memory743

in three different learning iterations, i.e., Episode744

50, Episode 150 and Episode 250. In Figure 2, the 745

y-axis presents the counts of each unigram. While 746

the x-axis presents the unigram index. It shows 747

that the saved samples provide a good diversity 748

of information. Consequently, we testify that the 749

prototypical-guided selection strategy enables sam- 750

ples efficiency, thereby optimizing memory foot- 751

prints. Note that we perform this evaluation using 752

training set permutation follows Order 1. 753

A.4 Evaluations Using Full Training set 754

We further conduct evaluations on the proposed 755

models given the full training set. 756

Overall Performance Table 11 shows perfor- 757

mance using different training set permutations 758

given the full training set. The proposed model, 759

MAML-CLall yields the highest average accuracy 760

in Order 1, Order 2, Order 4 and overall perfor- 761

mance. Its standard deviation is relatively small, 762

compared to two strong baselines, OML-ERlimit 763

and PMR. While, the other proposed method, 764
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Model Memory Size Order 1 Order 2 Order 3 Order 4 Overall

MAML 0 Seen Data 6.54 12.48 12.13 13.30 11.11

AGEM
100% Seen Data

23.93 30.14 26.81 23.35 26.06

OML-ER 34.19 49.54 33.59 27.70 36.25

MAML-CLrandom 0.29% Seen Data 50.54 50.70 42.41 29.28 43.23

Table 9: Overall Performance Using Five Training Set in Terms of Accuracy. Note that the input sequence sequences
follow the datasets permutations in Table 8.

Method
Order 1

Overall Accuracy
Yelp AGNews DBpedia Amazon Yahoo

MAML 0.02 0.0 9.30 0.0 23.4 6.54
AGEM 0.10 0.0 45.96 0.24 73.32 23.93
OML-ER 0.01 14.70 95.24 0.0 61.01 34.19
MAML-CLrandom 38.23 75.35 90.71 39.60 8.83 50.54

Method
Order 2

Overall Accuracy
DBpedia Yahoo AGNews Amazon Yelp

MAML 1.42 0.0 10.44 25.79 26.03 12.48
AGEM 10.34 0.01 25.68 56.18 58.5 30.14
OML-ER 79.48 0.23 66.11 49.47 52.39 49.54
MAML-CLrandom 95.8 32.45 75.94 23.2 26.12 50.70

Method
Order 3

Overall Accuracy
Yelp Yahoo Amazon DBpedia AGNews

MAML 0.21 0.0 0.10 0.77 59.54 12.13
AGEM 3.21 0.02 2.57 37.24 91.0 26.81
OML-ER 2.1 0.0 0.66 76.72 88.46 33.59
MAML-CLrandom 37.7 46.16 40.12 69.25 18.81 42.41

Method
Order 4

Overall Accuracy
AGNews Yelp Amazon Yahoo DBpedia

MAML 10.91 0.29 0.2 0.99 54.08 13.30
AGEM 0.04 2.64 0.57 14.93 98.58 23.35
OML-ER 12.93 5.67 6.77 14.73 98.38 27.70
MAML-CLrandom 71.66 15.6 19.1 30.81 9.24 29.28

Table 10: Per Task Performance Using Five Training Set in Terms of Accuracy.

MAML-CLrandom exhibits strong stability across765

all various permutations of tasks, with the second-766

highest average accuracy and the smallest standard767

deviations among all methods. Notably, the two768

proposed methods surpass OML-ERlimit and PMR,769

which also use FOMAML framework, by approx-770

imately 1 ∼ 4% in accuracy and 3 ∼ 7% in stan-771

dard deviations.772

Per Task Performance As shown in Figure 3,773

the proposed methods demonstrate a stable per-774

formance on each task, in comparison of OML-775

ERlimit and PMR. Especially, MAML-CLall ob-776

tains a higher than 50% accuracy for each task in777

Order 1, Order 4, Order 5 and Order 6. It mani-778

fests that the proposed method provides stability779

for solving catastrophic forgetting in CL. 780

Impact of Memory Size Limitations We eval- 781

uate the proposed models using various memory 782

size limitations as shown in Table 12. We spot a 783

phenomenon that the variation of performance is 784

not obvious between MAML-CLall and MAML- 785

CLrandom regardless of memory limitation size. 786

When the memory constraint reaches 45 samples 787

and above (i.e., B >= 45), performance are not 788

improved or improved by a small margin. Note that 789

MAML-CLall has a restriction on the size of the 790

saved sample set, given the size of the query set in 791

each iteration should not be large. Hence, we only 792

conduct this evaluation with the memory size of 27, 793

45, and 63 samples. 794
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(a) Unigram Distribution of Saved Samples in Episode 50

(b) Unigram Distribution of Saved Samples in Episode 150

(c) Unigram Distribution of Saved Samples in Episode 250

(d) Comparison of Unigram Distributions in Episode 50, Episode 150 and Episode 250

Figure 2: Visualization of Unigram Distribution Shift in Memory. Note that y-axis is in the range [1, 26). The data
points on the x-axis indicate the count of the corresponding unigram is 1.

Method Order 1 Order 2 Order 3 Order 4 Order 5 Order 6 Overall
AGEM† 37.62 30.20 30.55 41.94 39.59 39.75 36.61± 5.02

Replay† 43.76 30.07 30.45 41.91 42.12 44.42 38.79± 6.68

OML-ER†
limit 45.73 46.44 41.68 47.49 60.83 62.11 50.71± 8.57

PMR† 59.46 35.38 39.70 56.56 59.31 62.19 52.09± 11.50

MAML-CLall 60.98 54.88 46.68 61.43 51.42 53.30 54.78± 5.69

MAML-CLrandom 59.14 53.70 51.49 58.29 49.73 46.81 53.19± 4.84

Table 11: Performance Using Different Training Set Permutation in Terms of Accuracy. Note that the same memory
limitation apply to all methods shown above. † Results obtained from (Ho et al., 2021).

Method Memory Size Yelp AGNews Amazon Average Accuracy

MAML-CLall 27
46.90 61.46 48.37 52.25

MAML-CLrandom 44.35 72.62 43.68 53.55
MAML-CLall 45

53.72 74.26 54.95 60.98
MAML-CLrandom 51.21 75.09 51.11 59.14
MAML-CLall 63

54.38 71.41 54.46 60.08
MAML-CLrandom 51.67 75.38 51.54 59.53

Table 12: Per Task and Overall Performance Using Various Memory Limitations
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(a) Order 1 (b) Order 2 (c) Order 3

(d) Order 4 (e) Order 5 (f) Order 6

Figure 3: Per Task and Overall Performance Using Various Training Set Permutations (Full Training set).
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