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Abstract

Recent continual learning (CL) models use
meta learning to enable efficient cross-domain
knowledge transfer and thus enhance sparse
experience rehearsal (or called episodic mem-
ory replay). Whereas, the knowledge trans-
fer can be constrained by its episodically oc-
currence, especially when the training sets are
small or/and the replay frequency is low (usu-
ally 1%). This paper studies the feasibility of
solely using meta learning to address CL prob-
lems. In particular, we devise an optimization-
based meta learning framework for CL in ac-
cordance with MAML, where query samples
are edited for generalisation of learned knowl-
edge. We conduct extensive experiments on
text classification in a low resource CL setup,
where we downsize the training set to its 10%.
The experimental results demonstrate the supe-
riority of our method in terms of stability, fast
adaptation, memory efficiency and knowledge
retention across various domains.

1 Introduction

Existing sequential learning poses a challenge.
Weights or parameters constantly vary along with
the change of probability distribution, in which
important information from earlier tasks can be
easily erased or overwritten by information from
the latest tasks. Consequently, catastrophic for-
getting (McCloskey and Cohen, 1989) occurs and
harms performance on preceding tasks. To address
catastrophic forgetting, CL aims to guarantee the
stability of handling various tasks that have been
learned, while showing plasticity on the novel do-
main via previously acquired knowledge.

Recently, meta learning has facilitated the
work of CL, especially by Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) model. Exist-
ing CL models exploit meta learning as a means of
augmenting CL techniques in lifelong NLP tasks.
For instances, OML-ER (Holla et al., 2020) and
PMR (Ho et al., 2021) utilise MAML framework

to enhance sparse experience replay; Meta-MbPA
(Wang et al., 2020) adapts generic representation
to episodic memory in the inner loop of meta train-
ing and performs local adaptation. However, the
performance of these methods depends heavily on
the replay rate.

Whereas, we argue that meta learning is capa-
ble of addressing catastrophic forgetting indepen-
dently. In a meta learning process, an inner loop
algorithm models over a task, namely task-specific
learning, while an outer loop algorithm governs
the optimisation process of the inner loop algo-
rithm, thereby realising the meta objective. In CL,
limitation on shifting of weights or parameters to
retain knowledge from prior tasks is one of the
mainstream methods. In this case, we adapt meta
learning framework to CL and propose a frame-
work, namely MAML-CL. Specifically, we restrict
the task-specific learning on current task by the
outer loop algorithm, in which the outer objective
is defined as the generalisation of prior tasks and
the current task. By providing favourable query
information in each learning episode, the model is
hardly prone to catastrophic forgetting.

Recent literature (Ho et al., 2021) has manifested
that the performance of existing CL. models in ad-
dressing catastrophic forgetting severely depends
on the order of training sets, which yields a hurdle,
i.e., the deficiency of existing CL models can be
easily masked or neglected in experiments. There-
fore, we conduct extensive experiments on Yelp,
AGNews and Amazon datasets (Zhang et al., 2015)
and testify not only the model performance but also
the stability of MAML-CL. Additionally, further
analysis on MAML-CL exhibits its outstanding
performance as a CL model.

We summarize our main contributions as:

* We propose MAML-CL that solely leverages
meta learning to address CL problems by sim-
ply editing query information, without the
need for any extra CL techniques.



e Under the same data selection scheme and
same MAML framework, we prove that edit-
ing query information is more efficient than
sparse experience rehearsal, a commonly used
CL technique in lifelong NLP tasks.

* Under the same MAML framework, we prove
that MAML-CL achieves sample efficiency
and further optimises memory footprints.

* In a low resource setup, we prove the superi-
ority of MAML-CL in terms of stability, fast
adaptation, forgetting mitigation and memory
efficiency.

2 Related Work

Existing CL methods can be categorised into
two mainstreams, i.e., memory replay-based ap-
proaches (de Masson d’Autume et al., 2019;
Chaudhry et al., 2019) and regularization-based ap-
proaches (Aljundi et al., 2018; Huang et al., 2021).
In general, memory replay-based methods address
catastrophic forgetting by revisiting old samples.
Regularization-based methods employ gradients or
parameters constraints to achieve generalization,
thereby retaining knowledge. Due to the com-
plexity of deep neural networks, memory replay-
based approaches are broadly deemed as a plausi-
ble means for continual learning in NLP. Recently,
meta learning has been introduced into CL models,
considering its ability of fast adaptation and knowl-
edge transfer. Recent works employ MAML to im-
prove the initial parameters of the model, such that
it can fast adapt to various domains with few learn-
ing samples (Holla et al., 2020; Ho et al., 2021).
Meta-MbPA (Wang et al., 2020) performs local
adaptation with episodic memory playback and
uses meta learning to find a better initialization for
local adaptation. Reptile (Nichol et al., 2018) is
also leveraged in some CL models to regularize the
objective of experience replay (Riemer et al., 2019)
or meta updates parameters via augmented training
set (Obamuyide and Vlachos, 2019). In addition, in
the field of computer vision, Joseph and Balasubra-
manian (2020) uses preceding task-specific priors
from meta distribution to replay previous param-
eters and consolidate the CL model. (Acar et al.,
2021) introduces quadratic penalty to debias and
regularise loss of a meta model, such that it could
bypass the need to recall prior seen instances.

3 Problem Formulation

A CL model f with a learnable parameters 6 over
a parameters space © sequentially ingests a stream
of labeled samples {(x,y)} drawn from various
data distributions over one pass. Concretely, it
considers a sequence of K tasks {71, 72, ..., Tk }.
Given a task T and a ground truth label set L, the
initial parameters in 7z, namely 0, is a parameters
set that have been finetuned in the last task 7_1,
ie., Op_1. Ideally, we expect a CL learner f: (1)
to update parameters from ék,l to 9~k for 7, such
that the loss L7, on the set of labeled instances
{(zk, yx)} is minimal,

0 = arg geiré L7, (0r), where 0= 01

ey
(2) to perform well with the learned 6, on all pre-
ceding tasks {71, T2, ..., Tr—1} without the need of
presenting all previously seen training data.
Assuming that all tasks are equally important,
the objective is thereby minimising the expected
risk of | k| tasks that have seen so far, with respect
to 0y,

k
min Y E7;[L7;(6))] 2)
O =
CL setup allows models to preserve a certain
amount of training samples from previous tasks.
Whereas, optimizing memory footprint is also re-
garded as one major research problem in CL. There-
fore, we limit the memory budget of f to a constant
size B. That is, at step k, we allow the learner f
to only store samples from {71, 72, ..., Tr—1} with
the amount less than or equals to B.

3.1 Online MAML

Meta learning is able to "think in advance", by
learning an optimal initial state of an algorithm.
Given a task 7, a set of initial parameters ¢ is over
a parameters space ®. We expect ¢ that facilitates
the model to yield a low loss after m updates in 7.
That is,

min Er{L7 (U7 (9))] 3)

where U7 is the update operation that performs
m times gradient-based updates on parameters ¢,
using samples drawn from p(7). In MAML, test
samples that specified problems in out loop algo-
rithm is referred to as query samples (). While, the



training samples are known as support samples S.
The meta objective is,

min Er{L70(U75(9))] S

In an online MAML setup, each episode contains
m batches as the support set and each task has mul-
tiple episodes as multiple training iterations. Note
that the initial parameters ¢y, is qgk_l, i.e., the opti-
mal initial state derived after learning 7;_1. In an
inner loop optimization process, MAML performs
m steps of SGD on parameters ¢y.

o = U7, s, (91)
= ¢ —aVy, L1, (dr)

= ¢ —aVg, Zﬁ(ﬁbk (S))

i=1

(&)

where « denotes the step size as a hyperparameter.
@y 1s finetuned by gradients of loss on the support
set Sy, for task-specific learning on 7. Then, the
updated ¢ are further optimised using the query
set Qx to achieve the meta objective.

3.2 Catastrophic Forgetting

Recent CL models, namely OML-ER (Holla
et al., 2020) and PMR (Ho et al., 2021), exploit
MAML framework as part of the solution for catas-
trophic forgetting, whereas the preceding tasks still
suffer from performance degradation in sequential
learning. We argue the reason for this phenomenon
is they withhold query information that facilitates
cross-domain knowledge transfer in each learn-
ing episode. Specifically, when memory replay
is not performed, the query sample that OML-ER
and PMR use is the training instances for the next
episode from the same domain. Since their replay
rates do not exceed 1%, the occurrence of cross-
domain knowledge transfer is limited by episodic
memory replay. Hereby, catastrophic forgetting
still occurs in these recent CL. models.

4 Edited MAML for Continual Learning

We propose a meta learning framework for CL,
namely MAML-CL. In MAML-CL, query informa-
tion is edited into the generalisation of all learned
knowledge. In such a way, we enable knowledge
transfer, fast adaptation and representation align-
ment, hereby alleviating catastrophic forgetting.

Algorithm 1: Meta Training

Input: Initial model parameters @ = @,,..,;, U @,,.cq
support set S, support set buffer size m,
memory buffer M, inner-loop learning rate «,
outer-loop learning rate 3.

Output: Trained model parameters 6

1 fori=1,2, ..do

[Inner Loop]

S; < m batches from the stream
Lyproto = MemoryModule(e,,,.,1,

Linner = Acp'roto + ECE (0, S»L)

d)pred = SGD(‘Ci’ﬂ’"«CT7 d)protov ¢prcd’ S’ia Of)
[Read Function]
Q: < Sample(M, all)
or Q; + RandomSample(M, m)
[Outer Loop]
J(e) = ‘CCE(qbprotov d)pred? Ql)
6 < Adam(J(0), )
if all the training data is seen then
| Stop Iteration
end

Si,/\/l,n)
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16 end

Query Information Editing To retain consis-
tency on objectives under MAML framework with
CL, query information is pivotal. We expect query
set i to contain examples that could generalise
the learned tasks, namely 71, ..., Tx_1, Tx. To opti-
mise memory footprint, efficient sample selection
criteria should opt for representative samples for
each task. Such that, Q;, = Zle Qr,; where Qy, ;
is a set of representative examples for 7; when
learning 7. The meta-objective with respect to ¢
is,

rgin Er (LT, (UT. s, (6%))]

k

(6)

By simply editing the query information, the ex-
pected loss of MAML-CL is the same as that of
CL. Whereas, the optimisation object is different,
indicating MAML-CL learns in a meta-learning
manner.

4.1 Knowledge Transfer

A CL model should acquire the ability of knowl-
edge transfer between different tasks. While, trans-
fer learning aims to ensure the learning process of
a task can benefit from acquired knowledge from
another domain. Thereby, transfer learning is sub-



Algorithm 2: MemoryModule (¢, Sis M, 1)

Input: Initial model parameter ¢,,,.;,,, support set
Si, memory buffer M, number of selected
samples per class n.

Output: Prototypical network loss £ p, updated

memory buffer M

[Prototypical Network]

1
2 for class ! in S; do
3 S; < RandomSample(S;,;, Ns)
4 Q1 < RandomSample(S;,;:\S;, Ng)
s | g X hey, (@)
(zi,9:) €S
6 for (z,y) in Q; do
7 Lp  Lr+ 55ld(he,, .., (%) c) +
log 3 exp(—d(hg,,,,, (%), c1))]
l/
8 end
9 Write or update ¢; in M
10 end
11 [Samples Selection]
12 for class/in M do
13 X < KNN (Dpm U S, e,n)
14 Updates X; in M

15 end

Algorithm 3: Meta Inference

Input: Initial model parameters @ = @,,,.., U @pcas
support set buffer size m, memory M, batch
size b, inner-loop learning rate «, test set 7.
Output: Predictions on the test set
1 S < Sample(M, m - b)
2 QT

3 J)p'r‘ed = SGD(£7 ¢‘)~pr0tc7 ¢p7‘ed7 57 0[)
4 PrediCt(Q7 ¢prot07 (z)pred)

stantial in CL. Andrychowicz et al. (2016) state that
the problem of transfer learning can be cast as one
of the generalisation problems from the perspective
of meta learning. Hereby, MAML-CL interprets
outer loop optimization as a generalization problem
on all tasks that have been learned, so as to realise
cross-domain knowledge transfer. Concretely, the
inner loop algorithm performs local adaptation, re-
sulting in the updated parameters ¢; containing
information that is heavily biased towards the dis-
tribution of the current domain p(7%). Then, meta
objective requires this biased parameters to per-
form well in all learned tasks , which depicts a
CL scenario as shown in Equation 1 and Equation
2. We argue that MAML-CL interprets CL into
a form of meta learning and deems generalisation
problem as meta objective, which further enables
cross-domain knowledge transfer.

4.2 Fast Adaptation

The optimizee in MAML-CL is initial param-
eters ¢, where the meta objective that contains

generalised information for all learned tasks gov-
erns its optimisation process. MAML-CL aims to
find an optimal initial state for all learned tasks.
Particularly, the learning goal is to yield a minimal
expected loss with few update steps on all learned
tasks. It indicates MAML-CL can maintain good
performance with its ability of fast adaptation given
a small number of training examples.

4.3 Representation Alignments

In lifelong NLP tasks, representation alignment
also requires our attention, especially when we use
single-head neural networks. In MAML-CL, the
outer loop algorithm learns discriminative infor-
mation of 71, 7s, ..., T in the embedding space
and controls the task-specific learning inside the
inner loop, including representation learning of the
current task, 7. To some extent, the outer loop al-
gorithm transfers discriminative information of all
learned task to the inner loop and guide represen-
tation learning of 7. Hence, MAML-CL does not
need any extra technique to achieve representation
alignment.

5 Model

We incorporate the devised MAML framework
with a prototypes-guided samples selection strategy
(Ho et al., 2021). We employ FOMAML (Finn
et al., 2017) to reduce computational complexity.

The proposed CL model fy consists of a rep-
resentation learning network (RLN), h¢,pm ., With
parameters @, » and a prediction network (PN)
9 e with parameters ¢,,,..q. In particular, RLN

trainsamodel by (-): X = c € RP*N where
c denotes a prototype with a D-dimensional repre-
sentation and NV is the number of classes. While,
94,,.,(") learns amapping: ¢ — Y € RN . We add
a single-hidden-layer feed-forward neural network
on top of a encoder to formulate a prototypical net-
work and use a single linear layer as the prediction
learning network.

5.1 Meta Training and Inference

The inner optimization performs task-specific
funetuning only on parameters ¢,),. 4 in PN, where
inner loop 1oss Ly e contains cross entropy loss
Lcr and prototypical network loss Ly,ot0. The
inner loop algorithm performs local adaptation of
the current task 7. The outer loop regularizes RLN
and PN over all learned tasks, 71, ..., Tx—1, Tk, by
meta learning model parameters ¢ and using stored



Method Order 1 Order 2 Order 3 Order 4 Order 5 Order 6

MAML 34.58 + 6.98 38.80£11.19 32.36 +16.81 29.32 4+ 14.23 22.554+12.93 27.96 4+ 3.88
Replay 42.52 + 3.87 29.81 +0.19 29.64 + 0.43 46.50 £+ 5.31 40.43 £+ 2.29 38.71 + 2.26
AGEM 38.36 + 3.12 29.84 +0.14 29.86 + 0.18 40.35 £ 1.15 37.34 +1.39 37.82+1.16
OML-ER 47.80 + 3.41 25.43 +2.71 31.41 +4.19 40.76 £ 9.27 48.52 +5.58 39.20+ 12.16

" OML-ERjimic | 36.78 £8.61 31424478 37.10+11.79 34544438 39.10+4.72 42.25+ 1043

PMR 26.89 4+ 3.51 26.44 + 1.68 21.57 + 3.58 26.33 + 1.44 19.84 £+ 5.53 25.20 4+ 3.61
MAML-CL,y 56.25 +2.03 53.59+279 4941+459 54.23+3.15 47.93 £ 3.70 45.56 £ 3.71
MAML-CL,andom 52.09 4+ 0.23 47.06 + 5.74 41.44 £+ 2.27 49.04 £ 8.55 42.98 £+ 9.20 39.09 + 1.85

Table 1: Performance Using Different Training Set Permutation in Terms of Accuracy.

Memory Size | Method Overall Accuracy

0 Seen Data | MAML 30.93 £ 5.64

R Replay | 37.94+6.87
All Seen Data | AGEM 35.60 £ 4.57
OML-ER 38.85 £ 9.09

I OML-ERjpic | | 36.90 +3.73
45 Samples PMR 24.38 +£2.95
MAML-CL.n 51.16 £4.15
MAML-CL;andom 45.28 £4.94

Table 2: Overall Performance in Terms of Accuracy.

samples from D ¢ as query samples. Note that 0 =
Pproto Y Ppreq- The meta training and inference
process are shown in Algorithm 1 and Algorithm 3
respectively.

5.2 Query information Editing

To optimize memory footprint and achieve sam-
ple efficiency, we expect the samples saved in D x4
to be representative examples for each seen class.
Such that, when they serve as the query set (),
the query information contains the generalisation
information of all seen tasks. In this paper, we
apply prototypical network (Snell et al., 2017) to
generate prototypes and use prototypes as selection
criteria.

Prototypes-guided Sample Selection Schemes
Akin to Prototypes-Guided Memory Replay Net-
work (Ho et al., 2021), we use the same data selec-
tion scheme. Each prototype stands for the feature
representation of a specified problem(e.g., a class
for a classification task). The model chooses a spe-
cific amount of examples from the current support
set .S; and Memory M based on the shortest Eu-
clidean distance d(-) from prototypes in a ranking-
based manner, and deems these examples as rep-
resentatives samples that can generalize all tasks
that have been learned. Then, these newly-selected

instances are saved into Memory M until used as
query examples or updated in the next learning
episodes. Note that prototypes are also dynami-
cally updated in each learning iteration. Following
the memory constraint in the CL setup, we limit
the number of stored samples for each class (i.e.,
5 in this paper). We propose two read functions:
(1) read all from memory; (2) read randomly from
memory. This data selection process is shown in
Algorithm 2.

6 Experiments

6.1 Datasets

Following prior work on class-incremental learn-
ing, we leverage the benchmark datasets intro-
duced by de Masson d’ Autume et al. (2019), where
each dataset contains 115,000 training samples and
7,600 test samples. Each dataset is seen as a sepa-
rate supervised learning task. We use three datasets
(Zhang et al., 2015) from two different domains,
i.e., AGNews (news classification; 4 classes), Yelp
(sentiment analysis; 5 classes) and Amazon (senti-
ment analysis; 5 classes). Hereby, we can observe
CL models performance between tasks from the
same or different domains.

6.2 Setup

Considering the real-world scenario, we use a
low resource CL setup where we reduce the size of
the training set to its 10% , i.e., 11, 500 per task
and 34, 500 in total. We further limit our memory
budget to a constant size B = 45, i.e., storing up
to 5 samples per class. The encoder for all models
is a pretrained ALBERT-Base-v2 (Lan et al., 2020)
! from Hugging Face Transformers, where the in-
put sequence length is pruned to 200. The setup
for models using MAML framework is as follows.

"https://github.com/google-research/ALBERT, Apache Li-

cense 2.0



Method Yelp AGNews Amazon Average Accuracy
OML-ERjimit 39.26 (-12.27)  13.04 (-20.44)  40.74 (-11.43) 31.02 (-14.71)
PMR 41.61 (-13.02) 0.19 (-66.62)  38.87 (-18.08) 26.89 (-32.57)
MAML-CL.y 44.73 (-8.99) 79.54 (+5.28) 44.48 (-10.47) 56.25 (-4.73)
MAML-CL;andom | 41.29(-9.92) 74.32 (-0.77)  40.65 (-10.46) 52.09 (-7.05)
Method Amazon Yelp AGNews Average Accuracy
OML-ERjimit 10.41 (-9.63) 11.81 (-6.31) 84.17 (-2.72) 35.46 (-6.22)
PMR 0.0 (-9.75) 0.0 (-21.57) 64.72 (-23.07) 21.57 (-18.13)
MAML-CL,y; 38.61 (+16.37) 44.22 (+11.68)  65.39 (-19.88) 49.41 (+2.73)
MAML-CL;andom | 34.37 (+6.60) 38.93 (-4.69)  51.01 (-32.08) 41.44 (-10.05)
Method AGNews Yelp Amazon Average Accuracy
OML-ERimit 47.04 (-31.03)  37.29(-12.98)  36.14 (-18.03) 40.16 (-20.67)
PMR 0.0 (-65.11) 28.15(-27.21)  31.38 (-26.08) 19.84 (-39.47)
MAML-CL.; 67.99 (+13.71) 38.18 (-11.78)  37.62 (-12.42) 47.93 (-3.49)

MAML'CLrandom

74.11 (+9.70)

26.85 (-15.49)

27.96 (-14.5)

42.98 (-6.75)

Table 3: Per Task and Overall Performance Using Training Set Order 1, Order 3 and Order 5. Note that the values in
brackets represent the accuracy difference, where “+” indicates an increase in accuracy after downsizing training

set and vice versa.

The inner loop optimizer is SGD with learning rate,
a = 3e~3. The outer loop optimizer is Adam with
learning rate, 3 = 3e~°. The baselines without a
prototypical network utilise a random sampler with
batch size, b = 25. The models with a prototyp-
ical network use a sampler that randomly selects
5 training samples from each class for each epoch
without replacement, where b = 20 for AGNews
and b = 25 for Yelp and Amazon.

All models are executed on Linux platform with
1 Nvidia Tesla A100 GPU and 40 GB of RAM. All
experiments are performed using PyTorch (Paszke
et al., 2019).

6.3 Baselines

We use the following CL models as baselines:

e« MAML (Finn et al., 2017) refers to FO-
MAML model without extra means of for-
getting mitigation in our evaluations.

* Replay performs one gradient update on ran-
domly selected samples from memory. Replay
model utilises the sparse experience replay
strategy with 1% replay rate.

* A-GEM (Chaudhry et al., 2019) imposes one
gradient constraint to restrict current task gra-
dient projection regions. A-GEM randomly
reads samples and decides the direction of
optimization constraints.

e OML-ER (Holla et al., 2020) is a recent
CL model, which uses FOMAML framework

with episodic experience replay. OML-ER
writes all seen samples into memory and ran-
domly chooses samples for episodic replay.
Note that OML-ER;,,;; refers to OML-ER
with limited memory budgets.

* PMR (Ho et al., 2021) uses the same samples
selection scheme as MAML-CL for episodic
memory replay with less than 1% replay rate
under FOMAML framework.

6.4 Results

We evaluate model performance in terms of test
set accuracy. Specifically, we test model perfor-
mance for each task after completing the learning
of the last task. Note that the test set has the same
permutation of tasks as the training set. Each result
is the average accuracy of the 3 best results in 5
runs with standard deviation. Table 1 presents the
evaluation results of all baselines and the proposed
models in all 6 different training set sequences. The
orders of training sets are shown in Appendix A.2.
Table 2 shows the overall performance and standard
deviations across all training set sequences.

As shown in Table 1 and Table 2, the proposed
model, MAML-CL,; yields the highest average
accuracy in almost all training set order. Its overall
performance surpasses the strong baseline, namely
OML-ER, by more than 12%, with only 45 sam-
ples occupied in memory. Its standard deviations
are all less than 5%, which indicates strong sta-
bility of performance in both random seeds and



Method Memory Size | Yelp AGNews Amazon | Average Accuracy
OML-ER 49.81 19.38 49.06 394
MAML-CL,1; 27 44.04 67.58 43.75 51.79
MAML-CL;andom 36.16 63.57 35.10 44.94
"OMLER | | 4796 1305 4931 | 3678
MAML-CL,y 45 44.73 79.54 44.48 56.25
MAML-CL,andom 41.29 74.32 40.65 52.09
"OML-ER | | 5267 2463 5025 | 0251
MAML-CL,y; 63 55.05 86.21 52.21 64.59
MAML-CL;andom 40.89 69.33 39.25 49.83
"OMLER | | 4683 4924 4732 | 4780
MAML-CL.; All Seen Data — — — _
MAML-CLandom 55.05 86.21 52.21 64.59

Table 4: Per Task and Overall Performance Using Various Memory Limitations.

all training set permutations. The other proposed
method, MAML-CL,,,4om also exhibits good re-
sults across all permutations of the training set,
with the second-highest average accuracy. But its
standard deviations vary from 0.23% to 9.20 %,
implying relatively weak stability. Remarkably, the
two proposed models even outperform baselines
that have unlimited memory budgets. In addition,
we surprisingly noted that PMR underperforms
other models. With a replay rate below 1%, PMR
is inadequate to address catastrophic forgetting in
sequential learning given fewer training instances.
The reason might be an immature prototypical net-
work gives inaccurate prototypical information and
negatively impacts model performance under the
episodic memory replay setting. But our models do
not have the same problem with the same prototyp-
ical network. It manifests the benefit of applying
query information editing under MAML frame-
work in CL with insufficient training instances.
We report more evaluation results in Appendix
A.3, including per-task performance, performance
using five different datasets from four domains.

6.5 Analysis

Fast Adaptation Table 3 shows per task and over-
all performance in Order 1, Order 3 and Order 5 re-
spectively 2. To evaluate in terms of fast adaptation,
we compare the model performance of ingesting
full and downsized training sets. The accuracy dif-
ferences are given in brackets. PMR shows its vul-
nerability of model performance with insufficient
training instances. The accuracy is even down to
0 for some preceding tasks. OML-ERjy;,;; also ex-

2Similar results found between Order 1 and Order 4, Order
2 and Order 3, and Order 5 and Order 6.

hibits a large decline in performance. Even though
its performance in the latest tasks are competitive,
OML-ER}j,i¢ does not perform well in all earlier
tasks, suggesting its lack of ability to ease forget-
ting. MAML-CL,j; yields the best performance on
almost all tasks by a relatively small degradation.
Intriguingly, MAML-CL,; can even improve the
accuracy of some preceding tasks given fewer train-
ing data. Especially, MAML-CL,j rises accuracy
of preceding tasks to more than 10% in Order 3
and Order 5, indicating its impressive ability of
fast adaptation. Similarly, MAML-CL,,,qom also
poses a small degradation of performance or im-
provements in previously seen tasks. It testifies the
superior of the proposed framework, MAML-CL
in terms of fast adaptation and forgetting mitiga-
tion. The reason behind this might be immature
prototypical network solves the over-fitting prob-
lem (i.e., over-fitting towards training samples),
thereby more generalised samples are selected as
query samples.

Memory Efficiency Seeing the competitive per-
formance of OML-ER, we choose OML-ER for
comparison. We use Order 1 to conduct evalua-
tion and the results are shown in Table 4. With
the same random read function and memory size,
MAML-CL models are superior to OML-ER, es-
pecially in the average accuracy and accuracy of
the second task. Notably, the second task, AG-
News (News classification) is from a different do-
main compared to the first task, Yelp (sentiment
analysis) and the second task, Amazon (sentiment
analysis). We argue that MAML-CL can retain
previously learned knowledge from different do-
mains, not just the most recently learned one. Due



Method Technique Yelp AGNews Amazon | Average Accuracy
PMR Episodic Memory Replay | 41.61 0.19 38.87 26.89
MAML-CLa1 Query Information Editing | 44.73 79.54 44.48 56.25
OML-ER Episodic Memory Replay | 46.83 49.24 47.32 47.80
MAML-CL;andom | Query Information Editing | 55.05 86.21 52.21 64.59

Table 5: Comparison Between Episodic Memory Replay and Query Information Editing

Sample Selection Method Yelp AGNews Amazon | Average Accuracy
Random 20.98 0.0 21.72 14.23
Diversity' 41.29 74.32 40.65 52.09
Prototypes-Guided tverst y
Uncertainty | 28.8 63.43 28.77 40.33

Table 6: Per Task and Overall Performance Using Various Sample Selection Methods. T The proposed method.

to its outstanding ability to retain knowledge at dif-
ferent memory sizes, MAML-CL model achieves
memory efficiency.

Effect of Query Information Editing MAML-
CL,j has the same prototypes-guided sample se-
lection scheme and the same read mechanisms (i.e.,
read all samples from memory) as PMR. We com-
pare these two models to analyze the effect of query
information editing and memory replay. Table 5
illustrates that MAML-CL,;; surpasses PMR in
all tasks. In particular, MAML-CL,} outperforms
PMR in terms of average accuracy by nearly 30%.
As for the ability of knowledge retention from vari-
ous domains, the performance of MAML-CL,j; on
AGNews exceeds that of PMR by more than 75%.
Additionally, we replace the prototypes-guided se-
lection strategy with OML-ER’s selection strategy
in MAML-CL,,,4om to maintain the consistency
of read and write mechanisms between these two
methods. Table 5 displays that MAML-CL,.1d0m
still manage to outperform OML-ER in all tasks
and overall performance, showing a strong contin-
ual learning ability for various tasks. It is obvious
that MAML-CL successfully beats the most widely-
used CL techniques, namely episodic memory re-
play. The proposed MAML-CL framework ex-
hibits its superiority of alleviating catastrophic for-
getting by simply editing query information given
a small number of training instances.

Effect of Prototypes-Guided Sample Selection
For the effect of the proposed sample selection cri-
teria, we evaluate MAML-CL using different strate-
gies, given limited memory size (i.e., B = 45).
We consider two main samples selection strategies,
i.e., random selection and prototypes-guided selec-
tion. As for the prototypes-guided sample selection,

we further deliberate two popular paradigms in ac-
tive learning, namely the diversity-based method
and the uncertainty-based method. We consider
selecting representative samples of all classes as a
diversity-based method. Opting for samples that
are far away from prototypes is an uncertainty-
based method. Table 6 displays that prototypes-
guided selection methods clearly outperform ran-
dom selection, especially diversity-based criteria.
Random selection is seen as a simple but effi-
cient sample selection strategy in memory replay
(de Masson d’Autume et al., 2019; Wang et al.,
2020). But, we find that random selection is incom-
petent for query information editing of MAML-CL,
when training resources are limited. Arguably, not
enough training iterations for the random selection
strategy leads to inadequate generalisation, thereby
prone to forgetting. Furthermore, the uncertainty-
based method is inferior to the diversity-based
method. It proves that the proposed selection strat-
egy is competent to solve CL problems. We leave
the investigation of the effect of more different data
selection criteria on MAML-CL to future work.

7 Conclusion

MAML-CL aims to exploit MAML’s potential
of solving CL problems, by deeming the general-
isation of all seen tasks as query information. In
this paper, we edit query information following
prototypes-guided sample selection criteria. Given
limited training resources, MAML-CL shows its
robustness in terms of stability, fast adaptation,
memory efficiency and knowledge retention across
various domains. A future research direction can
be exploring and redesigning other meta learning
frameworks that are conducive to CL.
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A Appendix

A.1 Comparison of Continual Learning,
MAML and MAML-CL

As shown in Table 7, we illustrate the differences
and similarities of CL, MAML and MAML-CL, to
better explain how MAML-CL augments knowl-
edge transfer and fast adaptation across various
domains so as to prevent catastrophic forgetting in
Section 4.

A.2 Different Training Set sequences for
Evaluations

For model stability evaluation, we use three
datasets, i.e., Yelp, AGNews and Amazon and form
a total of 6 different training set sequences as fol-
lows:

1. Yelp — AGNews — Amazon

2. Yelp — Amazon — AGNews

. Amazon — Yelp — AGNews
Amazon — AGNews — Yelp
. AGNews — Yelp — Amazon

AGNews — Amazon — Yelp

A.3 Extra Evaluations Using Downsized

Training set

We conduct extra evaluations on the proposed
models using the downsize training set.

Per Task Performance Figure 1 demonstrates
that the proposed methods outstanding ability to
retain knowledge across various domains. In par-
ticular, both MAML-CL,;; and MAML-CL...dom
only store 45 samples in memory and significantly
outperform the strong baseline, OML-ER, where
OML-ER writes all training data into memory. It
suggests that MAML-CL models achieve samples
efficiency. Clearly, MAML-CL,; and MAML-
CL,andom €xhibit impressive performance in terms
of stability, forgetting mitigation and memory effi-
ciency across various domains.

Performance Using Five Different Datasets
From Four Domains We further examine our
models using five different datasets (Zhang et al.,
2015) from four domains, i.e., AGNews (news
classification; 4 classes), Yelp (sentiment analy-
sis; 5 classes), Amazon (sentiment analysis; 5
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Initial Parameters O bk fors
Finetuned Parameters Oy, qu ng
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Optimization Direction O — O or — ng or — ng
Transferred Parameters ék Dk bk

Table 7: Comparison of Continual Learning, MAML and MAML-CL.
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Figure 1: Per Task and Overall Performance Using Various Training Set Permutations (Downsized Training set).

No. Datasets Order

1 Yelp — AGNews — DBpedia — Amazon — Yahoo
2 DBpedia — Yahoo — AGNews — Amazon — Yelp
3 Yelp — Yahoo — Amazon — DBpedia — AGNews
4 AGNews — Yelp — Amazon — Yahoo — DBpedia

Table 8: The Orders for Five Different Training Sets

classes), DBpedia (Wikipedia article classification;
14 classes) and Yahoo (questions and answers cat-
egorization; 10 classes). The input set sequences
follows the prior work (de Masson d’ Autume et al.,
2019) as shown in Table 8. The encoder for all mod-
els is BERTgasg (Devlin et al., 2019), in which
we prune the input sequence length to 200. The
mini-batch size is 16. The experimental results are
shown in Table 9 and Table 10.

Memory Insight To further analyze the effect
of Prototypes-Guided Sample Selection, we visu-
alize unigram distribution change inside memory
in three different learning iterations, i.e., Episode
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50, Episode 150 and Episode 250. In Figure 2, the
y-axis presents the counts of each unigram. While
the x-axis presents the unigram index. It shows
that the saved samples provide a good diversity
of information. Consequently, we testify that the
prototypical-guided selection strategy enables sam-
ples efficiency, thereby optimizing memory foot-
prints. Note that we perform this evaluation using
training set permutation follows Order 1.

A.4 Evaluations Using Full Training set

We further conduct evaluations on the proposed
models given the full training set.

Overall Performance Table 11 shows perfor-
mance using different training set permutations
given the full training set. The proposed model,
MAML-CL, yields the highest average accuracy
in Order 1, Order 2, Order 4 and overall perfor-
mance. Its standard deviation is relatively small,
compared to two strong baselines, OML-ERj;;
and PMR. While, the other proposed method,



Model Memory Size Order1 Order2 Order3 Order4 | Overall
MAML 0 Seen Data 6.54 12.48 12.13 13.30 11.11
AGEM 100% Seen Data 23.93 30.14 26.81 23.35 26.06
OML-ER 34.19 49.54 33.59 27.70 36.25
MAML-CL,andom | 0.29% Seen Data 50.54 50.70 42.41 29.28 43.23

Table 9: Overall Performance Using Five Training Set in Terms of Accuracy. Note that the input sequence sequences

follow the datasets permutations in Table 8.

der 1
Method Order . Overall Accuracy
Yelp AGNews DBpedia Amazon Yahoo
MAML 0.02 0.0 9.30 0.0 23.4 6.54
AGEM 0.10 0.0 45.96 0.24 73.32 23.93
OML-ER 0.01 14.70 95.24 0.0 61.01 34.19
MAML-CL;andom 38.23 75.35 90.71 39.60 8.83 50.54
Method . Order 2 Overall Accuracy
DBpedia Yahoo AGNews  Amazon Yelp
MAML 1.42 0.0 10.44 25.79 26.03 12.48
AGEM 10.34 0.01 25.68 56.18 58.5 30.14
OML-ER 79.48 0.23 66.11 49.47 52.39 49.54
MAML-CL,andom 95.8 32.45 75.94 23.2 26.12 50.70
Method Order 3 . Overall Accuracy
Yelp Yahoo Amazon DBpedia AGNews
MAML 0.21 0.0 0.10 0.77 59.54 12.13
AGEM 3.21 0.02 2.57 37.24 91.0 26.81
OML-ER 2.1 0.0 0.66 76.72 88.46 33.59
MAML-CL;andom 37.7 46.16 40.12 69.25 18.81 42.41
Method Order 4 . Overall Accuracy
AGNews Yelp Amazon Yahoo DBpedia

MAML 10.91 0.29 0.2 0.99 54.08 13.30
AGEM 0.04 2.64 0.57 14.93 98.58 23.35
OML-ER 12.93 5.67 6.77 14.73 98.38 27.70
MAML-CLandom 71.66 15.6 19.1 30.81 9.24 29.28

Table 10: Per Task Performance Using Five Training Set in Terms of Accuracy.

MAML-CL,,,40m €xhibits strong stability across
all various permutations of tasks, with the second-
highest average accuracy and the smallest standard
deviations among all methods. Notably, the two
proposed methods surpass OML-ER};,,;y and PMR,
which also use FOMAML framework, by approx-
imately 1 ~ 4% in accuracy and 3 ~ 7% in stan-
dard deviations.

Per Task Performance As shown in Figure 3,
the proposed methods demonstrate a stable per-
formance on each task, in comparison of OML-
ERjjnis and PMR. Especially, MAML-CL,); ob-
tains a higher than 50% accuracy for each task in
Order 1, Order 4, Order 5 and Order 6. It mani-
fests that the proposed method provides stability
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for solving catastrophic forgetting in CL.

Impact of Memory Size Limitations We eval-
uate the proposed models using various memory
size limitations as shown in Table 12. We spot a
phenomenon that the variation of performance is
not obvious between MAML-CL,;; and MAML-
CL,andom regardless of memory limitation size.
When the memory constraint reaches 45 samples
and above (i.e., B >= 45), performance are not
improved or improved by a small margin. Note that
MAML-CL,j; has a restriction on the size of the
saved sample set, given the size of the query set in
each iteration should not be large. Hence, we only
conduct this evaluation with the memory size of 27,
45, and 63 samples.
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Figure 2: Visualization of Unigram Distribution Shift in Memory. Note that y-axis is in the range [1, 26). The data
points on the x-axis indicate the count of the corresponding unigram is 1.

Method Order1 Order2 Order3 Order4d Order5 Order6 Overall

AGEM' 37.62 30.20 30.55 41.94 39.59 39.75 36.61 £+ 5.02
Replay® 43.76 30.07 30.45 41.91 42.12 44.42 38.79 + 6.68
OML—ER;fimit 45.73 46.44 41.68 47.49 60.83 62.11 50.71 £ 8.57
PMR' 59.46 35.38 39.70 56.56 59.31 62.19 52.09 £ 11.50
MAML-CL, 60.98 54.88 46.68 61.43 5142 53.30 54.78 + 5.69
MAML-CL;andom 59.14 53.70 51.49 58.29 49.73 46.81 53.19 £ 4.84

Table 11: Performance Using Different Training Set Permutation in Terms of Accuracy. Note that the same memory
limitation apply to all methods shown above. { Results obtained from (Ho et al., 2021).

Method Memory Size | Yelp AGNews Amazon | Average Accuracy
MAML-CL,y 7 46.90 61.46 48.37 52.25
MAML-CL;andom 44.35 72.62 43.68 53.55

" MAML-CL., | A ; | s3712 7426 5495 | 6098
MAML-CL;andom 51.21 75.09 51.11 59.14

" MAML-CL.. | . ; | 5438 7141 5446 | 60.08
MAML-CL;andom 51.67 75.38 51.54 59.53

Table 12: Per Task and Overall Performance Using Various Memory Limitations
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Figure 3: Per Task and Overall Performance Using Various Training Set Permutations (Full Training set).
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