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INTRODUCTION: Proteins rarely act alone; they
form complexes with other proteins in cell sig-
naling, interact with DNA and RNA during
transcription and translation, and interact with
small molecules both covalently and noncova-
lently duringmetabolism and signaling. Despite
substantial recent progress in protein-only
structure prediction, modeling such general
biomolecular assemblies remains an outstand-
ing challenge.

RATIONALE: We set out to develop a unified
structure prediction and design approach for
assemblies containing proteins, nucleic acids,
small molecules, metals, and chemical modifi-
cations. We sought to combine a sequence-
based description of proteins andnucleic acids
with an atomic graph representation of small
molecules andprotein covalentmodifications.We
started with the RoseTTAFold2 (RF2) network,
which takes as input one-dimensional (1D) se-
quence information, 2D pairwise distance infor-

mation from homologous templates, and 3D
coordinate information and iteratively improves
predicted structures throughmany hidden layers.

RESULTS: For our biomolecular structure pre-
diction network RoseTTAFold All-Atom (RFAA)
(see the figure, top), we retained the representa-
tions of protein and nucleic acid chains from
RF2 and represented arbitrary small mole-
cules as atom-bond graphs. To the 1D track, we
input the chemical element type of each non-
polymer atom; to the 2D track, the chemical
bonds between atoms; and to the 3D track,
information on chirality. Immediately after
input, the full system was represented as a
disconnected gas of amino acid residues, nu-
cleic acid bases, and freely moving atoms,
which was successively transformed through
themany blocks of the network into physically
plausible assembly structures.We trained RFAA
on protein–small molecule, protein-metal, and
covalently modified protein complexes that are

found in the Protein Data Bank (PDB), filtering
out common solvents and crystallization additives.
In the CAMEO blind ligand-docking chal-

lenge, RFAA outperforms baseline automated
pipelines. Although not all predictions are
accurate, the network outputs a confidence
estimate that correlates with accuracy. The net-
work generalizes beyond the training set: Accu-
rate predictions aremade for proteins with low
sequence homology (BLAST e-value >1) and
ligands with low similarity (Tanimoto simi-
larity <0.5) to those in the training set. Pre-
diction accuracy is higher for protein–small
molecule complexeswithmore-favorable com-
puted interaction energies using a molecular
mechanics force field, which suggests that RFAA
has learned aspects of the physical chemistry
of protein–small molecule interactions. Nearly
half (46%) of covalent modifications are pre-
dicted accurately [<2.5-Å root mean square
deviation (RMSD)]. These additional predic-
tion capabilities do not come at the expense
of the protein structure–prediction task be-
cause RFAA has a prediction accuracy on pro-
tein monomer structures comparable to that
AlphaFold2.
For small-molecule binder design, we devel-

oped RFdiffusion All-Atom (RFdiffusionAA)
by fine-tuning RFAA on diffusion denoising
tasks. Starting from random residue distribu-
tions, RFdiffusionAA generates folded protein
structures that surround the small molecule.
In contrast to previous approaches that rely on
native or preexisting designed scaffolds, the
binding pockets are custom generated for each
ligand of interest.Wegenerated small-molecule
binding designs for the cardiac disease drug
digoxigenin, the enzyme cofactor heme, and
optically active bilin molecules. In each case,
experimental characterization showed that a
subset of the designs had the designed binding
activity. The crystal structure of a heme bind-
ing design matched the RFdiffusionAA model
very closely (0.86-Å Ca RMSD).

CONCLUSION: RFAAdemonstrates that a single
neural network can be trained to accurately
model general biomolecular assemblies con-
taining a wide diversity of nonprotein com-
ponents. Although there is still room for
improvement in prediction accuracy, we anti-
cipate that RFAA should be broadly useful
for modeling full biological assemblies and
RFdiffusionAA for designing small molecule–
binding proteins and sensors.▪
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Prediction and design of biomolecular assemblies. RFAA enables the prediction of biomolecular
assemblies, including proteins, nucleic acids, metals, small molecules, and covalent modifications (top).
RFdiffusionAA builds de novo proteins around small molecules of interest (bottom).
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Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to
protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based
representation of amino acids and DNA bases with an atomic representation of all other groups to model
assemblies that contain proteins, nucleic acids, small molecules, metals, and covalentmodifications, given their
sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom
(RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of
amino acid residues surrounding target small molecules, we designed and experimentally validated, through
crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the
enzymatic cofactor heme, and the light-harvesting molecule bilin.

T
he deep neural networks AlphaFold2
(AF2) (1) and RoseTTAFold (RF) (2)
enable high-accuracy prediction of pro-
tein structures from amino acid sequen-
ces. However, in nature, proteins rarely

act alone; they form complexes with other
proteins in cell signaling, interact with DNA
and RNA during transcription and transla-
tion, and interact with small molecules, both
covalently and noncovalently, during metab-
olism and signaling. Modeling such general
biomolecular assemblies composed of poly-
peptide chains, covalentlymodified amino acids,
nucleic acid chains, and arbitrary small mol-
ecules remains an outstanding challenge. One
approach is to model the protein chains using
AF2 or RF and then successively add in the
nonprotein components using classical docking
methods (3–9); however, systematically eval-
uating and optimizing such procedures is not
straightforward. RFhas beenextended tomodel
both protein and nucleic acids by increasing
the size of the residue alphabet to 28 (20 amino
acids, four DNA bases, and four RNA bases)
with RoseTTAFold nucleic acid (RFNA) (10),
but general biomolecular system modeling is a

more challengingproblem, given the great diver-
sity of possible small-molecule components.
An approach capable of accurately predict-
ing the three-dimensional (3D) structures of
biomolecular assemblies starting only from
knowledge of the constituent molecules (and
not their 3D structures) would have a broad
impact on structural biology and drug discov-
ery and open the door to deep learning–based
design of protein–small molecule assemblies.
We set out to develop a structure prediction

method capable of generating 3D coordinates
for all atoms of a biological unit, including pro-
teins, nucleic acids, small molecules, metals,
and chemical modifications (Fig. 1A). The first
obstacle we faced in taking on the broader
challenge of generalized biomolecular system
modeling was how to represent the compo-
nents. Existing protein structure prediction
networks represent proteins as linear chains
of amino acids, and this representation can be
readily extended to nucleic acids. However,
many of the small molecules that proteins
interact with are not polymers, and it is un-
clear how to model them as a linear sequence.
A natural way to represent the bonded struc-
ture of small molecules is as graphs whose
nodes are atoms and whose edges represent
bond connectivity. This graph representation
is not suitable for proteins because they con-
tain many thousands of atoms; hence, model-
ing whole proteins at the atomic level is
computationally intractable. To overcome this
limitation, we sought to combine a sequence-
based description of biopolymers (proteins
and nucleic acids) with an atomic graph repre-
sentation of small molecules and protein co-
valent modifications.

Generalizing structure prediction to all
biomolecules
We modeled the network architecture after
the RoseTTAFold2 (RF2) protein structure
prediction network, which accepts 1D sequence
information, 2D pairwise distance information
from homologous templates, and 3D coordi-
nate information and iteratively improves pre-
dicted structures through many hidden layers
(11). We retained the representations of pro-
tein and nucleic acid chains from RF2 and rep-
resented arbitrary small molecules, covalent
modifications, and unnatural amino acids as
atom-bond graphs. To the 1D track, we input
the chemical element type of each nonpolymer
atom; to the 2D track, the chemical bonds be-
tween atoms; and to the 3D track, information
on chirality [whether chiral centers are (R) or
(S)]. For the 1D track, we supplemented the
20-residue and 8–nucleic acid base represen-
tation in RFNA with 46 new element-type to-
kens representing the most common element
types found in the Protein Data Bank (PDB)
(table S5). For the 2D track atom-bond em-
bedding, we encoded pairwise information
about whether bonds between pairs of atoms
are single, double, triple, or aromatic. These
features are linearly embedded and summed
with the initial pair features at the beginning
of every recycle of the network, which allows
the network to learn about bond lengths,
angles, and planarity. Because the 1D and 2D
representations in the network are invariant
to reflections, we encoded stereochemistry
information in the third track by specifying
the sign of angles between the atoms sur-
rounding each chiral center (fig. S1); at each
block in the 3D track, the gradient of the devia-
tion of the actual angles from the ideal values
(with respect to the current coordinates) was
computed and provided as an input feature to
the subsequent block (Fig. 1B).
Unlike proteins and nucleic acid sequences,

molecular graphs are permutation invariant,
and hence, the network shouldmake the same
prediction irrespective of small-molecule ele-
ment tokenorder. InAF2 andRF2, the sequence
order of amino acids and bases is represented
by a relative position encoding; for atoms, we
omitted such an encoding and leveraged the
permutation invariance of the network atten-
tion mechanisms. We also modified the coor-
dinate updates: In AF2 and RF, protein residues
are representedby the coordinates of theCa and
the orientation of theN-C-C rigid frame (or the
P coordinate and the OP1-P-OP2 frame orien-
tation in RFNA), and, along the 3D track, the
network generates rotational updates to each
frame orientation and translational updates to
each coordinate. To generalize this represen-
tation in our biomolecular structure prediction
network RoseTTAFold All-Atom (RFAA), heavy-
atomcoordinates are added to the 3D track and
move independently based only on a predicted
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translational update to their position. Thus,
immediately after input, the full system is rep-
resented as a disconnected gas of amino acid
residues, nucleic acid bases, and freely moving
atoms,which is successively transformed through
themany blocks of the network into physically
plausible assembly structures. For the loss func-
tion to guide parameter optimization, we de-
veloped an all-atom version of the frame-aligned
point error (FAPE) loss introduced in AF2 by
defining coordinate frames for each atom in an
arbitrary molecule based on the identities of its
bonded neighbors and, as with residue-based
FAPE, successively aligning each coordinate
frame and computing the coordinate error on
the surrounding atoms (Fig. 2A; for greater sen-

sitivity to small-molecule geometry, we up-
weighted contributions involving atoms; see
supplementary methods). In addition to atomic
coordinates, the network predicts atom and
residue-wise confidence [predicted local distance
difference test (pLDDT)] and pairwise confi-
dence [predicted alignment error (PAE)]metrics
to enable users to identify high-quality predic-
tions. A full description of the RFAA architec-
ture is provided in the supplementarymethods.

Training RFAA

We curated a protein-biomolecule dataset from
the PDB that includes protein–small molecule,
protein-metal, and covalently modified protein
complexes, filtering out common solvents and

crystallization additives. After clustering (30%
sequence identity) to avoid bias toward over-
represented structures, we obtained 121,800
protein–small molecule structures in 5662 clus-
ters, 112,546 protein-metal complexes in 5324
clusters, and 12,689 structures with covalently
modified amino acids in 1099 clusters for
training. To help the network learn the general
properties of small molecules rather than fea-
tures specific to the molecules in the PDB, we
supplemented the training set with small-
molecule crystal structures from the Cambridge
Structural Database (12). Each training example
is sampled uniformly from the set of organic
nonpolymeric molecules, and the network
predicts the coordinates for the asymmetric

A

B

Fig. 1. General biomolecular modeling with RFAA. (A) RFAA takes input
information about the molecular composition of the biomolecular assembly to be
modeled, including protein amino acid and nucleic acid base sequences, metal
ions, small molecule–bonded structure, and covalent bonds between small molecules
and proteins. (B) Processing of molecular input information. Small-molecule
information is parsed into element types (46 possible types), bond types, and chiral

centers. Covalent bonds between proteins and small molecules are provided as a
separate token in the bond adjacency matrix. The three-track architecture mixes 1D,
2D, and 3D information and predicts all-atom coordinates and model confidence.
Single-letter abbreviations for amino acid residues in the figures are as follows:
A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met;
N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr.
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Closest Protein Seq in Training: 23%
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Ligand RMSD: 1.20
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Fig. 2. RFAA can accurately predict protein–small molecule complex
structures. (A) Every “atom” node is assigned a local coordinate frame based
on the identities of its neighbors. To compute the main loss in the network,
we aligned each atom’s coordinate frame in the predicted and true structures
and measured the error over all the other atoms. (B) Model accuracy
correlates with error predictions. Structures and corresponding error predictions
were generated for CAMEO targets (05/20/23 to 7/29/23; 261 protein–small
molecule interfaces). Ligand RMSD was computed by CAMEO organizers.

(C) RFAA outperforms AutoDock Vina on CAMEO targets (week 8/12/23
to 09/02/23; 149 protein–small molecule interfaces). Both servers had to model
the protein and find pockets for all ligands present in the solved structure and
the correct docks for all ligands. The ligand RMSD for both servers was
computed by CAMEO organizers; the AutoDock Vina server was set up by
CAMEO organizers. (D) Three examples of successful predictions with multiple
biomolecules. Shown from left to right are fatty acid decarboxylase (PDB ID
8D8P; seq ID 34%; from CAMEO) with a heme cofactor and a lipid substrate;
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unit given atomic graph information. To further
help the network learn about general atomic
interactions, we took advantage of the common-
alities between atomic interactions within pro-
teins and many of the atomic interactions
between proteins and small molecules and
augmented the training data by inputting
portions of proteins as atoms rather than res-
idues (a process we term atomization). We
atomized randomly selected subsets of three
to five contiguous residues by deleting the
sequence and template features and providing
instead atom, bond, and chirality information
for the atoms in those residues (an alanine
would be replaced by five atom tokens, one for
each heavy atom). Because the atoms are still
part of the polypeptide chain, we provide the
relative position of the atom tokens with
respect to the other residue tokens by adding
an extra bond token that corresponds to an
“atom-to-residue” bond and develop a posi-
tional encoding to account for atom-residue
bonds (see supplementarymethods). To increase
prediction accuracy on biological polymers, we
trained the network on protein monomer, pro-
tein complex, andprotein–nucleic acid complex
examples, as previously described (10, 11). All
examples were cropped to have 256 tokens dur-
ing the initial stages of training and 375 tokens
during fine-tuning. The progress of training was
monitored using independent validation sets
consisting of 10% of the protein sequence clus-
ters (see table S4).
Unlike previous protein-only deep-learning

architectures (13–15), RFAA can model full bio-
molecular systems. In the following sections,
we describe the performance of RFAA on dif-
ferent structure-modeling tasks. We adopted
the philosophy that a single model trained on
all available data over allmodalitieswould have
the greatest ability to generalize and bemore
accessible than a series of models specialized
for specific problems.

Predicting protein–small molecule complexes

To enable blind testing of RFAA prediction
performance, we enrolled an RFAA server
in the blind Continuous Automated Model

EvaluatiOn (CAMEO) ligand-docking evalua-
tion, which carries out predictions on all struc-
tures submitted to the PDB eachweekwith each
enrolled server and evaluates their perfor-
mance (16–18). These structures can havemul-
tiple protein chains, ligands, and metal ions
(for further results onmetal ions, see fig. S2).
Of the CAMEO targets, 43% are predicted
confidently by RFAA (PAE interaction <10),
and 77% of those high-confidence structures
are quite accurate, with <2-Å ligand rootmean
square deviation (RMSD) (Fig. 2B). One of the
other servers is an implementation of the lead-
ing non–deep-learning protein–small molecule
dockingmethod AutoDock Vina, developed by
the CAMEO organizers, that predicts the pro-
tein structure by homology modeling (19–24),
runs AutoDock to dock the small molecules,
and ranks the poses using the Vina scoring
function (9, 19). RFAAconsistently outperformed
the other servers in CAMEO on protein–small
moleculemodeling; for example, on casesmod-
eled by both the RFAA and AutoDock Vina
servers, RFAA modeled 32% of cases success-
fully (<2-Å ligand RMSD) compared with 8%
for the Vina server (Fig. 2C; the Vina perfor-
mance by an expert would likely be consider-
ably improved because of the complexities of
fully automatic multiple-stepmodeling pipe-
lines). The most common RFAA failure mode
is the placement of small molecules in the cor-
rect pockets but not in the correct orientation
(fig. S3; for a further exploration of failure
modes, see supplementary methods).
There were no other deep-learning docking

methods (5, 25–29) enrolled in CAMEO, but
we could instead compare performance on a
set of PDB structures that were solved after
our training-set date cutoff (30) [most earlier
deep-learning–based docking tools have focused
on the “bound” docking problem, in which the
crystal structure of the target (including side
chains) are provided and hence are less well
suited to CAMEO]. On this benchmark, RFAA
predicts 42% of complexes successfully com-
pared with DiffDock, which predicts 38% of
complexes successfully (Fig. 2D; RFAA pre-
dicts the protein backbone and side chains in

addition to the small-molecule dock, where-
as DiffDock receives the crystal structure of
the protein from the bound complex as in-
put). In cases where both the bound protein
structure and the pocket residues are pro-
vided, physics-basedmethods such as AutoDock
Vina outperformRFAA (52 versus 42%), which
has the much harder task of predicting both
the protein backbone and side-chain details
and the dock from sequence alone (fig. S4A).
To further benchmark the network, we as-

sembled a dataset of recent PDB entries with
small molecules bound that were deposited
after the cutoff date for our training set and
predicted full structuremodels for all 5421 com-
plexes (1529 protein sequence clusters at 30%
sequence identity). Although prediction perfor-
mance is higher for clusters with overlap with
the training set, the network also generates
accurate predictions for proteins with low
(BLAST e-value >1) sequence similarity to the
training set (35 versus 24% success rate, re-
spectively; Fig. 2F). We observed a similar pat-
tern for ligand clusters (across 1310 ligand
clusters); although the network makes more
accurate predictions for ligands seen in train-
ing, it also can make accurate predictions on
ligands that are not similar to those in train-
ing (<0.5 Tanimoto similarity; 19 versus 14%
success rate) (Fig. 2F). In cases where RFAA
predicts ligand placement with high confidence
and RF2 has high confidence (PAE interaction
<10 andpLDDT>0.8, respectively), RFAAmakes
higher-accuracy protein structure predictions
than RF2 (fig. S3A), indicating that training
with ligand context can improve overall protein-
prediction accuracy. Some examples of shifts
predicted by RFAA but not by RF2 include do-
main movements, subtle backbone movements,
and flipping of side-chain rotamers to accom-
modate the ligand in thepocket (fig. S3,B andC).
Unlike previous methods, RFAA is able to

jointly predict interactions between proteins
and multiple nonprotein ligands in a single
forward pass. Figure 2D shows three examples
of recently solved structures with three or
more components for which RFAA predictions
had <2-Å ligand RMSD (when the proteins

a dimeric tyrosine methyltransferase (PDB ID 7UX8; seq ID 28%; CASP15
target: T1124) with an S-adenosyl homocysteine and tyrosine interaction; and a
DNA polymerase (PDB ID 7U7W; seq ID 100%) bound to DNA, a nucleotide,
and a metal ion (31, 66, 67). The following color scheme is used in all panels:
Predicted protein structure (aligned to native) is indicated in transparent
teal, predicted ligand conformation in teal, and native ligand conformation
in gray. (E) Comparison to other deep learning–based docking methods. In this
case, each method was applied in their respective training regime. For RFAA,
this meant only having sequence and minimal atomic graph inputs, whereas
for other methods, this involved providing the bound crystal structure. The
ligand RMSD was computed using the PoseBusters suite, and a single example
present in our training set was removed for all methods that were compared.
(F) Comparison of RFAA predictions on recently solved PDB proteins that
are new compared with the training set (homolog <1 BLAST e-value, similar

ligand >0.5 Tanimoto similarity). Each set is clustered based on sequence
or ligand similarity, and a random cluster representative is chosen for
each. (G) Comparison of RFAA prediction accuracy to Rosetta DG energy
estimates for the native complex (more than 940 cases that were successfully
processed by Rosetta). RFAA makes more-accurate predictions for native
complexes with low Rosetta energy. (H) Three examples of successful
predictions with low similarity to the training set. Shown from left to right are
G protein–coupled S1P receptor (PDB ID 7EW1; seq ID 31%), complex of
DLK bound to an inhibitor (PDB ID 8OUS; seq ID 39%), and a Renilla luciferase
bound to an azacoelenterazine (non-native substrate; PDB ID 7QXR; seq ID
23%) (68–70). In (B), (F), and (G), boxplots cut off at 20 Å for clarity;
the center line represents the median, box limits are upper and lower quartiles,
and whiskers are minimum and maximum values. The color scheme is the
same as that in (D).
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were aligned). There are homologous complexes
in the training set, so these are not de novo
predictions; however, they demonstrate that
RFAA can learn themulticomponent assembly
prediction task. Figure 2D, right, shows a pre-
diction forDNApolymerase (31) (PDB ID 7U7W)
with a bound DNA, nonhydrolyzable guanine
triphosphate and magnesium ion; the network
received no examples of higher-order assemblies
containing proteins with both small molecules
and nucleic acids during training but is likely
synthesizing information frommultiple related
binary complexes that are in the training set.
To assess whether the network can distin-

guish compounds known to bind from related
compounds, we compared protein–small mol-
ecule complex predictions for the PoseBusters
dataset for the compound known to bind and
decoy molecules, including small molecules,
with the highest Tanimoto similarity in the
dataset. In 75.1% of cases, the PAE interaction
metric of the “decoy” complexwas higher (indi-
cating lower confidence) than the native com-
plex (fig. S7). Direct optimization on this
discrimination task would likely further im-
prove performance.
To determine the extent to which the net-

work is reasoning over the detailed structure
of protein–small molecule interactions, we
investigated the correlation between predic-
tion accuracy and the interaction energy com-
puted by a molecular force field. We found
that predictions for protein–small molecule
complexes in our recent PDB set with lower
computedbinding energies (RosettaDG) (32, 33)
were more accurate (Fig. 2G; 50, 25, and 22%
success rates for <−30, −30 to 0, and >0 Rosetta
energy units, respectively), which suggests that
the network considers the detailed interactions
between the protein and small molecule (al-
though reasoning over these interactions very
differently than human-designed force fields).

Predicting structures of covalent
modifications to proteins

Many essential protein functions, such as re-
ceptor signaling, immune evasion, and enzyme
activity, involve covalent modifications of amino
acid side chains with sugars, phosphates, lipids,
and othermolecules (34–37). RFAAmodels such
modifications by treating the residue and chem-
ical moiety as atoms (with the corresponding
covalent bond to the atom token in the res-
idue) and the rest of the protein structure as
residues (Fig. 3A). Unnatural amino acids can
be modeled in the same way.
We benchmarked the performance of RFAA

on covalent modification structure predic-
tion on 931 recent entries in the PDB (after
May 2020) and found that the network made
accurate predictions (modificationRMSD<2.5Å)
in 46% of cases (modification RMSD is the
RMSD of the modified residue and chemical
modification when the rest of the protein is

aligned). As in the protein–small molecule com-
plex case, confident predictions tend to be more
accurate: 60% of structures are predicted with
high confidence (PAE interaction <10), and
63% of those predictions are accurate (<2.5-Å
modification RMSD) (Fig. 3B). Although the
network makes slightly more-accurate predic-
tions on cases with sequence similarity (>25%
identity) to proteins in the training set, there
are still many cases (27.5%) that do not have
sequence overlap to the training set that are
predicted with high accuracy (Fig. 3C). RFAA
models interactions with covalently bound co-
factors and covalently bounddrugswithmedian
RMSDs of 0.99 and 2.8 Å, respectively (Fig. 3, D
and E).
Prediction of glycan structure has applica-

tions in therapeutics, vaccines, and diagnostics
(38–40). RFAA can accurately model carbohy-
drate groups introduced by glycosylationwith a
median RMSD over our test set of 3.2 Å (Fig.
3D). RFAA successfully predicts glycan con-
formations on the N-acetylglucosamine-1-
phosphotransferase (GNPT) gamma subunit
(PDB ID 7S69) and human sperm TMEM95
ectodomain (PDB ID 7UX0), which have low
sequence homology (<30%) to the RFAA train-
ing set (Fig. 3F) and have multiple mono-
saccharides and different branching patterns
(41, 42). RFAA is not simply learning how
structure-building programs model glycans
because the predictions match the experimen-
tal density maps (fig. S8C). The network was
able to make accurate predictions of glycan
interactions even when the sequences were
distant from the sequences in the training set
and on glycanswith chains of up to sevenmono-
saccharides (fig. S8).
It is difficult to compare RFAA with other

methods because, to our knowledge, previous
deep learning–based tools do not model co-
valent modifications to proteins. Accurate and
robust modeling of covalent modifications in
predicted structures should contribute to
the understanding of biological function and
mechanism.

De novo small-molecule binder design

Previous work on the design of small-molecule
binding proteins has involved docking mole-
cules into large sets of native or expert-curated
protein scaffold structures (43, 44). Diffusion-
based methods can generate proteins in the
context of a protein target that bind with
considerable affinity and specificity (45) and can
be trained to explicitly condition on structural
features (46). However, present deep learning–
based generative approaches do not explicitly
model protein-ligand interactions, so they are
not directly applicable to the small-molecular-
binderdesignproblem[inRFdiffusion, aheuristic
attractive-repulsive potential encouraged the
formation of pockets with shape complemen-
tarity to a targetmolecule, but the approachwas

unable to model the details of protein–small
molecule interactions (45)]. A general method
that can generate protein structures around
small molecules and other nonprotein targets
to maximize favorable interactions could be
broadly useful.
We reasoned that RFAA could enable pro-

tein design in the context of nonprotein bio-
molecules after fine-tuningon structuredenoising.
We developed a diffusion model, RFdiffusion
All-Atom (RFdiffusionAA), by training a de-
noising diffusion probabilisticmodel initialized
with the RFAA structure-prediction weights to
denoise corrupted protein structures conditioned
on the small molecule and other biomolecular
context (Fig. 4A). Input structures from the
protein–small molecule dataset described above
were noised through progressive addition of
3D Gaussian noise to the Ca coordinates and
Brownianmotion on the manifold of rotations,
and themodel was trained to remove this noise.
In contrast to training for the unconditional
generation problem and incorporating condi-
tional information through forms of guidance
(47, 48), this training procedure results in an
explicitly conditional model that learns the
distribution of proteins conditioned on bio-
molecular substructure. To enable the inclusion
of specific protein functional motifs when de-
sired, we also trained the network to scaffold a
variety of discontiguous protein motifs both in
the presence and absence of small molecules.
To generate proteins, we initialized a Gaussian
distribution of residue frameswith randomized
rotations around a fixed small-molecule motif;
at each denoising step t, we predicted the fully
denoised X0 state and then updated all residue
coordinates and orientations by taking a step
toward this conformation while adding noise
to match the distribution for Xt−1. As with
RFdiffusion, we investigated the use of auxiliary
potentials to influence trajectories tomakemore
contacts between small molecules and binders
but found these to be unnecessary (see fig. S10C).
We evaluated RFdiffusionAA in silico by gen-

erating protein structures in the context of four
diverse small molecules. Starting from random
residue distributions surrounding each of the
small molecules, iterative denoising yielded
coherent protein backbones with pockets com-
plementary to the small-molecule target. After
sequence design using LigandMPNN (49, 50),
Rosetta GALigandDock (32) energy calculations
were used to evaluate the protein–small mole-
cule interface and AF2 predictions to evaluate
the extent to which the sequence encodes the
designed structure (45, 51). The computed bind-
ing energies of RFdiffusionAA designs are far
better (p < 1.56 × 10−12) than those obtained
using a heuristic attractive-repulsive poten-
tial with protein-only RFdiffusion (fig. S10C).
RFdiffusionAA generated backbones that could
be repredictedwith AF2with backboneRMSD
<2 Å for all four design cases (fig. S10C). For
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each small molecule, RFdiffusionAA gener-
ates diverse protein structural solutions to the
binding problem that differ from native bind-
ers to these ligands (figs. S11 and S12).

Experimental characterization of
designed binders

To experimentally evaluate RFdiffusionAA across
a range of design scenarios, we designed binders
for three diverse small molecules: one with no

proteinmotif included in the designparameters,
one with a single-residue proteinmotif, and one
with a four-residue protein motif (Fig. 4). We
produced the proteins in Escherichia coli and
measured ligand binding experimentally.
Digoxigenin (DIG) is the aglycone of digoxin,

a small molecule used to treat heart diseases
with a narrow therapeutic window (52), and
digoxigenin-binding proteins could help re-
duce toxicity (53). Previous attempts to design

digoxigenin-binding proteins relied on protein
scaffolds with experimentally determined struc-
tures and prespecified binding pockets and
interactingmotifs (54).We usedRFdiffusionAA
to design digoxigenin-binding backbones with-
out any prior assumption about the protein-
ligand interface or backbone structure (Fig. 4A).
Sequences were obtained using LigandMPNN
and Rosetta FastRelax (55), and 4416 designs
were selected based on consistency with AF2

CCooovvaalleenntt mmodification and residue
treeated as atoms

""RRResidue to Atom"
Bond Features

Remainder of protein
treated as residues

  

Ground Truth

Prediction

 

   Cofactor

Covalent Drug
Glycosylation

A B

EDC

F

Fig. 3. Accurate prediction of protein covalent modifications. (A) Schematic
describing how RFAA models covalent modifications to proteins. The chemical
moiety that modifies the residue and the residue are modeled as atom nodes,
and the rest of the protein is modeled as residues (with multiple sequence
alignment and template inputs). (B) Model accuracy correlates with predicted
error on a set of 938 recently solved structures with covalent modifications.
Modification RMSD was computed by aligning the protein structure within 10 Å
and computing RMSD over the modified residue and chemical modification.
The boxplot is cut off at 15 Å for clarity. (C) Comparison of sequence identity to
the training set and model accuracy. Models are generally accurate even with
low sequence homology to the training set. (D) Comparison of model accuracy
for different types of covalent modifications. (E) Shown at the top is an example

of a successfully predicted covalently linked enzyme cofactor (PDB ID 7P3T;
seq ID 28%), which is a structure of an (R)-selective amine transaminase. Shown
at the bottom is an example of a covalently bound drug candidate (PDB ID 7TI1;
seq ID 27%), which is a b-lactamase enzyme bound to cyclic boronic acid
inhibitor (71, 72). (F) Accurate predictions of glycans on the N-acetylglucosamine-1-
phosphotransferase (GNPT) gamma subunit (PDB ID 7S69; no BLAST hits)
(right) and human sperm TMEM95 ectodomain (PDB ID 7UX0; seq ID 26%) (left)
(41, 42). For the boxplots in (B) to (D), the center line represents the median,
box limits are upper and lower quartiles, and whiskers are minimum and
maximum values. In (E) and (F), predicted protein structure is indicated in
transparent teal, native structure in transparent gray, predicted covalent
modification in teal, and native covalent modification in gray.
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predictions and Rosetta metrics (see supple-
mentary methods). Experimental characteriza-
tion identified several DIG-binding proteins
(figs. S29 and S30 and supplementary meth-
ods); the highest-affinity binder has a 343-nM
dissociation constant (Kd) for free digoxigenin
(as measured by isothermal titration calo-
rimetry; Fig. 4B) and is stable at temperatures
up to 95°C.

Heme is a cofactor for a wide range of oxi-
dation reactions and oxygen transport (cyto-
chrome P450 and hemoglobin are two notable
examples), with catalytic function enabled
by pentacoordinate iron binding and an open
substrate pocket (56, 57). Designed heme-
binding proteins with these features have
considerable potential as a platform for the
development of new enzymes (58). We diffused

proteins around heme with the central iron
coordinated by a cysteine and a placeholder
molecule just above the porphyrin ring to
keep the axial heme binding site open for po-
tential substrate molecules. Of 168 designs
selected based on AF2-predicted confidence
(pLDDT), backboneRMSDtodesign, andRMSD
of the predicted cysteine rotamer to the design,
135 were well expressed in E. coli, and 90 had

Fig. 4. Experimental characteriza-
tion of binders designed with
RFdiffusionAA. The following color
scheme is used in all panels: The input
ligand is indicated in yellow, input protein
motif in blue, and diffused protein in teal;
purple text indicates the closest TM
score to any protein in the training set,
and blue text indicates the closest TM
score to any protein in the training set
that has a similar ligand bound
(Tanimoto similarity >0.5). (A) Sche-
matic depicting the random initialization
of residues surrounding a small
molecule and progressive denoising by
RFdiffusionAA. (B) Characterization
of dioxigenin binder design. Shown from
left to right are the input motif to
RFdiffusionAA, the designed protein, a
zoomed-in view of the binding-site side
chains, isothermal calorimetry (ITC)
measuring binding affinity (Kd = 343 nM),
and a circular dichroism (CD) trace
(26 mM protein concentration; the inset is
a CD melt showing intensity at 220 nm
across a broad range of temperatures).
DH, enthalpy of binding; MRE, molar
ellipticity. (C) Characterization of heme
binding designs. Shown from left to right
are the input motif to RFdiffusionAA, the
designed protein aligned to its crystal
structure (PDB ID 8VC8), a zoomed-in
view of the binding site, and UV-Vis
spectra showing that the designed
protein matches the expected spectra
for penta-coordinated heme and that
mutating cysteine to alanine abolishes
binding (top) and that the designed
protein retains heme binding at temper-
atures up to 90°C (bottom). (D) Char-
acterization of bilin binding designs. Row
1, left to right, shows the input motif to
RFdiffusionAA and three designs with
different predicted structural topologies.
Row 2, left to right, shows a zoomed-in
view of binding sites for each design.
Row 3, left to right, shows normalized
absorption spectra for the three designs.
The designs have a range of maximum
absorption wavelengths and hence dif-
ferent colors in solution (insets).
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ultraviolet-visible (UV-Vis) spectra consistent
with Cys-bound heme (as judged by the Soret
maximum wavelength after in vitro heme
loading) (59). We further purified 40 of the de-
signs and found that 33 were monomeric and
retained heme binding through size exclusion
chromatography. For 26 of the designs, wemu-
tated the putative heme-coordinating cysteine
residue to alanine, which led to a notable
change in the Soret features in all cases (Fig. 4
and figs. S13 to S16). Twenty designs exhibit
high thermostability, retaining their heme bind-
ing at temperatures above 85°C, and do not
unfold at temperatures up to 95°C (Fig. 4C and
figs. S13 to S16). We solved the crystal structure
of heme-loaded design HEM_3.C9 to 1.8-Å reso-
lution (PDB ID 8VC8) and found it to closely
match that of the design model (0.86-Å Ca
RMSD). The crystal structure verifies that
heme is bound through Cys ligation in a penta-
coordinate fashion with an open distal pocket
(in agreement with spectroscopic data) and is
further held in place with hydrogen bonds to
two arginines, as designed (fig. S17).
Bilins are brilliantly colored pigments that

play important roles across diverse biological
kingdoms. When bilins are constrained by pro-
tein scaffolds, such as phycobiliproteins in the
megadalton phycobilisome antenna complexes
of cyanobacteria and some algae (60), their ab-
sorption features narrow, their extinction co-
efficients increase, and their fluorescence is
markedly enhanced. We sampled diffusion tra-
jectories conditioned on the structure of a bilin
molecule attached to a four-residue peptide
motif recognized by the CpcEF bilin lyase
(61, 62). We evaluated 94 designs with a whole-
cell screen using phycoerythrobilin (PEB) as
the chromophore and, on the basis of pigmen-
tation of fluorescence, identified nine proteins
dissimilar to each other and to CpcA (fig. S18A)
that bind bilin (a 9.6% hit rate). We purified
three designs—BIL_C11, BIL_H4, and BIL_F9—
with absorption maxima at 573, 605, and
607 nm, respectively, compared with 557 nm
for the CpcA-PEB [Fig. 4D and fig. S8B; the
extent of red shifting correlates with com-
puted electrostatic potential around the chro-
mophore (fig. S19)]. Conformationally restricted
bilins typically display higher fluorescence
yields; absolute fluorescent yields for the BIL_
C11, BIL_H4, and BIL_F9 designs are 38, 11,
and 25%, respectively, based on an earlier de-
termination of the absolute fluorescence quan-
tum yield for CpcA-PEB of 67% (63) (fig. S18C).
These values are much higher than those
obtained previously with maquette scaffolds
[fluorescence quantum yield (FF) values of 2
to 3%], which displayed limited bilin incor-
poration and less pronounced spectral enhance-
ments (64). The strong coloration, absorption,
and emission for these designs were absent
from control E. coli strains that synthesize only
(i) thePEBbilin and theCpcE/F lyase or (ii) PEB,

CpcE/F, and maltose-binding protein (fig. S20).
The 34- and 30-nm ranges in absorption and
emission, respectively, covered by just one de-
sign round using a single chromophore raises
the exciting prospect of tailoring the spectral
profiles of designed biliproteins by manipulat-
ing the conformational flexibility of the bilin
and the proteinmicroenvironment. De novo–
designed antenna complexes could harvest light
over a wider range of the UV-Vis spectrum to
enhance photosynthetic energy capture and
conversion (65), and fluorescent reporter probes
with tunable excitation and emissionmaxima
would be useful biochemical tools.
The experimental validation of digoxigenin-,

heme-, and bilin-binding proteins demonstrates
that RFdiffusionAA can readily generate pro-
teins with custom binding pockets for diverse
smallmolecules. Unlike priormethods that rely
on redesigning existing scaffolds, RFdiffusionAA
builds proteins from scratch around the target
compound, resulting in high shape comple-
mentarity in the binding pockets and reducing
the need for expert knowledge. The ability of
RFdiffusionAA to generalize is highlighted by
the sequence and structural dissimilarity be-
tween the designs and proteins in the PDB that
bind related molecules (Tanimoto similarity
>0.5); the most similar protein in the PDB
that binds a related molecule has a template
modeling score (TM score) of 0.59 for the
highest-affinity digoxigenin binder, less than
0.62 for all the characterized heme binders,
and less than 0.52 for the bilin binders (fig. S21).
In all cases, there is no detectable sequence sim-
ilarity to any known protein.

Discussion

RFAA demonstrates that a single neural net-
work can be trained to accuratelymodel a wide
range of general biomolecular assemblies that
contain a wide diversity of nonprotein compo-
nents. RFAA can make high-accuracy predic-
tions on protein–small molecule complexes,
with 32% of CAMEO targets predicted under
2-Å RMSD, and for covalent modifications to
proteins, predicting 46% of recently solved
covalent modifications under 2.5-Å RMSD;
it can also generate accurate models for com-
plexes of proteins with two ormore nonprotein
molecules (small molecules, metals, nucleic
acids, etc.). Training on more-extensive datasets
and/or architectural improvements will likely
be necessary to generate consistently accurate
predictions for protein–small molecule com-
plexes that are on par with the accuracy of
predictions that deep networks can achieve on
protein systems alone. The new prediction
capabilities do not come at the expense of per-
formance on the classic protein structure predic-
tionproblem:RFAAachieves a protein-structure
prediction accuracy similar to that of AF2
[median global distance test (GDT) of 85 ver-
sus 86] and a protein–nucleic acid complex

accuracy similar to that of RFNA (median
allatom-LDDT of 0.74 versus 0.78) (fig. S22).
Our prediction and design results suggest

that RFAA has learned detailed features of
protein–small molecule complexes. First, the
network is able to make high-accuracy pre-
dictions for protein sequences and ligands
that differ considerably from those in the
training dataset (Figs. 2F and 3C), and pre-
diction accuracy is higher for complexes with
more-favorable computed interaction energies
using the Rosetta physically based model (Fig.
2G). Second, ourRFdiffusionAA-generated bilin,
heme, and digoxigenin binders have very dif-
ferent structures than proteins that bind these
compounds that are found in the PDB. RFAA
should be immediately useful for modeling
protein–small molecule complexes, in particu-
lar, multicomponent biomolecular assemblies
for which there are few or no alternative meth-
ods available, and for designing small-molecule
binding proteins and sensors.

Methods summary

A detailed description of dataset curation,
modeling of biological inputs, data pipeline,
RFAA architecture, training, in silico design
methods, and experimental validation can be
found in the supplementary materials.
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