000 001 002 003 ALTERNATING OPTIMIZED STOCHASTIC VECTOR QUANTIZATION IN NEURAL COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

In neural compression, vector quantization (VQ) is usually replaced by a differentiable approximation during training for gradient backpropagation. However, prior approximation methods face two main issues: 1) the train-test mismatch between differentiable approximation and actual quantization, and 2) the suboptimal encoder gradients for rate-distortion (RD) optimization. In this paper, we first provide new finds about how approximation methods influence the RD optimization in neural compression, and then propose a new solution based on these finds. Specifically, if a neural compressor is regarded as a source-space VQ, we find that the encoder implicitly determines the quantization boundaries, and the decoder determines the quantization centers. Suboptimal approximation methods lead to suboptimal gradients for RD optimization of quantization boundaries and centers. Therefore, to address the first issue, we propose an encode-decoder alternating optimization strategy. The encoder is optimized with differentiable approximation, and the decoder is optimized with actual quantization to avoid the train-test mismatch of quantization centers. To address the second issue, we propose a spherenoise based stochastic approximation method. During encoder optimization, VQ is replaced with a uniform sphere noise centered at the input vector. When the input vector is located at the quantization boundary, the encoder gradient is closer to the difference in RD loss between adjacent quantization centers, facilitating better encoder optimization. We name the combination of optimization strategy and approximation method as Alternating Optimized Stochastic Vector Quantization. Experimental results on various vector sources and natural images demonstrate the effectiveness of our method.

032 033 034

035 036

044

1 INTRODUCTION

037 038 039 040 041 042 043 Quantization is a classical lossy compression technique. In theory, vector quantization (VQ) [Gersho](#page-10-0) [& Gray](#page-10-0) [\(1992\)](#page-10-0) can achieve optimal rate-distortion (RD) performance in source coding. However, the exponentially increasing complexity of VQ and its non-differentiable nature limit its practical use in neural compression Ballé et al. (2017) ; Ballé et al. (2020) ; [Lu et al.](#page-10-3) (2019) ; [Li et al.](#page-10-4) (2021) , particularly for high-dimensional data. The complexity issue can be addressed by simplifying VQ to scalar quantization [Balle et al.](#page-10-2) [\(2020\)](#page-10-2), multistage VQ [Feng et al.](#page-10-5) [\(2023\)](#page-10-5); [Zhu et al.](#page-11-0) [\(2022\)](#page-11-0) or lattice ´ VQ [Zhang & Wu](#page-11-1) [\(2023\)](#page-11-1). In this paper, we focus on tackling the non-differentiability issue of VQ for end-to-end RD optimization.

045 046 047 048 049 050 051 052 053 In neural compression, quantization is performed in the latent space of an autoencoder. Since quantization is non-differentiable, optimizing the learnable encoder transform presents a significant challenge. A typical solution is to introduce a differentiable approximation of quantization during train-ing, such as additive uniform noise Ballé et al. [\(2017\)](#page-10-1) and straight-through estimator (STE) [Bengio](#page-10-6) [et al.](#page-10-6) [\(2013\)](#page-10-6). However, prior works mainly focus on a special case of VQ, *i.e.*, uniform scalar quantization. For general vector quantization, the optimization problem remains unresolved and primarily involves two issues. The first issue is train-test mismatch. Differentiable approximations [Agusts](#page-10-7)[son et al.](#page-10-7) [\(2017a\)](#page-10-7); [Zhu et al.](#page-11-0) [\(2022\)](#page-11-0) often differ from actual quantization, resulting in mismatch in the decoder's reconstruction between training and testing. The second issue is the suboptimality of encoder gradients. Although previous approximation methods are differentiable, the gradients backpropagated to the encoder remain suboptimal under the RD criterion.

054 055 056 057 058 059 060 061 062 In this paper, we aim to design an VQ approximation method for end-to-end RD optimization in neural compression. Since the gradients for the encoder and decoder vary depending on the approximation method, the first step is to understand how they influence RD performance. By interpreting a neural compressor as a source-space vector quantizer, we show that the encoder function implicitly determines the quantization boundaries, and the decoder function determines the quantization centers. Suboptimal boundaries and centers directly lead to suboptimal RD performance in lossy compression. Thus, the encoder gradient at the boundaries and the decoder's gradient at the centers are key factors influencing compression performance. In theory, entropy-constrained vector quantization (ECVQ) [Chou et al.](#page-10-8) [\(1989\)](#page-10-8) has the optimal quantization boundaries and centers.

063 064 065 066 067 068 To address the train-test mismatch issue, we propose an encode-decoder alternating optimization strategy. When optimizing the quantization centers, the encoder is fixed, and the decoder and codebook are optimized using actual quantization. When optimizing the quantization boundaries, the decoder and codebook are fixed, and the encoder is optimized using the approximation method. These two steps alternate during training, ensuring consistent decoder reconstruction while allowing gradients to be backpropagated to the encoder.

069 070 071 072 073 074 075 076 077 078 079 080 081 To address the issue of suboptimal encoder gradients, we first provide gradient analysis and argue that prior approximation methods are suboptimal for RD performance due to two reasons: 1) discontinuous encoder gradients result in non-smooth quantization boundaries, and 2) the encoder gradients at boundaries should align with the RD loss differences when quantizing to nearby centers. In theoretically optimal ECVQ, the RD loss for an input vector at the quantization boundary is equal when quantized to the two neighboring centers. Therefore, if the encoder gradient at the boundary closely approximates the loss difference between neighboring centers, it will help the encoder learn better quantization boundaries. Based on this analysis, we propose a sphere-noise based stochastic approximation method. This quantization approximation follows a uniform sphere distribution centered at the input vector, with the radius of the hypersphere equal to the distance between the input vector and the nearest quantization center. We further demonstrate that the encoder gradient is equivalent to the integral of the RD function over the surface of the high-dimensional sphere. When the input vector lies at the quantization boundary, the gradient is closer to the difference in RD loss between adjacent quantization centers, leading to more effective encoder optimization.

082 083 084 085 086 By combining the proposed alternating optimization strategy and shere-noise based stochas- tic approximation, we propose a new method named Alternating Optimized Stochastic Vector Quantization for end-to-end RD optimization. We provide comprehensive experiments and analysis on various vector sources. Experimental results on neural image compression further demonstrate the effectiveness of the proposed method.

087 088

089

2 RELATED WORK

090 091 092 093 094 095 096 097 098 Most existing works in neural compression follows the structure of nonlinear transform coding [Balle´](#page-10-2) [et al.](#page-10-2) [\(2020\)](#page-10-2), with a pair of learnable transform, an entropy model and a vector quantizer in latent space. As shown in Figure [1,](#page-2-0) the encoder transform g_a maps the input vector x into latent vector y, which is then quantized by a quantizer $\hat{y} = Q_y(y) = Q_y^d(Q_y^e(y))$. Q_y^e is the quantization encoder that maps y to discrete index i , and the quantization decoder Q_y^d maps i to quantized vector \hat{y} . The entropy model p_i is used to model the distribution of index i for entropy coding. The optimization target is to minimize the RD loss $L = R + \lambda D$, where $R = \mathbb{E}_{x}[-\log p_{i}(i)] = \mathbb{E}_{x}[-\log p_{i}(j)]$ is rate and $D = \mathbb{E}_x d(x, g_s(\hat{y}))$ is distortion. λ is a coefficient controlling the RD trade-off and d is a distortion metric.

099 100 101 102 103 104 105 106 107 The vector quantization Q is usually simplified to uniform quantization, *e.g.*,, rounding to the nearest integer, where $\hat{y} = |y| = i$. Most previous approximation methods are designed for uniform quantization. propose to add uniform noise on y during training. use straight-though estimator (STE) that copies gradient from \hat{y} to y to enable the training of encoder. Both and propose stochastic rounding that randomly quantizes y into two nearest integers, where anneals stochastic rounding to rounding during training. [Agustsson & Theis](#page-10-9) [\(2020\)](#page-10-9) propose a soft quantizer that smoothly interpolate between uniform noise and rounding. propose to optimize encoder with additive uniform noise and optimize decoder with rounding to reduce train-test mismatch. propose a two-stage strategy which first uses uniform noise for pre-training and then uses rounding for decoder finetuning. Among these methods, we can observe that additive uniform noise perform well for encoder

Figure 1: Interpreting neural compression as vector quantization. Blue lines are quantization boundaries and orange points are quantization centers.

 optimization and rounding or annealing based rounding perform well for decoder optimization. In Section [3.2,](#page-3-0) we provide an explanation for this observation based gradient analysis.

 For general vector quantization, the approximation design is more complicated. [Agustsson et al.](#page-10-7) [\(2017a\)](#page-10-7) propose a smooth approximation of vector quantization which is annealed to hard quantization during training. [Zhu et al.](#page-11-0) [\(2022\)](#page-11-0) replace vector quantization with a stochastic approximation that randomly quantize y to different codewords in the codebook. In VQVAE [Van Den Oord et al.](#page-11-2) [\(2017\)](#page-11-2), the authors use STE passing gradient from decoder to encoder, and introduce a VQ distance loss between y and codewords for the optimization of codebook and encoder. These method can only be optimized with distortion loss, where the rate is determined by codebook size. To achieve joint RD optimization, [Feng et al.](#page-10-5) [\(2023\)](#page-10-5) further improve the approximation in VQVAE with entropyconstrained vector quantization (ECVQ) [Chou et al.](#page-10-8) [\(1989\)](#page-10-8) in latent space. However, based on the analysis in Section [3.2,](#page-3-0) we argue that the encoder or decoder learned by previous methods are suboptimal in terms of RD performance.

3 GRADIENT ANALYSIS IN NEURAL COMPRESSION

 In Section [2,](#page-1-0) we introduce the common architecture of neural compression and several VQ approximation methods. However, it is unclear about the impact of these approximation methods on the RD optimization. In the following, we first show that optimizing encoder and decoder is equivalent to optimizing the quantization boundaries and centers. Then we provide gradient analysis at boundaries and centers, showing the suboptimality of existing approximation methods of vector quantization.

3.1 INTERPRETING NEURAL COMPRESSION AS VECTOR QUANTIZATION

 From VQ definition [Gersho & Gray](#page-10-0) [\(1992\)](#page-10-0), a vector quantizer Q_x of size N partitions the input vector space \mathbb{R}^k into N regions or cells. The region corresponding to the codeword $c_i \in \mathbb{C}_x$ denote as S_i , where i belongs to a index set \mathbb{I} and \mathbb{C}_x is the codebook. S_i is defined as:

$$
S_i = \{ \boldsymbol{x} \in \mathbb{R}^k \mid Q_x(\boldsymbol{x}) = \boldsymbol{c}_i \}
$$
 (1)

 Here, the regions satisfied $\bigcup_{i=1}^N S_i = \mathbb{R}^k$ and $S_i \cap S_j = \emptyset$ for all $i \neq j$. This implies that all the regions form a partition of the k-dimensional Euclidean space \mathbb{R}^k . The quantization boundaries are the partition boundaries, and the quantization centers are the codewords. The quantization boundaries and centers determine the RD performance.

 For a neural compressor shown in Figure [1,](#page-2-0) we can regard the whole process $\hat{\bm{x}} = g_s \circ Q_y^d \circ Q_y^e \circ g_a(\bm{x})$ as a vector quantization process $\hat{\boldsymbol{x}} = Q_x(\boldsymbol{x})$ in source space. For the quantizer Q_x , the quantization

Figure 2: For UQ-AUN, the encoder-decoder mapping function (left) and the gradient with respect to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization centers.

 encoder is $Q_x^e = Q_y^e \circ g_a$ and the quantization decoder is $Q_x^d = g_s \circ Q_y^d$. It is important to know how a neural compressor determines the quantization boundaries and centers of Q_x in source space. In fact, the boundaries of Q_x is determined by boundaries of Q_y and encoder transform g_a ; the centers of Q_x is determined by centers of Q_y and decoder transform g_s . Assuming input vector x is transformed into y and quantized to $\hat{y} = e_i \in \mathbb{C}_y$, where \mathbb{C}_y is codebook of Q_y . We can define the latent space region A_i partitioned by Q_y as $A_i = \{y \in \mathbb{R}^{k_y} \mid Q_y(y) = e_i\}$. As $y = g_a(x)$ and $\hat{\mathbf{x}} = g_s(\hat{\mathbf{y}})$, we have:

$$
S_i = \{ \boldsymbol{x} \in \mathbb{R}^k \mid g_a(\boldsymbol{x}) \in A_i \}
$$
 (2)

 $c_i = g_s(e_i)$ (3)

$$
193
$$

Since the quantization boundaries are uniquely determined by regions, the boundaries of Q_x depend only on the encoder transform g_a and the boundaries of Q_y . The quantization centers of Q_x depend only on the decoder transform g_s and the centers of Q_y . Moreover, if y lies on the boundary between two adjacent regions A_i and A_j , then x will be on the boundary between S_i and S_j . These finds show that optimizing the encoder and decoder is equivalent to optimizing the quantization boundaries and centers, providing insights on the design of approximation methods.

3.2 GRADIENT ANALYSIS

 During training, the quantized latent vector \hat{y} is replaced with a approximation \tilde{y} , and \hat{x} is changed to $\tilde{x} = g_s(\tilde{y})$. With the per sample RD loss $l = -\log p_{\tilde{y}}(\tilde{y}) + \lambda d(x, g_s(\tilde{y}))$, we care about the encoder gradient $\mathbb{E} [\partial l/\partial y]$ and decoder gradient $\mathbb{E} [\partial l/\partial \tilde{x}]$.

 In fact, according to Section [3.1,](#page-2-1) if we fix the encoder (*i.e.*, fix the quantization boundaries) and optimize decoder with test-time quantization \hat{y} , making the decoder gradient $\mathbb{E}[\partial l/\partial \hat{x}]$ towards zero will lead to optimal optimization result of quantization centers. Therefore, when encoder is fixed, the best approximation \tilde{y} to optimize decoder is \hat{y} itself. In this section, we focus on analyzing the encoder gradient with different approximation methods for learning quantization boundaries.

 UQ-AUN We start with uniform quantization for simplicity. Additive uniform noise (AUN) [Balle´](#page-10-1) [et al.](#page-10-1) [\(2017\)](#page-10-1); Ballé et al. [\(2018a\)](#page-10-10) is one of the most popular method to approximate uniform quantization during training. The rounding result $\hat{y} = |y|$ is replaced with $\tilde{y} = y + u$, where u is

Figure 3: For UQ-STE, the encoder-decoder mapping function (left) and the gradient with respect to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization centers.

sampled from uniform noise $U\left(\left[-\frac{1}{2}, \frac{1}{2} \right)^{k_y} \right)$. The encoder gradient of the scalar y_1 in y is:

$$
\begin{array}{c} 236 \\ 237 \\ 238 \end{array}
$$

 $\mathbb{E}_{\bm{u}}\left[\frac{\partial l}{\partial z}\right]$ $\partial \tilde{y}_1$ 1

 $=$ $\int_{0}^{y_1+0.5}$ $y_1-0.5$

 $\cdots\int_{}^{y_k+0.5}$ $y_k=0.5$

239

240 241

242 243

244

247

 $=$ $\int_{0}^{y_2+0.5}$ $y_2-0.5$ $\cdots\int_{}^{y_k+0.5}$ $y_k=0.5$ $l(y_1+0.5,\tilde{y_2},\cdots,\tilde{y_k})-l(y_1-0.5,\tilde{y_2},\cdots,\tilde{y_k})\mathrm{d}\tilde{y}_2\cdots\mathrm{d}\tilde{y}_k$ If $\tilde{y_1}$ is on the quantization boundaries, such as $y_1 = n + 0.5, n \in \mathbb{Z}$, the encoder gradient of y_1 is

related to loss differences when y_1 is quantized to two nearby centers n and $n + 1$.

245 246 In the case of a one-dimensional source $(k = 1)$, the encoder gradient is simplified to:

 $\frac{\partial \tilde{\mathbf{y}}_j}{\partial \tilde{y}_1} \mathrm{d} \tilde{y}_1 \cdots \mathrm{d} \tilde{y}_k$

 $\partial l(\tilde{\bm{y}})$

 $l(y_1 + 0.5) - l(y_1 - 0.5)$ (5)

(4)

248 249 250 251 252 253 254 In Section [3.1,](#page-2-1) we show that if y lies at the boundary between two regions in the latent space, then x is similarly positioned at the boundary of two corresponding regions in the source space. Consequently, when the gradient approaches zero at quantization boundaries, we have $l(n) = l(n + 1)$ 1), which aligns perfectly with the boundary definition in optimal ECVQ [Chou et al.](#page-10-8) [\(1989\)](#page-10-8), given the quantization centers. In ECVQ, the loss of quantizing to two nearby centers is equal when x is at the boundaries. This is why NTC Ballé et al. [\(2020\)](#page-10-2) achieves near-optimal performance on 1-dimensional sources.

255 256 257 258 259 260 261 In Figure [2](#page-3-1) (right), we illustrate the encoder gradients on a 1D Gaussian source. The gradients labeled "analytical" are calculated using Equation [4,](#page-4-0) while the unlabeled ones represent the averaged gradients over samples. The averaged gradients are smooth and closely match the theoretical results. Additionally, we show the encoder-decoder mapping function in Figure [2](#page-3-1) (left). The encoder transform g_a and decoder transform g_s are not inverse functions of each other, leading to rate-constrained quantization results in source space (similar to ECVQ), where quantization boundaries are not at the center of two nearby quantization centers.

262 263 264 265 266 267 268 269 UQ-STE STE [Bengio et al.](#page-10-6) [\(2013\)](#page-10-6) is also an popular approximation. The value of \tilde{y} is the same as the value of \hat{y} but with modified gradient, where $d\tilde{y}/dy = 1$. We can represent it as $\tilde{y} =$ $y + sg[\hat{y} - y]$, where sq is the operation of stopping gradient. The encoder gradient for STE is equal to $\mathbb{E}[\partial l/\partial \hat{y}]$. The gradient is discontinuous at boundaries because the \hat{y} suddenly changes from one quantization center to another one, as shown in Figure [3](#page-4-1) (right). Moreover, the sum of the gradients on both sides of the boundary equals the difference in the derivatives of the RD loss, which can cause the RD optimization to get trapped in local optima. In Figure [3](#page-4-1) (left), We show that the quantization boundaries optimized with UQ-STE are nonsmooth and suboptimal for RD performance.

Figure 4: For VQ-STE, the encoder-decoder mapping function (left) and the gradient with respect to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization centers.

VQ-STE Since STE on uniform quantization does not define a way to optimize the codebook, it cannot be directly used in vector quantization with learnbale codebook. To simultaneously optimize the encoding transform and the codebook, VQVAE [Van Den Oord et al.](#page-11-2) [\(2017\)](#page-11-2); [Razavi et al.](#page-10-11) [\(2019\)](#page-10-11) introduce additional VQ distance loss D_{vq} in latent space. The distance loss $D_{vq} = \mathbb{E}_{x}d_1(y, e_i)$ is calculated between the latent vector y and the corresponding codeword e_i , where d_1 is a VQ distance metric in latent space. To ensure end-to-end RD optimization, [Feng et al.](#page-10-5) [\(2023\)](#page-10-5) further introduce ECVQ and additional rate loss. The loss function is as:

$$
L_1 = R + \lambda D + \beta D_{vq},\tag{6}
$$

where β controls the trade-off between d and d_1 . Figure [4](#page-5-0) illustrates that, unlike UQ-AUN, VQ-STE does not optimize the encoder based on the difference in RD loss. Instead, it optimizes the encoder by balancing the latent-space VQ distance loss D_{vq} with the distortion loss D. This results in the encoder-decoder mapping becoming an identity mapping for 1D sources. The latent-space ECVQ in VQ-STE is equivalent to a source-space ECVQ. However, the issue of discontinuous gradients persists when D_{vq} and D cannot be properly balanced.

304 305 306

4 THE PROPOSED METHOD

4.1 ENCODER-DECODER ALTERNATING OPTIMIZATION

As shown in Figure [5,](#page-6-0) to address the train-test mismatch issues, this paper proposes an alternating optimization strategy for the encoder and decoder. When optimizing the quantization centers, the encoder is fixed, and the actual quantized values \tilde{y} are used to generate the reconstruction \tilde{x} , after which the RD loss is computed to optimize the decoder and codebook. When optimizing the quantization boundaries, the decoder and codebook are fixed, and the quantization approximation \tilde{y} is used to generate the reconstruction \tilde{x} , with the RD loss used to optimize the encoder. These two steps alternate during training. The entropy model is optimized during the first step.

315 316 317

318 319 320

4.2 STOCHASTIC VECTOR QUANTIZATION FOR ENCODER OPTIMIZATION

Consider a stochastic vector quantization, where the output \tilde{y} belongs to a conditional distribution $q(\tilde{\bm{y}} \mid \bm{y})$. We assume $d\tilde{\bm{y}}/d\bm{y} = 1$ and encoder gradient of the scalar y_1 in \bm{y} is:

321 322

$$
\frac{1}{2}
$$

323

$$
\mathbb{E}_{\tilde{\boldsymbol{y}}}\left[\frac{\partial l}{\partial y_1}\right] = \mathbb{E}_{\tilde{\boldsymbol{y}}}\left[\frac{\partial l}{\partial \tilde{y}_1}\right] = \int\limits_{\omega} q(\tilde{\boldsymbol{y}} \mid \boldsymbol{y}) \frac{\partial l}{\partial \tilde{y}_1} \mathrm{d} \tilde{y}_1 \mathrm{d} \tilde{y}_2 \cdots \mathrm{d} \tilde{y}_k \tag{7}
$$

Figure 5: Alternating optimization of the encoder and decoder. Gray indicates freezed modules, while white indicates trainable modules.

 ω is the integration area in \mathbb{R}^k . Let $q(\tilde{\bm{y}} \mid \bm{y})$ be a uniform sphere distribution centered at y. The radius of the hypersphere is equal to $||y - \hat{y}||$. Therefore, the encoder gradient is as:

$$
\int_{\omega} \frac{1}{V(\omega)} \frac{\partial l(\tilde{\mathbf{y}})}{\partial \tilde{y}_1} \, \mathrm{d}\tilde{y}_1 \mathrm{d}\tilde{y}_2 \cdots \mathrm{d}\tilde{y}_k,\tag{8}
$$

where $V(\omega)$ is the volume of hypersphere, and $1/V(\omega)$ is the density because \tilde{y} is uniformly distributed. According to the generalized Stokes theorem, we have the gradient as:

$$
\frac{1}{V(\omega)} \int\limits_{\partial \omega} l(\tilde{\boldsymbol{y}}) d\tilde{y}_2 \cdots d\tilde{y}_k, \tag{9}
$$

Therefore, the encoder gradient is the integration of loss function on the surface of the sphere. When y) is at the boundaries, both the nearby two quantization centers e_i and e_j are on the surface, due to $||y - \hat{y}|| = ||y - e_i|| = ||y - e_j||$.

In fact, the proposed approximation is a generalization of additive uniform noise. If $q(\tilde{y} \mid y)$ is uniform distributed within a unit hypercube centered at y with volume $V(\omega) = 1$, the gradient will be the same as that in Equation [4.](#page-4-0)

5 EXPERIMENTS

5.1 SETUP

Source Data For vector sources, we conduct tests on 1-dimensional Gaussian sources, 2 dimensional Boomerang sources, and 8-dimensional Laplace sources. For natural image sources, we train on the train2017 dataset from COCO [Lin et al.](#page-10-12) [\(2014\)](#page-10-12), which contains 118,287 images. The training images are randomly cropped into 256×256 patches. The evaluation dataset is the Kodak dataset [Kodak](#page-10-13) [\(1993\)](#page-10-13), consisting of 24 images with a resolution of 768×512 pixels.

369 370 371 372 373 374 Evaluation Metrics For vector sources, we use the following metric to measure distortion: $-10 \log(MSE(x, \hat{x}))$, where MSE is the mean squared error. The bitrate is measured as bits per dimension (bpd). For natural images, the quality of the reconstructed images is evaluated using peak signal-to-noise ratio (PSNR) in the RGB color space, and the bitrate is assessed in bits per pixel (bpp). Both the distortion metrics d and d_1 are mean squared error. Additionally, the BDrate [Bjontegaard](#page-10-14) [\(2001a\)](#page-10-14) is employed to evaluate the average RD performance gain.

375

376 377 Implementation Details For the model on low-dimensional vector sources, both the encoder and decoder transforms are constructed from Resblocks. The dimension of the latent-space vector is equal to the dimension of the source-space vector. For the model on image sources, the encoder and

Figure 6: For the proposed method on 1D Gaussian source, the encoder-decoder mapping function (left) and the gradient with respect to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization centers.

Figure 7: RD performance on the 2D Boomerang source (left) and the visualization of the quantization results of the proposed method (right).

 decoder transforms follow the same structure as in the factorized model Ballé et al. [\(2018b\)](#page-10-15), with the number of channels in the convolutional layers set to 192.

 For the entropy model, we use the factorized entropy model Ballé et al. [\(2018b\)](#page-10-15) when training with UQ-AUN and UQ-STE. When training with VQ-STE and the proposed method, we employ the discrete entropy model [Van Den Oord et al.](#page-11-2) [\(2017\)](#page-11-2); [Feng et al.](#page-10-5) [\(2023\)](#page-10-5), which consists of a softmax function and learnable logits.

 For 1D, 2D, and 4D vector quantization, the codebook sizes are set to 256, 4096, and 32768, respectively. Since the codebook size required for vector quantization beyond 4 dimensions becomes excessively large without affecting performance, the experiments in this paper mainly focus on optimizing vector quantization for dimensions 4 and below.

 We use the Adam optimizer [Kingma & Ba](#page-10-16) [\(2014\)](#page-10-16) for optimization, with a batch size of 1024 for low-dimensional vector sources and a batch size of 8 for image sources.

 5.2 RESULTS AND ANALYSIS

 In this section, we present the experimental results of the proposed method on different data sources, compare its performance with other methods, and conduct a series of ablation studies and analyses.

Figure 8: RD performance on the 8D Laplace source (left) and the Kodak image dataset (right).

Table 1: BD-rate comparison on Kodak dataset in terms of PSNR. The benchmark is UQ-AUN (Factorized model [Balle et al.](#page-10-15) [\(2018b\)](#page-10-15)), with lower values indicating better performance. ´

UO-AUN	VO-STE-1d	VO-STE-2d	VO-STE-4d	$Ours-1d$	Ours-2d	Jurs-4d	BPG444
		2.42	<i>J</i> .16	-5.58	7.20	-9.39	-26.16

5.2.1 LOW-DIMENSIONAL VECTOR SOURCES

1D Gaussian Source For the 1D Gaussian source, the proposed method achieves performance very close to that of UQ-AUN. Here, we mainly showcase the encoder-decoder mapping function and the encoder gradient results for analysis. As shown in Figure [6,](#page-7-0) although the encoder gradients and encoder transform are not as smooth as those of UQ-AUN, the decoder transform remains sufficiently smooth and is able to learn nearly optimal mapping functions. Compared to UQ-AUN, the proposed method ensures train-test mismatch and is applicable to high-dimensional vector quantization. Additionally, compared to the UQ-STE method, the proposed method ensures optimal RD performance when determining quantization boundaries, avoiding the discontinuity in gradients.

 2D Boomerang Source For the 2D Boomerang source, we present the RD performance and the visualized quantization results of the proposed method. As shown in Figure [7,](#page-7-1) Ours-1d, UQ-AUN and VQ-STE-1d are there neural compressors, where the dimension of the latent-space vector quantizers is 1, *i.e.*,, scalar quantizers. The difference lies in that UQ-AUN uses uniform scalar quantization, while VQ-STE-1d and Ours-1d are scalar quantizers with learnable codebooks. It can be observed that VQ-STE-1d has a significant performance drop compared to UQ-AUN, the main reason for which is analyzed in Section [3.2.](#page-3-0) In contrast, the proposed method achieves results comparable to NTC.

 8D Laplace Source The experimental results on the 8D Laplace source are shown in Figure [8](#page-8-0) (left). We performed both 1D and 4D vector quantization using the proposed optimization strategy. It can be observed that, even with scalar quantization, the performance of VQ-STE-1d, which uses the optimization strategy from previous work [Feng et al.](#page-10-5) [\(2023\)](#page-10-5), is slightly inferior to that of UQ-AUN. When the VQ dimension increases, the performance of VQ-STE-4d shows a significant drop. In contrast, the proposed method (Ours-1d) maintains performance on par with UQ-AUN in scalar quantization. As the quantization dimension increases to 4, Ours-4d shows improvements at higher bitrates, confirming its effectiveness. Notably, the performance of 8D ECVQ plateaus beyond 1.75 bpd due to its codebook size being insufficient to meet bitrate demands. At this rate point, the codebook size reaches 409,600. Due to the exponential growth in codebook size with increasing bitrates, further expansion becomes impractical.

486 487 5.2.2 NATURAL IMAGES

488 489 490 491 492 493 494 495 496 We also validate the effectiveness of the proposed method on the Kodak image dataset. Since the proposed alternating optimization strategy is only applicable to single-layer quantization and unconditional entropy models, we did not test on the state-of-the-art multi-layer quantization models for image compression. Instead, we tested the 1D, 2D, and 4D vector quantization results on the single-layer Factorized model Ballé et al. [\(2018b\)](#page-10-15). The vector quantization is performed along the channel dimension. For example, in the case of 4D quantization, the $192 \times 1 \times 1$ channel vector is divided into 48 sub-vectors of size $4 \times 1 \times 1$, and vector quantization is performed on each sub-vector using 48 different codebooks, with the codebooks shared across the spatial domain. This quantization method only removes redundancy in the channel domain and does not address spatial redundancy.

497 498 499 500 501 502 The RD performance curve on the Kodak dataset is shown in the right column of Figure [8.](#page-8-0) Table [1](#page-8-1) presents the BD-rate results [Bjontegaard](#page-10-17) [\(2001b\)](#page-10-17) with UQ-AUN as the baseline. It can be observed that the proposed method achieves steady performance improvements as the quantization dimension increases, while VQ-STE shows no significant improvement and even some performance degradation. Additionally, Ours-1d performs significantly better than UQ-AUN, primarily because alternating optimization resolves the train-test mismatch issue.

503 504 505 506 507 Table [2](#page-9-0) presents a series of ablation experiments on the Kodak dataset. To verify the effectiveness of the alternating optimization (A1), we directly fed the quantization approximation results into the decoder and used an additional loss to constrain the learning of the codebook. However, the model without the alternating optimization strategy experienced training collapse, demonstrating the importance of alternating optimization for stable convergence.

508 509 510 511 512 513 514 Retaining the alternating optimization strategy, we replaced the proposed stochastic vector quantization method with two other approaches, including: soft-to-hard vector quantization [Agustsson](#page-10-18) [et al.](#page-10-18) [\(2017b\)](#page-10-18) (A2), and probabilistic vector quantization [Zhu et al.](#page-11-0) [\(2022\)](#page-11-0) based on Gumbel Softmax [Maddison et al.](#page-10-19) [\(2017\)](#page-10-19) (A3). The rate of these methods is controlled by adjusting the codebook size. It can be observed that, with the same transform structures and optimization strategy, the proposed sphere-noise based stochastic approximation achieves better RD performance compared to other VQ approximation.

515

516 517 Table 2: Abaltion studies on Kodak dataset in terms of PSNR. The benchmark is UQ-AUN (Factor-ized model Ballé et al. [\(2018b\)](#page-10-15)), with lower values indicating better performance.

6 CONCLUSION

530 531 532 533 534 535 536 537 538 539 In this paper, we propose a method named Alternating Optimized Stochastic Vector Quantization to address the RD optimization issue in vector quantization based neural compression. We propose an encode-decoder alternating optimization strategy. The encoder is optimized with differentiable approximation, and the decoder is optimized with actual quantization to avoid the train-test mismatch of quantization centers. For better encoder optimization, we propose a sphere-noise based stochastic approximation method. During encoder optimization, VQ is replaced with a uniform sphere noise centered at the input vector. When the input vector is located at the quantization boundary, the encoder gradient is closer to the difference in RD loss between adjacent quantization centers, facilitating better encoder optimization. We provide a thorough analysis using toy vector sources and demonstrate through extensive experiments on neural image compression that our proposed method achieves a significant performance gain.

540 541 REFERENCES

547

554

578 579 580

- **542 543** Eirikur Agustsson and Lucas Theis. Universally quantized neural compression. *Advances in neural information processing systems*, 33:12367–12376, 2020.
- **544 545 546** Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V Gool. Soft-to-hard vector quantization for end-to-end learning compressible representations. *Advances in neural information processing systems*, 30, 2017a.
- **548 549 550 551** Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V Gool. Soft-to-hard vector quantization for end-to-end learning compressible representations. In *Advances in Neural Information Processing Systems 30*, pp. 1141–1151, 2017b.
- **552 553** Johannes Balle, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image compression. ´ In *5th International Conference on Learning Representations, ICLR 2017*, 2017.
- **555 556** Johannes Balle, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational ´ image compression with a scale hyperprior. *arXiv preprint arXiv:1802.01436*, 2018a.
- **557 558** Johannes Balle, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational ´ image compression with a scale hyperprior. *arXiv preprint arXiv:1802.01436*, 2018b.
- **559 560 561 562** Johannes Balle, Philip A Chou, David Minnen, Saurabh Singh, Nick Johnston, Eirikur Agustsson, ´ Sung Jin Hwang, and George Toderici. Nonlinear transform coding. *IEEE Journal of Selected Topics in Signal Processing*, 15(2):339–353, 2020.
- **563 564** Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.
- **565 566** Gisle Bjontegaard. Calculation of average psnr differences between rd-curves. *VCEG-M33*, 2001a.
- **567** Gisle Bjontegaard. Calculation of average psnr differences between rd-curves. *VCEG-M33*, 2001b.
- **568 569 570** Philip A Chou, Tom Lookabaugh, and Robert M Gray. Entropy-constrained vector quantization. *IEEE Transactions on acoustics, speech, and signal processing*, 37(1):31–42, 1989.
- **571 572 573** Runsen Feng, Zongyu Guo, Weiping Li, and Zhibo Chen. Nvtc: Nonlinear vector transform coding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6101–6110, 2023. doi: 10.1109/CVPR52729.2023.00591.
- **574 575** Allen Gersho and Robert M Gray. *Vector quantization and signal compression*. 1992.
- **576 577** Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.
	- Eastman Kodak. Kodak Lossless True Color Image Suite (PhotoCD PCD0992). [http://r0k.](http://r0k.us/graphics/kodak/) [us/graphics/kodak/](http://r0k.us/graphics/kodak/), 1993.
- **581 582** Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. *arXiv preprint arXiv:2109.15047*, 2021.
- **583 584 585 586** Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pp. 740–755. Springer, 2014.
- **587 588 589** Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc: An endto-end deep video compression framework. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 11006–11015, 2019.
- **590 591 592** Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete random variables, 2017. URL <https://arxiv.org/abs/1611.00712>.
- **593** Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. *Advances in neural information processing systems*, 32, 2019.
- Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in neural information processing systems*, 30, 2017.
	- Xi Zhang and Xiaolin Wu. Lvqac: Lattice vector quantization coupled with spatially adaptive companding for efficient learned image compression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10239–10248, June 2023.
- Xiaosu Zhu, Jingkuan Song, Lianli Gao, Feng Zheng, and Heng Tao Shen. Unified multivariate gaussian mixture for efficient neural image compression. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17612–17621, 2022.

A APPENDIX

You may include other additional sections here.