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ABSTRACT

In neural compression, vector quantization (VQ) is usually replaced by a differ-
entiable approximation during training for gradient backpropagation. However,
prior approximation methods face two main issues: 1) the train-test mismatch be-
tween differentiable approximation and actual quantization, and 2) the suboptimal
encoder gradients for rate-distortion (RD) optimization. In this paper, we first
provide new finds about how approximation methods influence the RD optimiza-
tion in neural compression, and then propose a new solution based on these finds.
Specifically, if a neural compressor is regarded as a source-space VQ, we find that
the encoder implicitly determines the quantization boundaries, and the decoder
determines the quantization centers. Suboptimal approximation methods lead to
suboptimal gradients for RD optimization of quantization boundaries and centers.
Therefore, to address the first issue, we propose an encode-decoder alternating op-
timization strategy. The encoder is optimized with differentiable approximation,
and the decoder is optimized with actual quantization to avoid the train-test mis-
match of quantization centers. To address the second issue, we propose a sphere-
noise based stochastic approximation method. During encoder optimization, VQ
is replaced with a uniform sphere noise centered at the input vector. When the in-
put vector is located at the quantization boundary, the encoder gradient is closer to
the difference in RD loss between adjacent quantization centers, facilitating bet-
ter encoder optimization. We name the combination of optimization strategy and
approximation method as Alternating Optimized Stochastic Vector Quantization.
Experimental results on various vector sources and natural images demonstrate
the effectiveness of our method.

1 INTRODUCTION

Quantization is a classical lossy compression technique. In theory, vector quantization (VQ) Gersho
& Gray (1992) can achieve optimal rate-distortion (RD) performance in source coding. However,
the exponentially increasing complexity of VQ and its non-differentiable nature limit its practical
use in neural compression Ballé et al. (2017); Ballé et al. (2020); Lu et al. (2019); Li et al. (2021),
particularly for high-dimensional data. The complexity issue can be addressed by simplifying VQ to
scalar quantization Ballé et al. (2020), multistage VQ Feng et al. (2023); Zhu et al. (2022) or lattice
VQ Zhang & Wu (2023). In this paper, we focus on tackling the non-differentiability issue of VQ
for end-to-end RD optimization.

In neural compression, quantization is performed in the latent space of an autoencoder. Since quan-
tization is non-differentiable, optimizing the learnable encoder transform presents a significant chal-
lenge. A typical solution is to introduce a differentiable approximation of quantization during train-
ing, such as additive uniform noise Ballé et al. (2017) and straight-through estimator (STE) Bengio
et al. (2013). However, prior works mainly focus on a special case of VQ, i.e., uniform scalar quanti-
zation. For general vector quantization, the optimization problem remains unresolved and primarily
involves two issues. The first issue is train-test mismatch. Differentiable approximations Agusts-
son et al. (2017a); Zhu et al. (2022) often differ from actual quantization, resulting in mismatch in
the decoder’s reconstruction between training and testing. The second issue is the suboptimality
of encoder gradients. Although previous approximation methods are differentiable, the gradients
backpropagated to the encoder remain suboptimal under the RD criterion.
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In this paper, we aim to design an VQ approximation method for end-to-end RD optimization in
neural compression. Since the gradients for the encoder and decoder vary depending on the approx-
imation method, the first step is to understand how they influence RD performance. By interpreting
a neural compressor as a source-space vector quantizer, we show that the encoder function implic-
itly determines the quantization boundaries, and the decoder function determines the quantization
centers. Suboptimal boundaries and centers directly lead to suboptimal RD performance in lossy
compression. Thus, the encoder gradient at the boundaries and the decoder’s gradient at the cen-
ters are key factors influencing compression performance. In theory, entropy-constrained vector
quantization (ECVQ) Chou et al. (1989) has the optimal quantization boundaries and centers.

To address the train-test mismatch issue, we propose an encode-decoder alternating optimization
strategy. When optimizing the quantization centers, the encoder is fixed, and the decoder and code-
book are optimized using actual quantization. When optimizing the quantization boundaries, the
decoder and codebook are fixed, and the encoder is optimized using the approximation method.
These two steps alternate during training, ensuring consistent decoder reconstruction while allowing
gradients to be backpropagated to the encoder.

To address the issue of suboptimal encoder gradients, we first provide gradient analysis and ar-
gue that prior approximation methods are suboptimal for RD performance due to two reasons: 1)
discontinuous encoder gradients result in non-smooth quantization boundaries, and 2) the encoder
gradients at boundaries should align with the RD loss differences when quantizing to nearby centers.
In theoretically optimal ECVQ, the RD loss for an input vector at the quantization boundary is equal
when quantized to the two neighboring centers. Therefore, if the encoder gradient at the boundary
closely approximates the loss difference between neighboring centers, it will help the encoder learn
better quantization boundaries. Based on this analysis, we propose a sphere-noise based stochas-
tic approximation method. This quantization approximation follows a uniform sphere distribution
centered at the input vector, with the radius of the hypersphere equal to the distance between the
input vector and the nearest quantization center. We further demonstrate that the encoder gradient is
equivalent to the integral of the RD function over the surface of the high-dimensional sphere. When
the input vector lies at the quantization boundary, the gradient is closer to the difference in RD loss
between adjacent quantization centers, leading to more effective encoder optimization.

By combining the proposed alternating optimization strategy and shere-noise based stochas- tic
approximation, we propose a new method named Alternating Optimized Stochastic Vector Quan-
tization for end-to-end RD optimization. We provide comprehensive experiments and analysis on
various vector sources. Experimental results on neural image compression further demonstrate the
effectiveness of the proposed method.

2 RELATED WORK

Most existing works in neural compression follows the structure of nonlinear transform coding Ballé
et al. (2020), with a pair of learnable transform, an entropy model and a vector quantizer in latent
space. As shown in Figure 1, the encoder transform ga maps the input vector x into latent vector y,
which is then quantized by a quantizer ŷ = Qy(y) = Qd

y(Q
e
y(y)). Q

e
y is the quantization encoder

that maps y to discrete index i, and the quantization decoder Qd
y maps i to quantized vector ŷ. The

entropy model pi is used to model the distribution of index i for entropy coding. The optimization
target is to minimize the RD loss L = R + λD, where R = Ex[− log pi(i)] = Ex[− log pŷ(ŷ)] is
rate and D = Exd(x, gs(ŷ)) is distortion. λ is a coefficient controlling the RD trade-off and d is a
distortion metric.

The vector quantization Q is usually simplified to uniform quantization, e.g.,, rounding to the near-
est integer, where ŷ = ⌊y⌉ = i. Most previous approximation methods are designed for uniform
quantization. propose to add uniform noise on y during training. use straight-though estimator
(STE) that copies gradient from ŷ to y to enable the training of encoder. Both and propose stochas-
tic rounding that randomly quantizes y into two nearest integers, where anneals stochastic rounding
to rounding during training. Agustsson & Theis (2020) propose a soft quantizer that smoothly in-
terpolate between uniform noise and rounding. propose to optimize encoder with additive uniform
noise and optimize decoder with rounding to reduce train-test mismatch. propose a two-stage
strategy which first uses uniform noise for pre-training and then uses rounding for decoder finetun-
ing. Among these methods, we can observe that additive uniform noise perform well for encoder
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Figure 1: Interpreting neural compression as vector quantization. Blue lines are quantization bound-
aries and orange points are quantization centers.

optimization and rounding or annealing based rounding perform well for decoder optimization. In
Section 3.2, we provide an explanation for this observation based gradient analysis.

For general vector quantization, the approximation design is more complicated. Agustsson et al.
(2017a) propose a smooth approximation of vector quantization which is annealed to hard quantiza-
tion during training. Zhu et al. (2022) replace vector quantization with a stochastic approximation
that randomly quantize y to different codewords in the codebook. In VQVAE Van Den Oord et al.
(2017), the authors use STE passing gradient from decoder to encoder, and introduce a VQ distance
loss between y and codewords for the optimization of codebook and encoder. These method can only
be optimized with distortion loss, where the rate is determined by codebook size. To achieve joint
RD optimization, Feng et al. (2023) further improve the approximation in VQVAE with entropy-
constrained vector quantization (ECVQ) Chou et al. (1989) in latent space. However, based on
the analysis in Section 3.2, we argue that the encoder or decoder learned by previous methods are
suboptimal in terms of RD performance.

3 GRADIENT ANALYSIS IN NEURAL COMPRESSION

In Section 2, we introduce the common architecture of neural compression and several VQ approxi-
mation methods. However, it is unclear about the impact of these approximation methods on the RD
optimization. In the following, we first show that optimizing encoder and decoder is equivalent to
optimizing the quantization boundaries and centers. Then we provide gradient analysis at boundaries
and centers, showing the suboptimality of existing approximation methods of vector quantization.

3.1 INTERPRETING NEURAL COMPRESSION AS VECTOR QUANTIZATION

From VQ definition Gersho & Gray (1992), a vector quantizer Qx of size N partitions the input
vector space Rk into N regions or cells. The region corresponding to the codeword ci ∈ Cx denote
as Si, where i belongs to a index set I and Cx is the codebook. Si is defined as:

Si = {x ∈ Rk | Qx(x) = ci} (1)

Here, the regions satisfied
⋃N

i=1 Si = Rk and Si ∩ Sj = ∅ for all i ̸= j.This implies that all the re-
gions form a partition of the k-dimensional Euclidean space Rk. The quantization boundaries are the
partition boundaries, and the quantization centers are the codewords. The quantization boundaries
and centers determine the RD performance.

For a neural compressor shown in Figure 1, we can regard the whole process x̂ = gs◦Qd
y◦Qe

y◦ga(x)
as a vector quantization process x̂ = Qx(x) in source space. For the quantizer Qx, the quantization
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Figure 2: For UQ-AUN, the encoder-decoder mapping function (left) and the gradient with respect
to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization
centers.

encoder is Qe
x = Qe

y ◦ ga and the quantization decoder is Qd
x = gs ◦ Qd

y . It is important to know
how a neural compressor determines the quantization boundaries and centers of Qx in source space.

In fact, the boundaries of Qx is determined by boundaries of Qy and encoder transform ga; the
centers of Qx is determined by centers of Qy and decoder transform gs. Assuming input vector x
is transformed into y and quantized to ŷ = ei ∈ Cy , where Cy is codebook of Qy . We can define
the latent space region Ai partitioned by Qy as Ai = {y ∈ Rky | Qy(y) = ei}. As y = ga(x) and
x̂ = gs(ŷ), we have:

Si = {x ∈ Rk | ga(x) ∈ Ai} (2)

ci = gs(ei) (3)

Since the quantization boundaries are uniquely determined by regions, the boundaries of Qx depend
only on the encoder transform ga and the boundaries of Qy . The quantization centers of Qx depend
only on the decoder transform gs and the centers of Qy . Moreover, if y lies on the boundary between
two adjacent regions Ai and Aj , then x will be on the boundary between Si and Sj . These finds show
that optimizing the encoder and decoder is equivalent to optimizing the quantization boundaries and
centers, providing insights on the design of approximation methods.

3.2 GRADIENT ANALYSIS

During training, the quantized latent vector ŷ is replaced with a approximation ỹ, and x̂ is changed
to x̃ = gs(ỹ). With the per sample RD loss l = − log pŷ(ŷ) + λd(x, gs(ŷ)), we care about the
encoder gradient E [∂l/∂y] and decoder gradient E [∂l/∂x̃].

In fact, according to Section 3.1, if we fix the encoder (i.e., fix the quantization boundaries) and
optimize decoder with test-time quantization ŷ, making the decoder gradient E [∂l/∂x̂] towards zero
will lead to optimal optimization result of quantization centers. Therefore, when encoder is fixed,
the best approximation ỹ to optimize decoder is ŷ itself. In this section, we focus on analyzing the
encoder gradient with different approximation methods for learning quantization boundaries.

UQ-AUN We start with uniform quantization for simplicity. Additive uniform noise (AUN) Ballé
et al. (2017); Ballé et al. (2018a) is one of the most popular method to approximate uniform quan-
tization during training. The rounding result ŷ = ⌊y⌉ is replaced with ỹ = y + u, where u is

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: For UQ-STE, the encoder-decoder mapping function (left) and the gradient with respect
to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization
centers.

sampled from uniform noise U
([

− 1
2 ,

1
2

)ky
)

. The encoder gradient of the scalar y1 in y is:

Eu

[
∂l

∂ỹ1

]
=

∫ y1+0.5

y1−0.5

· · ·
∫ yk+0.5

yk−0.5

∂l(ỹ)

∂ỹ1
dỹ1 · · · dỹk

=

∫ y2+0.5

y2−0.5

· · ·
∫ yk+0.5

yk−0.5

l(y1 + 0.5, ỹ2, · · · , ỹk)− l(y1 − 0.5, ỹ2, · · · , ỹk)dỹ2 · · · dỹk

(4)

If ỹ1 is on the quantization boundaries, such as y1 = n + 0.5, n ∈ Z, the encoder gradient of y1 is
related to loss differences when y1 is quantized to two nearby centers n and n+ 1.

In the case of a one-dimensional source (k = 1), the encoder gradient is simplified to:
l(y1 + 0.5)− l(y1 − 0.5) (5)

In Section 3.1, we show that if y lies at the boundary between two regions in the latent space,
then x is similarly positioned at the boundary of two corresponding regions in the source space.
Consequently, when the gradient approaches zero at quantization boundaries, we have l(n) = l(n+
1), which aligns perfectly with the boundary definition in optimal ECVQ Chou et al. (1989), given
the quantization centers. In ECVQ, the loss of quantizing to two nearby centers is equal when x
is at the boundaries. This is why NTC Ballé et al. (2020) achieves near-optimal performance on
1-dimensional sources.

In Figure 2 (right), we illustrate the encoder gradients on a 1D Gaussian source. The gradients la-
beled “analytical” are calculated using Equation 4, while the unlabeled ones represent the averaged
gradients over samples. The averaged gradients are smooth and closely match the theoretical results.
Additionally, we show the encoder-decoder mapping function in Figure 2 (left). The encoder trans-
form ga and decoder transform gs are not inverse functions of each other, leading to rate-constrained
quantization results in source space (similar to ECVQ), where quantization boundaries are not at the
center of two nearby quantization centers.

UQ-STE STE Bengio et al. (2013) is also an popular approximation. The value of ỹ is the same
as the value of ŷ but with modified gradient, where dỹ/dy = 1. We can represent it as ỹ =
y + sg [ŷ − y], where sg is the operation of stopping gradient. The encoder gradient for STE is
equal to E [∂l/∂ŷ]. The gradient is discontinuous at boundaries because the ŷ suddenly changes
from one quantization center to another one, as shown in Figure 3 (right). Moreover, the sum of
the gradients on both sides of the boundary equals the difference in the derivatives of the RD loss,
which can cause the RD optimization to get trapped in local optima. In Figure 3 (left), We show
that the quantization boundaries optimized with UQ-STE are nonsmooth and suboptimal for RD
performance.
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Figure 4: For VQ-STE, the encoder-decoder mapping function (left) and the gradient with respect
to y (right). Blue lines mark the quantization boundaries, and orange dots represent the quantization
centers.

VQ-STE Since STE on uniform quantization does not define a way to optimize the codebook, it
cannot be directly used in vector quantization with learnbale codebook. To simultaneously optimize
the encoding transform and the codebook, VQVAE Van Den Oord et al. (2017); Razavi et al. (2019)
introduce additional VQ distance loss Dvq in latent space. The distance loss Dvq = Exd1(y, ei)
is calculated between the latent vector y and the corresponding codeword ei, where d1 is a VQ
distance metric in latent space. To ensure end-to-end RD optimization, Feng et al. (2023) further
introduce ECVQ and additional rate loss. The loss function is as:

L1 = R+ λD + βDvq, (6)

where β controls the trade-off between d and d1. Figure 4 illustrates that, unlike UQ-AUN, VQ-STE
does not optimize the encoder based on the difference in RD loss. Instead, it optimizes the encoder
by balancing the latent-space VQ distance loss Dvq with the distortion loss D. This results in the
encoder-decoder mapping becoming an identity mapping for 1D sources. The latent-space ECVQ
in VQ-STE is equivalent to a source-space ECVQ. However, the issue of discontinuous gradients
persists when Dvq and D cannot be properly balanced.

4 THE PROPOSED METHOD

4.1 ENCODER-DECODER ALTERNATING OPTIMIZATION

As shown in Figure 5, to address the train-test mismatch issues, this paper proposes an alternating
optimization strategy for the encoder and decoder. When optimizing the quantization centers, the
encoder is fixed, and the actual quantized values ỹ are used to generate the reconstruction x̃, after
which the RD loss is computed to optimize the decoder and codebook. When optimizing the quan-
tization boundaries, the decoder and codebook are fixed, and the quantization approximation ỹ is
used to generate the reconstruction x̃, with the RD loss used to optimize the encoder. These two
steps alternate during training. The entropy model is optimized during the first step.

4.2 STOCHASTIC VECTOR QUANTIZATION FOR ENCODER OPTIMIZATION

Consider a stochastic vector quantization, where the output ỹ belongs to a conditional distribution
q(ỹ | y). We assume dỹ/dy = 1 and encoder gradient of the scalar y1 in y is:

Eỹ

[
∂l

∂y1

]
= Eỹ

[
∂l

∂ỹ1

]
=

∫
ω

q(ỹ | y) ∂l

∂ỹ1
dỹ1dỹ2 · · · dỹk (7)
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Step2: Encoder Optimization

Step1: Decoder & Codebook &  Prior Optimization

Figure 5: Alternating optimization of the encoder and decoder. Gray indicates freezed modules,
while white indicates trainable modules.

ω is the integration area in Rk. Let q(ỹ | y) be a uniform sphere distribution centered at y. The
radius of the hypersphere is equal to ∥y − ŷ∥. Therefore, the encoder gradient is as:∫

ω

1

V (ω)

∂l(ỹ)

∂ỹ1
dỹ1dỹ2 · · · dỹk, (8)

where V (ω) is the volume of hypersphere, and 1/V (ω) is the density because ỹ is uniformly dis-
tributed. According to the generalized Stokes theorem, we have the gradient as:

1

V (ω)

∫
∂ω

l(ỹ)dỹ2 · · · dỹk, (9)

Therefore, the encoder gradient is the integration of loss function on the surface of the sphere. When
y) is at the boundaries, both the nearby two quantization centers ei and ej are on the surface, due
to ∥y − ŷ∥ = ∥y − ei∥ = ∥y − ej∥.

In fact, the proposed approximation is a generalization of additive uniform noise. If q(ỹ | y) is
uniform distributed within a unit hypercube centered at y with volume V (ω) = 1, the gradient will
be the same as that in Equation 4.

5 EXPERIMENTS

5.1 SETUP

Source Data For vector sources, we conduct tests on 1-dimensional Gaussian sources, 2-
dimensional Boomerang sources, and 8-dimensional Laplace sources. For natural image sources,
we train on the train2017 dataset from COCO Lin et al. (2014), which contains 118,287 images.
The training images are randomly cropped into 256×256 patches. The evaluation dataset is the
Kodak dataset Kodak (1993), consisting of 24 images with a resolution of 768×512 pixels.

Evaluation Metrics For vector sources, we use the following metric to measure distortion:
−10 log(MSE(x, x̂)), where MSE is the mean squared error. The bitrate is measured as bits per
dimension (bpd). For natural images, the quality of the reconstructed images is evaluated using
peak signal-to-noise ratio (PSNR) in the RGB color space, and the bitrate is assessed in bits per
pixel (bpp). Both the distortion metrics d and d1 are mean squared error. Additionally, the BD-
rate Bjontegaard (2001a) is employed to evaluate the average RD performance gain.

Implementation Details For the model on low-dimensional vector sources, both the encoder and
decoder transforms are constructed from Resblocks. The dimension of the latent-space vector is
equal to the dimension of the source-space vector. For the model on image sources, the encoder and
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Figure 6: For the proposed method on 1D Gaussian source, the encoder-decoder mapping function
(left) and the gradient with respect to y (right). Blue lines mark the quantization boundaries, and
orange dots represent the quantization centers.

Figure 7: RD performance on the 2D Boomerang source (left) and the visualization of the quantiza-
tion results of the proposed method (right).

decoder transforms follow the same structure as in the factorized model Ballé et al. (2018b), with
the number of channels in the convolutional layers set to 192.

For the entropy model, we use the factorized entropy model Ballé et al. (2018b) when training with
UQ-AUN and UQ-STE. When training with VQ-STE and the proposed method, we employ the
discrete entropy model Van Den Oord et al. (2017); Feng et al. (2023), which consists of a softmax
function and learnable logits.

For 1D, 2D, and 4D vector quantization, the codebook sizes are set to 256, 4096, and 32768, re-
spectively. Since the codebook size required for vector quantization beyond 4 dimensions becomes
excessively large without affecting performance, the experiments in this paper mainly focus on op-
timizing vector quantization for dimensions 4 and below.

We use the Adam optimizer Kingma & Ba (2014) for optimization, with a batch size of 1024 for
low-dimensional vector sources and a batch size of 8 for image sources.

5.2 RESULTS AND ANALYSIS

In this section, we present the experimental results of the proposed method on different data sources,
compare its performance with other methods, and conduct a series of ablation studies and analyses.
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Figure 8: RD performance on the 8D Laplace source (left) and the Kodak image dataset (right).

Table 1: BD-rate comparison on Kodak dataset in terms of PSNR. The benchmark is UQ-AUN
(Factorized model Ballé et al. (2018b)), with lower values indicating better performance.

UQ-AUN VQ-STE-1d VQ-STE-2d VQ-STE-4d Ours-1d Ours-2d Ours-4d BPG444
0.0 1.15 2.42 0.16 -5.58 -7.20 -9.39 -26.16

5.2.1 LOW-DIMENSIONAL VECTOR SOURCES

1D Gaussian Source For the 1D Gaussian source, the proposed method achieves performance
very close to that of UQ-AUN. Here, we mainly showcase the encoder-decoder mapping function
and the encoder gradient results for analysis. As shown in Figure 6, although the encoder gradients
and encoder transform are not as smooth as those of UQ-AUN, the decoder transform remains suf-
ficiently smooth and is able to learn nearly optimal mapping functions. Compared to UQ-AUN, the
proposed method ensures train-test mismatch and is applicable to high-dimensional vector quanti-
zation. Additionally, compared to the UQ-STE method, the proposed method ensures optimal RD
performance when determining quantization boundaries, avoiding the discontinuity in gradients.

2D Boomerang Source For the 2D Boomerang source, we present the RD performance and the vi-
sualized quantization results of the proposed method. As shown in Figure 7, Ours-1d, UQ-AUN and
VQ-STE-1d are there neural compressors, where the dimension of the latent-space vector quantizers
is 1, i.e.,, scalar quantizers. The difference lies in that UQ-AUN uses uniform scalar quantization,
while VQ-STE-1d and Ours-1d are scalar quantizers with learnable codebooks. It can be observed
that VQ-STE-1d has a significant performance drop compared to UQ-AUN, the main reason for
which is analyzed in Section 3.2. In contrast, the proposed method achieves results comparable to
NTC.

8D Laplace Source The experimental results on the 8D Laplace source are shown in Figure 8
(left). We performed both 1D and 4D vector quantization using the proposed optimization strategy.
It can be observed that, even with scalar quantization, the performance of VQ-STE-1d, which uses
the optimization strategy from previous work Feng et al. (2023), is slightly inferior to that of UQ-
AUN. When the VQ dimension increases, the performance of VQ-STE-4d shows a significant drop.
In contrast, the proposed method (Ours-1d) maintains performance on par with UQ-AUN in scalar
quantization. As the quantization dimension increases to 4, Ours-4d shows improvements at higher
bitrates, confirming its effectiveness. Notably, the performance of 8D ECVQ plateaus beyond 1.75
bpd due to its codebook size being insufficient to meet bitrate demands. At this rate point, the
codebook size reaches 409,600. Due to the exponential growth in codebook size with increasing
bitrates, further expansion becomes impractical.
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5.2.2 NATURAL IMAGES

We also validate the effectiveness of the proposed method on the Kodak image dataset. Since the
proposed alternating optimization strategy is only applicable to single-layer quantization and uncon-
ditional entropy models, we did not test on the state-of-the-art multi-layer quantization models for
image compression. Instead, we tested the 1D, 2D, and 4D vector quantization results on the single-
layer Factorized model Ballé et al. (2018b). The vector quantization is performed along the channel
dimension. For example, in the case of 4D quantization, the 192 × 1 × 1 channel vector is divided
into 48 sub-vectors of size 4× 1× 1, and vector quantization is performed on each sub-vector using
48 different codebooks, with the codebooks shared across the spatial domain. This quantization
method only removes redundancy in the channel domain and does not address spatial redundancy.

The RD performance curve on the Kodak dataset is shown in the right column of Figure 8. Ta-
ble 1 presents the BD-rate results Bjontegaard (2001b) with UQ-AUN as the baseline. It can be
observed that the proposed method achieves steady performance improvements as the quantization
dimension increases, while VQ-STE shows no significant improvement and even some performance
degradation. Additionally, Ours-1d performs significantly better than UQ-AUN, primarily because
alternating optimization resolves the train-test mismatch issue.

Table 2 presents a series of ablation experiments on the Kodak dataset. To verify the effectiveness
of the alternating optimization (A1), we directly fed the quantization approximation results into
the decoder and used an additional loss to constrain the learning of the codebook. However, the
model without the alternating optimization strategy experienced training collapse, demonstrating
the importance of alternating optimization for stable convergence.

Retaining the alternating optimization strategy, we replaced the proposed stochastic vector quan-
tization method with two other approaches, including: soft-to-hard vector quantization Agustsson
et al. (2017b) (A2), and probabilistic vector quantization Zhu et al. (2022) based on Gumbel Soft-
max Maddison et al. (2017) (A3). The rate of these methods is controlled by adjusting the codebook
size. It can be observed that, with the same transform structures and optimization strategy, the pro-
posed sphere-noise based stochastic approximation achieves better RD performance compared to
other VQ approximation.

Table 2: Abaltion studies on Kodak dataset in terms of PSNR. The benchmark is UQ-AUN (Factor-
ized model Ballé et al. (2018b)), with lower values indicating better performance.

BD-rate
UQ-AUN 0.0
Ours-4d -9.39
A1: Ours-4d w/o alternating optimization NaN
A2: Ours-4d + Agustsson et al. (2017b) 25.31
A3: Ours-4d + Zhu et al. (2022) 16.25

6 CONCLUSION

In this paper, we propose a method named Alternating Optimized Stochastic Vector Quantization to
address the RD optimization issue in vector quantization based neural compression. We propose an
encode-decoder alternating optimization strategy. The encoder is optimized with differentiable ap-
proximation, and the decoder is optimized with actual quantization to avoid the train-test mismatch
of quantization centers. For better encoder optimization, we propose a sphere-noise based stochastic
approximation method. During encoder optimization, VQ is replaced with a uniform sphere noise
centered at the input vector. When the input vector is located at the quantization boundary, the
encoder gradient is closer to the difference in RD loss between adjacent quantization centers, facil-
itating better encoder optimization. We provide a thorough analysis using toy vector sources and
demonstrate through extensive experiments on neural image compression that our proposed method
achieves a significant performance gain.
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You may include other additional sections here.
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