Iterative Reasoning Preference Optimization

Richard Yuanzhe Pang''> Weizhe Yuan!'> Kyunghyun Cho?
He He? Sainbayar Sukhbaatar'* Jason Weston!:2*

'Meta FAIR 2New York University

Abstract

Iterative preference optimization methods have recently been shown to perform
well for general instruction tuning tasks, but typically make little improvement on
reasoning tasks [Yuan et al., 2024, Chen et al., 2024]. In this work we develop
an iterative approach that optimizes the preference between competing generated
Chain-of-Thought (CoT) candidates by optimizing for winning vs. losing reasoning
steps. We train using a modified DPO loss [Rafailov et al., 2023] with an additional
negative log-likelihood term, which we find to be crucial. We show reasoning
improves across repeated iterations of this scheme. While only relying on examples
in the training set, our approach results in increasing accuracy on GSM8K, MATH,
and ARC-Challenge for Llama-2-70B-Chat, outperforming other Llama-2-based
models not relying on additionally sourced datasets. For example, we see a large
improvement from 55.6% to 81.6% on GSMS8K and an accuracy of 88.7% with
majority voting out of 32 samples.

1 Introduction

Preference optimization has proven to give large gains when aligning pre-trained language models
to human requirements compared to supervised fine-tuning alone [Ziegler et al., 2019, Stiennon
et al., 2020]. Offline methods such as DPO [Rafailov et al., 2023] are becoming more popular for
their simplicity and efficiency. Recent results have shown that iterative application of such an offline
procedure is beneficial, whereby the updated model is used to construct new preference relations
that are more informative, and hence improve results further. These methods include Iterative DPO
[Xu et al., 2023, Xiong et al., 2023], Self-Rewarding LLMs [Yuan et al., 2024], SPIN [Chen et al.,
2024], and other methods [Rosset et al., 2024]. Common to these approaches is that they have
been shown to perform well on general instruction tuning tasks, but they either make only moderate
gains or even decrease the performance on standard reasoning tasks. While other kinds of iterative
training methods have been applied successfully to reasoning, particularly involving the iteration
of supervised fine-tuning (SFT) such as STaR [Zelikman et al., 2022], Rest®M [Singh et al., 2024],
and V-STaR [Hosseini et al., 2024]!, using preference optimization to train the generative reasoning
model is not applied in these methods.

In this work, we develop an approach to apply iterative preference optimization to reasoning tasks,
with a particular focus on Chain-of-Thought (CoT) reasoning [Wu et al., 2023]. On each iteration we
sample multiple chain-of-thought reasoning steps and final answers over training prompts, and then
construct preference pairs such that pair winners have correct answers and pair losers have wrong
answers. We then train a variant of DPO that includes a negative log-likelihood (NLL) loss term for
the pair winners, which also proves crucial for performance. Given the newly trained model, we then
iterate the procedure by generating new pairs, and training again, starting from the previously trained

* Equal contribution.
'V-STaR does use preference optimization, but for training a separate verifier model.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Chain-of-Thought & Answer Generation Preference Optimization

Training Seed model Generate Generate Clampis Preference

prompts (for =1) CoTs answers re\(lf\(/)zrayr)ds pairs

1 1 1

5 ¢ Yi | Tew | i
L A e Y S B

‘| 7 rl

Next iteration model

DPO+NLL

select training

Figure 1: Iterative Reasoning Preference Optimization. Our iterative preference optimization
method consists of two steps: (i) Chain-of-Thought & Answer Generation: training prompts are
used to generate candidate reasoning steps and answers from model M;, and then the answers are
evaluated for correctness by a given reward model. (ii) Preference Optimization: preference pairs are
selected from the generated data, which are used for training via a DPO+NLL objective, resulting in
model M. This whole procedure is then iterated resulting in improved reasoning ability on the
next iteration, until performance saturates.

model. We find that reasoning performance improves over multiple iterations until it eventually
saturates.

We show that our approach, termed Iterative Reasoning Preference Optimization (Iterative RPO),
outperforms a number of baselines, including SFT or applying standard DPO, as well as other
baselines from the literature. We see an improvement from 55.6% of zero-shot performance on
GSMSK to 81.6% after our Iterative RPO training (or from 70.7% to 88.7% with majority voting
out of 32 samples), from 77.8% to 86.7% on ARC-Challenge (without using the provided ARC
Corpus), and from 12.5% to 20.8% on MATH (or from 18.8% to 29.1% with majority voting out
of 32 samples), without using the provided pretraining corpus in MATH. We provide ablations that
indicate the components that lead to these improvements. We also present analysis on how different
objectives influence the probabilities of training sequences, which helps explain the success of our
method. Overall, our method provides a simple recipe that has the potential to improve the reasoning
ability of LLMs over a wide range of tasks, as shown on the three tasks we consider.

2 Iterative Reasoning Preference Optimization

Our approach first assumes access to a base, typically pretrained or instruction-tuned, language model,
a set of training inputs, and the ability to judge the correctness of the final outputs. Given a training
input, the language model is expected to generate (i) a set of reasoning steps (Chain-of-Thought),
followed by (ii) a final answer to the given problem. We assume that we have access to a correctness
measure for the final answer, and not for the correctness of the reasoning steps used to reach that
answer. In our experiments, we thus consider datasets where gold labels are provided for training
inputs, and a binary reward is derived by the exact match between these labels and the final answer
generations. However, our approach could also be applied to settings with more general reward
models.

On each iteration, our method consists of two steps, (i) Chain-of-Thought & Answer Generation and
(ii) Preference Optimization, as shown in Figure 1. For the t™ iteration, we use the current model M,
in step (i) to generate new data for training the next iteration’s model M, in step (ii).

Initialization. We assume we are given an initial model My, and a training set D = {(x;,v:)}s
containing questions x; and their correct answers y;. The model will be trained and updated at each
iteration, resulting in models My, M, ..., Mr.

Chain-of-thought & answer generation. Given the current model M, we generate N different
responses for every input, where each response consists of CoT reasoning c¢ followed by a final
answer y:

(', ylt) ~ My(x;) forallz; € Dandn € [N],

where we use [N] to denote {1,2,...,N}.

In the general version of our approach, one then computes the reward r}* for each of these responses
based on the correctness of their answers, i.e., r! = R(y?,y;). In our experiments this simply
corresponds to ri* = 1 if y;' = y;, and O otherwise; i.e., whether the prediction matches the answer
provided in the training dataset. Thus we have constructed a set of generated responses augmented
with rewards:

Gi= {C?vy?vrzn}ne[l\’]'

Preference optimization. In the next step, we first construct a dataset of response pairs D} based
on the generations G; from the current model M;. The paired data is constructed such that chosen
(winning) responses have higher rewards than rejected (losing) responses. This data is then used
for preference optimization. In general, this can be done by selecting two responses for the same
input, such that one has higher reward than the other, and setting the one with higher reward as the
winner. In the binary reward case, we can split the generated responses G; into two sets based on
their rewards:
G = el |y = 1),

K2
Gl = (el |7 =0},
Next we build a dataset of preference pairs by selecting a winner response (¢, y¥) from GY, and a
loser response (ct, y!) from G'. In particular, we simply iterate over G¥ and G simultaneously? to
produce K pairs of indices {(wy, i)}, in order to ensure we use as much of the data as possible.
D™ = {(cf™,y;"™), (¢ y*) | @i € Dandk € [K]}.

Given the preference pairs, we can now train a new model Mjy that will become our next model M.
The parameters 6 are initialized from model M, and updated with a loss function that combines the
DPO loss [Rafailov et al., 2023] for learning from the preference pairs, and the negative log-likelihood
(NLL) loss for learning over the winning response from each pair. The loss corresponding to each
preference pair is as follows:

LoposniL = Lopo(cy’, yi, Cé, yi|$z) + alnen(ci’, i’ |zi)

~ flog Me<ylx>) _ Jog Ma(e yi' 1)
Mi(c] yil:) ¥+ 1o

w

My(ci¥, y¥ |;)
87 (ﬁ o8 My(c?, yi|z:)

(D

Here M (x) denotes the probability of sequence = under the model M, and o is the sigmoid function.
We use the previous iteration’s model M; as the reference model in the denominator of the DPO term.
Note that the NLL term is normalized by the total response length. The hyperparameter o balances
the two loss terms. For brevity we omit the pair index k, but we optimize this loss on each of the
k € [K] pairs generated for every input sample. At the end of this training, we thus obtain our next
model M, = My, which will be then used to build data for the subsequent iteration.

Iterative training. Our overall procedure trains a series of models M, ..., My where each
successive model ¢ + 1 uses preference data DY*™ created by the t model.
In our experiments, we define the models and the training data they use as follows:
My : Base LLM; in our experiments we initialize with a fine-tuned instruction following model.
M, : Initialized with M, then trained with Dgairs using Lppo+NLL.
M, : Initialized with M, then trained with DP™™ using Lppo,nLL-
Ms : Initialized with Ms, then trained with D™ using LpposnLL-
M, : Initialized with M, then trained with D5™ using LpposniL.-

This approach can be seen as a similar, but simpler, instance of the Self-Rewarding LLM training
scheme proposed in Yuan et al. [2024], with three differences. Firstly, on each iteration in Self-
Rewarding a new set of prompts is created to explore the input distribution, but in our approach
we use the same fixed set of prompts. Secondly, due to this choice our experimental setup does

2If the iteration reaches the end of a set, it restarts from the first element. If one of the sets is empty, then that
input will be ignored.

not require a sophisticated reward model to judge the model generations, as we assume the training
prompts have provided gold labels which we compare to. These two omitted steps are challenging
for reasoning tasks because they require a language model to verify correctness, which is known to
be difficult [Huang et al., 2024]. Thirdly, we show that our DPO+NLL objective is important for our
reasoning tasks, whereas Self-Rewarding LLM has used the standard DPO objective.

Our approach is also related to the iterative training in the Self-Taught Reasoning (STaR) method [Ze-
likman et al., 2022], except that their approach uses SFT training, rather than preference optimization
using DPO-like training. Preference optimization allows the use of negative examples of reasoning
chains and answers, which we show improves performance. See Section 4 for more discussion of
related work.

3 Experiments

3.1 Math Word Problems: GSMSK

In our first set of experiments, we use the GSMSK dataset [Cobbe et al., 2021]° that contains real
grade-school math word problems. For example the question: “Natalia sold clips to 48 of her friends
in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in
April and May?”. These questions typically require the model to perform intermediate reasoning, i.e.,
generating chain-of-thought before answering, otherwise performance is poor. Each problem contains
a question x;, gold chain-of-thought solution ¢;, and a final numerical answer y;. For our entire
training process, we only use the training set of around 7.5k problems without any extra questions.

Experimental setup. As a seed model M, we use the chat version of Llama-2 70B model [Touvron
et al., 2023], which is instruction fine-tuned. We use a zero-shot prompt containing the question
together with instructions to produce a chain-of-thought and to follow a specific format so the final
answer can be easily extracted (the exact prompt is given in Appendix B.2). In each iteration, we
generate N = 30 solutions per problem using sampling with temperature 0.8 for iterations 1-2 and
temperature 1.3 for iterations 3—4 (hoping that there is a significant number of incorrect generations
in later iterations). Since some problems might not have any model-generated correct solution, we
include the gold human written solution (¢;, y;) in the winning set G} so it is not empty. Then we
generate K = 10 pairs per problem for training with our loss in Equation 1, and filter out examples
that were too long in terms of overflowing the context length or else do not have any incorrect
generations. This procedure gives around 55-60k pairs for training, per iteration.*

In total, we perform four iterations, producing models M, Ms, M3, and My. For each iteration,
we train a maximum of 5000 steps, and then select the best checkpoint using a held-out 1k samples
from the training set. We then retrain while including those 1k samples for the selected number of
steps. The coefficient « is tuned in {0.25, 0.5, 1, 2} when training M;, and we end up using 1 for
all experiments in the paper. The coefficient 3 in the DPO loss is tuned in {0.05, 0.1, 0.5, 1.0}, and
we end up using 0.1 in this experiment. We use a batch size of 16 and a learning rate 7e-7 using the
AdamW optimizer. Throughout this paper, all generation is done using one node containing eight
V100 GPUs (32G memory). To do inference efficiently, we use vVLLM [Kwon et al., 2023]. All
training is done using eight nodes each containing eight A100 GPUs (80G memory).

Overall results are given in Table 1, where we give the exact match accuracy on the GSMS8K test set.

Iterative RPO improves over baselines. We find that Iterative RPO outperforms zero-shot CoT,
supervised fine-tuning (SFT) on the gold (dataset-provided) CoT solutions, and variants of DPO by a
wide margin. SFT gives a boost in performance compared to zero-shot CoT from 55.6% to 63.5%
but still far from the 81.6% of Iterative RPO. We apply standard DPO to the same set of preference
pairs D5 as used in the first iteration of our method. Whether initializing from Llama-2-70b-chat
(My) or from SFT training on the chosen (winner) examples, we find that DPO performance, while

3We have confirmed that the licenses of the datasets used in this paper (MIT for GSM8K and MATH, CC
BY-SA 4.0 for ARC) are respected.

“If after filtering the number of pairs is larger than 60k, then we randomly select around 60k examples. This
number is fixed because we do not want to introduce another source of variability in our experiments.

Table 1: GSMS8K results comparing Iterative Reasoning Preference Optimization (Iterative RPO)
against other baselines that are based on the same base model and training data. We report the exact
match accuracy from a single generation (using greedy decoding), as well as majority voting over 32
generations (through sampling with temperature 0.8).

Model Test Accuracy (%)
Iterative RPO (initialized from Llama-2-70b-chat)
Iteration 1 73.1
Iteration 2 78.0
Iteration 3 81.1
w/ majority voting using 32 samples 88.2
Iteration 4 81.6
w/ majority voting using 32 samples 88.7
Other Llama-2-70b-chat-initialized methods
Zero-shot CoT 55.6
w/ majority voting using 32 samples 70.7
DPO initialized from Llama-2-70b-chat 61.8
DPO initialized from SFT trained on Iteration I chosen seqs 60.3
SFT on gold CoT examples 63.5
STaR (1 iteration) 65.2
STaR (1 iteration, but on twice as much data) 66.9
Iterative RPO (1 iteration, but initialized from SFT trained on chosen seqs) 73.1
Iterative RPO (1 iteration, but on twice as much data) 74.8
0 0
-200 -200
z z .
3 3
g —400 g —400
& &
o o
§ 60071 SFT chosen S -600
----- SFT rejected —— SFT on gold, logprob measured on gold
—— DPO+NLL chosen ——- SFT on gold, logprob measured on chosen
—8007 .. DPO+NLL rejected —8007 .. SFT on gold, logprob measured on rejected
0 560 IObO 15‘00 20‘00 25‘00 3000 0 560 ldOO 15‘00 20‘00 ZSbO 3000
Training steps Training steps
(a) SFT trained on chosen seqs; init from Llama (b) SFT trained on gold CoTs; init from Llama

Figure 2: Effect of SFT training. (a) Although SFT training (solid green) is on chosen sequences

(D5™, from iterative RPO iteration 1) only, the rejected sequence log probabilities (dotted green)
also increase and are close to the chosen sequence probabilities. In contrast, our DPO+NLL training
(blue) manages to decrease the rejected probabilities while increasing the chosen probabilities. This
observation could potentially help explain why SFT-only performance lags significantly behind
Iterative RPO Iteration 1 performance. (b) We show a similar plot but where SFT is trained on gold

(dataset-provided) CoTs. Chosen and rejected sequence probabilities (which are from DJ™) are still
close to each other, but with a slightly bigger gap. Another observation is that the chosen sequence
probabilities barely increase.

being better than zero-shot CoT, is no better than the SFT model, with accuracies of 61.8% or 60.3%
respectively.

We also show that SFT on only the chosen CoT solutions, which corresponds to the first iteration of
the STaR method, improves results to 65.2% over SFT on the gold solutions alone, but still falls short
of the performance of the first iteration of Iterative RPO. One hypothesis for these improvements is
the necessity of including the rejected sequences in the training objective; otherwise their probability

0 0 —_—
004 oo e TTTNRIARCR e
z 2
3 3
© —400 © —400
Q Qo
o o
[} [}
g g
§ —600 DPO chosen S -600 DPO chosen
DPO rejected DPO rejected
—— DPO+NLL chosen —— DPO+NLL chosen
-800 A - -800 A -
----- DPO+NLL rejected +==++ DPO+NLL rejected
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Training steps Training steps
(a) Initialized from Llama (b) Initialized from SFT trained on chosen seqs

Figure 3: Effect of NLL loss term on DPO training for GSM8K. In our GSMS8K experiments we
observe the log probability of chosen sequences in standard DPO without NLL loss (solid orange)
decreases over training steps, especially if the model is initialized from SFT training on chosen
sequences (right). However, they increase over training steps when using DPO with NLL loss (solid
blue). In all four settings, the margin between the two curves continues increasing. We find that
DPO+NLL loss gives superior test accuracy in our experiments.

increases along with the chosen samples; see Figure 2. We note this observation has also been
reported in concurrent work [Hong et al., 2024].

All of the results reported above are using a single generation at test time using greedy decoding. If
we use majority voting over 32 samples (sampling with temperature 0.8), a standard approach to
improve performance in the literature, we can improve the accuracy of our approach from 81.1% to
88.2% for iteration 3, and from 81.6% to 88.7% for iteration 4 of Iterative RPO. While performance
is much improved using majority vote, this should be compared to a majority vote baseline, where
we find a similarly large improvement over the zero-shot chain-of-thought with majority vote, which
obtains an accuracy of 70.7%.

Iterations of Iterative RPO yield improved reasoning. We observe that Iterative RPO provides
improvements over its training iterations, increasing the base model accuracy by 47% (from 55.6% to
81.6%) in total. In contrast, supervised training using the gold CoT only brings about a 14% accuracy
boost. We see performance improves across each iteration, from 73.1% to 78.0% to 81.1% to 81.6%.
However, the gain decays across the iterations (17.5%, 4.9%, 3.1%, 0.5%), indicating an upper limit
on learning across iterations, especially as we are iterating across a fixed number of prompts, i.e.,
only from the training samples.

We also show that it is the iterations of updating the model (i.e., initializing from the previous model)
that are helping, not just because there is more data in the form of new pairs generated from the fixed
training set. To test this statement, we run the first iteration of Iterative RPO but on twice as much
paired data by doubling K, and we run the STaR method first iteration with twice as much data as
well.> In both cases performance improves compared to less data, but not as much as performing two
iterations. Iterative RPO with twice as much data obtains 74.8% (an improvement over 73.1% using
the original dataset size); however, training for two iterations obtains 78.0%. For STaR, training on
twice as much data obtains 66.9%, compared to 65.2% with the original data, which is still a much
lower performance than Iterative RPO.

NLL loss is necessary in our method: DPO with NLL vs. DPO without NLL. The first iteration
of our method can be compared to standard DPO training, which uses the same preference data, as
reported in Table 1. We see a large performance drop (73.1% vs. 61.8%) using DPO compared to
our method after one iteration. The gap remains large even when the standard DPO training starts
from the superior SFT-tuned model, which it has been argued improves DPO’s performance [Rafailov
et al., 2023, 2024]. Our results support the need of the NLL loss term in our training, not just using
SFT for initialization. To further understand this result, we plot the sequence-level log probability

3In particular, for “twice as much data” in Table 1, we generated more synthetic responses, so examples are
not simple duplication.

over training steps for these methods in Figure 3. We see that for DPO without NLL loss there is
a decrease over training for the chosen sequences, whereas for DPO with NLL there is not, which
may help explain the improved performance of the latter. Related observations have been made
elsewhere in various settings [Pal et al., 2024, Xu et al., 2024, Hong et al., 2024]. Further, we note that
whether we initialize with Llama-2-70b-chat or SFT on chosen for Iterative RPO, accuracy results of
first iteration training do not seem to deviate (both obtain the same score 73.1%). This is another
advantage of our method as the training process is simpler without the SFT step.

Other results in the literature. We can compare our results to others in the literature, even if
their experiments are in different settings. Touvron et al. [2023] reports an accuracy of 56.8% for
8-shot Llama-2-70b, which is close to our zero-shot CoT results for Llama-2-70b-chat. In terms
of closed-source proprietary language models, some results are superior to ours, while others are
not; for example GPT-4 obtains 92.0% (5-shot chain-of-thought) [Achiam et al., 2023], Claude 2
obtains 88.0% [Anthropic Team, 2023], PaLM 2 obtains 80.7% [Anil et al., 2023], while GPT-3.5
obtains 57.1% (5-shot) [Achiam et al., 2023]. We note that the size (number of parameters) and the
makeup of the training set of some of these models have not been fully disclosed. For results that
use the same size and class model, Llama-2-70b, MetaMath [Yu et al., 2024] reports an accuracy of
82.3%, while WizardMath reports 81.6% [Luo et al., 2023]. These last two results use additional
augmented training data, whereas our method does not use additional prompts. Such approaches
should be orthogonal to ours, and both can provide benefits.

3.2 ARC-Challenge Task

To test reasoning capabilities outside of mathematics, we employ ARC [Clark et al., 2018] which
covers multiple science subjects. Questions are multiple-choice, for example: “A fold observed in
layers of sedimentary rock most likely resulted from” with four possible answers, e.g., “(A) cooling
of flowing magma, (B) converging of crustal plates, (C) deposition of river sediments, or (D) solution
of carbonate minerals”. The training dataset contains 7.7k questions split into easy and challenge
sets. We report results on the ARC-Challenge test set which has 1172 examples. There is no gold
chain-of-thought reasoning provided for training examples in this task. Our method does not have
that requirement and hence can still be applied as we only compute rewards based on the final answer.
One consequence however is that if there is no model-generated correct solution for a question, then
that question is not included in our training. We follow the same setup as before to first generate
reasoning and then a final answer by the models (see Appendix B.2 for prompt) to construct data for
iterations of Iterative RPO. We only train on the training set (both easy and challenge sets) and do
not utilize the supporting ARC Corpus.

Specifically, in each iteration, we generate N = 30 solutions per problem using sampling with
temperature 0.8 for iterations 1-2 and temperature 1.3 for iteration 3. We select K = 20 pairs of
solutions per problem. We end up with around 20k example pairs for iteration 1, 11k example pairs
for iteration 2, and 5k example pairs for iteration 3. The decrease in the number of examples is due to
the lack of incorrect samples for a number of questions in later iterations. Each iteration is trained on
a maximum of 4000 steps. The hyperparameter tuning relies on the provided development set.

We hence perform experiments using a very similar setup to the one previously described for GSM8K.
Overall results are given in Table 2. We again find that Iterative RPO provides increased performance
across iterations (84.8%, 86.2%, 86.7%) over three iterations. Majority voting using the model in
the third iteration (32 samples, temperature 0.8) leads to another small boost (8§7.9%). These results
outperform zero-shot CoT (77.8%), SFT on chosen sequences (79.8%) and standard DPO (83.5%).
We arrive at similar observations in Figure 4a compared to Figure 3: when training with DPO without
NLL loss, the log probabilities of chosen sequences barely increase over training; when training with
DPO with NLL loss, the log probabilities increase noticeably.

Even though we arrive at similar conclusions to the ones from GSM8K, we find these results especially
noteworthy due to the multiple-choice nature of the task. As there are typically only four possible
answers, the generated data in step (i) of Iterative RPO may provide a CoT and a final answer that is
correct by luck (as random guessing is correct 25% of the time). Hence, the nature of the task may
introduce a significant amount of noise in the CoT generations used in preference optimization in
step (ii). Nevertheless, the method seems robust to this issue and we still observe performance gains.

Table 2: ARC and MATH results. We compare Iterative Reasoning Preference Optimization
(Iterative RPO) against other baselines that are based on the same base model and training data.

ARC-Challenge MATH
Model (0-shot) (4-shot)
Test Accuracy (%) Test Accuracy (%)

Iterative RPO (initialized from Llama-2-70b-chat)

Iteration 1 84.8 17.7
Iteration 2 86.2 19.9
Iteration 3 86.7 20.8
w/ majority voting using 32 samples 87.9 29.1
Other Llama-2-70b-chat-initialized methods
CoT 77.8 12.5
w/ majority voting using 32 samples 82.9 18.8
SFT on chosen sequences 79.8 16.8
DPO initialized from Llama-2-70b-chat 82.8 12.4
DPO init from SFT model trained on chosen seqs 83.5 10.5
0 0
~2001 —200 1
£ 4 2 —400
§ —400 A s
° S —600
§ —600 DPO chosen g’ -800 1"
DPO rejected
—— DPO+NLL chosen —1000 A
—8007 ... DPO+NLL rejected
0 560 IObO 15‘00 20‘00 25‘00 3000 1200 0 560 10‘00 15‘00 2600 25‘00 3000
Training steps Training steps
(a) ARC-Challenge (b) MATH

Figure 4: Effect of NLL loss term on DPO training for ARC and MATH. The legend on the right
plot is omitted due to space constraint, but it is the same as the legend in the left plot. Similar to
GSMBK, in ARC-Challenge and MATH, we see that the log probabilities of chosen sequences barely
increase over training steps when training with DPO. However, when training with DPO with NLL
loss, the log probabilities increase over training steps.

3.3 MATH Task

We also experiment with more advanced math problems using the MATH [Hendrycks et al., 2021]
dataset that is composed of 12,500 competition problems, for example the question: “Tom has a
red marble, a green marble, a blue marble, and three identical yellow marbles. How many different
groups of two marbles can Tom choose?”. While this may look superficially similar to the GSM8K
task, it features substantially harder questions, as will be shown by the baseline performance. The
test set has 5,000 examples. Similar to the GSM8K dataset, a gold CoT solution is provided for each
problem, and the gold answers can be matched uniquely to predicted answers after normalization to
compute rewards. We do not use the accompanying pretraining data. For each MATH question, we
use a few-shot prompt given in Appendix B.2 as the input to the language model. In particular, the
prompt includes four fixed in-context examples chosen from the training set. The language model
needs these demonstrations so that the final answers can be properly formatted in IKTEX.

In each iteration, we generate N = 20 solutions per problem using sampling with temperature 0.8 for
iterations 1-2 and temperature 1.0 for iteration 3. We select K = 15 pairs of solutions per problem,
and after filtering out pairs with overly long generations, for each iteration we end up with around 75k
example pairs. We train a maximum of 5000 steps per iteration; other details are similar to GSM8K
setups.

Results are given in Table 2. We again find that Iterative RPO provides increased performance
across iterations, from 17.7% to 19.9% to 20.8% over three iterations. Majority voting (32 samples,
temperature 0.8) leads to a significant boost in performance (29.1%). These results outperform
few-shot CoT (12.5%), SFT on chosen sequences (16.8%) and standard DPO (12.4%). In particular,
DPO degrades the performance compared to initialization. Similar to the previous tasks, we show the
log-probabilities during training in Figure 4b.

Overall, we find on all three distinct tasks we tried, from simpler to more difficult, similar observations
on performance gains are exhibited by our method.

4 Related Work

General iterative alignment methods. Several works have implemented iterative reinforcement
learning from human feedback (RLHF) with a human-in-the-loop to provide additional labels to
retrain the reward model at each iteration, e.g., via Proximal Policy Optimization (PPO) [Schulman
et al., 2017], reporting improvements across iterations [Bai et al., 2022, Touvron et al., 2023].
Recently, approaches have been proposed to perform iterative alignment without a human-in-the-loop.
Iterative DPO [Xu et al., 2023, Xiong et al., 2023] optimizes preference pairs using DPO [Rafailov
et al., 2023] at each iteration, and then constructs new preference pairs for the next iteration by
generating them using the updated model, and scoring them using a reward model. Other iterative
methods than DPO exist as well, such as the Cringe loss [Adolphs et al., 2023], Pairwise Cringe Loss
[Xu et al., 2023], and ReST [Gulcehre et al., 2023].

SPIN [Chen et al., 2024] is an Iterative DPO-like framework that uses human labels as the winning
response in a pair, and the last iteration’s generations as the losing response in the pair. The authors
note this has the limitation that once the model generations reach human performance, they are
bottlenecked. Further, each input prompt is required to have a human-annotated generation. In
contrast, our work only requires the final answer, but not the reasoning steps, and crucially uses the
model to generate both winning and losing Chain-of-Thoughts. Only modest gains on reasoning
tasks are reported in their work.

Self-Rewarding LLMs [Yuan et al., 2024] also use Iterative DPO with the LLM itself used as a reward
model to construct pairs for each successive iteration. Both that work and the work of Rosset et al.
[2024] and Snorkel AI Team [2023], which do similar iterations but with external reward models,
show significant gains on general instruction following tasks. However, again, only modest gains on
reasoning tasks are reported.

Methods improving reasoning ability. While a number of approaches have been developed to
curate or distill training data for reasoning tasks [Yu et al., 2024, Toshniwal et al., 2024], in this work
we focus on learning algorithms which is an orthogonal axis. Expert Iteration assumes a reward
model, and repeatedly uses rejection sampling to filter generations and train on them, which is found
to match the sample complexity of PPO [Havrilla et al., 2024]. STaR [Zelikman et al., 2022] relies
on a similar loop: generate rationales to answer many questions, prompted with a few rationale
examples; if the generated answers are wrong, try again to generate a rationale given the correct
answer; and then fine-tune on all the rationales that ultimately yielded correct answers; and repeat.
ReSTEM [Singh et al., 2024] assumes a ground truth verifier and also fine-tunes on filtered samples
in a repeated fashion. All these methods rely on finding high-quality samples for SFT-like training,
rather than using DPO-like pairwise preference optimization as in our work.

The V-STaR method [Hosseini et al., 2024] trains a verifier using DPO and uses this to filter the
generations of a model trained by SFT, rather than using DPO to train the generator, as we do. MAPO
[She et al., 2024] also recently utilizes DPO but for multilingual reasoning tasks, where they translate
across languages.

5 Conclusion

We propose an iterative training algorithm, Iterative Reasoning Preference Optimization, for improv-
ing chain-of-thought-based reasoning task performance in LLMs. In each iteration, we generate
multiple responses and build preference pairs based on the correctness of their final answers, and
then use a modified DPO loss with an additional NLL term for training. Our method does not

require human-in-the-loop or extra training data, and remains simple and efficient to implement. The
experimental results show large improvements on GMS8K, MATH, and ARC-Challenge over various
baselines using the same base model and training data. These results indicate the effectiveness of our
recipe of iterative training in improving the reasoning capabilities of LLMs.

Acknowledgments

We thank colleagues at Meta and NYU for valuable discussion: in particular, Angelica Chen, Jing
Xu, Abulhair Saparov, Vishakh Padmakumar, Nicholas Lourie, Nitish Joshi, Ilia Kulikov, and J. Mark
Hou.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster, Sainbayar Sukhbaatar, and Jason Weston.
The CRINGE loss: Learning what language not to model. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 8854—8874, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.493. URL
https://aclanthology.org/2023.acl-long.493.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. PaLM 2 technical report.
arXiv preprint arXiv:2305.10403, 2023.

Anthropic Team. Claude 2, 2023. URL https://www.anthropic.com/news/claude-2.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. In Forty-first International Conference
on Machine Learning, 2024. URL https://openreview.net/forum?id=04cHTxWIBS.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(ReST) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2),2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization with
odds ratio. arXiv preprint arXiv:2403.07691, 2024.

10

https://aclanthology.org/2023.acl-long.493
https://www.anthropic.com/news/claude-2
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=7Bywt2mQsCe

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STaR: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024. URL https://openreview.net/forum?id=stmqBSW2dV.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Tivelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=IkmD3fKBPQ.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. WizardMath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with DPO-positive. arXiv preprint
arXiv:2402.13228, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=HPuSIXJaa9.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to @Q*: Your language model
is secretly a Q-function. In First Conference on Language Modeling, 2024. URL https://
openreview.net/forum?id=kEVcNxtqXk.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct Nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shuaijie She, Wei Zou, Shujian Huang, Wenhao Zhu, Xiang Liu, Xiang Geng, and Jiajun Chen.
MAPO: Advancing multilingual reasoning through multilingual-alignment-as-preference opti-
mization. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
10015-10027, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.539. URL https://aclanthology.org/2024.acl-long.539.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training for
problem-solving with language models. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=1NAyUngGFK. Expert Certification.

Snorkel AI Team. Snorkel-mistral-pairrm-dpo. https://huggingface.co/snorkelai/
Snorkel-Mistral-PairRM-DPO, 2023. Accessed: 2024-04-15.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008-3021, 2020.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git-

man. OpenMathInstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint
arXiv:2402.10176, 2024.

11

https://openreview.net/forum?id=stmqBSW2dV
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=kEVcNxtqXk
https://openreview.net/forum?id=kEVcNxtqXk
https://aclanthology.org/2024.acl-long.539
https://openreview.net/forum?id=lNAyUngGFK
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Dingjun Wu, Jing Zhang, and Xinmei Huang. Chain of thought prompting elicits knowledge
augmentation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the
Association for Computational Linguistics: ACL 2023, pages 6519-6534, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.408. URL
https://aclanthology.org/2023.findings-acl.408.

Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-
pling from human feedback: A provable KL-constrained framework for RLHF. arXiv preprint
arXiv:2312.11456, 2023.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of LLM
performance in machine translation. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=51iwkioZpn.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than
others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682,
2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=N8NOhgNDRt.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason E Weston. Self-rewarding language models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=0NphYCmgua.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_3ELRdg2sgl.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

12

https://aclanthology.org/2023.findings-acl.408
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=N8N0hgNDRt
https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI

A Limitations

On experiments: When training iteration ¢ using iterative RPO, we do not make use of the collected
data in previous iterations. Utilizing those data could potentially boost the performance even more.
We leave this point to future work, as it is not central to our theses. In addition, we have experimented
on three tasks. It is unclear how the approach would perform on general instruction tuning tasks
without a clear best answer, but we argue that positive results on the three tasks in this paper can
already prove the method useful. The current recipe requires correct answers, and a clear metric for
comparing a generated response with this correct answer.

Regarding our loss function: The NLL loss is shown to be helpful in our case. Our iterative RPO
algorithm requires training data to be mostly collected from the previous iteration of the model.
Therefore, the chosen and rejected sequences all have reasonably high probability under the model
distribution. When training sequences are arbitrary (e.g., sampled from other models), it is unclear
whether the NLL loss is necessary (although this setting does not fall under the umbrella of the
iterative RPO procedure in this paper).

B More Details on Experimental Setup

B.1 More Details on Hyperparameters

For baseline hyperparameter selection: We conducted a grid search for SFT, iteration 1 of DPO,
and iteration 1 of RPO. For iteration>1, we use the same hyperparameters as iteration 1, except
for the number of training steps which is selected individually for each iteration. For all baselines,
learning rates are all tuned from the range of 5e-7 to S5e-6. DPO and RPO are tuned in the same sets
of hyperparameters (if the hyperparameter exists in both methods).

B.2 Prompts

GSMSK. For each GSMSK question, we use the following prompt as the input to the language
model:

Your task is to answer the question below. Give step by step reasoning before you answer,
and when you’re ready to answer, please use the format "Final answer: ..."

Question: [question here]
Solution:

MATH. For each MATH question, we use the following prompt as the input to the language model.
In particular, the prompt includes four fixed in-context examples chosen from the training set of
MATH. The language model needs these demonstrations so that the final answers can be properly
formatted in ISTEX.

Your task is to answer the last question below. Give step by step reasoning before you
answer, and when you’re ready to answer, please wrap your answer in \boxed, and conclude
using the format "Final answer: ..."

Question: [question for the first example]

Solution: [solution for the first example]

Final answer: [answer (e.g., number, formula) here]

Question: [question for the second example]
Solution: [solution for the second example]
Final answer: [answer here]

Question: [question for the third example]
Solution: [solution for the third example]
Final answer: [answer here]

Question: [question for the fourth example]
Solution: [solution for the fourth example]
Final answer: [answer here]

13

Question: [the question to be solved]
Solution:

ARC. For each ARC question, we use the following prompt as the input to the language model,
assuming the question has four options (each question has three to five options).

Your task is to answer the question below. Give step by step reasoning before you answer,
and when you’re ready to answer, conclude using the format "Final answer: (insert letter
here)"

Question: [question here]
(A) [option A here]

(B) [option B here]

(C) [option C here]

(D) [option D here]
Solution:

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction cover the paper’s contributions — algorithm,
performance, ablations, and further analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix A for detailed discussion on limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: It is an empirical paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details are provided at the beginning of each subsection in the
Experiments section. The prompts used are included in the Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer:

Justification: This decision is still pending. However, our experiment mostly involves
relatively straightforward modifications of the DPO algorithm, and all important details are
included in the beginning of each subsection in Experiments. Prompts are also included in
the appendix. Given these details, it should be straightforward to replicate the experiments.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
* The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are provided in the beginning of each subsection in Experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Experiments are run once given the cost of fine-tuning 70B models. The
difference from baseline performance is often very large as indicated in the discussion in the
Experiments section. In addition, we are following the norms of existing publications that
experiment on these datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Mentioned toward the start of the GSM8K subsection in Experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper proposes a method to improve the performance on reasoning
benchmarks. We do not see relevant violations as listed on the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not see significant positive or negative societal impacts, as the work
provides a training algorithm that is applicable to reasoning tasks like mathematics and
commonsense.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The benchmarks are popular and low-risk. We are not planning to release
models or data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The licenses are mentioned in a footnote near the beginning of Experiments.
We have made sure that the licenses are respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

19

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Iterative Reasoning Preference Optimization
	Experiments
	Math Word Problems: GSM8K
	ARC-Challenge Task
	MATH Task

	Related Work
	Conclusion
	Limitations
	More Details on Experimental Setup
	More Details on Hyperparameters
	Prompts

