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ABSTRACT

Large language models (LLM) have emerged as a powerful tool exhibiting remark-
able in-context learning (ICL) capabilities. In this study, we delve into the ICL capa-
bilities of LLMs on composite tasks, with only simple tasks as in-context examples.
We develop a test suite of composite tasks that include logical and linguistic chal-
lenges and perform empirical studies across different LLM families. We observe
that models exhibit divergent behaviors: (1) For simpler composite tasks that con-
tains different input segments, the models demonstrate decent compositional ability,
while scaling up the model enhances this ability; (2) for more complex composite
tasks that involving sequentiaL reasoning, models typically underperform, and
scaling up provide no improvements. We offer theoretical analysis in a simplified
setting. We believe our work sheds new light on the capabilities of LLMs in solving
composite tasks regarding the nature of the tasks and model scale. Our dataset and
code is available at https://github.com/OliverXUZY/LLM_Compose.

1 INTRODUCTION

Just give me output.
input: * apple
output: APPLE
input: * bird

output: BIRD

Just give me output.
input: ( ball book )
output: book ball
input: ( house hat )

output: hat house

Just give me output.

input: * toe

output: TOE

input: (farm frog)

output: frog farm

input: ( * pie * sports ) 

output: sports * pie *

Simple tasks Composite task

Figure 1: Inconsistent performance in GPT-4. Con-
sider 2 simple tasks: If a word is followed by (*), capital-
ize the letter. If two words are surrounded by parenthesis,
swap the positions. GPT-4 solves two simple tasks based
on demonstrations (left). The composite tasks have test
input with both asterisk (*) and parenthesis. The correct
answer should be output: SPORTS PIE. However, GPT-
4 fails to solve composite tasks (right). The same failure
was observed in Claude 3.

Large language models (LLM) have revolution-
ized general AI community. In this paper, we fo-
cus on the problem of how LLMs tackle compos-
ite tasks that incorporate multiple simple tasks.
Specifically, we investigate whether a model
trained/in-context learned on individual tasks
can effectively integrate these skills to tackle
combined challenges, which are intuitive and
simple for humans. For instance, in Figure 1, if
a human is given examples where words follow-
ing an asterisk (*) will be capitalized and words
surrounded by parenthesis will be permuted, one
can also know words following an asterisk (*)
surrounded by parenthesis will be capitalized
and permuted simultaneously. This basic gen-
eralization seems trivial, yet we observe LLMs
fail to generalize in this way.

Inspired by this observation, we further evaluate
LLMs on a series of compositional tasks through ICL. The models were presented with examples of
simple tasks and then asked to tackle composite tasks that they had not encountered during pretraining
or in-context learning. We observe various behaviors: (1) for some composite tasks, the models
showed a reasonable level of compositional skill, a capability that improved with larger model
sizes; (2) for more complex composite tasks requiring sequential reasoning, the model struggle, and
increasing the model size typically did not lead to better performance. Our key intuition is if the
simple tasks forming a composite task can be easily separated into sub-tasks based on the inputs (e.g.,
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Figure 2: The exact match accuracy (y-axis) vs the model scale (x-axis, “b” stands for billion) for Capitalization
& Swap (example in Figure 1). Line capital: performance on the simple task of capitalization; swap: on the
simple task of swap; composite: in-context examples are from simple tasks while test input from the composite
task. composite incontext: in-context examples and test input are all from the composite task (example in
Table 3).
performed separately on different parts of the input sentence), the model is more likely to successfully
complete such composite task (we call it “separable composite task”).

Our contributions include both empirical experiments and theoretical analysis. We introduce a
variety of composite tasks from both linguistic and logical domains to explore how the nature of
these tasks influences the compositional performance of LLMs through ICL in experiments. Then
we provide theoretical analysis on a simple yet insightful model: a one-layer single-head linear
self-attention network. We demonstrate a clear separation in input embedding effectively breaking
down composite tasks into simpler components. Due to the constraints of the page limit, we refer
readers to Appendix A for details for related work.

2 COMPOSITE LOGICAL TASKS

Our goal is to understand the LLMs’ behavior on compositional reasoning tasks. We consider the
standard in-context learning setting which concatenates K = 10 input-output examples and one
testing input as the prompt for the LLM. We perform experiments across various LLM families, e.g.,
Llama families (Touvron et al., 2023) and GPTs (Radford et al., 2019; Black et al., 2021), see model
details in Appendix B.2.

Warm-up setting. As a warm-up, we evaluate the Capitalization & Swap tasks (Figure 1) on
different models. To make thorough evaluations, we consider four settings: (1) capital: only on the
capitalization task; (2) swap: only on swap; (3) composite: in-context examples are from simple tasks
while the test input is about the composite task; (4) composite in-context: in-context examples and
the test input are all drawn from the composite task. The composite in-context setting reduces the
evaluation to another simple task, not requiring the model to composite the simple task ability but
directly learning from the in-context examples. It serves as the gold standard performance for the
composite task. See Table 3 in Appendix B.1 for illustration.

Results. In Figure 2, somewhat surprisingly, we observe that LLMs cannot solve the composite task
although they perform well on simple tasks. There is a significant gap between the performance in
these settings. Models in Llama families can solve capital and swap with nearly ∼90% accuracy,
but only achieve around 20% or below on the composite task. We also observe that composite
in-context examples will significantly improve the performance: The accuracy of Llama families can
go up to match the simple task accuracy. These observations show that the models fail to compose
the knowledge from the simple tasks, although they do have the representation power to solve the
composite task (which can only be exploited when provided composite in-context examples and
scaling up does not help).

The experiment on Capitalization & Swap shows failure cases while existing studies reported some
successful composite abilities (Levy et al., 2022; An et al., 2023b).

Logical tasks suite. We enhance our suite of logical tasks by introducing a series of straightforward
tasks that process either simple words or numerical values, with the output being a specific functional
transformation of the input. These tasks are detailed in Table 1.

Composite tasks are created by merging two simple tasks. We conceptualize simple tasks as functions,
f(·) and g(·) that map inputs to their respective outputs. We identify two distinct approaches to
creating composite tasks: (1) Compose by parts: For inputs x, y, the result is f(x), g(y). (2)
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Compose by steps: Given input x, the result is f(g(x)), such as (A) + (B) in Figure 1. We use
customized symbol as function mapping for composing two simple tasks. We refer detailed illustration
of how we compose tasks together and compose by parts or steps to Appendix B.1.

Tasks Task Input Output

Words (A) Capitalization apple APPLE

(B) Swap bell ford ford bell

(C) Two Sum twenty @ eleven thirty-one

(D) Past Tense pay paid

(E) Opposite Above Below

Numerical (F) Plus One 435 436

(G) Modular 15 @ 6 3

(H) Two Sum Plus One 12 # 5 18

Table 1: This table contains a collection of simple logical tasks. The
Words category encompasses tasks that modify words at the character or
structural level. In contrast, the Numerical category is devoted to tasks
that involve arithmetic computations performed on numbers.

Results. We provide our main
results on composite tasks in Ta-
ble 2. For the compose by parts
tasks (A) + (F) and (D) + (F),
the models show strong compo-
sitional ability: the composite
accuracy is high, improves with
increasing scale, and eventually
reaches similar performance as
the “gold standard” composite
in-context setting, as highlighted
in red numbers. We refer these
tasks as “separable composite
tasks” which are relatively easy
for model to solve. On the com-
pose by steps tasks, we observe
the models have various perfor-
mance. For composite tasks with sequential reasoning steps, the models exhibit various performance.
For tasks involving capitalization (A) or swap (B), the model has poor performance in small scale (7b
or lower) but have increased performance in increased model scale, such as 44% accuracy in (A) +
(C) and 66% accuracy in (B) + (D). On composite steps tasks involving arithmetic calculation of nu-
merical numbers (G) + (H) the model has the worst performance and increasing model scale does not
provide benefits. A key observation is that compose by part tasks are separable compositions, where
the input can be broken down into two distinct segments. Such tasks are typically straightforward for
a model to address. In all experiments, providing composed examples as in-context demonstration
will help the model understand the composite tasks and solve them well, such as Com. in-context
rows in all task combinations. We conclude models fail to compose mechanisms of two simple tasks
together, however, given composite examples, models can learn the composed mechanism efficiently.
More experimental details and results can be found in Appendix B.

Due to page limit, we refer readers for Composite Linguistic Translation Task to Appendix C.

Discussion. We observe the capability of models to handle composite tasks is significantly influenced
by the task characteristics. Especially, if composite tasks contain simple tasks related to different parts
or perspectives of the input, the model will tackle the composite tasks well. One natural explanation
is the model processes the input in some hidden embedding space, and decomposes the embedding of
the input into different “regions”. Here each region is dedicated to specific types of information and
thus related to different tasks — such as word-level modifications, arithmetic calculations, mapping
mechanisms, semantic categorization, linguistic acceptability, or sentiment analysis. Then if the
two simple tasks correspond to two different task types where they relates to separate regions of
the embedding, the model can effectively manage the composite task by addressing each simple
task operation within its corresponding region. As the model scale increases, its ability to handle
individual tasks improves, leading to enhanced performance on composite tasks in such scenarios. For
separable composite tasks, the inputs are divided into distinct regions and also reflect in embeddings,
which results in high performance from the model. However, when the simple tasks are not separable
(e.g., requiring sequential steps in reasoning), their information mixes together, complicating the
model’s ability to discern and process them distinctly. Such overlap often leads to the model’s
inability to solve the composite task. Such intuition is formalized in the following sections in a
stylized theoretical setting.

3 THEORETICAL ANALYSIS

Despite the complex nature of non-linearity in transformers in LLMs, we note it is useful to appeal to
the simple case of linear models to see if there are parallel insights that can help us better understand
the phenomenon. In this section, we provide an analysis of a linear attention module. We aim to
provide rigorous proof about why LLMs can achieves compositional ability in some simple cases
that could shed light on the more intricate behaviors observed in LLMs.
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Mistral Llama2 Llama1
Pretrained Tasks 7B 8x7B 7B 13B 70B 7B 13B 30B 65B
(A) + (B) Capitalization 99 98 99 100 100 98 98 100 100

swap 100 100 100 100 100 100 100 100 100
Compose 16 42 7 1 37 0 30 16 13

Com. in-context 95 96 96 98 100 66 97 96 98

(A) + (C) twoSum 71 100 72 93 99 62 56 98 99
Capitalization 98 99 100 95 99 97 98 99 99

Compose 8 19 3 23 44 3 3 31 2
Com. in-context 31 65 52 77 100 9 22 93 69

(A) + (F) Capitalization 97 99 98 77 99 84 96 99 98
PlusOne 100 99 100 100 100 100 100 100 100
Compose 92 96 74 69 97 57 60 69 99

Com. in-context 99 98 99 100 100 99 99 100 100

(B) + (D) Swap 100 100 100 100 100 100 100 100 100
Past Tense 97 99 97 100 99 97 98 100 100
Compose 6 12 0 1 62 57 34 46 5

Com. in-context 92 98 86 95 98 86 95 89 94

(B) + (E) Swap 100 100 100 100 100 100 100 100 100
Opposite 61 62 58 68 65 51 58 64 63
Compose 0 0 0 0 0 0 0 0 0

Com. in-context 35 32 12 37 37 0 9 7 9

(D) + (F) Past Tense 100 100 98 100 100 100 100 100 100
Plus One 100 100 100 100 100 99 100 100 100
Compose 71 46 32 80 80 40 44 14 74

Com. in-context 98 100 98 99 100 95 96 98 100

(G) + (H) Modular 25 22 5 23 43 9 16 29 29
twoSumPlus 38 42 3 77 90 14 10 40 87

Compose 4 5 0 1 1 0 0 0 5
Com. in-context 4 8 13 13 12 11 13 7 12

Table 2: Results evaluating composite tasks on various models. The accuracy are showed in %.

Theoretical setup. We follow existing work (Akyürek et al., 2023; Garg et al., 2022; Mahankali et al.,
2023) with slight generalization to K simple tasks. A labeled example is denoted as (x, y) where
x ∈ Rd, y ∈ RK . In a simple task k ∈ [K], y has only one non-zero entry y(k). In a composite task,
y can have non-zero entries in dimensions corresponding to the combined simple tasks. Following
the previous work (Zhang et al., 2023b; Garg et al., 2022; Mahankali et al., 2023), we formulate
pretraining on a linear attention as a linear regression problem.

We now detail how to evaluate the model on downstream composite tasks. We consider the down-
stream classification task to be a multi-class classification problem, where the output label is a
K-dimensional vector and each entry corresponds to a simple task of binary classification. For
any given simple task k, the binary classification label is given by sgn(y(k)q ), where sgn is the sign
function. Similarly, our prediction is ỹ(k)q = sgn

(
ŷ
(k)
q

)
. The accuracy of a composite task is defined

as Accθ(x1, . . . , yN , xq) =
1
K

∑K
k=1 1

(
sgn
(
ŷ
(k)
q

)
= sgn(y(k)q )

)
. When xq clear from context, we

denote it as Accθ({xi, yi}Ni=1). We assume x i.i.d.∼ N (0,Λ), where Λ ∈ Rd×d is the covariance matrix.
Assume y = Wx, where W ∈ RK×d. Then for any simple task k ∈ [K], its label is the k-th entry of
y, which is y(k) =

〈
w(k), x

〉
, where w(k) is the k-th row of W . We also assume each task weight

w(k) i.i.d.∼ N (0, Id). We refer readers see detailed setup in Appendix D.

Theoretical Analysis Results. In this section, we present our theoretical results. We explain
the observation in empirical results through the lens of confined supports in input embeddings
corresponding to separate subspaces (modeling separable composition). We set up our framerork as
Disjoint subspaces of simple tasks. Recall that x lies in a d-dimensional space where each dimension
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represents a different characteristic. A simple task may depend only on a subset of these dimensions
since its label only depends on a few features. Let S = [d] represent the dimensions of x. For a task
k, the output y(k) = ⟨wk, x⟩ depends on a subset of dimensions in x. Denote this subset by K ⊆ S
and call it the active index set for task k. In practice, the dimensions within K could be associated
with arithmetic operations, while those in G might pertain to semantic analysis. This illustrates
the model’s approach to segregate and address these tasks in their respective subspaces. We now
introduce a mild assumption regarding the distribution of input embeddings.

Assumption 1. Given two disjoint subspaces K and G, the covariance matrix Λ of the input
distribution can be segmented into block matrices ΛKK,ΛKG,ΛGK, and ΛGG, then we assume
σmax(ΛKG) = σmax(ΛGK) ≤ ϵ for constant ϵ, where σ(·) denote the singular value of matrix.

Assumption 1 implies that for two separate simple tasks, each associated with its respective feature
subspace K and G, the covariance between these two sets of features is zero. This is a natural
assumption. Suppose we have input embeddings from two distinct tasks, such as sentiment analysis
and arithmetic computations. This assumption suggests that the feature subspaces of the input
embeddings for these tasks are independent.

Consider a composite task T that combines two simple tasks k and g. Let Sk denote N labeled
examples from task k, and similarly for Sg. Given an xq from composite task T , we then define
the model has compositional ability on T using Sk∪g if the model has higher accuracy using these
in-context examples, i.e. max{Accθ(Sk),Accθ(Sg)} ≤ Accθ(Sk ∪ Sg). With the above definition,
we will then explain the observed model behavior in empirical results, in particular, when distinct
simple tasks have confined supports in input embeddings modeling the separable composition. We
now define confined support, which means the input embedding of each task only has support within
each task’s feature subspace.

Definition 1 (Confined Support). We say a task has confined support if the input x only has larger
singular values within its active index set. The norm of entries outside active index set be bounded by
a small constant δ.

This definition shows that each simple task only has large values within its corresponding subsets of
dimensions of input embeddings. For example, let K represent the first d1 dimensions of an input
vector x, and G account for the remaining d2 dimensions, with the total dimension being d = d1+d2.
The examples from task k will have input as x = (x1, xδ1) where x1 ∈ Rd1 , xδ1 ∈ Rd2 , ∥xδ1∥ ≤ δ.
Similarly, the examples from task g will have inputs as x = (xδ2 , x2).

We now present our results of the compositional ability under a confined support of x.

Theorem 1. Consider distinct tasks k and g with corresponding examples Sk,Sg , If two tasks have
confined support, assume Assumption 1, with high probability, the model has the compositional
ability. Moreover,

Accθ(Sk) + Accθ(Sg) ≤ Accθ(Sk∪g).

Theorem 1 shows the compositional ability of LLMs to handle composite tasks that integrate two
simple tasks, which have confined support in their own feature subspace.

An illustrative case involves the tasks of Capitalization (A) & Plus One (F) and Past Tense (D) &
Plus One (F), as depicted in Table 2. These two simple tasks involve word-level modification and
arithmetic operation on separate parts of the input. Due to this separation, each task correlates with a
specific segment of the input embedding. Therefore, it is observed that these tasks possess confined
supports.

We provide additional theoretical results in Appendix E. We further provide Corollary 1 in Ap-
pendix E.1 illustrating the necessity of the confined supports, demonstrating that a model’s failure
to solve tasks with mixed steps reasoning, where contains overlapping input embedding spaces,
thereby diminishing the model’s ability to solve them when presented together. We also show the
scaling effect: if simple tasks have confined support, the compositional ability of language models
will increase as the model scale increases in Theorem 2 in Appendix E.2. We demonstrate this by
showing that the accuracy of the model on each simple task improves with a larger model scale. We
finally provide a case study on confined support for illustration in Appendix E.3.

5



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

ACKNOWLEDGMENTS

The work is partially supported by Air Force Grant FA9550-18-1-0166, the National Science Founda-
tion (NSF) Grants 2008559-IIS, CCF-2046710, and 2023239-DMS.

REFERENCES
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Appendix

In this appendix, we provide full related work in Appendix B.2. We provide full logical tasks settings
and results in Appendix B and along with full settings and results for translation tasks in Appendix C.
We provide full theoretical set up in Appendix D and full theoretical results in Appendix E. We
provide full proof in Appendix F.

A RELATED WORK

Large language model. LLMs are often Transformer-based (Vaswani et al., 2017) equipped with
enormous size of parameters and pretrained on vast training data. Typical LLMs includes BERT
Devlin et al. (2019), PaLM Chowdhery et al. (2022), LLaMATouvron et al. (2023), ChatGPT (OpenAI,
2022), GPT4 (OpenAI, 2023). Pretraining methods include masked language modeling (Devlin et al.,
2019; Liu et al., 2019), contrastive learning (Gao et al., 2021; Shi et al., 2023a) and auto-regressive
pretraining (Radford et al., 2018; 2019). Adapting LLMs to various downstream tasks has received
significant attention, e.g., adaptor Hu et al. (2022; 2023); Zhang et al. (2023a); Shi et al. (2024),
prompt tuning (Lester et al., 2021; Li & Liang, 2021; Wei et al., 2023a), multitask finetuning Sanh
et al. (2022); Wang et al. (2023b); Xu et al. (2023; 2024), instruction tuning Chung et al. (2022);
Mishra et al. (2022), in-context learning (Min et al., 2022b; Dong et al., 2022; Yao et al., 2023),
reinforcement learning from human feedback (RLHF) Ouyang et al. (2022).

In-context learning. LLM exhibits a remarkable ability for in-context learning (ICL) (Brown et al.,
2020), particularly for generative models. Given a sequence of labeled examples and a testing example
(combined as a prompt), the model can construct new predictors for testing examples without further
parameter updates. Several empirical works are investigating the behavior of ICLs. Zhao et al. (2021);
Holtzman et al. (2021); Lu et al. (2022) formulate the problems and report the sensitivity. Rubin
et al. (2022); Liu et al. (2022); Hongjin et al. (2023); Wang et al. (2023a) provide methods for better
choosing in-context learning examples. Chen et al. (2022); Min et al. (2022a) use meta training with
an explicit in-context learning object to boost performance. Theoretically, Xie et al. (2022); Garg et al.
(2022) provide a framework to explain the in-context learning working mechanism. Von Oswald
et al. (2023); Akyürek et al. (2023); Mahankali et al. (2023); Zhang et al. (2023b), investigating with
linear models, show how transformers can represent gradient descent and conduct linear regression.
Based on these works, we provide an analysis showing how LLM can exhibit compositional ability in
ICL.

Emergence of compositional ability. Scaling law was first proposed by Kaplan et al. (2020) and
then followed up by Hoffmann et al. (2022), emphasizing both on scale of models and training data.
Sometimes, increasing scale can lead to new behaviors of LLMs, termed emergent abilities (Wei
et al., 2022; Arora & Goyal, 2023; Gu et al., 2024). Recent works show LLMs with larger scales have
distinct behavior compared to smaller language models (Wei et al., 2023b; Shi et al., 2023b). These
behaviors can have positive or negative effects on performance. Solving complex tasks and reasoning
is an active problem in the AI community Huang & Chang (2022). There is a line of empirical works
investigating the compositional ability in linguistic fashion (Kim & Linzen, 2020; Levy et al., 2022;
An et al., 2023a;b). LLMs are capable of learning abstract reasoning (e.g. grammar) to perform
new tasks when finetuned or given suitable in-context examples. In our work, we include linguistic
experiments as part of our testing suite, illustrating LLMs’ compositional ability. Ye et al. (2023);
Berglund et al. (2023); Dziri et al. (2023) show LLMs will have difficulties solving tasks that require
reasoning. Berglund et al. (2023) studies that LLMs trained on “A is B” fail to learn “B is A”. In
our work, we conduct similar experiments showing LLMs will fail on composite if different steps of
logical rules are mixed.

B LOGICAL TASKS

We provide full explanation of logical composite tasks below. We first show compose in-context
example in Table 3.
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Composite Composite in-context

Prompt input: * apple
output: APPLE
input: (farm frog)
output: frog farm
input: * (bell ford)

input: (* good * zebra)
output: ZEBRA GOOD
input: (* model * math)
output: MATH MODEL
input: (* bicycle * add)

Truth output: FORD BELL output: ADD BICYCLE

Table 3: Examples of two settings. Composite: in-context examples are about simple tasks while the test input
is about the composite task. Composite in-context: both in-context examples and the test input are about the
composite task.

Tasks Simple Task Simple Task Composite

(A) + (B) input: * apple
output: APPLE

input: ( farm frog )
output: frog farm

input: ( * bell * ford )
output: FORD BELL

(A) + (F) input: 435
output: 436

input: cow
output: COW

input: 684 cat
output: 685 CAT

Table 4: Examples of the two logical composite tasks. Full examples can be found in Appendix B.

B.1 ILLUSTRATION OF LOGICAL TASKS

Composite tasks are created by merging two simple tasks. We conceptualize simple tasks as functions,
f(·) and g(·) that map inputs to their respective outputs. We identify two distinct approaches to
creating composite tasks: (1) Compose by parts: For inputs x, y, the result is f(x), g(y). One
example is (A) + (F) in Table 4 If numerical number is given, it will increment by one; if word is
given, the letters will be capitalize; if both are given, perform both operations. (2) Compose by
steps: Given input x, the result is f(g(x)). One example is (A) + (B) in Table 4. We use customized
symbol as function mapping for composing two simple tasks. Examples can be found in Figure 1 and
Table 4. Following existing work, we use exact match accuracy for evaluating the performance, since
the output for these tasks is usually simple and short.

B.2 FULL LOGICAL TASKS

We provide full explanation of logical composite tasks below. Examples can be seen in Table 5.

• (A) + (B) Capitalization & Swap, as in Figure 1.

• (A) + (C) Capitalization & Two Sum. Given words of numerical numbers, * represents the
operation of capitalizing, @ represents summing the two numbers.

• (G) + (H) Modular & Two Sum Plus. Given numerical numbers, @ represents the
operation of taking modular, # represents to sum the two numbers and then plus one.

• (A) + (F) Capitalization & Plus One. If numerical numbers are given, plus one; if words
are given, capitalize the word; if both are given, perform both operations.

Among these, (A) + (F) performs the two operations on separable parts of the test inputs (i.e.,
separable composite task).

We design our logical tasks following the idea of math reasoning and logical rules. The details are
shown in Table 5. Our numerical numbers in Table 1 are uniformly randomly chosen from 1 to 1000.
The words of numbers in task (C) are uniformly randomly chosen from one to one hundred. The
words representing objects in Table 1 are uniformly randomly chosen from class names of ImageNet,
after dividing the phrase (if any) into words. We randomly choose 100 examples in composite testing
data in our experiments and replicate the experiments in each setting three times. We fixed the number
of in-context examples as K = 10 as demonstrations.

We use exact match accuracy for evaluating the performance between sequence output. The cal-
culation of exact match accuracy divided the number of matched words by the length of ground
truth.
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Tasks Simple Task Simple Task Composite

(A) + (B) input: * apple
output: APPLE

input: ( farm frog )
output: frog farm

input: ( * bell * ford )
output: FORD BELL

(A) + (C) input: * ( five )
output: FIVE

input: twenty @ eleven
output: thirty-one

input: * ( thirty-seven @ sixteen )
output: FIFTY-THREE

(G) + (H) input: 15 @ 6
output: 3

input: 12 # 5
output: 18

input: 8 # 9 @ 7
Ouput: 4

(A) + (F) input: 435
output: 436

input: cow
output: COW

input: 684 cat
output: 685 CAT

Table 5: Examples of the four logical composite tasks. Note that in (G) + (H), the output of the composite task
can be either 4 or 11 depending on the order of operations and we denote both as correct.

For Llama models, we use official Llama1 and Llama2 models from Meta (Touvron et al., 2023),
we use open llama 3b v2 from open OpenLlama (Geng & Liu, 2023). For GPT models, we use
GPT2-large from openAI (Radford et al., 2019), we use GPT-neo models for GPT models in other
scales from EleutherAI (Black et al., 2021).

B.3 RESULTS

We show visualization of some logical tasks accuracy along the increasing to model scale, complement
to Table 2.

C COMPOSITE LINGUISTIC TRANSLATION

C.1 MAIN RESULTS

Inspired by previous works in compositional generalization (An et al., 2023b; Levy et al., 2022;
An et al., 2023a; Kim & Linzen, 2020), here we design our composite tasks by formal language
translation tasks.

Our translation tasks are mainly derived from semantic parsing task COGS (Kim & Linzen, 2020)
and compositional generalization task COFE An et al. (2023b). These two datasets contain input as
natural English sentences and output as a chain-ruled sentence following a customized grammar (see
details in Appendix C.2). We construct two composite tasks centered on compositional generalization,
utilizing the training datasets to create in-context examples. See details in Appendix C.2.

We use the word error rate (WER) as the metric. It measures the minimum number of editing
operations (deletion, insertion, and substitution) required to transform one sentence into another, and
is common for speech recognition or machine translation evaluations.

(T1) Phrase Recombination with Longer Chain. COFE proposed two compositional generalization
tasks (Figure 2 in An et al. (2023b)). Phrase Recombination: integrate a prepositional phrase (e.g.,
“A in B”) into a specific grammatical role (e.g., “subject”, “object”); Longer Chain: Extend the tail of
the logical form in sentences. We consider them as simple tasks, and merge them to form a composite
task: substitute the sentence subject in the Longer Chain task with a prepositional phrase from the
Phrase Recombination task. Details and examples are in Table 8 of Appendix C.2.

(T2) Passive to Active and Object to Subject Transformation. We consider two tasks from Kim &
Linzen (2020). Passive to Active: Transitioning sentences from passive to active voice. Object to
Subject: Changing the same object (a common noun) from objective to subjective. They are merged
to form our composite task, where both transformations are applied simultaneously to the input
sentence. Details and examples are in Table 7 of Appendix C.2.

Results. Figure 4 shows that LLMs are capable of handling these composite tasks. The WER on
the composite task is a decent and improves with increasing model scale, particularly in Llamma2
models. These confirm the composite abilities of the models in these tasks.

Here we notice both composite tasks are separable composite tasks: if we break down these sentences
into sub-sentences and phrases, the simple task operations occur in different parts or perspectives of
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Figure 3: The accuracy v.s. model scale on composite logical rule tasks. Dashed lines: simple tasks. Solid lines:
composite tasks. Rows: (A) + (C) Capitalization & Two Sum; (G) + (H) Modular & Two Sum Plus; (A) + (F)
Capitalization & Plus One. Columns: different models. Lines: performance in different evaluation settings, i.e.,
the two simple tasks, the composite setting, and the composite in-context setting (examples for the last two are
shown in Table 3).

the input sentences. So the results here provide further support for composite abilities on separable
composite tasks where simple tasks forming the composite task are related to inputs in different parts
or perspectives.

Discussion. We observe the capability of models to handle composite tasks is significantly influenced
by the task characteristics. Especially, if composite tasks contain simple tasks related to different
parts or perspectives of the input, the model will tackle the composite tasks well.

One natural explanation is the model processes the input in some hidden embedding space, and
decomposes the embedding of the input into different “regions”. Here each region is dedicated to
specific types of information and thus related to different tasks — such as word-level modifications,
arithmetic calculations, mapping mechanisms, semantic categorization, linguistic acceptability, or
sentiment analysis. Then if the two simple tasks correspond to two different task types where they
relates to separate regions of the embedding, the model can effectively manage the composite task by
addressing each simple task operation within its corresponding region. As the model scale increases,
its ability to handle individual tasks improves, leading to enhanced performance on composite tasks
in such scenarios. For separable composite tasks, the inputs are divided into distinct regions and also
reflect in embeddings, which results in high performance from the model. However, when the simple
tasks are not separable (e.g., requiring sequential steps in reasoning), their information mixes together,
complicating the model’s ability to discern and process them distinctly. Such overlap often leads
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Figure 4: The word error rate (WER) vs the model scale on composite linguistic translation tasks. Dashed
lines: simple tasks. Solid lines: composite tasks. Rows: (T1) Phrase Recombination with Longer Chain; (T2)
Passive to Active and Object to Subject Transformation. Columns: different models. Lines: performance in
different evaluation settings, e.g., the two simple tasks, the composite setting, and the composite in-context
setting (examples are shown in Appendix C.2).

to the model’s inability to solve the composite task. Such intuition is formalized in the following
sections in a stylized theoretical setting.

C.2 FULL DETAILS

Our translation tasks mainly follow the compositional generalization tasks in COFE (An et al., 2023b).
The details can be found in Section 4 in An et al. (2023a). We directly take the source grammar Gs in
COGS which mimics the English natural language grammar, and reconstruct the target grammar Gt

in COGS to be chain-structured.

We follow the Primitive coverage principle proposed by An et al. (2023b) that primitives contained in
each test sample should be fully covered by in-context examples. Here, primitives refer to the basic,
indivisible elements of expressions, including subjects, objects, and verbs. Note that multiple sets of
in-context examples can meet these criteria for each test case. Across all experimental conditions, we
maintain a consistent number of test instances at 800.

We use the word error rate (WER) as the metric. It measures the differences between 2 sentences. It
measures the minimum number of editing operations (deletion, insertion, and substitution) required
to transform one sentence into another, and is common for speech recognition or machine translation
evaluations. The computation of WER is divided the nunber of operations by the length of ground
truth.

Original Target Grammar Chain-Structured Target Grammar

rose ( x 1 ) AND help . theme ( x 3 , x 1 ) AND help . agent ( x 3 , x 6 ) AND dog ( x 6 ) HELP ( DOG, ROSE, NONE )
* captain ( x 1 ) ; eat . agent ( x 2 , x 1 ) EAT ( CAPTION, NONE, NONE )
* dog ( x 4 ) ; hope . agent ( x 1 , Liam ) AND hope . ccomp ( x 1 , x 5 ) AND prefer . agent ( x 5 , x 4 ) HOPE ( LIAM, NONE, NONE ) CCOMP PREFER ( DOG, NONE, NONE )

Table 6: Demonstration in An et al. (2023a) showing examples with the original grammar and the
new chain-structured grammar.

In formal language tasks, as mentioned in Appendix C.1, we change the original target grammar of
COGS to be chain-structured. In Table 6, we list some examples with the original target grammar
and the new chain-structured grammar.
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• First, to distinguish the input and output tokens, we capitalize all output tokens (e.g., from
“rose” to “ROSE”).

• Second, we replace the variables (e.g., “x 1”) in the original grammar with their correspond-
ing terminals (e.g., “ROSE”).

• Then, we group the terminals of AGENT (e.g., “DOG”), THEME (e.g., “ROSE”), and
RECIPIENT with their corresponding terminal of PREDICATE (e.g., “HELP”) and com-
bine this group of terminals in a function format, i.e., “PREDICATE ( AGENT, THEME,
RECIPIENT )”. If the predicate is not equipped with an agent, theme, or recipient in the
original grammar, the corresponding new non-terminals (i.e., AGENT, THEME, and RE-
CIPIENT, respectively) in the function format above will be filled with the terminal NONE
(e.g., “HELP ( DOG, ROSE, NONE )”). Such a function format is the minimum unit of a
CLAUSE.

• Finally, each CLAUSE is concatenated with another CLAUSE by the terminal CCOMP
(e.g., “HOPE ( LIAM, NONE, NONE ) CCOMP PREFER ( DOG, NONE, NONE )”).

Task In-context Example Testing Example

Passive to Active The book was squeezed . Sophia squeezed the donut .
SQUEEZE ( NONE , BOOK , NONE ) SQUEEZE ( SOPHIA , DONUT , NONE )

Object to Subject Henry liked a cockroach in a box . A cockroach inflated a boy .
LIKE ( HENRY , IN ( COCKROACH , BOX ) INFLATE ( COCKROACH , BOY , NONE )

Composite Task The book was squeezed .
SQUEEZE ( NONE , BOOK , NONE )

A cockroach squeezed the hedgehog .

Henry liked a cockroach in a box .
LIKE ( HENRY , IN ( COCKROACH , BOX )

SQUEEZE ( COCKROACH , hedgehog , NONE )

Table 7: Testing examples of Passive to Active and Object to Subject, red text shows the verbs
changing from passive to active voice in simple tasks, and blue text shows the nouns from objective
to subjective.

Below we provide a detailed explanation of our two composite tasks in translation tasks.

Passive to Active and Object to Subject Transformation. Based on the generalization tasks
identified in Kim & Linzen (2020)), we select two distinct challenges for our study as two simple
tasks. Passive to Active: Transitioning sentences from Passive to Active voice. Object to Subject:
Changing the focus from Object to Subject using common nouns. These tasks serve as the basis for
our composite task, where both transformations are applied simultaneously to the same sentence.
Examples illustrating this dual transformation can be found in Table 7.

Enhanced Phrase Subject with Longer Chain. COFE proposed two compositional generalization
tasks (Figure 2 in An et al. (2023b)): Phrase Recombination (PhraReco): integrate a prepositional
phrase (e.g., “A in B”) into a specific grammatical role (e.g., “subject”, “object”); Longer Chain
(LongChain): Extend the tail of the logical form in sentences. We consider these two generalization
tasks as two simple tasks, merging them to form a composite task. In particular, we substitute the
sentence subject in the Longer Chain task with a prepositional phrase from the Phrase Recombination
task, creating a more complex task structure. Detailed examples of this combined task can be found
in Table 8.
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Task Example

Phrase Recombination Input The baby on a tray in the house screamed .
Output SCREAM ( ON ( BABY , IN ( TRAY , HOUSE ) ) , NONE , NONE )

Longer Chain Input A girl valued that Samuel admired that a monkey liked that Luna liked
that Oliver respected that Savannah hoped that a penguin noticed that
Emma noticed that the lawyer noticed that a cake grew .

Output VALUE ( GIRL , NONE , NONE ) \
CCOMP ADMIRE ( SAMUEL , NONE , NONE ) \
CCOMP LIKE ( MONKEY , NONE , NONE ) \
CCOMP LIKE ( LUNA , NONE , NONE ) \
CCOMP RESPECT ( OLIVER , NONE , NONE ) \
CCOMP HOPE ( SAVANNAH , NONE , NONE ) \
CCOMP NOTICE ( PENGUIN , NONE , NONE ) \
CCOMP NOTICE ( EMMA , NONE , NONE ) \
CCOMP NOTICE ( LAWYER , NONE , NONE ) \
CCOMP GROW ( NONE , CAKE , NONE )

Composite Task Input The baby on a tray in the house valued that Samuel admired that a
monkey liked that Luna liked that Oliver respected that Savannah hoped
that a penguin noticed that Emma noticed that the lawyer noticed that a
cake grew .

Output VALUE ( ON ( BABY , IN ( TRAY , HOUSE ) , NONE , NONE ) \
CCOMP ADMIRE ( SAMUEL , NONE , NONE ) \
CCOMP LIKE ( MONKEY , NONE , NONE ) \
CCOMP LIKE ( LUNA , NONE , NONE ) \
CCOMP RESPECT ( OLIVER , NONE , NONE ) \
CCOMP HOPE ( SAVANNAH , NONE , NONE ) \
CCOMP NOTICE ( PENGUIN , NONE , NONE ) \
CCOMP NOTICE ( EMMA , NONE , NONE ) \
CCOMP NOTICE ( LAWYER , NONE , NONE ) \
CCOMP GROW ( NONE , CAKE , NONE )

Table 8: Testing examples of Phrase Recombination and Longer Chain, red text shows the phrase
serving as primitives in sentences in simple tasks, and blue text shows the logical structures as
sub-sentences in long sentences.

D THEORETICAL ANALYSIS SETUP: SEPARABLE IN EMBEDDING SPACE IN
THE LINEAR SETTING

Despite the complex nature of non-linearity in transformers in LLMs, we note that it is not necessarily
easy to understand the source of behavior for linear models either. Indeed, it is useful to appeal to the
simple case of linear models to see if there are parallel insights that can help us better understand the
phenomenon. In this section, we provide an analysis of a linear attention module. We aim to uncover
underlying principles that could shed light on the more intricate behaviors observed in LLMs.

In-context learning. We follow existing work (Akyürek et al., 2023; Garg et al., 2022; Mahankali
et al., 2023) with slight generalization to K simple tasks. A labeled example is denoted as (x, y)
where x ∈ Rd, y ∈ RK . In a simple task k ∈ [K], y has only one non-zero entry y(k). In a composite
task, y can have non-zero entries in dimensions corresponding to the combined simple tasks. The
model takes a prompt (x1, y1, . . . , xN , yN , xq) as input, which contains N in-context examples
(xi, yi)’s and a query xq, and aims to predict ŷq close to the true label yq for xq. The prompt is
usually stacked into an embedding matrix:

E :=

(
x1 x2 . . . xN xq

y1 y2 . . . yN 0

)
∈ Rde×(N+1)
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where de = d+K. In in-context learning, we first pretrain the model using training prompts and
then evaluate the model with evaluation prompts; see details below.

Pretraining procedure. We have B training data indexed by τ , each containing an input prompt
(xτ,1, yτ,1, . . . , xτ,N , yτ,N , xτ,q) and a corresponding true label yτ,q . Consider the following empiri-
cal loss:

L̂(θ) =

K∑
k=1

L̂k(θ) =
1

2B

B∑
τ=1

∥ŷτ,q − yτ,q∥2,

and the population loss (i.e., B → ∞):

L(θ) =
1

2
Exτ,1,yτ,1,··· ,xτ,N ,yτ,N ,xτ,q

[
(ŷτ,q − yτ,q)

2
]
.

Evaluation procedure. We now detail how to evaluate the model on downstream composite tasks.
We consider the downstream classification task to be a multi-class classification problem, where
the output label is a K-dimensional vector and each entry corresponds to a simple task of binary
classification. For any given simple task k, the binary classification label is given by sgn(y(k)q ), where
sgn is the sign function. Similarly, our prediction is ỹ(k)q = sgn

(
ŷ
(k)
q

)
. The accuracy of a composite

task is defined as

Accθ(x1, . . . , yN , xq) =
1

K

K∑
k=1

1

(
sgn
(
ŷ(k)q

)
= sgn(y(k)q )

)
.

When xq clear from context, we denote it as Accθ({xi, yi}Ni=1).

Data. Assume x
i.i.d.∼ N (0,Λ), where Λ ∈ Rd×d is the covariance matrix. Assume y = Wx, where

W ∈ RK×d. Then for any simple task k ∈ [K], its label is the k-th entry of y, which is y(k) =〈
w(k), x

〉
, where w(k) is the k-th row of W . We also assume each task weight w(k) i.i.d.∼ N (0, Id).

Linear self-attention networks. These networks are widely studied (Von Oswald et al., 2023;
Akyürek et al., 2023; Mahankali et al., 2023; Garg et al., 2022; Zhang et al., 2023b; Shi et al.,
2023b). Following them, we consider the following linear self-attention network with parameters
θ = (WPV ,WKQ):

fLSA,θ(E) = E +WPV E · E
⊤WKQE

N
.

The prediction of the model for xq is ŷq = [fLSA,θ(E)](d+1):(d+K),N+1, the bottom rightmost
sub-vector of fLSA,θ(E) with length K. Let

WPV =

(
WPV

11 WPV
12

(WPV
21 )⊤ WPV

22

)
∈ R(d+K)×(d+K)

WKQ =

(
WKQ

11 WKQ
12

(WKQ
21 )⊤ WKQ

22

)
∈ R(d+K)×(d+K),

where WPV
11 ∈ Rd×d, WPV

12 ,WPV
21 ∈ Rd×K , and WPV

22 ∈ RK×K ; similar for WKQ. Then the
prediction is

ŷq=
(
(WPV

21 )⊤ WPV
22

)(EE⊤

N

)(
WKQ

11

(WKQ
21 )⊤

)
xq. (1)

We observe only part of the parameters affect our prediction, so we treat the rest of them as zero in
our analysis.

E THEORY FOR CONFINED SUPPORT

E.1 NECESSITY OF THE CONFINED SUPPORTS.

In this section we demonstrate that when the confined support is violated, the simple tasks begin to
exhibit variations (large singal values) across the entire feature subspace of the input embedding.
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For instance, the composite task of Capitalization (A) & Swap (B), which involves mixed steps in
reasoning as shown in Figure 2, shows poor performance of LLMs given both simple tasks’ examples
as in-context demonstrations. Another example is Modular (G) & Two Sum Plus (H) as shown in
the last row of Table 2, where both simple tasks involve multisteps arithmetic operation. These two
tasks share the same support on embedding space, mixing their variations and leading to the model’s
inability to effectively address the composite tasks that integrate them. Below we will provide a
theorem establishing that if two tasks share overlapping support in the embedding space, there can be
a scenario where the model fails to exhibit compositional ability.

Corollary 1. If two tasks do not have confined support, there exists one setting which we have

Accθ(Sk) = Accθ(Sg) = Accθ(Sk∪g).

Corollary 1 demonstrates that a model’s failure to solve tasks with mixed steps reasoning, where
contains overlapping input embedding spaces, thereby diminishing the model’s ability to solve them
when presented together.

E.2 COMPOSITIONAL ABILITY WITH MODEL SCALE

We then show if simple tasks have confined support, the compositional ability of language models
will increase as the model scale increases. We demonstrate this by showing that the accuracy of the
model on each simple task improves with a larger model scale.

Note that the optimal solutions of parameter matrices as W ∗PV and W ∗KQ. We naturally consider
that the rank of the parameter matrices W ∗PV and W ∗KQ can be seen as a measure of the model’s
scale. A higher rank in these matrices implies that the model can process and store more information,
thereby enhancing its capability. We state the theorem below:

Theorem 2. Suppose a composite task satisfies confined support. Suppose we have
(x1, y1, . . . , xN , yN , xq) as an testing input prompt, and corresponding W where yi = Wxi. As
rank r decreases, EW,x1,··· ,xN

[Accθ] will have a smaller upper bound.

Theorem 2 shows the expected accuracy of a model on composite tasks is subjected to a lower
upper bound as the scale of the model diminishes. This conclusion explains why scaling-up helps
the performance when the model exhibits compositional ability for certain tasks (those we called
“separable composite task”). One common characteristic for these tasks is their inputs display confined
supports within the embeddings. This is evidenced by the model’s decent performance on tasks as
presented in Table 2 and Figure 4, where inputs are composed by parts.

E.3 CASE STUDY OF CONFINED SUPPORT

Our theoretical conclusion shows the model behaviors regarding the input embedding. It states the
model will have compositional ability if tasks are under confined support of input embedding. To
illustrate such theoretical concepts and connect them to empirical observations, we specialize the
general conclusion to settings that allow easy interpretation of disjoint. In this section, we provide
a toy linear case study on classification tasks showing how confined support on embedding can be
decomposed and composite tasks can be solved. We assume δ = ϵ = 0 in below simple example.

Consider there are only two simple tasks for some random objects with the color red and blue, and
the shape square and round: (1) binary classification based on the color: red and blue. (2) binary
classification based on shape: circle and square. However, during evaluation, the composite task is a
four-class classification, including red circle, red square, blue circle, and blue square.

Then we have two simple tasks K = 2. Consider the input embedding x = (a, b), where a ∈ R2, b ∈

R2, d = 4. Consider W =

(
1 −1 0 0
0 0 1 −1

)
and y = Wx.

Consider the inputs from simple and composite tasks as:

• Task 1: Red: x1 = (1, 0, 0, 0), y1 = (1, 0) and blue: x2 = (0, 1, 0, 0), y2 = (−1, 0).

• Task 2: Circle x3 = (0, 0, 1, 0) y3 = (0, 1) and square x4 = (0, 0, 0, 1) y4 = (0,−1).
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• Composed task: red circle x5 = (1, 0, 1, 0), y5 = (1, 1), red square x6 = (1, 0, 0, 1), y6 =
(1,−1), blue circle x7 = (0, 1, 1, 0) y7 = (−1, 1) and blue square x8 = (0, 1, 0, 1) y8 =
(−1,−1).

Suppose we have the optimal solution ŷq as in Equation (1). Given xq = (1, 0, 1, 0) as a testing input
of a red circle example. During the test, we have different predictions given different in-context
examples:

1. Given only examples from Task 1 (red and blue): [(x1, y1), (x2, y2)], we have ŷq = (1, 0)
can only classify the color as red.

2. Given only examples from Task 2 (square and circle): [(x4, y4), (x3, y3)], we have ŷq =
(0, 1) only classify the shape as a circle.

3. Given a mixture of examples from Task 1 and 2 (red and circle): [(x1, y1), (x3, y3)], we
have ŷq = (1, 1) can classify as red and circle.

We can see that, in the final setting the model shows compositional ability. This gives a concrete
example for the analysis in Theorem 1.

F DEFERRED PROOF

In this section, we provide a formal setting and proof.

F.1 PROOF OF COMPOSITIONAL ABILITY UNDER CONFINED SUPPORT

Here, we provide the proof of our main conclusion regarding Theorem 1 and Corollary 1.

Without abuse of notation, we denote U = WKQ
11 , u = WPV

22 .

We further add some mild assumptions.

1. The covariance matrix Λ of simple tasks will have the same trace, to prevent the scale effect
of different simple tasks.

2. The spectral norm of Λ is bounded both sides m ≤ ∥Λ∥ ≤ M .

We first introduce the lemma where the language model only pretrained on one simple task (K = 1).
The pretraining loss L(θ) can be re-factored and the the solution will have a closed form. We further

Lemma F.1 (Lemma 5.3 in Zhang et al. (2023b)). Let Γ :=
(
1 + 1

N

)
Λ+ 1

N tr(Λ)Id×d ∈ Rd×d. Let

ℓ̃(U, u) = tr

[
1

2
u2ΓΛUΛU⊤ − uΛ2U⊤

]
Then

min
θ

L(θ) = min
U,u

ℓ̃(U, u) + C = −1

2
tr[Λ2Γ−1] + C

where C is a constant independent with θ. For any global minimum of ℓ̃, we have uU = Γ−1.

As above lemma construction, we denote the optimal solution as W ∗PV and W ∗KQ. Taking one
solution as U = Γ−1, u = 1, we observe the minimizer of global training loss is of the form:

W ∗PV =

(
0d×d 0d
0⊤d 1

)
,W ∗KQ =

(
Γ−1 0d
0⊤d 0

)
. (2)

We then prove our main theory Theorem 1 in Section 3, we first re-state below:
Theorem 1. Consider distinct tasks k and g with corresponding examples Sk,Sg , If two tasks have
confined support, assume Assumption 1, with high probability, the model has the compositional
ability. Moreover,

Accθ(Sk) + Accθ(Sg) ≤ Accθ(Sk∪g).
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Proof of Theorem 1. WLOG, consider two simple tasks, K = 2. We have x = (a, b), where
a ∈ Rd1 , b ∈ Rd2 , d1 + d2 = d. Since x only has large values on certain dimensions, it’s equivalent
to just consider corresponding dimensions in w, i.e. for simple task 1, we have w(1) = (wa, wδb), for
simple task 2, we have w(2) = (wδa, wb).

We have x ∼ Λ, where:

Λ =

(
ΛKK ΛKG
ΛGK ΛGG

)
• Task 1: x = (a, 0d2)

⊤ + (0, bδ)
⊤, y = (w⊤

a a, 0) + (0, w⊤
δbbδ).

• Task 2: x = (0d1
, b)⊤ + (aδ, 0d2

)⊤, y = (0, w⊤
b b) + (w⊤

δaaδ), 0).

• Composed task: x = (a, b)⊤ + (aδ, bδ)
⊤, y = (w⊤

a a,w
⊤
b b) + (w⊤

δaaδ, w
⊤
δbbδ).

The form of E is,

E :=

(
a1 a2 . . . aN aq
b1 b2 . . . bN bq
y1 y2 . . . yN 0

)
+ Er ∈ R(d+2)×(N+1). (3)

where Er represents the values caused by residual dimensions whose entries bounded by δ.

Following Equation (4.3) in Zhang et al. (2023b), we have

EE⊤ =
1

N


∑N

i=1 aia
⊤
i + aqa

⊤
q

∑N
i=1 aib

⊤
i + aqb

⊤
q

∑N
i=1 aiy

⊤
i∑N

i=1 bia
⊤
i + bqa

⊤
q

∑N
i=1 bib

⊤
i + bqb

⊤
q

∑N
i=1 biy

⊤
i∑N

i=1 yia
⊤
i

∑N
i=1 yib

⊤
i

∑N
i=1 yiy

⊤
i

+ δ · o(EE⊤). (4)

The WPV can be presented in block matrix

WPV =

 WPV
11 WPV

12 WPV
13

(WPV
21 )⊤ WPV

22 WPV
23

(WPV
31 )⊤ (WPV

32 )⊤ WPV
33

 ∈ R(d1+d2+2)×(d1+d2+2) (5)

We can apply Lemma F.1 into optimization and recall

W ∗KQ =

(
Γ−1
all 0d
0⊤d 0

)
. (6)

where Γ−1
all ∈ R(d1+d2)×(d1+d2). Consider two tasks only related to disjoint dimension of x, we also

have σ(ΛKG) = σ(ΛGK) ≤ ϵ. Denote
Λ = Λ̃ + Λr

where

Λ̃ =

(
ΛKK

ΛGG

)
,Λr =

(
ΛKG

ΛGK

)
We apply Lemma F.1 Recall Γ :=

(
1 + 1

N

)
Λ + 1

N tr(Λ)Id×d ∈ Rd×d, we have:

Γ =

(
1 +

1

N

)
Λ̃ +

1

N
tr(Λ̃)Id×d +

(
1 +

1

N

)
Λr

= Γ̃ + Γr

where denote Γr =
(
1 + 1

N

)
Λr. We have:

Γ−1 = Γ̃−1 − Γ̃−1ΓrΓ̃
−1 +O(Γr)

We denote

Γ̃ =

(
Γ1 0
0 Γ2

)
,
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where Γ1 =
(
1 + 1

N

)
ΛKK + 1

N tr(Λ)Id1
∈ Rd1×d1 and Γ2 =

(
1 + 1

N

)
ΛGG + 1

N tr(Λ)Id2
∈

Rd2×d2 . Then we have;

Γ−1 =

(
Γ−1
1 0
0 Γ−1

2

)
+A

where σ(A) ≤ 2m2ϵ.

Then, It’s similar to apply Lemma F.1 for pretraining separately into dimensions corresponding to
different tasks. We solve similar to WKQ.

we have:

fθ(E) =

(
0d1×d1

0d1×d2
0d1×2

0d2×d1 0d2×d2 0d2×2

02×d1 02×d2 I2

)
EE⊤

 Γ−1
1 0d1×d2

0d1×2

0d2×d1 Γ−1
2 0d2×2

02×d1 02×d2 02×2

(aqbq
0

)
+ Ã (7)

ŷq =
1

N

(
N∑
i=1

yia
⊤
i ,

N∑
i=1

yib
⊤
i ,

N∑
i=1

yiy
⊤
i

)Γ−1
1 aq

Γ−1
2 bq
0

+ v (8)

=

(
1

N

N∑
i=1

yia
⊤
i

)
Γ−1
1 aq +

(
1

N

N∑
i=1

yib
⊤
i

)
Γ−1
2 bq + v (9)

=
1

N

(
a⊤q Γ

−1
1

∑N
i=1 y

(1)
i ai

b⊤q Γ
−1
2

∑N
i=1 y

(2)
i bi

)
+ v. (10)

where Ã representing residual matrix whose norm can be bounded by O(m2ϵδ) Recall x ∼ N(0,Λ),
then with high probability each entry in v will be bounded by Cm2δϵ for some constant C.

WLOG, we write residual vectors as 0 vector for simplicity of notation, and only consider residuals
for estimations ŷ. Note that composed example x = (a, b)⊤, y = (w⊤

a a,w
⊤
b b). For simplicity, we

write ŵa = 1
N Γ−1

1

∑N
i=1 y

(1)
i ai, similarly, ŵb =

1
N Γ−1

2

∑N
i=1 y

(2)
i bi.

Given in-context examples from one simple task only, consider we have N examples from simple
task 1, S1 =

[
{(ai, 0), yi}Ni=1

]
. We have ŵ(1) = (ŵa, 0d2

), ŵ(2) = (0d), and we also have ŷq =

(ŷ
(1)
q , 0)⊤, where ŷ

(1)
q = a⊤q Γ

−1
1

(
1
N

∑N
i=1 y

(1)
i ai

)
+ Cm2δϵ. We have Accθ(S1) =

1(ỹ(1)
q =y(1)

q )
2 .

Similarly, for N in-context examples only from task 2, we have ŵ(1) = (0d), ŵ
(2) = (0d1

, ŵb), ŷq =

(0, ŷ
(2)
q )⊤, where ŷ

(2)
q = a⊤q Γ

−1
2

(
1
N

∑N
i=1 y

(2)
i bi

)
+ Cm2δϵ. We have Accθ(S2) =

1(ỹ(2)
q =y(2)

q )
2 .

Then we have S1∪2 contains 2N in-context examples from both tasks, specifically, we have N from
task 1 and rest from task 2. We have ŵ(1) = (ŵa/2, 0d2

), ŵ(2) = (0d1
, ŵb/2), ŷq = (ŷ

(1)
q , ŷ

(2)
q )⊤.

Since y(k)τ,q = sgn(⟨wτ , xτ,q⟩), ỹ(k)τ,q = sgn
(
ŷ
(k)
τ,q

)
, following the proof of Lemma F.2, where the Accθ

only concerns the direction of ŵ and w, we have Accθ(S1∪2) =
1(ỹ(1)

q =y(1)
q )+1(ỹ(2)

q =y(2)
q )

2 .

Extending the above analysis into any of two simple tasks, when the composite task integrates them,
we have

Accθ(Sk) + Accθ(Sg) ≤ Accθ(Sk∪g). (11)

We then prove Corollary 1 in Appendix E.1, we first restate it below.

Corollary 1. If two tasks do not have confined support, there exists one setting which we have

Accθ(Sk) = Accθ(Sg) = Accθ(Sk∪g).
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Proof of Corollary 1. WLOG, consider two simple tasks, K = 2. We have x = (a, b), where
a ∈ Rd1 , b ∈ Rd2 , d1 + d2 = d. Consider the setting where w also have the same active dimensions,
i.e. for simple task 1, we have w(1) = (wa, 0), for simple task 2, we have w(2) = (0, wb).

We have x ∼ Λ. Consider tasks are overlapping on all dimensions, where:

• Task 1: x = (a(1), b(1))⊤, y = (w⊤
a a

(1), w⊤
b b

(1)).

• Task 2: x = (a(2), b(2))⊤, y = (w⊤
a a

(2), w⊤
b b

(2)).

• Composed task: x = (a, b)⊤, y = (w⊤
a a,w

⊤
b b).

Similarly we have:

ŷq =
1

N

(
N∑
i=1

yia
⊤
i ,

N∑
i=1

yib
⊤
i ,

N∑
i=1

yiy
⊤
i

)Γ−1
1 aq

Γ−1
2 bq
0

 (12)

=

(
1

N

N∑
i=1

yia
⊤
i

)
Γ−1
1 aq +

(
1

N

N∑
i=1

yib
⊤
i

)
Γ−1
2 bq (13)

=
1

N

(
a⊤q Γ

−1
1

∑N
i=1 y

(1)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(1)
i bi

a⊤q Γ
−1
1

∑N
i=1 y

(2)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(2)
i bi

)
. (14)

Note that composed example x = (a, b)⊤, y = (w⊤
1 a,w

⊤
2 b).

When in-context examples from a simple task, we have N examples from simple task 1, S1 =[{
(a

(1)
i , b

(1)
i ), yi

}N

i=1

]
, and ŷq has the same form as Equation (14). Similarly for task 2.

Suppose S1∪2 contains 2N examples from both tasks, where N from task 1 and rest from task 2. We
have

ŷq =
1

2N

(
a⊤q Γ

−1
1

∑N
i=1 y

(1)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(1)
i bi

a⊤q Γ
−1
1

∑N
i=1 y

(2)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(2)
i bi

)
. (15)

We finish the proof by checking that Equation (14) and Equation (15) share the same direction.

F.2 PROOF OF COMPOSITIONAL ABILITY WITH MODEL SCALE

Here, we provide the proof of our conclusions in Theorem 2 in Appendix E.2 regarding model
performance and model scale. We first introduce a lemma under the K = 1 setting.

F.2.1 ACCURACY UNDER K = 1

When K = 1, we can give an upper bound of the accuracy by Λ and Γ. Considering the optimal
solution in Equation (2), we have a lemma of accuracy below.
Lemma F.2. Consider K = 1 and xq ∼ N (0, Id). When N > C, where C is a constant, we have

Ewτ ,x1,··· ,xN
[Accθ] ≤ tr(Γ−1Λ).

Proof of Lemma F.2. Since K = 1, the problem reduces to the linear regression problem in ICL.
Consider the solution form in Lemma F.1, we have

ŷq = x⊤
q

1

N
Γ−1

N∑
i=1

⟨wτ , xi⟩xi

We re-write the form as ŷq = x⊤
q ŵ. Following Equation (4.3) in Zhang et al. (2023b), we have:
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ŵ =
1

N
Γ−1

N∑
i=1

⟨wτ , xi⟩xi.

Recall the definition of Accθ and y
(k)
τ,q = sgn(⟨wτ , xτ,q⟩), ỹ(k)τ,q = sgn

(
ŷ
(k)
τ,q

)
= sgn(⟨ŵ, xτ,q⟩), for

any α > 0, we have:
Ewτ ,x1,··· ,xN ,xq

[Accθ] = P (⟨xq, wτ ⟩ > 0, ⟨xq, αŵ⟩ > 0) + P (⟨xq, wτ ⟩ < 0, ⟨xi, αŵ⟩ < 0) .

Denote hyperplane orthogonal to w as Pw and similar for Pŵ. Recall that xq is independent of
other samples. We have the expectation conditioned on wτ , x1, · · · , xN is the probability xq falls
out of the angle between Pw and Pŵ. Denote the angle between w and ŵ as θ̃. As xq is uniform

along each direction (uniform distribution or isotropic Gaussian) then the probability is 1− |θ̃|
π given

wτ , x1, · · · , xN . Then Ewτ ,x1,··· ,xN
[Accθ] = Ewτ ,x1,··· ,xN

[
1− |θ̃|

π

]
. Note that

Ewτ ,x1,··· ,xN

[
cos(θ̃)

]
=

〈
wτ

∥wτ∥2
,

ŵ

∥ŵ∥2

〉
.

As, we can choose α, w.l.o.g, we take ∥wτ∥ = ∥ŵ∥ = 1, then we have

Ewτ ,x1,··· ,xN

[
cos(θ̃)

]
= Ewτ [Ex1,··· ,xN

[⟨wτ , ŵ⟩ |wτ ]] .

Given wτ , we have

E[ŵ|wτ ] =
1

N
Γ−1

N∑
i=1

E [⟨wτ , xi⟩xi|wτ ]

=
1

N
Γ−1

N∑
i=1

Λwτ

= Γ−1Λwτ .

Then, we have
Ewτ

[⟨ŵ, wτ ⟩] =
〈
Γ−1Λw⊤

τ , wτ

〉
= tr(Γ−1Λ).

Thus, we have

E cos(θ̃) = tr(Γ−1Λ) (16)

E [Accθ] = E

[
1− |θ̃|

π

]
. (17)

Note the fact that when θ ≤ π
6 , we have 1− |θ̃|

π ≤ cos(θ). Thus, as N > C where C is constant, we
have ŵ and wτ are closed and satisfy θ ≤ π

6 . Then we get the statement.

F.2.2 MODEL SCALE ON COMPOSITE TASKS

Here we present proof for model scale and performance on composite tasks. Recall we consider the
rank of W ∗PV and W ∗KQ as a measure of the model’s scale.

We first introduce a lemma about U as an optimal full-rank solution.

Lemma F.3 (Corollary A.2 in Zhang et al. (2023b)). The loss function ℓ̃ in Lemma F.1 satisfies

min
U∈Rd×d,u∈R

ℓ̃(U, u) = −1

2
tr[Λ2Γ−1], (18)

where U = cΓ−1, u = 1
c for any non-zero constant c are minimum solution. We also have

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F
. (19)
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As the scale of the model decreases, the rank of U also reduces, leading to an optimal reduced rank
solution Ũ . Our findings reveal that this reduced rank Ũ can be viewed as a truncated form of the
full-rank solution U . This implies that smaller-scale models are essentially truncated versions of
larger models, maintaining the core structure but with reduced complexity.

Recall Λ is the covariance matrix, we have eigendecomposition Λ = QDQ⊤, where Q is an
orthonormal matrix containing eigenvectors of Λ and D is a sorted diagonal matrix with non-negative
entries containing eigenvalues of Λ, denoting as D = diag([λ1, . . . , λd]), where λ1 ≥ · · · ≥ λd ≥ 0.
We introduce lemma below.
Lemma F.4 (Optimal rank-r solution). Recall the loss function ℓ̃ in (Lemma F.1). Let

U∗, u∗ = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u). (20)

Then U∗ = cQV ∗Q⊤, u = 1
c , where c is any non-zero constant and V ∗ = diag([v∗1 , . . . , v

∗
d]) is

satisfying for any i ≤ r, v∗i = N
(N+1)λi+tr(D) and for any i > r, v∗i = 0.

Then, we proof the Lemma F.4

Proof of Lemma F.4. Note that,

argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u) = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) (21)

= argmin
U∈Rd×d,rank(U)≤r,u∈R

(
ℓ̃(U, u)− min

U∈Rd×d,u∈R
ℓ̃(U, u)

)
. (22)

Thus, we may consider Equation (19) in Lemma F.3 only. On the other hand, we have

Γ =

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id×d (23)

=

(
1 +

1

N

)
QDQ⊤ +

1

N
tr(D)QId×dQ

⊤ (24)

=Q

((
1 +

1

N

)
D +

1

N
tr(D)Id×d

)
Q⊤. (25)

We denote D′ =
(
1 + 1

N

)
D + 1

N tr(D)Id×d. We can see Λ
1
2 = QD

1
2Q⊤, Γ

1
2 = QD′ 1

2Q⊤, and
Γ−1 = QD′−1

Q⊤. We denote V = uQ⊤UQ. Since Γ and Λ are commutable and the Frobenius
norm (F-norm) of a matrix does not change after multiplying it by an orthonormal matrix, we have
Equation (19) as

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F

(26)

=
1

2

∥∥∥Γ 1
2Λ

1
2

(
uU − Γ−1

)
Λ

1
2

∥∥∥2
F

(27)

=
1

2

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F
. (28)

As WKQ is a matrix whose rank is at most r, we have V is also at most rank r. Then, we denote

V ∗ = argminV ∈Rd×d,rank(V )≤r

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

. We can see that V ∗ is a diagonal

matrix. Denote D′ = diag([λ′
1, . . . , λ

′
d]) and V ∗ = diag([v∗1 , . . . , v

∗
d]). Then, we have∥∥∥D′ 1

2D
1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

(29)

=

d∑
i=1

(
λ′
i

1
2λi

(
v∗i − 1

λ′
i

))2

(30)

=

d∑
i=1

((
1 +

1

N

)
λi +

tr(D)

N

)
λ2
i

(
v∗i − 1(

1 + 1
N

)
λi +

tr(D)
N

)2

. (31)
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As V ∗ is the minimum rank r solution, we have that v∗i ≥ 0 for any i ∈ [d] and if v∗i > 0,

we have v∗i = 1

(1+ 1
N )λi+

tr(D)
N

. Denote g(x) =
((

1 + 1
N

)
x+ tr(D)

N

)
x2

(
1

(1+ 1
N )x+ tr(D)

N

)2

=

x2

(
1

(1+ 1
N )x+ tr(D)

N

)
. It is easy to see that g(x) is an increasing function on [0,∞). Now, we use

contradiction to show that V ∗ only has non-zero entries in the first r diagonal entries. Suppose i > r,
such that v∗i > 0, then we must have j ≤ r such that v∗j = 0 as V ∗ is a rank r solution. We find
that if we set v∗i = 0, v∗j = 1

(1+ 1
N )λj+

tr(D)
N

and all other values remain the same, Equation (31) will

strictly decrease as g(x) is an increasing function on [0,∞). Thus, here is a contradiction. We finish
the proof by V ∗ = uQ⊤U∗Q.

We then ready to prove the Theorem 2 in Appendix E.2, we first re-state it below.
Theorem 2. Suppose a composite task satisfies confined support. Suppose we have
(x1, y1, . . . , xN , yN , xq) as an testing input prompt, and corresponding W where yi = Wxi. As
rank r decreases, EW,x1,··· ,xN

[Accθ] will have a smaller upper bound.

Proof of Theorem 2. We first prove in a simple task setting (K = 1), that the accuracy will have such
a conclusion. By Lemma F.2, consider xq ∼ N (0, Id). When N > C, where C is a constant, we
have

Ewτ ,x1,··· ,xN
[Accθ] ≤ tr(Γ−1Λ).

Recall Lemma F.4. WLOG, we take c = 1. We have

tr(Γ−1Λ) = tr (QV ∗DQ)

=

r∑
i=1

N

N + 1 +
∑r

j=1
λj

λi

,

where second equation comes from Lemma F.4.

Under the confined support setting, the same conclusion holds since Equation (11) in the proof of
Theorem 1.
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