DO LARGE LANGUAGE MODELS HAVE COMPOSITIONAL ABILITY? AN INVESTIGATION INTO LIMITATIONS AND SCALABILITY

Zhuoyan Xu∗, Zhenmei Shi∗, Yingyu Liang
University of Wisconsin-Madison
{zxu444,zhmeishi,yliang}@cs.wisc.edu

ABSTRACT

Large language models (LLM) have emerged as a powerful tool exhibiting remarkable in-context learning (ICL) capabilities. In this study, we delve into the ICL capabilities of LLMs on composite tasks, with only simple tasks as in-context examples. We develop a test suite of composite tasks that include logical and linguistic challenges and perform empirical studies across different LLM families. We observe that models exhibit divergent behaviors: (1) For simpler composite tasks that contain different input segments, the models demonstrate decent compositional ability, while scaling up the model enhances this ability; (2) for more complex composite tasks that involving sequential reasoning, models typically underperform, and scaling up provide no improvements. We offer theoretical analysis in a simplified setting. We believe our work sheds new light on the capabilities of LLMs in solving composite tasks regarding the nature of the tasks and model scale. Our dataset and code is available at https://github.com/OliverXUZY/LLM_Compose.

1 INTRODUCTION

Large language models (LLM) have revolutionized general AI community. In this paper, we focus on the problem of how LLMs tackle composite tasks that incorporate multiple simple tasks. Specifically, we investigate whether a model trained/in-context learned on individual tasks can effectively integrate these skills to tackle combined challenges, which are intuitive and simple for humans. For instance, in Figure 1, if a human is given examples where words following an asterisk (*) will be capitalized and words surrounded by parenthesis will be permuted, one can also know words following an asterisk (*) surrounded by parenthesis will be capitalized and permuted simultaneously. This basic generalization seems trivial, yet we observe LLMs fail to generalize in this way.

Inspired by this observation, we further evaluate LLMs on a series of compositional tasks through ICL. The models were presented with examples of simple tasks and then asked to tackle composite tasks that they had not encountered during pretraining or in-context learning. We observe various behaviors: (1) for some composite tasks, the models showed a reasonable level of compositional skill, a capability that improved with larger model sizes; (2) for more complex composite tasks requiring sequential reasoning, the model struggle, and increasing the model size typically did not lead to better performance. Our key intuition is if the simple tasks forming a composite task can be easily separated into sub-tasks based on the inputs (e.g.,

*Equal contribution
Our goal is to understand the LLMs’ behavior on compositional reasoning tasks. We consider the standard in-context learning setting which concatenates $K = 10$ input-output examples and one testing input as the prompt for the LLM. We perform experiments across various LLM families, e.g., Llama families (Touvron et al., 2023) and GPTs (Radford et al., 2019; Black et al., 2021), see model details in Appendix B.2.

Warm-up setting. As a warm-up, we evaluate the Capitalization & Swap tasks (Figure 1) on different models. To make thorough evaluations, we consider four settings: (1) capital: only on the capitalization task; (2) swap: only on swap; (3) composite: in-context examples are from simple tasks while the test input is about the composite task; (4) composite in-context: in-context examples and the test input are all drawn from the composite task. The composite in-context setting reduces the evaluation to another simple task, not requiring the model to compose the simple task ability but directly learning from the in-context examples. It serves as the gold standard performance for the composite task. See Table 3 in Appendix B.1 for illustration.

Results. In Figure 2, somewhat surprisingly, we observe that LLMs cannot solve the composite task although they perform well on simple tasks. There is a significant gap between the performance in these settings. Models in Llama families can solve capital and swap with nearly \(\sim 90\% \) accuracy, but only achieve around 20% or below on the composite task. We also observe that composite in-context examples will significantly improve the performance: The accuracy of Llama families can go up to match the simple task accuracy. These observations show that the models fail to compose the knowledge from the simple tasks, although they do have the representation power to solve the composite task (which can only be exploited when provided composite in-context examples and scaling up does not help).

The experiment on Capitalization & Swap shows failure cases while existing studies reported some successful composite abilities [Levy et al., 2022; An et al. 2023b].

Logical tasks suite. We enhance our suite of logical tasks by introducing a series of straightforward tasks that process either simple words or numerical values, with the output being a specific functional transformation of the input. These tasks are detailed in Table 1.

Composite tasks are created by merging two simple tasks. We conceptualize simple tasks as functions, \(f(\cdot) \) and \(g(\cdot) \) that map inputs to their respective outputs. We identify two distinct approaches to creating composite tasks: (1) **Compose by parts:** For inputs \(x, y \), the result is \(f(x), g(y) \). (2)
Compose by steps: Given input \(x \), the result is \(f(g(x)) \), such as \((A) + (B)\) in Figure 1. We use customized symbol as function mapping for composing two simple tasks. We refer detailed illustration of how we compose tasks together and compose by parts or steps to Appendix B.1.

Results. We provide our main results on composite tasks in Table 1. For the compose by parts tasks \((A) + (F)\) and \((D) + (F)\), the models show strong compositional ability: the composite accuracy is high, improves with increasing scale, and eventually reaches similar performance as the “gold standard” composite in-context setting, as highlighted in red numbers. We refer these tasks as “separable composite tasks” which are relatively easy for model to solve. On the compose by steps tasks, we observe the models have various performance. For composite tasks with sequential reasoning steps, the models exhibit various performance. For tasks involving capitalization \((A)\) or swap \((B)\), the model has poor performance in small scale (7b or lower) but have increased performance in increased model scale, such as 44% accuracy in \((A) + (C)\) and 66% accuracy in \((B) + (D)\). On composite steps tasks involving arithmetic calculation of numerical numbers \((G) + (H)\) the model has the worst performance and increasing model scale does not provide benefits. A key observation is that compose by part tasks are separable compositions, where the input can be broken down into two distinct segments. Such tasks are typically straightforward for a model to address. In all experiments, providing composed examples as in-context demonstration will help the model understand the composite tasks and solve them well, such as \textbf{Com. in-context} rows in all task combinations. We conclude models fail to compose mechanisms of two simple tasks together, however, given composite examples, models can learn the composed mechanism efficiently. More experimental details and results can be found in Appendix B.1.

Due to page limit, we refer readers for Composite Linguistic Translation Task to Appendix C.

Results Table

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Task</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words</td>
<td>(A) Capitalization</td>
<td>apple</td>
<td>APPLE</td>
</tr>
<tr>
<td></td>
<td>(B) Swap</td>
<td>bell ford</td>
<td>ford bell</td>
</tr>
<tr>
<td></td>
<td>(C) Two Sum</td>
<td>twenty @ eleven</td>
<td>thirty-one</td>
</tr>
<tr>
<td></td>
<td>(D) Past Tense</td>
<td>pay</td>
<td>paid</td>
</tr>
<tr>
<td></td>
<td>(E) Opposite</td>
<td>Above</td>
<td>Below</td>
</tr>
<tr>
<td>Numerical</td>
<td>(F) Plus One</td>
<td>435</td>
<td>436</td>
</tr>
<tr>
<td></td>
<td>(G) Modular</td>
<td>15 @ 6</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(H) Two Sam Plus One</td>
<td>12 @ 5</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 1: This table contains a collection of simple logical tasks. The \textit{Words} category encompasses tasks that modify words at the character or structural level. In contrast, the \textit{Numerical} category is devoted to tasks that involve arithmetic computations performed on numbers.

Discussion. We observe the capability of models to handle composite tasks is significantly influenced by the task characteristics. Especially, if composite tasks contain simple tasks related to different parts or perspectives of the input, the model will tackle the composite tasks well. One natural explanation is the model processes the input in some hidden embedding space, and decomposes the embedding of the input into different “regions”. Here each region is dedicated to specific types of information and thus related to different tasks — such as word-level modifications, arithmetic calculations, mapping mechanisms, semantic categorization, linguistic acceptability, or sentiment analysis. Then if the two simple tasks correspond to two different task types where they relates to separate regions of the embedding, the model can effectively manage the composite task by addressing each simple task operation within its corresponding region. As the model scale increases, its ability to handle individual tasks improves, leading to enhanced performance on composite tasks in such scenarios. For separable composite tasks, the inputs are divided into distinct regions and also reflect in embeddings, which results in high performance from the model. However, when the simple tasks are not separable (e.g., requiring sequential steps in reasoning), their information mixes together, complicating the model’s ability to discern and process them distinctly. Such overlap often leads to the model’s inability to solve the composite task. Such intuition is formalized in the following sections in a stylized theoretical setting.

3 Theoretical Analysis

Despite the complex nature of non-linearity in transformers in LLMs, we note it is useful to appeal to the simple case of linear models to see if there are parallel insights that can help us better understand the phenomenon. In this section, we provide an analysis of a linear attention module. We aim to provide rigorous proof about why LLMs can achieves compositional ability in some simple cases that could shed light on the more intricate behaviors observed in LLMs.

Due to page limit, we refer readers for Composite Linguistic Translation Task to Appendix C.

Discussion. We observe the capability of models to handle composite tasks is significantly influenced by the task characteristics. Especially, if composite tasks contain simple tasks related to different parts or perspectives of the input, the model will tackle the composite tasks well. One natural explanation is the model processes the input in some hidden embedding space, and decomposes the embedding of the input into different “regions”. Here each region is dedicated to specific types of information and thus related to different tasks — such as word-level modifications, arithmetic calculations, mapping mechanisms, semantic categorization, linguistic acceptability, or sentiment analysis. Then if the two simple tasks correspond to two different task types where they relates to separate regions of the embedding, the model can effectively manage the composite task by addressing each simple task operation within its corresponding region. As the model scale increases, its ability to handle individual tasks improves, leading to enhanced performance on composite tasks in such scenarios. For separable composite tasks, the inputs are divided into distinct regions and also reflect in embeddings, which results in high performance from the model. However, when the simple tasks are not separable (e.g., requiring sequential steps in reasoning), their information mixes together, complicating the model’s ability to discern and process them distinctly. Such overlap often leads to the model’s inability to solve the composite task. Such intuition is formalized in the following sections in a stylized theoretical setting.
We now detail how to evaluate the model on downstream disjoint subspaces of simple tasks. Recall that the observation in empirical results through the lens of confined supports in input embeddings can have non-zero entries in dimensions corresponding to the combined simple tasks. Following the previous work (Zhang et al., 2023b; Garg et al., 2022; Mahankali et al., 2023), we formulate pretraining on a linear attention as a linear regression problem.

Theoretical Analysis Results

In this section, we present our theoretical results. We explain the observation in empirical results through the lens of confined supports in input embeddings corresponding to separate subspaces (modeling separable composition). We set up our framework as *Disjoint subspaces of simple tasks*. Recall that x lies in a d-dimensional space where each dimension

<table>
<thead>
<tr>
<th>Pretrained Tasks</th>
<th>Mistral 7B 8x7B</th>
<th>Llama2 7B 13B 70B</th>
<th>Llama1 7B 13B 30B 65B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) + (B)</td>
<td>Capitalization 99 98 100 100</td>
<td>100 100</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td></td>
<td>swap 100 100</td>
<td>100 100 100 100</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td></td>
<td>Compose 16 42</td>
<td>7 1 37</td>
<td>0 30 16 13</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 95 96</td>
<td>96 98 100</td>
<td>66 97 96 98</td>
</tr>
<tr>
<td>(A) + (C)</td>
<td>twoSum 71 100</td>
<td>72 93 99</td>
<td>62 56 98 99</td>
</tr>
<tr>
<td></td>
<td>Capitalization 98 99</td>
<td>100 95 99</td>
<td>97 98 99 99</td>
</tr>
<tr>
<td></td>
<td>Compose 8 19</td>
<td>3 23 44</td>
<td>3 3 31 2</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 31 65</td>
<td>52 77 100</td>
<td>9 22 93 69</td>
</tr>
<tr>
<td>(A) + (F)</td>
<td>Capitalization 97 99</td>
<td>98 77 99</td>
<td>84 96 99 98</td>
</tr>
<tr>
<td></td>
<td>PlusOne 100 99</td>
<td>100 100 100</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td></td>
<td>Compose 92 96</td>
<td>74 69 97</td>
<td>57 60 69 99</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 99 98</td>
<td>99 100 100</td>
<td>99 99 100 100</td>
</tr>
<tr>
<td>(B) + (D)</td>
<td>Swap 100 100</td>
<td>100 100 100</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td></td>
<td>Past Tense 97 99</td>
<td>97 100 99</td>
<td>97 98 100 100</td>
</tr>
<tr>
<td></td>
<td>Compose 6 12</td>
<td>0 1 62</td>
<td>57 34 46 5</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 92 98</td>
<td>86 95 98</td>
<td>86 95 89 94</td>
</tr>
<tr>
<td>(B) + (E)</td>
<td>Swap 100 100</td>
<td>100 100 100</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td></td>
<td>Opposite 61 62</td>
<td>58 68 65</td>
<td>51 58 64 63</td>
</tr>
<tr>
<td></td>
<td>Compose 0 0</td>
<td>0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 35 32</td>
<td>12 37 37</td>
<td>0 9 7 9</td>
</tr>
<tr>
<td>(D) + (F)</td>
<td>Past Tense 100 100</td>
<td>98 100 100</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td></td>
<td>Plus One 100 100</td>
<td>100 100 100</td>
<td>99 100 100 100</td>
</tr>
<tr>
<td></td>
<td>Compose 71 46</td>
<td>32 80 80</td>
<td>40 44 14 74</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 98 100</td>
<td>98 99 100</td>
<td>95 96 98 100</td>
</tr>
<tr>
<td>(G) + (H)</td>
<td>Modular 25 22</td>
<td>5 23 43</td>
<td>9 16 29 29</td>
</tr>
<tr>
<td></td>
<td>twoSumPlus 38 42</td>
<td>3 77 90</td>
<td>14 10 40 87</td>
</tr>
<tr>
<td></td>
<td>Compose 4 5</td>
<td>0 1 1</td>
<td>0 0 0 5</td>
</tr>
<tr>
<td></td>
<td>Com. in-context 4 8</td>
<td>13 13 12</td>
<td>11 13 7 12</td>
</tr>
</tbody>
</table>

Table 2: Results evaluating composite tasks on various models. The accuracy are showed in %.

Theoretical setup. We follow existing work (Akyürek et al., 2023; Garg et al., 2022; Mahankali et al., 2023) with slight generalization to K simple tasks. A labeled example is denoted as (x, y) where $x \in \mathbb{R}^d, y \in \mathbb{R}^K$. In a simple task $k \in [K]$, y only has one non-zero entry $y^{(k)}$. In a composite task, y can have non-zero entries in dimensions corresponding to the combined simple tasks. Following the previous work (Zhang et al., 2023b; Garg et al., 2022; Mahankali et al., 2023), we formulate pretraining on a linear attention as a linear regression problem.

We now detail how to evaluate the model on downstream composite tasks. We consider the downstream classification task to be a multi-class classification problem, where the output label is a K-dimensional vector and each entry corresponds to a simple task of binary classification. For any given simple task k, the binary classification label is given by $\text{sgn}(b_q^{(k)})$, where sgn is the sign function. Similarly, our prediction is $\mathbf{\hat{y}}_q = \text{sgn}(\mathbf{\hat{y}}_q^{(k)})$. The accuracy of a composite task is defined as $\text{Acc}_\theta(x_1, \ldots, y_N, x_q) = \frac{1}{N} \sum_{k=1}^{K} \mathbb{1}(\text{sgn}(\mathbf{\hat{y}}_q^{(k)}) = \text{sgn}(y^{(k)}))$. When x_q clear from context, we denote it as $\text{Acc}_\theta(x_1, \ldots, y_N, x_q) = \frac{1}{N} \sum_{k=1}^{K} \mathbb{1}(\text{sgn}(\mathbf{\hat{y}}_q^{(k)}) = \text{sgn}(y^{(k)}))$. We refer readers see detailed setup in Appendix D.

Theoretical Analysis Results. In this section, we present our theoretical results. We explain the observation in empirical results through the lens of confined supports in input embeddings corresponding to separate subspaces (modeling separable composition). We set up our framework as *Disjoint subspaces of simple tasks*. Recall that x lies in a d-dimensional space where each dimension...
We provide additional theoretical results in Appendix E. We further provide Corollary 1 in Appendix E.1 illustrating the necessity of the confined supports. This illustrates the model’s approach to segregate and address these tasks in their respective subspaces. We now introduce a mild assumption regarding the distribution of input embeddings.

Assumption 1. Given two disjoint subspaces \mathbb{K} and \mathbb{G}, the covariance matrix Λ of the input distribution can be segmented into block matrices $\Lambda_{\mathbb{K},\mathbb{K}}, \Lambda_{\mathbb{K},\mathbb{G}}, \Lambda_{\mathbb{G},\mathbb{K}},$ and $\Lambda_{\mathbb{G},\mathbb{G}}$, then we assume $\sigma_{\text{max}}(\Lambda_{\mathbb{G},\mathbb{K}}) = \sigma_{\text{max}}(\Lambda_{\mathbb{K},\mathbb{K}}) \leq \epsilon$ for constant ϵ, where $\sigma(\cdot)$ denote the singular value of matrix.

Assumption 1 implies that for two separate simple tasks, each associated with its respective feature subspace \mathbb{K} and \mathbb{G}, the covariance between these two sets of features is zero. This is a natural assumption. Suppose we have input embeddings from two distinct tasks, such as sentiment analysis and arithmetic computations. This assumption suggests that the feature subspaces of the input embeddings for these tasks are independent.

Consider a composite task \mathcal{T} that combines two simple tasks k and g. Let S_k denote N labeled examples from task k, and similarly for S_g. Given an x_g from composite task \mathcal{T}, we then define the model has compositional ability on \mathcal{T} using $S_{k \cup g}$ if the model has higher accuracy using these in-context examples, i.e. $\max(Acc_{\theta}(S_k), Acc_{\theta}(S_g)) \leq Acc_{\theta}(S_k \cup S_g)$. With the above definition, we will then explain the observed model behavior in empirical results, in particular, when distinct simple tasks have confined supports in input embeddings modeling the separable composition. We now define confined support, which means the input embedding of each task only has support within each task’s feature subspace.

Definition 1 (Confined Support). We say a task has confined support if the input x only has larger singular values within its active index set. The norm of entries outside active index set be bounded by a small constant δ.

This definition shows that each simple task only has large values within its corresponding subsets of dimensions of input embeddings. For example, let \mathbb{K} represent the first d_1 dimensions of an input vector x, and \mathbb{G} account for the remaining d_2 dimensions, with the total dimension being $d = d_1 + d_2$. The examples from task k will have input as $x = (x_1, x_{d_1})$ where $x_1 \in \mathbb{R}^{d_1}, x_{d_1} \in \mathbb{R}^{d_2}, \|x_{d_1}\| \leq \delta$. Similarly, the examples from task g will have inputs as $x = (x_{d_1}, x_{d_2})$.

We now present our results of the compositional ability under a confined support of x.

Theorem 1. Consider distinct tasks k and g with corresponding examples S_k, S_g. If two tasks have confined support, assume Assumption 1 with high probability, the model has the compositional ability. Moreover,

$$Acc_{\theta}(S_k) + Acc_{\theta}(S_g) \leq Acc_{\theta}(S_{k \cup g}).$$

Theorem 1 shows the compositional ability of LLMs to handle composite tasks that integrate two simple tasks, which have confined support in their own feature subspace.

An illustrative case involves the tasks of Capitalization (A) & Plus One (F) and Past Tense (D) & Plus One (F), as depicted in Table 2. These two simple tasks involve word-level modification and arithmetic operation on separate parts of the input. Due to this separation, each task correlates with a specific segment of the input embedding. Therefore, it is observed that these tasks possess confined supports.

We provide additional theoretical results in Appendix E. We further provide Corollary 1 in Appendix E.1 illustrating the necessity of the confined supports, demonstrating that a model’s failure to solve tasks with mixed steps reasoning, where contains overlapping input embedding spaces, thereby diminishing the model’s ability to solve them when presented together. We also show the scaling effect: if simple tasks have confined support, the compositional ability of language models will increase as the model scale increases in Theorem 2 in Appendix E.2. We demonstrate this by showing that the accuracy of the model on each simple task improves with a larger model scale. We finally provide a case study on confined support for illustration in Appendix E.3.
ACKNOWLEDGMENTS

The work is partially supported by Air Force Grant FA9550-18-1-0166, the National Science Foundation (NSF) Grants 2008559-IIS, CCF-2046710, and 2023239-DMS.

REFERENCES

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak, and Owain Evans. The reversal curse: Llms trained on” a is b” fail to learn” b is a”. arXiv preprint arXiv:2309.12288, 2023.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. Technical report, Zenodo, March 2021. If you use this software, please cite it using these metadata.

Appendix

In this appendix, we provide full related work in Appendix B. We provide full logical tasks settings and results in Appendix B and along with full settings and results for translation tasks in Appendix C. We provide full theoretical set up in Appendix D and full theoretical results in Appendix E. We provide full proof in Appendix F.

A RELATED WORK

Large language model. LLMs are often Transformer-based (Vaswani et al., 2017) equipped with enormous size of parameters and pretrained on vast training data. Typical LLMs includes BERT (Devlin et al., 2019), PaLM (Chowdhery et al., 2022), LLaMA (Touvron et al., 2023), ChatGPT (OpenAI, 2022), GPT4 (OpenAI, 2023). Pretraining methods include masked language modeling (Devlin et al., 2019; Liu et al., 2019), contrastive learning (Gao et al., 2021; Shi et al., 2023a) and auto-regressive pretraining (Radford et al., 2018, 2019). Adapting LLMs to various downstream tasks has received significant attention, e.g., adaptor (Hu et al., 2022, 2023; Zhang et al., 2023a; Shi et al., 2024), prompt tuning (Lester et al., 2021; Li & Liang, 2021; Wei et al., 2023a), multitask finetuning (Sanh et al., 2023; Wang et al., 2023b; Xu et al., 2023, 2024), instruction tuning (Chung et al., 2022), Mishra et al. (2022), in-context learning (Min et al., 2022b; Dong et al., 2022; Yao et al., 2023), reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022).

In-context learning. LLM exhibits a remarkable ability for in-context learning (ICL) (Brown et al., 2020), particularly for generative models. Given a sequence of labeled examples and a testing example (combined as a prompt), the model can construct new predictors for testing examples without further parameter updates. Several empirical works are investigating the behavior of ICLs. Zhao et al. (2021); Holtzman et al. (2021); Liu et al. (2022) formulate the problems and report the sensitivity. Rubin et al. (2022); Liu et al. (2022); Hongjin et al. (2023); Wang et al. (2023a) provide methods for better choosing in-context learning examples. Chen et al. (2022); Min et al. (2022a) use meta training with an explicit in-context learning object to boost performance. Theoretically, Xie et al. (2022); Garg et al. (2022) provide a framework to explain the in-context learning working mechanism. Von Oswald et al. (2023); Akyurek et al. (2023); Mahankali et al. (2023); Zhang et al. (2023b), investigating with linear models, show how transformers can represent gradient descent and conduct linear regression. Based on these works, we provide an analysis showing how LLM can exhibit compositional ability in ICL.

Emergence of compositional ability. Scaling law was first proposed by Kaplan et al. (2020) and then followed up by Hoffmann et al. (2022), emphasizing both on scale of models and training data. Sometimes, increasing scale can lead to new behaviors of LLMs, termed emergent abilities (Wei et al., 2022; Arora & Goyal, 2023; Gu et al., 2024). Recent works show LLMs with larger scales have distinct behavior compared to smaller language models (Wei et al., 2023b; Shi et al., 2023b). These behaviors can have positive or negative effects on performance. Solving complex tasks and reasoning is an active problem in the AI community (Huang & Chang, 2022). There is a line of empirical works investigating the compositional ability in linguistic fashion (Kim & Linzen, 2020; Levy et al., 2022; An et al., 2023a,b). LLMs are capable of learning abstract reasoning (e.g. grammar) to perform new tasks when finetuned or given suitable in-context examples. In our work, we include linguistic experiments as part of our testing suite, illustrating LLMs’ compositional ability. Ye et al. (2023); Berglund et al. (2023); Dziri et al. (2023) show LLMs will have difficulties solving tasks that require reasoning. Berglund et al. (2023) studies that LLMs trained on “A is B” fail to learn “B is A”. In our work, we conduct similar experiments showing LLMs will fail on composite if different steps of logical rules are mixed.

B LOGICAL TASKS

We provide full explanation of logical composite tasks below. We first show compose in-context example in Table 3.
Table 3: Examples of two settings. Composite: in-context examples are about simple tasks while the test input is about the composite task. Composite in-context: both in-context examples and the test input are about the composite task.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Composite</th>
<th>Composite in-context</th>
</tr>
</thead>
<tbody>
<tr>
<td>input: * apple</td>
<td>output: APPLE</td>
<td>input: (* good * zebra)</td>
</tr>
<tr>
<td>output: APPLET</td>
<td></td>
<td>output: ZEBRA GOOD</td>
</tr>
<tr>
<td>input: (farm frog)</td>
<td>output: frog farm</td>
<td>input: (* model * math)</td>
</tr>
<tr>
<td>output: frog farm</td>
<td></td>
<td>output: MATH MODEL</td>
</tr>
<tr>
<td>input: * (bell ford)</td>
<td>output: * bicycle * add</td>
<td></td>
</tr>
</tbody>
</table>

Truth: output: FORD BELL output: ADD BICYCLE

Table 4: Examples of the two logical composite tasks. Full examples can be found in Appendix B.

B.1 ILLUSTRATION OF LOGICAL TASKS

Composite tasks are created by merging two simple tasks. We conceptualize simple tasks as functions, $f(\cdot)$ and $g(\cdot)$ that map inputs to their respective outputs. We identify two distinct approaches to creating composite tasks: (1) Compose by parts: For inputs x, y, the result is $f(x), g(y)$. One example is (A) + (F) in Table 4. If numerical number is given, it will increment by one; if word is given, the letters will be capitalize; if both are given, perform both operations. (2) Compose by steps: Given input x, the result is $f(g(x))$. One example is (A) + (B) in Table 4. We use customized symbol as function mapping for composing two simple tasks. Examples can be found in Figure 1 and Table 4. Following existing work, we use exact match accuracy for evaluating the performance, since the output for these tasks is usually simple and short.

B.2 FULL LOGICAL TASKS

We provide full explanation of logical composite tasks below. Examples can be seen in Table 5.

- (A) + (B) Capitalization & Swap. as in Figure 1
- (A) + (C) Capitalization & Two Sum. Given words of numerical numbers, * represents the operation of capitalizing, @ represents summing the two numbers.
- (G) + (H) Modular & Two Sum Plus. Given numerical numbers, @ represents the operation of taking modular, # represents to sum the two numbers and then plus one.
- (A) + (F) Capitalization & Plus One. If numerical numbers are given, plus one; if words are given, capitalize the word; if both are given, perform both operations.

Among these, (A) + (F) performs the two operations on separable parts of the test inputs (i.e., separable composite task).

We design our logical tasks following the idea of math reasoning and logical rules. The details are shown in Table 5. Our numerical numbers in Table 4 are uniformly randomly chosen from 1 to 1000. The words of numbers in task (C) are uniformly randomly chosen from one to one hundred. The words representing objects in Table 4 are uniformly randomly chosen from class names of ImageNet, after dividing the phrase (if any) into words. We randomly choose 100 examples in composite testing data in our experiments and replicate the experiments in each setting three times. We fixed the number of in-context examples as $K = 10$ as demonstrations.

We use exact match accuracy for evaluating the performance between sequence output. The calculation of exact match accuracy divided the number of matched words by the length of ground truth.
Table 5: Examples of the four logical composite tasks. Note that in (G) + (H), the output of the composite task can be either 4 or 11 depending on the order of operations and we denote both as correct.

For Llama models, we use official Llama1 and Llama2 models from Meta (Touvron et al., 2023), we use openLLama3b-v2 from open OpenLlama (Geng & Liu, 2023). For GPT models, we use GPT2-large from openAI (Radford et al., 2019), we use GPT-neo models for GPT models in other scales from EleutherAI (Black et al., 2021).

B.3 RESULTS

We show visualization of some logical tasks accuracy along the increasing to model scale, complement to Table 2.

C COMPOSITE LINGUISTIC TRANSLATION

C.1 MAIN RESULTS

Inspired by previous works in compositional generalization (An et al., 2023b; Levy et al., 2022; An et al., 2023a; Kim & Linzen, 2020), here we design our composite tasks by formal language translation tasks.

Our translation tasks are mainly derived from semantic parsing task COGS (Kim & Linzen, 2020) and compositional generalization task COFE An et al. (2023b). These two datasets contain input as natural English sentences and output as a chain-ruled sentence following a customized grammar (see details in Appendix C.2). We construct two composite tasks centered on compositional generalization, utilizing the training datasets to create in-context examples. See details in Appendix C.2.

We use the word error rate (WER) as the metric. It measures the minimum number of editing operations (deletion, insertion, and substitution) required to transform one sentence into another, and is common for speech recognition or machine translation evaluations.

(T1) Phrase Recombination with Longer Chain. COFE proposed two compositional generalization tasks (Figure 2 in An et al. (2023b)). Phrase Recombination: integrate a prepositional phrase (e.g., “A in B”) into a specific grammatical role (e.g., “subject”, “object”); Longer Chain: Extend the tail of the logical form in sentences. We consider them as simple tasks, and merge them to form a composite task: substitute the sentence subject in the Longer Chain task with a prepositional phrase from the Phrase Recombination task. Details and examples are in Table 8 of Appendix C.2.

(T2) Passive to Active and Object to Subject Transformation. We consider two tasks from Kim & Linzen (2020). Passive to Active: Transitioning sentences from passive to active voice. Object to Subject: Changing the same object (a common noun) from objective to subjective. They are merged to form our composite task, where both transformations are applied simultaneously to the input sentence. Details and examples are in Table 7 of Appendix C.2.

Results. Figure 4 shows that LLMs are capable of handling these composite tasks. The WER on the composite task is a decent and improves with increasing model scale, particularly in Llama2 models. These confirm the composite abilities of the models in these tasks.

Here we notice both composite tasks are separable composite tasks: if we break down these sentences into sub-sentences and phrases, the simple task operations occur in different parts or perspectives of
the input sentences. So the results here provide further support for composite abilities on separable composite tasks where simple tasks forming the composite task are related to inputs in different parts or perspectives.

Discussion. We observe the capability of models to handle composite tasks is significantly influenced by the task characteristics. Especially, if composite tasks contain simple tasks related to different parts or perspectives of the input, the model will tackle the composite tasks well.

One natural explanation is the model processes the input in some hidden embedding space, and decomposes the embedding of the input into different “regions”. Here each region is dedicated to specific types of information and thus related to different tasks — such as word-level modifications, arithmetic calculations, mapping mechanisms, semantic categorization, linguistic acceptability, or sentiment analysis. Then if the two simple tasks correspond to two different task types where they relate to separate regions of the embedding, the model can effectively manage the composite task by addressing each simple task operation within its corresponding region. As the model scale increases, its ability to handle individual tasks improves, leading to enhanced performance on composite tasks in such scenarios. For separable composite tasks, the inputs are divided into distinct regions and also reflect in embeddings, which results in high performance from the model. However, when the simple tasks are not separable (e.g., requiring sequential steps in reasoning), their information mixes together, complicating the model’s ability to discern and process them distinctly. Such overlap often leads
to the model’s inability to solve the composite task. Such intuition is formalized in the following sections in a stylized theoretical setting.

C.2 Full Details

Our translation tasks mainly follow the compositional generalization tasks in COFE (An et al., 2023b). The details can be found in Section 4 in An et al. (2023a). We directly take the source grammar G_s in COGS which mimics the English natural language grammar, and reconstruct the target grammar G_t in COGS to be chain-structured.

We follow the Primitive coverage principle proposed by An et al. (2023b) that primitives contained in each test sample should be fully covered by in-context examples. Here, primitives refer to the basic, indivisible elements of expressions, including subjects, objects, and verbs. Note that multiple sets of in-context examples can meet these criteria for each test case. Across all experimental conditions, we maintain a consistent number of test instances at 800.

We use the word error rate (WER) as the metric. It measures the differences between 2 sentences. It measures the minimum number of editing operations (deletion, insertion, and substitution) required to transform one sentence into another, and is common for speech recognition or machine translation evaluations. The computation of WER is divided the number of operations by the length of ground truth.

<table>
<thead>
<tr>
<th>Original Target Grammar</th>
<th>Chain-Structured Target Grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>rose (x₁) AND help . theme (x₂ , x₃) AND help . agent (x₁ , x₃) AND dog (x₆) HELP (DOG, ROSE, NONE)</td>
<td>captain (x₄) ; eat . agent (x₂ , x₁) EAT (CAPTION, NONE, NONE)</td>
</tr>
<tr>
<td>captain (x₄) ; eat . agent (x₂ , x₁) EAT (CAPTION, NONE, NONE)</td>
<td>dog (x₆) ; hope . agent (x₁ , Liam) AND hope . ccomp (x₁ , x₅) AND prefer . agent (x₅ , x₄) HOPE (LIAM, NONE, NONE) CCOMP PREFER (DOG, NONE, NONE)</td>
</tr>
</tbody>
</table>

Table 6: Demonstration in An et al. (2023a) showing examples with the original grammar and the new chain-structured grammar.

In formal language tasks, as mentioned in Appendix C.1, we change the original target grammar of COGS to be chain-structured. In Table 5, we list some examples with the original target grammar and the new chain-structured grammar.
• First, to distinguish the input and output tokens, we capitalize all output tokens (e.g., from “rose” to “ROSE”).

• Second, we replace the variables (e.g., “x_{i}”) in the original grammar with their corresponding terminals (e.g., “ROSE”).

• Then, we group the terminals of AGENT (e.g., “DOG”), THEME (e.g., “ROSE”), and RECIPIENT with their corresponding terminal of PREDICATE (e.g., “HELP”) and combine this group of terminals in a function format, i.e., “PREDICATE (AGENT, THEME, RECIPIENT)”. If the predicate is not equipped with an agent, theme, or recipient in the original grammar, the corresponding new non-terminals (i.e., AGENT, THEME, and RECIPIENT, respectively) in the function format above will be filled with the terminal NONE (e.g., “HELP (DOG, ROSE, NONE)”). Such a function format is the minimum unit of a CLAUSE.

• Finally, each CLAUSE is concatenated with another CLAUSE by the terminal CCOMP (e.g., “HOPE (LIAM, NONE, NONE) CCOMP PREFER (DOG, NONE, NONE)”).

<table>
<thead>
<tr>
<th>Task</th>
<th>In-context Example</th>
<th>Testing Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive to Active</td>
<td>The book was squeezed . SQUEEZE (NONE, BOOK, NONE)</td>
<td>Sophia squeezed the donut . SQUEEZE (SOPHIA, DONUT, NONE)</td>
</tr>
<tr>
<td>Object to Subject</td>
<td>Henry liked a cockroach in a box . LIKE (HENRY, IN (COCKROACH, BOX))</td>
<td>A cockroach inflated a boy . INFLATE (COCKROACH, BOY, NONE)</td>
</tr>
<tr>
<td>Composite Task</td>
<td>The book was squeezed . SQUEEZE (NONE, BOOK, NONE)</td>
<td>A cockroach squeezed the hedgehog . SQUEEZE (COCKROACH, hedgehog, NONE)</td>
</tr>
<tr>
<td></td>
<td>Henry liked a cockroach in a box . LIKE (HENRY, IN (COCKROACH, BOX))</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Testing examples of Passive to Active and Object to Subject, red text shows the verbs changing from passive to active voice in simple tasks, and blue text shows the nouns from objective to subjective.

Below we provide a detailed explanation of our two composite tasks in translation tasks.

Passive to Active and Object to Subject Transformation. Based on the generalization tasks identified in Kim & Linzen (2020)), we select two distinct challenges for our study as two simple tasks. **Passive to Active:** Transitioning sentences from Passive to Active voice. **Object to Subject:** Changing the focus from Object to Subject using common nouns. These tasks serve as the basis for our composite task, where both transformations are applied simultaneously to the same sentence. Examples illustrating this dual transformation can be found in Table 7.

Enhanced Phrase Subject with Longer Chain. COFE proposed two compositional generalization tasks (Figure 2 in An et al. (2023b)): **Phrase Recombination (PhraReco):** integrate a prepositional phrase (e.g., “A in B”) into a specific grammatical role (e.g., “subject”, “object”); **Longer Chain (LongChain):** Extend the tail of the logical form in sentences. We consider these two generalization tasks as two simple tasks, merging them to form a composite task. In particular, we substitute the sentence subject in the Longer Chain task with a prepositional phrase from the Phrase Recombination task, creating a more complex task structure. Detailed examples of this combined task can be found in Table 8.
Table 8: Testing examples of Phrase Recombination and Longer Chain, red text shows the phrase serving as primitives in sentences in simple tasks, and blue text shows the logical structures as sub-sentences in long sentences.

<table>
<thead>
<tr>
<th>Task</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phrase Recombination</td>
<td>The baby on a tray in the house screamed.</td>
<td>SCREAM (ON (BABY, IN (TRAY, HOUSE)), NONE, NONE)</td>
</tr>
<tr>
<td>Longer Chain</td>
<td>A girl valued that Samuel admired that a monkey liked that Luna liked that Oliver respected that Savannah hoped that a penguin noticed that Emma noticed that the lawyer noticed that a cake grew.</td>
<td>VALUE (GIRL, NONE, NONE) \ CCOMP ADMIRE (SAMUEL, NONE, NONE) \ CCOMP LIKE (MONKEY, NONE, NONE) \ CCOMP LIKE (LUNA, NONE, NONE) \ CCOMP RESPECT (OLIVER, NONE, NONE) \ CCOMP HOPE (SAVANNAH, NONE, NONE) \ CCOMP NOTICE (PENGUIN, NONE, NONE) \ CCOMP NOTICE (EMMA, NONE, NONE) \ CCOMP NOTICE (LAWYER, NONE, NONE) \ CCOMP GROW (NONE, CAKE, NONE)</td>
</tr>
<tr>
<td>Composite Task</td>
<td>The baby on a tray in the house valued that Samuel admired that a monkey liked that Luna liked that Oliver respected that Savannah hoped that a penguin noticed that Emma noticed that the lawyer noticed that a cake grew.</td>
<td>VALUE (ON (BABY, IN (TRAY, HOUSE)), NONE, NONE) \ CCOMP ADMIRE (SAMUEL, NONE, NONE) \ CCOMP LIKE (MONKEY, NONE, NONE) \ CCOMP LIKE (LUNA, NONE, NONE) \ CCOMP RESPECT (OLIVER, NONE, NONE) \ CCOMP HOPE (SAVANNAH, NONE, NONE) \ CCOMP NOTICE (PENGUIN, NONE, NONE) \ CCOMP NOTICE (EMMA, NONE, NONE) \ CCOMP NOTICE (LAWYER, NONE, NONE) \ CCOMP GROW (NONE, CAKE, NONE)</td>
</tr>
</tbody>
</table>

D THEORETICAL ANALYSIS SETUP: SEPARABLE IN EMBEDDING SPACE IN THE LINEAR SETTING

Despite the complex nature of non-linearity in transformers in LLMs, we note that it is not necessarily easy to understand the source of behavior for linear models either. Indeed, it is useful to appeal to the simple case of linear models to see if there are parallel insights that can help us better understand the phenomenon. In this section, we provide an analysis of a linear attention module. We aim to uncover underlying principles that could shed light on the more intricate behaviors observed in LLMs.

In-context learning. We follow existing work (Akyürek et al., 2023; Garg et al., 2022; Mahankali et al., 2023) with slight generalization to \(K \) simple tasks. A labeled example is denoted as \((x, y)\) where \(x \in \mathbb{R}^d\), \(y \in \mathbb{R}^K\). In a simple task \(k \in [K]\), \(y\) has only one non-zero entry \(y^{(k)}\). In a composite task, \(y\) can have non-zero entries in dimensions corresponding to the combined simple tasks. The model takes a prompt \((x_1, y_1, \ldots, x_N, y_N, x_q)\) as input, which contains \(N\) in-context examples \((x_i, y_i)\)'s and a query \(x_q\), and aims to predict \(\hat{y}_q\) close to the true label \(y_q\) for \(x_q\). The prompt is usually stacked into an embedding matrix:

\[
E := \begin{pmatrix} x_1 & x_2 & \cdots & x_N & x_q \\ y_1 & y_2 & \cdots & y_N & 0 \end{pmatrix} \in \mathbb{R}^{d_e \times (N+1)}
\]
where \(d_c = d + K \). In in-context learning, we first pretrain the model using training prompts and then evaluate the model with evaluation prompts; see details below.

Pretraining procedure. We have \(B \) training data indexed by \(\tau \), each containing an input prompt \((x_{\tau,1}, y_{\tau,1}, \ldots, x_{\tau,N}, y_{\tau,N}, x_{\tau,q})\) and a corresponding true label \(y_{\tau,q} \). Consider the following empirical loss:

\[
\hat{L}(\theta) = \sum_{k=1}^{K} \hat{L}_k(\theta) = \frac{1}{2B} \sum_{\tau=1}^{B} \|\hat{y}_{\tau,q} - y_{\tau,q}\|^2,
\]

and the population loss (i.e., \(B \to \infty \)):

\[
L(\theta) = \frac{1}{2} \mathbb{E}_{x_{\tau,1}, y_{\tau,1}, \ldots, x_{\tau,N}, y_{\tau,N}, x_{\tau,q}} \left[\left(\hat{y}_{\tau,q} - y_{\tau,q} \right)^2 \right].
\]

Evaluation procedure. We now detail how to evaluate the model on downstream composite tasks. We consider the downstream classification task to be a multi-class classification problem, where the output label is a \(K \)-dimensional vector and each entry corresponds to a simple task of binary classification. For any given simple task \(k \), the binary classification label is given by \(\text{sgn}(y^{(k)}_q) \), where \(\text{sgn} \) is the sign function. Similarly, our prediction is \(\hat{y}^{(k)}_q = \text{sgn}\left(\hat{f}^{(k)}_q \right) \). The accuracy of a composite task is defined as

\[
\text{Acc}_\theta(x_1, \ldots, y_N, x_q) = \frac{1}{K} \sum_{k=1}^{K} \mathbb{1}_{\left(\text{sgn}\left(\hat{y}^{(k)}_q \right) = \text{sgn}(y^{(k)}_q) \right)}.
\]

When \(x_q \) clear from context, we denote it as \(\text{Acc}_\theta(\{x_i, y_i\}_{i=1}^N) \).

Data. Assume \(x \sim_{i.i.d.} \mathcal{N}(0, \Lambda) \), where \(\Lambda \in \mathbb{R}^{d \times d} \) is the covariance matrix. Assume \(y = Wx \), where \(W \in \mathbb{R}^{K \times d} \). Then for any simple task \(k \in [K] \), its label is the \(k \)-th entry of \(y \), which is \(y^{(k)} = \langle w^{(k)}, x \rangle \), where \(w^{(k)} \) is the \(k \)-th row of \(W \). We also assume each task weight \(w^{(k)} \sim_{i.i.d.} \mathcal{N}(0, I_d) \).

Linear self-attention networks. These networks are widely studied (Von Oswald et al. [2023], Akyürek et al. [2023], Mahankali et al. [2023], Garg et al. [2022], Zhang et al. [2023b], Shi et al. [2023]). Following them, we consider the following linear self-attention network with parameters \(\theta = (W^{PV}, W^{KQ}) \):

\[f_{LSA, \theta}(E) = E + W^{PV} E \cdot \frac{E^\top W^{KQ} E}{N}. \]

The prediction of the model for \(x_q \) is \(\hat{y}_q = [f_{LSA, \theta}(E)]_{(d+1):(d+K),N+1} \), the bottom rightmost sub-vector of \(f_{LSA, \theta}(E) \) with length \(K \). Let

\[
W^{PV} = \begin{pmatrix} W^{PV}_{11} & W^{PV}_{12} \\ W^{PV}_{21} & W^{PV}_{22} \end{pmatrix} \in \mathbb{R}^{(d+K) \times (d+K)}
\]

\[
W^{KQ} = \begin{pmatrix} W^{KQ}_{11} & W^{KQ}_{12} \\ W^{KQ}_{21} & W^{KQ}_{22} \end{pmatrix} \in \mathbb{R}^{(d+K) \times (d+K)},
\]

where \(W^{PV}_{11} \in \mathbb{R}^{d \times d} \), \(W^{PV}_{12} \), \(W^{PV}_{21} \), and \(W^{PV}_{22} \in \mathbb{R}^{d \times K} \), and \(W^{PV}_{12} \) is \(\mathbb{R}^{d \times K} \); similar for \(W^{KQ} \). Then the prediction is

\[
\hat{y}_q = \left(\begin{pmatrix} W^{PV}_{21} \\ W^{PV}_{22} \end{pmatrix}^\top \frac{EE^\top}{N} \begin{pmatrix} W^{KQ}_{11} \\ W^{KQ}_{21} \end{pmatrix} + \frac{EE^\top}{N} \right) x_q.
\]

We observe only part of the parameters affect our prediction, so we treat the rest of them as zero in our analysis.

E Theory for Confined Support

E.1 Necessity of the Confined Supports

In this section we demonstrate that when the confined support is violated, the simple tasks begin to exhibit variations (large singal values) across the entire feature subspace of the input embedding.
For instance, the composite task of Capitalization (A) & Swap (B), which involves mixed steps in reasoning as shown in Figure E.2 shows poor performance of LLMs given both simple tasks’ examples as in-context demonstrations. Another example is Modular (G) & Two Sum Plus (H) as shown in the last row of Table 2 where both simple tasks involve multisteps arithmetic operation. These two tasks share the same support on embedding space, mixing their variations and leading to the model’s inability to effectively address the composite tasks that integrate them. Below we will provide a theorem establishing that if two tasks share overlapping support in the embedding space, there can be a scenario where the model fails to exhibit compositional ability.

Corollary 1. If two tasks do not have confined support, there exists one setting which we have

$$\text{Acc}_\theta(S_k) = \text{Acc}_\theta(S_g) = \text{Acc}_\theta(S_{k\cup g}).$$

Corollary 1 demonstrates that a model’s failure to solve tasks with mixed steps reasoning, where contains overlapping input embedding spaces, thereby diminishing the model’s ability to solve them when presented together.

E.2 Compositional Ability with Model Scale

We then show if simple tasks have confined support, the compositional ability of language models will increase as the model scale increases. We demonstrate this by showing that the accuracy of the model on each simple task improves with a larger model scale.

Note that the optimal solutions of parameter matrices as W^{*PV} and W^{*KQ}. We naturally consider that the rank of the parameter matrices W^{*PV} and W^{*KQ} can be seen as a measure of the model’s scale. A higher rank in these matrices implies that the model can process and store more information, thereby enhancing its capability. We state the theorem below:

Theorem 2. Suppose a composite task satisfies confined support. Suppose we have $(x_1, y_1, \ldots, x_n, y_n, x_q)$ as an testing input prompt, and corresponding W where $y_i = Wx_i$. As rank r decreases, $\mathbb{E}_{W,x_1,\ldots,x_n}[\text{Acc}_\theta]$ will have a smaller upper bound.

Theorem 2 shows the expected accuracy of a model on composite tasks is subjected to a lower upper bound as the scale of the model diminishes. This conclusion explains why scaling-up helps the performance when the model exhibits compositional ability for certain tasks (those we called “separable composite task”). One common characteristic for these tasks is their inputs display confined supports within the embeddings. This is evidenced by the model’s decent performance on tasks as presented in Table 2 and Figure 4 where inputs are composed by parts.

E.3 Case Study of Confined Support

Our theoretical conclusion shows the model behaviors regarding the input embedding. It states the model will have compositional ability if tasks are under confined support of input embedding. To illustrate such theoretical concepts and connect them to empirical observations, we specialize the general conclusion to settings that allow easy interpretation of disjoint. In this section, we provide a toy linear case study on classification tasks showing how confined support on embedding can be decomposed and composite tasks can be solved. We assume $\delta = \epsilon = 0$ in below simple example.

Consider there are only two simple tasks for some random objects with the color red and blue, and the shape square and round: (1) binary classification based on the color: red and blue. (2) binary classification based on shape: circle and square. However, during evaluation, the composite task is a four-class classification, including red circle, red square, blue circle, and blue square.

Then we have two simple tasks $K = 2$. Consider the input embedding $x = (a, b)$, where $a \in \mathbb{R}^2$, $b \in \mathbb{R}^2$, $d = 4$. Consider $W = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$ and $y = Wx$.

Consider the inputs from simple and composite tasks as:

- **Task 1:** Red: $x_1 = (1, 0, 0, 0)$, $y_1 = (1, 0)$ and blue: $x_2 = (0, 1, 0, 0)$, $y_2 = (-1, 0)$.
- **Task 2:** Circle $x_3 = (0, 0, 1, 0)$ $y_3 = (0, 1)$ and square $x_4 = (0, 0, 0, 1)$ $y_4 = (0, -1)$.

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)
• Composed task: red circle $x_5 = (1, 0, 1, 0), y_5 = (1, 1)$, red square $x_6 = (1, 0, 0, 1), y_6 = (1, -1)$, blue circle $x_7 = (0, 1, 1, 0) y_7 = (-1, 1)$ and blue square $x_8 = (0, 1, 0, 1) y_8 = (-1, -1)$.

Suppose we have the optimal solution \hat{y}_q as in Equation 1. Given $x_q = (1, 0, 1, 0)$ as a testing input of a red circle example. During the test, we have different predictions given different in-context examples:

1. Given only examples from Task 1 (red and blue): $[(x_1, y_1), (x_2, y_2)]$, we have $\hat{y}_q = (1, 0)$ can only classify the color as red.
2. Given only examples from Task 2 (square and circle): $[(x_4, y_4), (x_3, y_3)]$, we have $\hat{y}_q = (0, 1)$ only classify the shape as a circle.
3. Given a mixture of examples from Task 1 and 2 (red and circle): $[(x_1, y_1), (x_3, y_3)]$, we have $\hat{y}_q = (1, 1)$ can classify as red and circle.

We can see that, in the final setting the model shows compositional ability. This gives a concrete example for the analysis in Theorem 1.

F DEFERRED PROOF

In this section, we provide a formal setting and proof.

F.1 PROOF OF COMPOSITIONAL ABILITY UNDER CONFINED SUPPORT

Here, we provide the proof of our main conclusion regarding Theorem 1 and Corollary 1. Without abuse of notation, we denote $U = W_{11}^{KQ}$, $u = W_{22}^{PV}$.

We further add some mild assumptions.

1. The covariance matrix Λ of simple tasks will have the same trace, to prevent the scale effect of different simple tasks.
2. The spectral norm of Λ is bounded both sides $m \leq \|\Lambda\| \leq M$.

We first introduce the lemma where the language model only pretrained on one simple task ($K = 1$). The pretraining loss $L(\theta)$ can be re-factored and the solution will have a closed form. We further prove Lemma F.1 (Lemma 5.3 in Zhang et al. (2023b)). Let $\Gamma := (1 + \frac{1}{\tilde{N}}) \Lambda + \frac{1}{\tilde{N}} \text{tr} (\Lambda) I_{d \times d} \in \mathbb{R}^{d \times d}$. Let

$$\hat{\ell}(U, u) = \text{tr} \left[\frac{1}{2} u^2 \Gamma \Lambda U U^\top - u \Lambda^2 U^\top \right]$$

Then

$$\min_{\theta} L(\theta) = \min_{U, u} \hat{\ell}(U, u) + C = -\frac{1}{2} \text{tr}[\Lambda^2 \Gamma^{-1}] + C$$

where C is a constant independent with θ. For any global minimum of $\hat{\ell}$, we have $uU = \Gamma^{-1}$.

As above lemma construction, we denote the optimal solution as W^{PV} and W^{KQ}. Taking one solution as $U = \Gamma^{-1}, u = 1$, we observe the minimizer of global training loss is of the form:

$$W^{PV} = \begin{pmatrix} 0_{d \times d} & 0_d \\ 0_d & 1 \end{pmatrix}, W^{KQ} = \begin{pmatrix} \Gamma^{-1} & 0_d \\ 0_d & 0 \end{pmatrix}.$$

We then prove our main theory Theorem 1 in Section 3, we first re-state below:

Theorem 1. Consider distinct tasks k and g with corresponding examples S_k, S_g. If two tasks have confined support, assume Assumption 1 with high probability, the model has the compositional ability. Moreover,

$$\text{Acc}_\theta(S_k) + \text{Acc}_\theta(S_g) \leq \text{Acc}_\theta(S_{k\cup g}).$$
Proof of Theorem\[\footnote{1}][1] WLOG, consider two simple tasks, \(K = 2\). We have \(x = (a, b)\), where \(a \in \mathbb{R}^{d_1}, b \in \mathbb{R}^{d_2}, d_1 + d_2 = d\). Since \(x\) only has large values on certain dimensions, it’s equivalent to just consider corresponding dimensions in \(w\), i.e., for simple task 1, we have \(w^{(1)} = (w_a, w_b)\), for simple task 2, we have \(w^{(2)} = (w_{\delta a}, w_{\delta b})\).

We have \(x \sim \Lambda\), where:
\[
\Lambda = \begin{pmatrix}
\Lambda_{KK} & \Lambda_{KG} \\
\Lambda_{GK} & \Lambda_{GG}
\end{pmatrix}
\]

- Task 1: \(x = (a, 0_{d_2})^T + (0, b_\delta)^T, \ y = (w_a^T a, 0) + (0, w_{\delta b}^T b_\delta)\).
- Task 2: \(x = (0_{d_1}, b)^T + (a_\delta, 0_{d_2})^T, \ y = (0, w_b^T b) + (w_{\delta a}^T a_\delta, 0)\).
- Composed task: \(x = (a, b)^T + (a_\delta, b_\delta)^T, \ y = (w_a^T a, w_b^T b) + (w_{\delta a}^T a_\delta, w_{\delta b}^T b_\delta)\).

The form of \(E\) is,
\[
E := \begin{pmatrix}
a_1 & a_2 & \ldots & a_N \\
b_1 & b_2 & \ldots & b_N \\
y_1 & y_2 & \ldots & y_N
\end{pmatrix} + E_r \in \mathbb{R}^{(d+2) \times (N+1)}.
\]

where \(E_r\) represents the values caused by residual dimensions whose entries bounded by \(\delta\).

Following Equation (4.3) in [Zhang et al. (2023)], we have
\[
EE^T = \frac{1}{N} \begin{pmatrix}
\sum_{i=1}^{N} a_i a_i^T + a_q a_q^T & \sum_{i=1}^{N} a_i b_i^T + a_q b_q^T & \sum_{i=1}^{N} a_i y_i^T \\
\sum_{i=1}^{N} b_i a_i^T + b_q a_q^T & \sum_{i=1}^{N} b_i b_i^T + b_q b_q^T & \sum_{i=1}^{N} b_i y_i^T \\
\sum_{i=1}^{N} y_i a_i^T & \sum_{i=1}^{N} y_i b_i^T & \sum_{i=1}^{N} y_i y_i^T
\end{pmatrix} + \delta \cdot \alpha(EE^T).
\]

The \(W^{PV}\) can be presented in block matrix
\[
W^{PV} = \begin{pmatrix}
W^{PV}_{11} & W^{PV}_{12} & W^{PV}_{13} \\
W^{PV}_{21} & W^{PV}_{22} & W^{PV}_{23} \\
W^{PV}_{31} & W^{PV}_{32} & W^{PV}_{33}
\end{pmatrix} \in \mathbb{R}^{(d_1 + d_2) \times (d_1 + d_2 + 2)}
\]

We can apply Lemma [F.1] into optimization and recall
\[
W^{*KQ} = \begin{pmatrix}
I_{d1} & 0_d \\
0_d & 0_d
\end{pmatrix}.
\]

where \(I_{d1} \in \mathbb{R}^{(d_1 + d_2) \times (d_1 + d_2)}\). Consider two tasks only related to disjoint dimension of \(x\), we also have \(\sigma(\Lambda_{KG}) = \sigma(\Lambda_{GK}) \leq \epsilon\). Denote
\[
\Lambda = \tilde{\Lambda} + \Lambda_r
\]

where
\[
\tilde{\Lambda} = \begin{pmatrix}
\Lambda_{KK} \\
\Lambda_{GK}
\end{pmatrix}, \Lambda_r = \begin{pmatrix}
\Lambda_{GK} \\
\Lambda_{KK}
\end{pmatrix}
\]

We apply Lemma [F.1] Recall \(\Gamma := \left(1 + \frac{1}{N}\right) \Lambda + \frac{1}{N} \text{tr}(\Lambda)I_{d \times d} \in \mathbb{R}^{d \times d}\), we have:
\[
\Gamma = \left(1 + \frac{1}{N}\right) \tilde{\Lambda} + \frac{1}{N} \text{tr}(\tilde{\Lambda})I_{d \times d} + \left(1 + \frac{1}{N}\right) \Lambda_r
\]
\[
= \tilde{\Gamma} + \Gamma_r
\]

where denote \(\Gamma_r = \left(1 + \frac{1}{N}\right) \Lambda_r\). We have:
\[
\Gamma^{-1} = \tilde{\Gamma}^{-1} - \tilde{\Gamma}^{-1} \Gamma_r \tilde{\Gamma}^{-1} + O(\Gamma_r)
\]

We denote
\[
\tilde{\Gamma} = \begin{pmatrix}
\Gamma_1 & 0 \\
0 & \Gamma_2
\end{pmatrix},
\]

21
where $\Gamma_1 = (1 + \frac{1}{N}) \Lambda_{KK} + \frac{1}{N} \text{tr}(A) I_d$, and $\Gamma_2 = (1 + \frac{1}{N}) \Lambda_{GG} + \frac{1}{N} \text{tr}(A) I_d \in \mathbb{R}^{d_1 \times d_1}$ and $\Gamma_2 = (1 + \frac{1}{N}) \Lambda_{GG} + \frac{1}{N} \text{tr}(A) I_d \in \mathbb{R}^{d_2 \times d_2}$. Then we have:

$$
\Gamma^{-1} = \begin{pmatrix}
\Gamma_1^{-1} & 0 \\
0 & \Gamma_2^{-1}
\end{pmatrix} + A
$$

where $\sigma(A) \leq 2m^2\epsilon$.

Then, it's similar to apply Lemma E.1 for pretraining separately into dimensions corresponding to different tasks. We solve similar to W_{KQ}.

we have:

$$
\hat{y}_q = \frac{1}{N} \left(\sum_{i=1}^{N} y_i a_i^T \right) \Gamma_1^{-1} a_q + \frac{1}{N} \sum_{i=1}^{N} y_i b_i^T \right) \Gamma_2^{-1} b_q + v
$$

and

$$
= \frac{1}{N} \left(a_q \Gamma_1^{-1} \sum_{i=1}^{N} y_i^{(1)} a_i
ight) \Gamma_1^{-1} a_q + \left(\frac{1}{N} \sum_{i=1}^{N} y_i b_i \right) \Gamma_2^{-1} b_q + v
$$

where \hat{A} representing residual matrix whose norm can be bounded by $O(m^2\epsilon)$. Recall $x \sim N(0, \Lambda)$, then with high probability each entry in v will be bounded by $Cm^2\epsilon$ for some constant C.

WLOG, we write residual vectors as 0 vector for simplicity of notation, and only consider residuals for estimations \hat{y}_q. Note that composed example $x = (a, b)^T$, $y = (w_a, a, w_b, b)$. For simplicity, we write $\hat{w}_a = \frac{1}{N} \Gamma_1^{-1} \sum_{i=1}^{N} y_i^{(1)} a_i$, similarly, $\hat{w}_b = \frac{1}{N} \Gamma_2^{-1} \sum_{i=1}^{N} y_i^{(2)} b_i$.

Given in-context examples from one simple task only, consider we have N examples from simple task 1, $S_1 = \{ (a_i, 0, y_i) \}_{i=1}^{N}$. We have $\hat{w}^{(1)} = (\hat{w}_a, 0, d_i)$, $\hat{w}^{(2)} = (0, d_i)$, and we also have $\hat{y}_q = (\hat{y}_q^{(1)}, 0)^T$, where $\hat{y}_q^{(1)} = a_q \Gamma_1^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} y_i^{(1)} a_i \right) + Cm^2\epsilon$. We have $\text{Acc}_\theta(S_1) = \frac{1}{2}(1 - \text{tr}(\Gamma_1^{-1} a_q^T \hat{y}_q))$.

Similarly, for N in-context examples only from task 2, we have $\hat{w}^{(1)} = (0, 0, d_i)$, $\hat{w}^{(2)} = (0, d_i, w_b)$, $\hat{y}_q = (0, \hat{y}_q^{(2)})^T$, where $\hat{y}_q^{(2)} = a_q \Gamma_2^{-1} \left(\frac{1}{N} \sum_{i=1}^{N} y_i^{(2)} b_i \right) + Cm^2\epsilon$. We have $\text{Acc}_\theta(S_2) = \frac{1}{2}(1 - \text{tr}(\Gamma_2^{-1} a_q^T \hat{y}_q))$.

Then we have $S_{1,2} \cup S_1$ contains $2N$ in-context examples from both tasks, specifically, we have N from task 1 and rest from task 2. We have $\hat{w}^{(1)} = (\hat{w}_a/2, 0, d_i)$, $\hat{w}^{(2)} = (0, d_i, \hat{w}_b/2, y_q = (\hat{y}_q^{(1)}, \hat{y}_q^{(2)})^T$.

Since $y_q^{(k)} = \text{sgn}(\langle w_r, x_r \rangle)$, $\hat{y}_q^{(k)} = \text{sgn}(\hat{y}_q^{(k)})$, following the proof of Lemma F.2, where the Acc function only concerns the direction of \hat{w} and w, we have $\text{Acc}_\theta(S_{1,2}) = \frac{1}{2}(1 - \text{tr}(\Gamma_1^{-1} a_q^T \hat{y}_q)) + 1/2(1 - \text{tr}(\Gamma_2^{-1} a_q^T \hat{y}_q))$.

Extending the above analysis into any of two simple tasks, when the composite task integrates them, we have

$$
\text{Acc}_\theta(S_k) + \text{Acc}_\theta(S_g) \leq \text{Acc}_\theta(S_{k,g}).
$$

We then prove Corollary E.1 in Appendix E.1, we first restate it below.

Corollary 1. If two tasks do not have confined support, there exists one setting such that we have

$$
\text{Acc}_\theta(S_k) = \text{Acc}_\theta(S_g) = \text{Acc}_\theta(S_{k,g}).
$$
Proof of Corollary\[\footnote{WLOG, consider two simple tasks, } K = 2. We have $x = (a, b)$, where $a \in \mathbb{R}^{d_1}$, $b \in \mathbb{R}^{d_2}$, $d_1 + d_2 = d$. Consider the setting where w also have the same active dimensions, i.e. for simple task 1, we have $w^{(1)} = (w_{a}, 0)$, for simple task 2, we have $w^{(2)} = (0, w_{b})$. We have $x \sim \Lambda$. Consider tasks are overlapping on all dimensions, where:

- Task 1: $x = (a^{(1)}, b^{(1)})^\top$, $y = (w_a^\top a^{(1)}, w_b^\top b^{(1)})$.
- Task 2: $x = (a^{(2)}, b^{(2)})^\top$, $y = (w_a^\top a^{(2)}, w_b^\top b^{(2)})$.
- Composed task: $x = (a, b)^\top$, $y = (w_a^\top a, w_b^\top b)$.

Similarly we have:

$$
\hat{y}_q = \frac{1}{N} \left(\sum_{i=1}^{N} y_i a_i^\top \sum_{i=1}^{N} y_i b_i^\top \sum_{i=1}^{N} y_i y_i^\top \right) \begin{pmatrix} \Gamma_1^{-1} a_q \\ \Gamma_2^{-1} b_q \end{pmatrix}
$$

\[(12)\]

$$
= \left(\frac{1}{N} \sum_{i=1}^{N} y_i a_i^\top \right) \Gamma_1^{-1} a_q + \left(\frac{1}{N} \sum_{i=1}^{N} y_i b_i^\top \right) \Gamma_2^{-1} b_q
$$

\[(13)\]

$$
= \frac{1}{N} \begin{pmatrix} a_q^\top \Gamma_1^{-1} \sum_{i=1}^{N} y_i^{(1)}(1) a_i + b_q^\top \Gamma_2^{-1} \sum_{i=1}^{N} y_i^{(1)}(1) b_i \\ a_q^\top \Gamma_1^{-1} \sum_{i=1}^{N} y_i^{(2)}(2) a_i + b_q^\top \Gamma_2^{-1} \sum_{i=1}^{N} y_i^{(2)}(2) b_i \end{pmatrix}.
$$

\[(14)\]

Note that composed example $x = (a, b)^\top$, $y = (w_1^\top a, w_2^\top b)$.

When in-context examples from a simple task, we have N examples from simple task 1, $S_1 = \left\{ (a_i^{(1)}, b_i^{(1)}), y_i \right\}_{i=1}^{N}$, and \hat{y}_q has the same form as Equation \[(14)\]. Similarly for task 2.

Suppose $S_{1,2}$ contains $2N$ examples from both tasks, where N from task 1 and rest from task 2. We have

$$
\hat{y}_q = \frac{1}{2N} \begin{pmatrix} a_q^\top \Gamma_1^{-1} \sum_{i=1}^{N} y_i^{(1)}(1) a_i + b_q^\top \Gamma_2^{-1} \sum_{i=1}^{N} y_i^{(1)}(1) b_i \\ a_q^\top \Gamma_1^{-1} \sum_{i=1}^{N} y_i^{(2)}(2) a_i + b_q^\top \Gamma_2^{-1} \sum_{i=1}^{N} y_i^{(2)}(2) b_i \end{pmatrix}.
$$

\[(15)\]

We finish the proof by checking that Equation \[(14)\] and Equation \[(15)\] share the same direction.

\[\square\]

F.2 Proof of Compositional Ability with Model Scale

Here, we provide the proof of our conclusions in Theorem\[\footnote{in Appendix E.2} \] regarding model performance and model scale. We first introduce a lemma under the $K = 1$ setting.

F.2.1 Accuracy under $K = 1$

When $K = 1$, we can give an upper bound of the accuracy by Λ and Γ. Considering the optimal solution in Equation \[(2)\], we have a lemma of accuracy below.

Lemma F.2. Consider $K = 1$ and $x_q \sim \mathcal{N}(0, I_d)$. When $N > C$, where C is a constant, we have

$$
\mathbb{E}_{w, x_1, \ldots, x_N} [\text{Acc}_q] \leq \text{tr}(\Gamma^{-1} \Lambda).
$$

Proof of Lemma\[\footnote{Since $K = 1$, the problem reduces to the linear regression problem in ICL. Consider the solution form in Lemma\[\footnote{F.1} \] we have}

Since $K = 1$, the problem reduces to the linear regression problem in ICL. Consider the solution form in Lemma\[\footnote{F.1} \] we have

$$
\hat{y}_q = x_q^\top \frac{1}{N} \Gamma^{-1} \sum_{i=1}^{N} (w_{x_i}, x_i) x_i
$$

We re-write the form as $\hat{y}_q = x_q^\top \hat{w}$. Following Equation (4.3) in \cite{Zhang2023a}, we have:

```
\[ \hat{w} = \frac{1}{N} \Gamma^{-1} \sum_{i=1}^{N} \langle w_{\tau}, x_i \rangle x_i. \]

Recall the definition of \( \text{Acc}_\theta \) and \( y_{\tau,q}^{(k)} = \text{sgn}(\langle w_{\tau}, x_{\tau,q} \rangle) \), \( \tilde{y}_{\tau,q} = \text{sgn}(\hat{\langle \hat{w}, x_{\tau,q} \rangle}) \), for any \( \alpha > 0 \), we have:
\[
\mathbb{E}_{w_{\tau},x_1,\ldots,x_N,x_q} [\text{Acc}_\theta] = P (\langle x_{\tau,q}, w_{\tau} \rangle > 0, (x_{\tau,q}, \alpha \tilde{w}) > 0) + P (\langle x_{\tau,q}, w_{\tau} \rangle < 0, (x_{\tau,q}, \alpha \tilde{w}) < 0). \]

Denote hyperplane orthogonal to \( w \) as \( \mathcal{P}_w \) and similar for \( \mathcal{P}_{\hat{w}} \). Recall that \( x_q \) is independent of other samples. We have the expectation conditioned on \( w_{\tau}, x_1, \ldots, x_N \) the probability \( x_q \) falls out of the angle between \( \mathcal{P}_w \) and \( \mathcal{P}_{\hat{w}} \). Denote the angle between \( w \) and \( \hat{w} \) as \( \theta \). As \( x_q \) is uniform along each direction (uniform distribution or isotropic Gaussian) then the probability is \( 1 - |\tilde{\theta}| = \frac{1}{\pi} \cdot \frac{2}{\pi} \cdot \pi \) given \( w, x_1, \ldots, x_N \). Then \( \mathbb{E}_{w_{\tau},x_1,\ldots,x_N} [\text{Acc}_\theta] = \mathbb{E}_{w_{\tau},x_1,\ldots,x_N} \left[ 1 - \frac{|\tilde{\theta}|}{\pi} \right]. \) Note that
\[
\mathbb{E}_{w_{\tau},x_1,\ldots,x_N} \left[ \cos(\tilde{\theta}) \right] = \left\langle \frac{w_{\tau}}{\|w_{\tau}\|^2}, \hat{w} \right\rangle.
\]

As, we can choose \( \alpha, \) w.l.o.g, we take \( \|w_{\tau}\| = \|\hat{w}\| = 1 \), then we have
\[
\mathbb{E}_{w_{\tau},x_1,\ldots,x_N} \left[ \cos(\tilde{\theta}) \right] = \mathbb{E}_{w_{\tau}} \left[ \mathbb{E}_{x_1,\ldots,x_N} [\langle w_{\tau}, \hat{w} \rangle | w_{\tau}] \right].
\]

Given \( w_{\tau} \), we have
\[
E[\hat{w} | w_{\tau}] = \frac{1}{N} \Gamma^{-1} \sum_{i=1}^{N} E[\langle w_{\tau}, x_i \rangle | w_{\tau}]
= \frac{1}{N} \Gamma^{-1} \sum_{i=1}^{N} \Lambda w_{\tau}
= \Gamma^{-1} \Lambda w_{\tau}.
\]

Then, we have
\[
E_{w_{\tau}} [\langle \hat{w}, w_{\tau} \rangle] = \langle \Gamma^{-1} \Lambda w_{\tau}^T, w_{\tau} \rangle
= \text{tr}(\Gamma^{-1} \Lambda).
\]

Thus, we have
\[
\mathbb{E} \cos(\tilde{\theta}) = \text{tr}(\Gamma^{-1} \Lambda) \quad (16)
\]
\[
\mathbb{E} [\text{Acc}_\theta] = \mathbb{E} \left[ 1 - \frac{|\tilde{\theta}|}{\pi} \right]. \quad (17)
\]

Note the fact that when \( \theta \leq \frac{\pi}{6} \), we have \( 1 - |\tilde{\theta}| \leq \cos(\theta) \). Thus, as \( N > C \) where \( C \) is constant, we have \( \hat{w} \) and \( w_{\tau} \) are closed and satisfy \( \theta \leq \frac{\pi}{6} \). Then we get the statement.

F.2.2 Model scale on composite tasks

Here we present proof for model scale and performance on composite tasks. Recall we consider the rank of \( W*^{PV} \) and \( W*^{KQ} \) as a measure of the model’s scale.

We first introduce a lemma about \( U \) as an optimal full-rank solution.

**Lemma F.3** (Corollary A.2 in [Zhang et al. (2023b)]). The loss function \( \hat{\ell} \) in Lemma F.1 satisfies
\[
\min_{U \in \mathbb{R}^d \times d, u \in \mathbb{R}} \hat{\ell}(U, u) = -\frac{1}{2} \text{tr}[\Lambda^2 \Gamma^{-1}], \quad (18)
\]
where \( U = c\Gamma^{-1}, u = \frac{1}{c} \) for any non-zero constant \( c \) are minimum solution. We also have
\[
\hat{\ell}(U, u) - \min_{U \in \mathbb{R}^d \times d, u \in \mathbb{R}} \hat{\ell}(U, u) = \frac{1}{2} \left| \left| \Gamma^{\frac{1}{2}} \left( u\Lambda^{\frac{1}{2}}U\Lambda^{\frac{1}{2}} - \Lambda^{-1} \right) \right| \right|_F^2. \quad (19)
\]
As the scale of the model decreases, the rank of $U$ also reduces, leading to an optimal reduced rank solution $\tilde{U}$. Our findings reveal that this reduced rank $\tilde{U}$ can be viewed as a truncated form of the full-rank solution $U$. This implies that smaller-scale models are essentially truncated versions of larger models, maintaining the core structure but with reduced complexity.

Recall $\Lambda$ is the covariance matrix, we have eigendecomposition $\Lambda = QDQ^T$, where $Q$ is an orthonormal matrix containing eigenvectors of $\Lambda$ and $D$ is a sorted diagonal matrix with non-negative entries containing eigenvalues of $\Lambda$, denoting as $D = \text{diag}(\lambda_1, \ldots, \lambda_d)$, where $\lambda_1 \geq \cdots \geq \lambda_d \geq 0$. We introduce lemma below.

**Lemma F.4 (Optimal rank-$r$ solution).** Recall the loss function $\tilde{\ell}$ in (Lemma F.1). Let

$$U^*, u^* = \arg \min_{U \in \mathbb{R}^{d \times d}, \text{rank}(U) \leq r, u \in \mathbb{R}} \tilde{\ell}(U, u).$$

Then $U^* = cQV^*Q^T$, $u = \frac{1}{c}$, where $c$ is any non-zero constant and $V^* = \text{diag}([v^*_1, \ldots, v^*_d])$ is satisfying for any $i \leq r$, $v^*_i > (N+1)\lambda_i + \text{tr}(D)$ and for any $i > r$, $v^*_i = 0$.

Then, we prove the Lemma F.4.

**Proof of Lemma F.4.** Note that,

$$\arg \min_{U \in \mathbb{R}^{d \times d}, \text{rank}(U) \leq r, u \in \mathbb{R}} \tilde{\ell}(U, u) = \arg \min_{U \in \mathbb{R}^{d \times d}, \text{rank}(U) \leq r, u \in \mathbb{R}} \tilde{\ell}(U, u) - \min_{U \in \mathbb{R}^{d \times d}, u \in \mathbb{R}} \tilde{\ell}(U, u).$$

(22)

Thus, we may consider Equation (19) in Lemma F.3 only. On the other hand, we have

$$\Gamma = \left(1 + \frac{1}{N}\right) \Lambda + \frac{1}{N} \text{tr}(\Lambda) I_{d \times d}$$

(23)

$$= \left(1 + \frac{1}{N}\right) QDQ^T + \frac{1}{N} \text{tr}(D) QI_{d \times d} Q^T$$

(24)

$$= Q \left( \left(1 + \frac{1}{N}\right) D + \frac{1}{N} \text{tr}(D) I_{d \times d} \right) Q^T.$$ 

(25)

We denote $D' = \left(1 + \frac{1}{N}\right) D + \frac{1}{N} \text{tr}(D) I_{d \times d}$. We can see $\Lambda \tilde{\Delta}^2 = QD \tilde{\Delta}^2 Q^T$, $\Gamma \tilde{\Delta}^2 = QD' \tilde{\Delta}^2 Q^T$, and $\Gamma^{-1} = QD'^{-1} Q^T$. We denote $V = uQ^TU$. Since $\Gamma$ and $\Lambda$ are commutable and the Frobenius norm ($F$-norm) of a matrix does not change after multiplying it by an orthonormal matrix, we have Equation (19) as

$$\tilde{\ell}(U, u) - \min_{U \in \mathbb{R}^{d \times d}, u \in \mathbb{R}} \tilde{\ell}(U, u) = \frac{1}{2} \left\| \Gamma \tilde{\Delta}^2 \left( u \Lambda \tilde{\Delta}^2 U \Lambda \tilde{\Delta}^2 - \Lambda \Gamma^{-1} \right) \right\|_F^2,$$

(26)

$$= \frac{1}{2} \left\| \Gamma \tilde{\Delta}^2 \left( uU - \Gamma^{-1} \right) \Lambda \tilde{\Delta}^2 \right\|_F^2,$$

(27)

$$= \frac{1}{2} \left\| D' \tilde{\Delta}^2 \left( V - D'^{-1} \right) D', \tilde{\Delta}^2 \right\|_F^2.$$ 

(28)

As $W^K Q$ is a matrix whose rank is at most $r$, we have $V$ is also at most rank $r$. Then, we denote $V^* = \arg \min_{V \in \mathbb{R}^{d \times d}, \text{rank}(V) \leq r} \left\| D' \tilde{\Delta}^2 \left( V - D'^{-1} \right) D', \tilde{\Delta}^2 \right\|_F^2$. We can see that $V^*$ is a diagonal matrix. Denote $D' = \text{diag}([\lambda^*_1, \ldots, \lambda^*_d])$ and $V^* = \text{diag}([v^*_1, \ldots, v^*_d])$. Then, we have

$$\left\| D' \tilde{\Delta}^2 \left( V - D'^{-1} \right) D', \tilde{\Delta}^2 \right\|_F^2 = \sum_{i=1}^d \left( \lambda_i \left( v^*_i - \frac{1}{\lambda_i} \right) \right)^2$$

(29)

$$= \sum_{i=1}^d \left( \lambda_i \left( v^*_i - \frac{1}{\lambda_i} \right) \right)^2,$$

(30)

$$= \sum_{i=1}^d \left( \left(1 + \frac{1}{N}\right) \lambda_i + \frac{\text{tr}(D)}{N} \right) \lambda_i^2 \left( v^*_i - \frac{1}{\left(1 + \frac{1}{N}\right) \lambda_i + \frac{\text{tr}(D)}{N}} \right)^2.$$

(31)
As $V^*$ is the minimum rank $r$ solution, we have that $v^*_i \geq 0$ for any $i \in [d]$ and if $v^*_i > 0$, we have $v^*_i = \frac{1}{(1 + \frac{1}{N}) \lambda_i + \frac{\text{tr}(D)}{N}}$. Denote $g(x) = \left( (1 + \frac{1}{N}) x + \frac{\text{tr}(D)}{N} \right) x^2 \left( \frac{1}{(1 + \frac{1}{N}) x + \frac{\text{tr}(D)}{N}} \right)^2 = x^2 \left( \frac{1}{(1 + \frac{1}{N}) x + \frac{\text{tr}(D)}{N}} \right)$. It is easy to see that $g(x)$ is an increasing function on $[0, \infty)$. Now, we use contradiction to show that $V^*$ only has non-zero entries in the first $r$ diagonal entries. Suppose $i > r$, such that $v^*_i > 0$, then we must have $j \leq r$ such that $v^*_j = 0$ as $V^*$ is a rank $r$ solution. We find that if we set $v^*_i = 0$, $v^*_j = \frac{1}{(1 + \frac{1}{N}) \lambda_j + \frac{\text{tr}(D)}{N}}$ and all other values remain the same, Equation (31) will strictly decrease as $g(x)$ is an increasing function on $[0, \infty)$. Thus, here is a contradiction. We finish the proof by $V^* = uQ^\top \bar{U}^* Q$.

We then ready to prove the Theorem 2 in Appendix E.2, we first re-state it below.

**Theorem 2.** Suppose a composite task satisfies confined support. Suppose we have $(x_1, y_1, \ldots, x_N, y_N, x_q)$ as an testing input prompt, and corresponding $W$ where $y_i = W x_i$. As rank $r$ decreases, $\mathbb{E}_{W, x_1, \ldots, x_N} [\text{Acc}_\theta]$ will have a smaller upper bound.

**Proof of Theorem 2.** We first prove in a simple task setting ($K = 1$), that the accuracy will have such a conclusion. By Lemma F.2, consider $x_q \sim N(0, I_d)$. When $N > C$, where $C$ is a constant, we have

$$\mathbb{E}_{w, x_1, \ldots, x_N} [\text{Acc}_\theta] \leq \text{tr}(\Gamma^{-1} \Lambda).$$

Recall Lemma F.4 WLOG, we take $c = 1$. We have

$$\text{tr}(\Gamma^{-1} \Lambda) = \text{tr}(Q V^* D Q) = \sum_{i=1}^r N + \frac{1}{N + 1} \sum_{j=1}^r \frac{\lambda_j}{N_i},$$

where second equation comes from Lemma F.4.

Under the confined support setting, the same conclusion holds since Equation (11) in the proof of Theorem 1.