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ABSTRACT

Reconstructing high-quality images from substantially undersampled k-space data
for accelerated MRI presents a challenging ill-posed inverse problem. Supervised
deep learning has transformed the field by using large amounts of fully sam-
pled ground-truth MR images, either to directly reconstruct undersampled data
into fully sampled images with neural networks, or to learn the prior distribu-
tion of fully sampled images through generative models. However, in practical
scenarios, acquiring ground-truth fully sampled MRI images is not viable due to
the inherently slow nature of its data acquisition process. Despite advances in
self-supervised/unsupervised MRI reconstruction, the performance remains inad-
equate at high acceleration rates. To address these gaps, we introduce the Pro-
jected Conditional Flow Matching (PCFM) and its unsupervised transformation,
which is designed to learn the prior distribution of fully sampled parallel MRI
by solely utilizing the undersampled k-space measurements. To reconstruct the
image, we establish a novel relationship between the marginal vector field in the
measurement space, which generates the associated probability flow in terms of
the continuity equation, and the optimal solution to PCFM. This connection re-
sults in a cyclic dual-space sampling algorithm for unsupervised reconstruction.
Our method was evaluated against contemporary state-of-the-art supervised, self-
supervised, and unsupervised baseline techniques on parallel MRI using publicly
available datasets fastMRI and CMRxRecon. Experimental results show that our
technique significantly surpasses existing self-supervised and unsupervised base-
lines, while also yielding better performance than most supervised methods. Our
code will be available at https://github.com/anonymous.

1 INTRODUCTION

Magnetic Resonance Imaging (MRI) is a cornerstone of modern medical diagnostics, providing ex-
ceptional soft-tissue contrast without the use of ionizing radiation. However, a significant clinical
limitation of MRI is its inherently slow data acquisition speed. The time required for a scan is di-
rectly proportional to the amount of data that must be acquired in the MRI raw data space, known
as k-space. The development of multi-coil receiver arrays, replacing single coils with smaller,
localized ones (Roemer et al., 1990; Sodickson & Manning, 1997), enabled accelerated data ac-
quisition through parallel imaging. Key algorithms, SENSitivity Encoding (SENSE) (Pruessmann
et al., 1999) and GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) (Griswold
et al., 2002), laid the groundwork for this. By combining parallel imaging with sparsity-promoting
terms, later compressed sensing (CS)-based methods achieve higher acceleration than traditional
techniques (Lustig et al., 2007; 2008).

Building on this concept, data-driven models, particularly physics-informed “unrolled” neural net-
works that emulate classical iterative optimization methods and leverage prior knowledge encoded
by convolutional neural networks (CNNs) (Ulyanov et al., 2018), attain cutting-edge outcomes in
terms of both reconstruction quality and speed (Aggarwal et al., 2018; Hammernik et al., 2018).
More recently, advancements in accelerated MRI reconstruction have been pursued through mod-
ern generative models. These generative models, rather than focusing on learning a single point
estimate, are designed to approximate the entire probability distribution of high-quality MR images
(Mardani et al., 2018; Tezcan et al., 2018; Song et al., 2022; Chung & Ye, 2022). This approach
aids in solving the inverse problem by enabling sampling from the posterior distribution p(x | y),
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where x represents the target fully sampled image, and y includes the undersampled multi-coil k-
space measurement. Despite achieving high reconstruction accuracy, these supervised frameworks
necessitate access to vast collections of fully sampled ground-truth images for training, which are
not only costly but also commonly unattainable. Emerging self-supervised techniques aim to reduce
the reliance on fully sampled MRI datasets during training (Wang et al., 2025). Nevertheless, they
fall short in accuracy when dealing with highly undersampled data, e.g., 8× accelerated MRI.

To address these challenges, we introduce an unsupervised generative model for parallel MRI re-
construction requiring solely undersampled k-space data for training. Drawing inspiration from the
generalized Stein’s Unbiased Risk Estimator (Stein, 1981; Eldar, 2008), we present the projected
conditional flow matching (PCFM) objective alongside its unsupervised adaptation, which facili-
tates learning the prior distribution of fully sampled MRI using only undersampled data. Given that
a closed-form solution to the projection operator is intractable for parallel MRI, we propose to em-
ploy a numerical method to approximate the projection operator during training. Subsequently, we
derive a new connection between the probability flow in the measurement space under projection and
the optimal solution to the proposed PCFM objective, introducing a reconstruction algorithm based
on the optimal PCFM solution. The proposed approach is also capable of dealing with noisy mea-
surements under the formulation. Our framework is evaluated using two public parallel brain and
cardiac MRI datasets, demonstrating superior reconstruction performance over existing baselines,
even when trained solely with undersampled k-space measurements.

2 BACKGROUND

2.1 PARALLEL MRI RECONSTRUCTION

The fundamental principle of parallel MRI builds on the fact that each coil in an array receives a dis-
tinct spatial sensitivity profile, that is, a unique spatially weighted view of the underlying anatomy.
This spatial encoding ability can be used to compensate for the spatial information lost when k-space
is undersampled. Formally, the forward model of parallel (also known as multi-coil) MRI writes

ys = Asx+ e, (1)

where s indexes the randomness in the undersampling mask, x ∈ X ⊂ CD is the underlying
fully sampled complex-valued image, ys = [y⊺

s,1, . . . ,y
⊺
s,C ]

⊺ ∈ Y ⊂ CCd is the acquired k-space
measurements from C receiver coils with d ≤ D, and e ∼ CN (0, σ2

0ICd) denotes measurement
noise. In particular, the coil-combined forward operator As is defined as

As ≜

MsFS1

...
MsFSC

 ∈ CCd×D, (2)

which is composed of the undersampling mask Ms ∈ {0, 1}d×D, the discrete Fourier transform
F ∈ CD×D, and diagonal matrices Sc ∈ CD×D representing the sensitivity maps. For parallel
MRI with acceleration factor α ≜ D/d > 1, Eq. (2) can be rank-deficient with a non-zero null space,
leading to a challenging ill-posed inverse problem. For simplicity, we assume that the randomness
in s is incorporated in y in the following, and thus denote the forward operator as A.

2.2 CONDITIONAL FLOW MATCHING

Conditional flow matching (CFM) (Lipman et al., 2023) provides a simulation-free technique to
learn a continuous normalizing flow (Chen et al., 2018) that transforms a base distribution p1 to a
target distribution p0. In this work, we assume pX1 = CN (0, 2ID), and pX0 produces the underlying
fully sampled images, where the superscript X indicates that the flow is in the fully sampled image
space X . This transformation can be specified by an ordinary differential equation (ODE) with a
time-dependent smooth vector field uX

t : [0, 1] × CD → CD, i.e., dxt = uX
t (xt)dt. This induces

a probability path pXt as the push-forward distribution of pX0 by the ODE dynamics, satisfying the
continuity equation (Villani et al., 2009):

∂pXt
∂t

+∇ · (pXt uX
t ) = 0. (3)
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CFM proposes to construct such a marginal vector field uX
t by introducing the conditional variable

zX ∼ q(zX) and conditional vector field uX
t (x | zX). In this paper, we consider the popular choice

of zX = (x0,x1) and the independent coupling q = pX0 ×pX1 as generalized by (Tong et al., 2023).
Then, we assume a conditional probability path pXt (· | zX) that satisfies the boundary conditions
pX0 = Eq(zX)

[
pX0 (· | zX)

]
and pX1 = Eq(zX)

[
pX1 (· | zX)

]
. One example is the conditional optimal

transport (OT) path pXt (x | zX) = δatx0+btx1(x) with at = 1− t and bt = t (Lipman et al., 2023;
Liu et al., 2023). This leads to the conditional vector field uX

t (x | zX) = a′tx0 + b′tx1 by the
continuity equation w.r.t. pXt (x | zX), where a′t ≜

dat

dt and b′t ≜
dbt
dt . Then by verifying Eq. (3), we

can show that the marginal vector field

uX
t (x) ≜ Eq(zX)

[
uX
t (x | zX)

pXt (x | zX)

pXt (x)

]
(4)

generates the probability flow pXt . Meanwhile, learning of the flow is achieved by minimizing the
conditional flow matching objective:

LCFM(θ) ≜ Et,q(zX),pX
t (x|zX)

∥∥hX
θ (x, t)− uX

t (x | zX)
∥∥2
2
, (5)

where hX
θ (·, t) is a network that predicts the X -space marginal vector field.

3 METHOD

Figure 1: Generation chart
of the dual-space conditional
probability paths, where ob-
served variables are shaded,
and deterministic variables are
in double circles. Dotted
green arrows indicate determin-
istic ODE flows, whereas pur-
ple ones denote conditional OT
paths. The path from x1 to y0 is
traversed either through the X -
space OR the Y-space diagram,
as indicated by the background
in different colors.

This section introduces the proposed framework designed to re-
construct parallel MRI using only undersampled k-space data.
The framework integrates two principal components: (1) the pro-
jected conditional flow matching (PCFM) objective along with its
unsupervised transformation as a new formulation for learning the
prior (Section 3.1), and (2) a new reconstruction algorithm for in-
ference that exploits the relationship between measurement-space
probability flow and the optimal solution to PCFM (Section 3.2).

3.1 PROJECTED CONDITIONAL FLOW MATCHING

Due to the scarcity of fully sampled ground-truth signal x0, op-
timizing the X -space CFM objective from Eq. (5) using a large
dataset of fully sampled MRI scans is impractical because the
conditional path and vector field within theX -space are not acces-
sible. To address this, we introduce a Y-space conditional proba-
bility path pYt (y | zY ) = δaty0+b1y1

(y), where zY ≜ (y0,y1),
in which y0 = Ax0 + e0 is the undersampled k-space mea-
surements from parallel MRI, and y1 = Ax1 + e1 with e1 ∼
CN (0, σ2

1ICd) is the projected noise sampled from the base dis-
tribution pX1 . This leads to

pYt (y | zX) =

∫
pYt (y | zY )p(zY | zX)dzY

= CN
(
y
∣∣A(atx0 + btx1), (a

2
tσ

2
0 + b2tσ

2
1)ICd

)
.

(6)

Fig. 1 depicts the graphical model of the random variables.

Since x0 and uX
t (x | zX) = a′tx0 + b′tx1 are unknown, and

the forward operator A is rank-deficient, we can only expect to
optimize the CFM objective Eq. (5) in the range spaceR(A⊤) of
A⊤ (Eldar, 2008). Therefore, we propose to optimize the following objective function

LPCFM(θ) ≜ Et,q(zX),pX
t (x|zX),pY

t (y|zX)

∥∥P [vX
θ (y, t)− uX

t (x | zX)
]∥∥2

2
, (7)

where P ≜ A+A is the orthogonal projection onto the range space R(A⊤), with A+ denoting
the Moore-Penrose pseudoinverse of A. Intuitively, this objective projects the CFM error onto the
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subspace “visible” to the k-space measurements from the mask M . Thus, we dub this objective
function projected conditional flow matching (PCFM).

We note that within the framework of the parallel MRI forward model, a closed-form solution for
this projection is not available. To tackle this issue, we note the relationships P = A+A =
(A∗A)+A∗A and recognize that A∗A is a positive semi-definite (PSD) matrix. Consequently,
we utilize a numerical approximation through the conjugate gradient (CG) method (Appendix C.1),
which is suitable for solving the linear system A∗ArXθ = A∗A

[
vX
θ (y, t)− uX

t (x | zX)
]
, where

rXθ = P
[
vX
θ (y, t)− uX

t (x | zX)
]
. The optimal solution to the PCFM objective is formalized by

the following proposition. The proofs can be found in Appendix A.

Proposition 1 (Optimal solution to PCFM). The minimizer of the PCFM objective is given by

vX
θ∗(y, t) = Eqt(zX |y),pX

t (x|zX)

[
uX
t (x | zX)

]
+w, (8)

where qt(z
X | y) = q(zX)pY

t (y|zX)

pY
t (y)

, and w is any vector in the null space of A, i.e., Aw = Pw =

0. In particular, when uX
t (x | zX) = a′tx0 + b′tx1 that is independent of x, we have

vX
θ∗(y, t) = Eqt(zX |y)

[
uX
t (x | zX)

]
+w. (9)

However, the PCFM objective Eq. (7) still depends on the unknown fully sampled MRI x0 through
Monte Carlo sampling from q(zX) during training. To address this, inspired by the generalized
Stein’s unbiased estimator (Eldar, 2008), we propose to construct an unbiased estimate of the PCFM
objective that does not involve the unknown x0. To this end, we notice an induced linear forward
model between the dual-space conditional vector fields

uY
t (y | zY ) = a′ty0 + b′ty1 = AuX

t (x | zX) + a′te0 + b′te1, (10)

and the deterministic mapping between the conditional path and the conditional vector field

y =
at
a′t

uY
t (y | zY )− b′t

(
at
a′t
− bt

b′t

)
y1. (11)

Based on this, we derive the following unsupervised transformation of the PCFM objective, which
does not require fully sampled MRI data for training the vector field predictor.

Proposition 2 (Unsupervised transformation of PCFM). Assuming deterministic conditional
probability paths x = atx0+btx1 and y = aty0+bty1 with y0 = Ax0+e0 and y1 = Ax1+e1,
where e0 ∼ CN (0, σ2

0ICd) and e1 ∼ CN (0, σ2
1ICd), then up to a constant the PCFM objective

can be transformed to

Et,q(zY ),pY
t (y|zY )

[∥∥P [vX
θ (A∗y, t)− ûX

t,ML

]∥∥2
2
+

2at
a′t

[(a′tσ0)
2 + (b′tσ1)

2]∇A∗y · PvX
θ (A∗y, t)

]
,

(12)

where q(zY ) = q(y0)q(y1) = q(y0)Eq(x1) [p(y1 | x1)] is sampled by the MRI forward model and
Monte Carlo estimation, P = A+A is the range-space projection, and

ûX
t,ML ≜ (A∗C−1

t A)+A∗C−1
t uY

t (y | zY ) (13)

with Ct = [(a′tσ0)
2 + (b′tσ1)

2]Id is the maximum likelihood solution of the forward model in
Eq. (10). Note that A+ denotes the Moore-Penrose pseudoinverse of A, which can be approxi-
mated by the conjugate gradient method (Appendix C.1).

The network vX
θ (·, t) takes A∗y as input to match the desired dimensionality of the architecture. By

optimizing Eq. (12), the optimal solution to PCFM can be determined in an unsupervised learning
fashion. The objective can also handle noisy measurements for σ0 > 0. In the following section, we
will delve into reconstructing a fully sampled image utilizing the obtained optimal PCFM solution.

3.2 RECONSTRUCTION VIA DUAL-SPACE CYCLIC FLOW INTEGRATION

In the inference phase, to reconstruct the fully sampled image x0 given the undersampled measure-
memt y0, we note that given the generative model in Fig. 1, the posterior distribution p(x0 | y0) can

4
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be written as

p(x0 | y0) =

∫
p(x0 | x1,y1,y0)p(x1 | y1,y0)p(y1 | y0)dx1dy1

=

∫
p(x0 | x1)p(x1 | y1)p(y1 | y0)dx1dy1,

(14)

which can be evaluated by ancestral Monte-Carlo sampling as shown in Fig. 2. We de-
tail the sampling procedure for each conditional distribution in the following paragraphs.

Figure 2: Inference steps of
the proposed reconstruction
algorithm.

Probability vector fields under projection and forward integra-
tion. To sample from the distribution p(y1 | y0), we note that
given the conditional probability paths in dual spaces illustrated in
Fig. 1, it is feasible to derive a specific relationship between the
marginal vector field in the Y-space and the optimal solution to
the PCFM as discussed in Proposition 1, leading to a delta dis-
tribution of p(y1 | y0) by the Y-space ODE. Recall that the Y-
space conditional probability path is given by Eq. (6). Denote
µt(z

X) ≜ A(atx0 + btx1) and σ2
t = a2tσ

2
0 + b2tσ

2
1 . Then the

time derivative of pYt (y | zX) can be written as

∂pYt (y | zX)

∂t
=

∂pYt (y | zX)

∂µt
· dµt

dt
+

∂pYt (y | zX)

∂σ2
t

dσ2
t

dt

= −∇yp
Y
t (y | zX) ·A(a′tx0 + b′tx1) +

1

2
∆yp

Y
t (y | zX)(2ata

′
tσ

2
0 + 2btb

′
tσ

2
1)

= −∇y ·
(
pYt (y | zX)

[
AuX

t (x | zX)− (ata
′
tσ

2
0 + btb

′
tσ

2
1)∇y log pYt (y | zX)

])
.

(15)

Therefore, by the continuity equation, we know that the Y-space conditional vector field

uY
t (y | zX) ≜ AuX

t (x | zX)− (ata
′
tσ

2
0 + btb

′
tσ

2
1)∇y log pYt (y | zX) (16)

generates the conditional probability path pYt (y | zX). Taking the expectation of Eq. (16) over
qt(z

X | y) and leveraging Eq. (9), we can obtain the marginal vector field in the Y-space in terms
of the optimal PCFM solution and the score function, as described in the following lemma.
Lemma 1. The Y-space marginal vector field that generates the probability path pYt takes the form

uY
t (y) = AvX

θ∗(y, t)− (ata
′
tσ

2
0 + btb

′
tσ

2
1)∇y log pYt (y). (17)

Meanwhile, the relationship between theY-space marginal vector field uY
t (y) and the score function

∇y log pYt (y) is established by the following lemma.

Lemma 2. Note that pY1 (y) =
∫
p1(y | x)pX1 (x)dx = CN (y | 0, 2AA∗ + σ2

1ICd). Then,

uY
t (y) =

a′t
at

y − bt

(
b′t −

a′t
at

bt

)
(2AA∗ + σ2

1ICd)∇y log pYt (y). (18)

The proof is done by writing uY
t (y) and ∇y log pYt (y) in terms of the conditional expectation

Eqt(y0|y)[y1], which can be found in Appendix A. Combining Lemma 1 and Lemma 2 by canceling
out the score function gives the following proposition that relates the Y-space marginal vector field
to the optimal solution to PCFM.
Proposition 3 (Vector fields under projection). For at = 1− t and bt = t, the Y-space marginal
vector field uY

t (y) can be expressed by vX
θ∗(y, t) as

uY
t (y) = AvX

θ∗(y, t)−
ct

1− t

[
(ct + σ2

1)ICd + 2AA∗]−1 [
(1− t)AvX

θ∗(y, t) + y
]
, (19)

where ct ≜ (1 − t)
(
1−t
t σ2

0 − σ2
1

)
. In addition, left-multiplying both sides with A∗ gives the more

computationally friendly formula when Cd > D:

A∗uY
t (y) = A∗AvX

θ∗(y, t)−
ct

1− t

[
(ct + σ2

1)ID + 2A∗A
]−1

A∗ [(1− t)AvX
θ∗(y, t) + y

]
.

(20)
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Algorithm 1: Reconstruction via Dual-Space Cyclic Integration with PCFM

Input: k-space measurement y0, pretrained optimal solution to PCFM vX
θ∗(·, t), number of

time steps T .
Output: Reconstructed image x0 of y0.

1 for t = 0, . . . , (T−1)/T do
2 yt+1/T ← yt +

1
T u

Y
t (y) ▷ Forward integration using Proposition 3

3 Sample x1 ∼ p1(x | y). ▷ Posterior sampling with Eq. (22)
4 for t ∈ {(T−1)/T , . . . , 0} do
5 ỹt+1/T ← at+1/Ty0 + bt+1/Ty1

6 x̃t ← xt+1/T − 1
T v

X
θ∗(ỹt+1/T , t+ 1/T) ▷ Backward integration

7 xt ← x̃t −A+(Ax̃t − ỹt) ▷ Data consistency step
8 return x0.

This proposition asserts that, using the optimal solution of the PCFM, an associated marginal vector
field can be derived, which facilitates the generation of the probability flow within the measurement
space. Consequently, to sample from p(y1 | y0), the Y-space flow can be forward integrated using
uY
t to produce the subsequent y1 from the observed initial y0, i.e.,

dyt = uY
t (yt)dt. (21)

Posterior sampling. The posterior p(x1 | y1) follows a closed-form Gaussian distribution

p(x1 | y1) = p1(x | y) ∝ pX1 (x)p1(y | x)

= CN

(
x

∣∣∣∣∣
(
σ2
1

2
ID +A∗A

)−1

A∗y, σ2
1

(
σ2
1

2
ID +A∗A

)−1
)
,

(22)

which can be easily sampled by linear transformation of a standard Gaussian vector.

Backward integration and measurement consistency. The distribution p(x0 | x1) is a delta
distribution given x1 due to the X -space flow, which we can approximate using the backward ODE
integration with the PCFM optimal solution, i.e.,

dx̃t = vX
θ∗(ỹt, t)dt, (23)

where x̃1 ≜ x1 and ỹt ≜ aty0 + bty1. In addition, to enforce measurement consistency with
ỹt as in many inverse problem solving algorithms (Daras et al., 2024a), we can employ the range-
null decomposition (Wang et al., 2023) after each step of the backward integration if the observed
measurement y0 is clean, i.e.,

xt ← x̃t −A+(Ax̃t − ỹt), (24)

where the pseudoinverse operator A+ can be approximated by the CG method. However, if the
measurement y0 is noisy, this step will also inject noise into the reconstruction. To address this, we
find that the Plug-and-Play (PnP) framework can perform better on noisy measurement (Combettes
& Wajs, 2005; Venkatakrishnan et al., 2013; Martin et al., 2025), which we introduce in Appendix B.
Ablation study on the backward sampling strategies is presented in Appendix E.2.

Reconstruction algorithm. The overall discrete-time algorithm is outlined in Alg. 1 for scenarios
involving noiseless measurements and in Alg. 2 within Appendix B for noisy measurements.

4 RELATED WORK

Diffusion model & flow matching for inverse problems. A comprehensive review on diffusion
models for inverse problems is provided by (Daras et al., 2024a) and (Chung et al., 2025). For exam-
ple, diffusion posterior sampling (DPS) is proposed to sample from the posterior distribution based
on score matching (Chung et al., 2023) which however requires the number of function evaluations
(NFEs)=1000. (Wang et al., 2023) proposed range-null decomposition based on DDIM sampling

6
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(Song et al., 2021), which only needs NFEs=100. Recently, flow matching has also been explored to
solve inverse problems (Pokle et al., 2024; Zhang et al., 2024; Qin et al., 2025; Martin et al., 2025;
Yan et al., 2025). For example, (Pokle et al., 2024) proposed to combine the prior score function
based on flow matching and the likelihood score based on ΠGDM (Song et al., 2023). (Martin
et al., 2025) proposed to integrate the PnP framework with flow matching. Nevertheless, existing
diffusion models and flow matching require large amounts of ground-truth data to learn their prior
distribution, which are impossible or expensive to acquire for MRI in real scenarios, for example, in
dynamic or low-field MRI (Lustig et al., 2007; Marques et al., 2019).

Self-supervised & unsupervised MRI reconstruction. We explicitly distinguish between self-
supervised methods based on additional subsampling of the available k-space and unsupervised ap-
proaches that use all the observed undersampled k-space measurement, while both are referred to as
self-supervised in a recent benchmark study (Wang et al., 2025). Multiple recent studies follow the
prior learning paradigm and have explored methodologies to infer the prior distribution of ground-
truth data from only corrupted measurements based on diffusion models or flow matching. The
ambient diffusion family (Daras et al., 2023; Aali et al., 2025; Daras et al., 2024b; 2025) proposed
optimizing the denoising diffusion objective through a self-supervised approach by introducing fur-
ther corruption to the measurements. Our work is more related to (Kawar et al., 2024) and (Luo
et al., 2025) where they proposed adapting the Ensemble SURE frameworks (Aggarwal et al., 2022)
to the diffusion model and flow matching objectives in an unsupervised fashion. They focused solely
on a single-coil MRI model with a feasible weighted projection operator. In contrast, we introduce
a rigorous GSURE-based projected CFM formulation that facilitates optimization in parallel MRI.

5 NUMERICAL EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets and preprocessing. Experiments were conducted on the NYU fastMRI (Knoll et al.,
2020; Zbontar et al., 2018) and the CMRxRecon challenge (2023) (Wang et al., 2024; Lyu et al.,
2025) datasets to evaluate the performance of the model for accelerated multi-coil MRI recon-
struction. A selection of 11094/1584/3172 T2-weighted brain MRI slices and 5451/779/1557 car-
diac T1/T2 quantitative mapping slices was randomly sampled for training/validation/test, respec-
tively. Ground-truth images were obtained by the SENSE reconstruction from fully sampled k-space
(Pruessmann et al., 1999), i.e., x0 ≜ (

∑
c S

∗
cSc)

−1∑
c S

∗
cF

∗ŷ0,c, where ŷ0 is the fully sampled k-
space measurement, and the coil sensitivity maps were estimated by ESPIRiT (Uecker et al., 2014).
We retrospectively simulated a random Cartesian (1D) undersampling mask for each image, where
every mask contains fully sampled low-frequency k-space lines. The other lines were randomly uni-
formly sampled according to the acceleration factor. The zero-filled adjoint transform A∗y0 is the
undersampled image before reconstruction.

Implementation details. The conditional OT path (Lipman et al., 2023) is adopted for the proposed
framework, where at = t and bt = 1 − t. The noise level of the original k-space is assumed
to be σ0 = 10−3, which can be considered as noiseless. We set σ1 = 0 for simplicity. We use
ADM U-Net (Dhariwal & Nichol, 2021) as the network architecture for velocity field prediction,
where each intermediate convolutional block is followed by adaptive group normalization whose
parameters are conditioned on the time points. Multi-head attention and dropout layers are applied
at the lowest three resolutions of the network. We train the network from scratch on the training data
by the AdamW optimizer (Loshchilov & Hutter, 2019) for 100K steps, with a learning rate of 10−4

and a weight decay coefficient of 0.1. Exponential moving average of the network parameters was
performed every 100 training steps with a rate of 0.99. In the inference phase, we set the number of
time steps as T = 10 and the number of CG steps (Appendix C.1) for solving A+ as 30.

5.2 BENCHMARK STUDY ON PUBLIC DATASETS

We benchmark our method against three types of baseline approaches on the fastMRI brain and
CMRxRecon datasets. (A) Supervised methods that require fully sampled MRIs during training:
MoDL (Aggarwal et al., 2018), DDNM+ (Wang et al., 2023), OT-ODE (Pokle et al., 2024), and
PnP-Flow, (Martin et al., 2025). (B) Self-supervised methods that learn to reconstruct by additional
subsampling of the available k-space measurements: SSDU (Yaman et al., 2020), Weighted SSDU
(Millard & Chiew, 2023) and Robust SSDU (Millard & Chiew, 2024). (C) Unsupervised methods
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Table 1: Qualitative results of 4× and 8× accelerated multi-coil MRI reconstruction using various
reconstruction methods on the fastMRI brain data with the random uniform undersampling pattern.
Best results within each supervision category are highlighted in bold. The difference in metrics is
statistically significant between our method and the others by the two-sided paired t-test (p < 0.05).

Training
Supervision

Reconstruction
Method

SSIM ↑ PSNR ↑
NFEs ↓

4× 8× 4× 8×

None Zero-Filled 0.815 ± 0.087 0.730 ± 0.113 28.28 ± 3.80 24.44 ± 3.98 N/A

Supervised

MoDL 0.970±0.036 0.916 ± 0.044 39.71 ± 2.93 32.32 ± 3.07 1
DDNM+ 0.938 ± 0.041 0.920±0.040 40.00 ± 2.78 35.24 ± 2.85 100
OT-ODE 0.907 ± 0.054 0.852 ± 0.060 33.95 ± 2.32 28.86 ± 2.94 100
PnP-Flow 0.951 ± 0.044 0.913 ± 0.043 37.92 ± 2.44 32.85 ± 2.80 100

Self-supervised
SSDU 0.831 ± 0.076 0.792 ± 0.094 28.13 ± 2.44 26.61 ± 3.68 1

Weighted SSDU 0.939 ± 0.049 0.870±0.055 36.09 ± 2.64 29.72 ± 2.90 1
Robust SSDU 0.941±0.047 0.856 ± 0.063 36.23 ± 2.58 29.72 ± 2.90 1

Unsupervised

REI 0.683 ± 0.120 0.715 ± 0.118 21.59 ± 2.90 21.62 ± 2.76 1
MOI 0.869 ± 0.065 0.747 ± 0.105 30.97 ± 2.74 25.16 ± 3.94 1

ENSURE 0.899 ± 0.065 0.800 ± 0.104 32.75 ± 4.20 27.12 ± 4.33 1
GTF2M 0.916 ± 0.055 0.852 ± 0.057 33.99 ± 2.33 28.40 ± 3.05 20

PCFM (Ours) 0.983±0.032 0.948±0.034 42.19 ± 3.71 35.08 ± 3.35 20

Table 2: Qualitative results of 4× and 8× accelerated multi-coil MRI reconstruction using various
reconstruction methods on the CMRxRecon 2023 cardiac T1/T2 quantitative mapping data with the
random uniform undersampling pattern. Best results within each supervision category are high-
lighted in bold. The difference in metrics is statistically significant between our method and the
others by the two-sided paired t-test (p < 0.05).

Training
Supervision

Reconstruction
Method

SSIM ↑ PSNR ↑
NFEs ↓

4× 8× 4× 8×

None Zero-Filled 0.769 ± 0.057 0.747 ± 0.056 27.01 ± 1.97 26.11 ± 1.90 N/A

Supervised

MoDL 0.979±0.011 0.943 ± 0.025 41.79 ± 3.38 36.36 ± 3.14 1
DDNM+ 0.977 ± 0.011 0.953±0.022 44.93 ± 3.35 39.60 ± 3.31 100
OT-ODE 0.922 ± 0.036 0.870 ± 0.052 35.65 ± 3.23 32.08 ± 3.00 100
PnP-Flow 0.963 ± 0.021 0.924 ± 0.038 39.77 ± 3.57 35.13 ± 3.46 100

Self-supervised
SSDU 0.888 ± 0.035 0.811 ± 0.051 32.64 ± 2.59 29.23 ± 2.37 1

Weighted SSDU 0.872 ± 0.050 0.831 ± 0.050 32.11 ± 2.88 29.82 ± 2.58 1
Robust SSDU 0.912±0.031 0.861±0.044 33.93 ± 2.59 31.10 ± 2.66 1

Unsupervised

REI 0.736 ± 0.056 0.716 ± 0.060 23.65 ± 2.12 26.62 ± 1.96 1
MOI 0.971 ± 0.015 0.874 ± 0.040 40.13 ± 3.26 31.47 ± 2.62 1

ENSURE 0.918 ± 0.028 0.849 ± 0.052 34.57 ± 3.13 30.27 ± 2.48 1
GTF2M 0.918 ± 0.028 0.881 ± 0.038 33.67 ± 2.43 31.33 ± 2.42 20

PCFM (Ours) 0.994±0.008 0.974±0.016 52.39 ± 9.81 40.50 ± 3.84 20

that learn to reconstruct using all available k-space measurements: REI (Chen et al., 2022), MOI
(Tachella et al., 2022), ENSURE (Aggarwal et al., 2022), and GTF2M (Luo et al., 2025). Details
of the baseline setups can be found in Appendix D.
Table 1 and Table 2 present quantitative results on the test data of multi-coil brain and cardiac MRI,
respectively. The tables show that our method ranks first in terms of SSIM and PSNR on both
datasets among all self-supervised and unsupervised methods, and outperforms all supervised ap-
proaches except for PSNR on fastMRI 8× data. Furthermore, our approach demonstrates better
efficiency relative to baseline approaches based on supervised diffusion models or flow matching,
even though it employs the same network structure and training strategy. This is achieved with a sig-
nificant decrease in NFEs when compared to supervised diffusion models and flow matching-based
techniques. Fig. 3 and Fig. S1 visualize reconstruction and error map on several multi-coil brain
and cardiac MRI test samples, respectively. Our method produces error maps that either match or
exceed those generated by supervised baseline approaches, particularly in areas around anatomical
boundaries where high-frequency details are absent in the undersampled k-space. Additional abla-
tion studies on forward/backward sampling strategies and inference time comparison are provided
in Appendix E.
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Zero-Filled DDNM

4x

OT-ODEMoDL GTF2M

8x

Ground-Truth ENSURE
SSIM=0.771
PSNR=26.52

SSIM=0.978
PSNR=41.25

SSIM=0.654
PSNR=21.46

SSIM=0.861
PSNR=27.72

SSIM=0.955
PSNR=41.58

SSIM=0.923
PSNR=34.49

SSIM=0.885
PSNR=31.64

SSIM=0.880
PSNR=31.13

SSIM=0.798
PSNR=26.30

SSIM=0.684
PSNR=22.87

SSIM=0.933
PSNR=34.67

SSIM=0.831
PSNR=26.80

PnP-Flow
SSIM=0.961
PSNR=39.55

SSIM=0.892
PSNR=31.15

SSDU Weighted SSDU
SSIM=0.833
PSNR=28.45

SSIM=0.957
PSNR=37.63

SSIM=0.729
PSNR=25.06

SSIM=0.860
PSNR=28.86

Robust SSDU
SSIM=0.958
PSNR=38.39

SSIM=0.767
PSNR=24.84

REI
SSIM=0.615
PSNR=21.25

SSIM=0.594
PSNR=18.93

MOI
SSIM=0.870
PSNR=30.40

SSIM=0.635
PSNR=21.30

PCFM
SSIM=0.984
PSNR=41.79

SSIM=0.935
PSNR=33.18

Figure 3: Visualization of reconstruction on two test samples of 4× and 8× accelerated multi-coil
brain MRI from the compared methods. The k-space are presented in log-scale absolute values. The
error maps are presented in values relative to the peak intensity in the ground-truth image.

Table 3: Qualitative results of 4× and 8× reconstruction of CMRxRecon 2023 cardiac T1/T2 quanti-
tative mapping images trained and tested both on noisy data. The difference in metrics is statistically
significant between our method and the others by the two-sided paired t-test (p < 0.05).

Training
Noise level

Reconstruction
Method

SSIM ↑ PSNR ↑
NFEs ↓

4× 8× 4× 8×

σ0 = 0.05
Zero-Filled 0.768 ± 0.057 0.746 ± 0.056 27.01 ± 1.97 26.11 ± 1.90 N/A

Robust SSDU 0.912 ± 0.031 0.855 ± 0.045 34.06 ± 2.69 30.81 ± 2.61 10
ENSURE 0.861 ± 0.050 0.800 ± 0.058 33.25 ± 2.75 29.80 ± 2.39 1

PnP-PCFM (Ours) 0.928±0.027 0.892±0.038 35.58 ± 2.75 33.14 ± 2.82 20

σ0 = 0.1
Zero-Filled 0.763 ± 0.058 0.744 ± 0.057 26.98 ± 1.97 26.10 ± 1.90 N/A

Robust SSDU 0.906 ± 0.033 0.855 ± 0.045 33.80 ± 2.68 30.91 ± 2.64 10
ENSURE 0.784 ± 0.063 0.769 ± 0.062 31.39 ± 2.54 28.85 ± 2.30 1

PnP-PCFM (Ours) 0.921±0.029 0.889±0.039 35.62 ± 2.85 33.04 ± 2.82 20

σ0 = 0.2
Zero-Filled 0.744 ± 0.062 0.732 ± 0.060 26.89 ± 1.96 26.05 ± 1.91 N/A

Robust SSDU 0.878 ± 0.039 0.822 ± 0.049 32.47 ± 2.52 29.78 ± 2.39 10
ENSURE 0.563 ± 0.094 0.542 ± 0.090 25.88 ± 2.55 25.29 ± 2.39 1

PnP-PCFM (Ours) 0.885±0.038 0.868±0.044 34.34 ± 2.76 32.52 ± 2.77 20

5.3 NOISY DATA

We proceed to assess our method on data with noise by introducing additive Gaussian noise with
σ0 = 0.05, 0.1, 0.2 to the training set based on the original k-space measurements. The model’s
performance is evaluated on both noiseless and noisy test datasets. For evaluation, Alg. 1 is used
if the data set is noiseless, otherwise Alg. 2 is used. Table S4 displays the quantitative results
regarding the noiseless test data derived from the CMRxRecon 2023 dataset. A notable observation
is that the model retains its performance as if the training data were free of noise, suggesting that
PCFM effectively learns the prior distribution of fully sampled MRI even when trained on noisy and
undersampled inputs. Table 3 presents the quantitative results for noisy test data, comparing PnP-
PCFM against the baseline models Robust SSDU and ENSURE, which are designed to handle noisy
inputs. The proposed approach exhibits superior performance compared to them. Fig. S2 provides a
visualization of reconstruction and error maps for two test samples involving 4× and 8× accelerated
multi-coil cardiac MRI with varying levels of additive Gaussian noise.

6 CONCLUSION

In this study, we present Projected Conditional Flow Matching (PCFM), a new framework that
utilizes the generalized Stein’s unbiased risk estimator to learn the prior distribution of fully sampled
parallel MRI using solely undersampled k-space data. From the optimal PCFM solution, we derived
a marginal vector field within the associated measurement space, facilitating the creation of a dual-
space cyclic integration method for MRI reconstruction. Experimental assessments on two parallel
MRI datasets demonstrate that PCFM attains leading performance relative to prior baselines on both
noiseless and noisy data.
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Appendices
A PROOFS

Proposition 1 (Optimal solution to PCFM). The minimizer of the PCFM objective is given by

vX
θ∗(y, t) = Eqt(zX |y),pX

t (x|zX)

[
uX
t (x | zX)

]
+w, (S1)

where qt(z
X | y) = q(zX)pY

t (y|zX)

pY
t (y)

, and w is any vector in the null space of A, i.e., Aw = 0. In

particular, when uX
t (x | zX) = a′tx0 + b′tx1 that is independent of x, we have

vX
θ∗(y, t) = Eqt(zX |y)

[
uX
t (x | zX)

]
+w. (S2)

Proof. Since q(zX)pXt (x | zX)pYt (y | zX) = pYt (y)q
Y
t (zX | y)pXt (x | zX) and by the law of

total expectation, the PCFM objective can be written as

LPCFM(θ) ≜ Et,q(zX),pX
t (x|zX),pY

t (y|zX)

∥∥P [vX
θ (y, t)− uX

t (x | zX)
]∥∥2

2

= Et,pY
t (y)EqYt (zX |y),pX

t (x|zX)

∥∥P [vX
θ (y, t)− uX

t (x | zX)
]∥∥2

2
.

(S3)

To minimize the total expectation, we can minimize the inner conditional expectation for each value
of t and y independently. Let ûX

t (y) ≜ Eqt(zX |y),pX
t (x|zX)

[
uX
t (x | zX)

]
. For fixed t and y, the

inner expectation can be transformed as

It,y(θ) ≜ EqYt (zX |y),pX
t (x|zX)

∥∥P [vX
θ (y, t)− uX

t (x | zX)
]∥∥2

2

= EqYt (zX |y),pX
t (x|zX)

∥∥P [vX
θ (y, t)− ûX

t (y) + ûX
t (y)− uX

t (x | zX)
]∥∥2

2

= EqYt (zX |y),pX
t (x|zX)

[∥∥P [vX
θ (y, t)− ûX

t (y)
]∥∥2

2

+ 2
(
vX
θ (y, t)− ûX

t (y)
)∗

P
(
ûX
t (y)− uX

t (x | zX)
) ]

+ const.,

(S4)

where we note that

EqYt (zX |y),pX
t (x|zX)

(
vX
θ (y, t)− ûX

t (y)
)∗

P
(
ûX
t (y)− uX

t (x | zX)
)

=
(
vX
θ (y, t)− ûX

t (y)
)∗

P
[
ûX
t (y)− EqYt (zX |y),pX

t (x|zX)u
X
t (x | zX)

]
= 0.

(S5)

Therefore, It,y(θ) = EqYt (zX |y),pX
t (x|zX)

∥∥P [vX
θ (y, t)− ûX

t (y)
]∥∥2

2
, which is minimized when

vX
θ (y, t) = ûX

t (y) +w, (S6)

where w is in the null space of P , i.e., Pw = 0, which is equivalent to Aw = 0.

Proposition 2 (Unsupervised transformation of PCFM). Assuming deterministic conditional
probability paths x = atx0+btx1 and y = aty0+bty1 with y0 = Ax0+e0 and y1 = Ax1+e1,
where e0 ∼ CN (0, σ2

0ICd) and e1 ∼ CN (0, σ2
1ICd), then up to a constant the PCFM objective

can be transformed to

Et,q(zY ),pY
t (y|zY )

[∥∥P [vX
θ (A∗y, t)− ûX

t,ML

]∥∥2
2
+

2at
a′t

[(a′tσ0)
2 + (b′tσ1)

2]∇A∗y · PvX
θ (A∗y, t)

]
,

(S7)

where q(zY ) = q(y0)q(y1) = q(y0)Eq(x1) [p(y1 | x1)] is sampled by the MRI and Monte Carlo
estimation, P = A+A is the range-space projection, and

ûX
t,ML ≜ (A∗C−1

t A)+A∗C−1
t uY

t (y | zY ) (S8)

with Ct = [(a′tσ0)
2 + (b′tσ1)

2]Id is the maximum likelihood solution of the forward model in
Eq. (10). Note that A+ denotes the Moore-Penrose pseudoinverse of A, which can be approxi-
mated by the conjugate gradient method (Appendix C.1).
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Proof. The proof is inspired from (Eldar, 2008). Noting the deterministic mapping between the
Y-space conditional path and the conditional vector field

y =
at
a′t

uY
t (y | zY )− b′t

(
at
a′t
− bt

b′t

)
y1, (S9)

we can write vX
θ (y, t) = vX

θ

(
uY
t (y | zY ), t

)
and the objective as

LPCFM(θ) = Et,q(zX),pX
t (x|zX),pY

t (y|zX)

∥∥P [vX
θ

(
uY
t (y | zY ), t

)
− uX

t (x | zX)
]∥∥2

2
. (S10)

By the linear forward model over the dual-space conditional vector fields

uY
t (y | zY ) = AuX

t (x | zX) + a′te0 + b′te1, (S11)

we note that the sufficient statistic µX
t ≜ A∗C−1

t uY
t follows a Gaussian distribution

CN (A∗C−1
t AuX

t ,A∗C−1
t A) with probability density function (pdf)

p(µX
t ) = q(µX

t ) exp
(
uX
t

∗
µX

t − g(uX
t )
)
, (S12)

where

q(µX
t ) = K · exp

(
−1

2
µX

t

∗ (
A∗C−1

t A
)+

µX
t

)
,

g(uX
t ) =

1

2
uX
t

∗
A∗C−1

t AuX
t .

(S13)

Assuming the network’s input to be µX
t , we can write

LPCFM(θ) = Et,q(zX),pX
t (x|zX),pY

t (y|zX)

[
uX
t

∗
PuX

t + vX
θ (µX

t , t)
∗
PvX

θ (µX
t , t)− 2uX

t

∗
PvX

θ (µX
t , t)

]
,

(S14)

and

EpY
t (y|zX)

[
uX
t

∗
PvX

θ (µX
t , t)

]
= Ep(µX

t )

[
uX
t

∗
PvX

θ (µX
t , t)

]
=

∫
vX
θ (µX

t , t)
∗
PuX

t · q(µX
t ) exp

(
uX
t

∗
µX

t − g(uX
t )
)
dµX

t .

(S15)

Denote h(µX
t ) ≜ exp

(
uX
t

∗
µX

t − g(uX
t )
)

. Substituting uX
t h(µX

t ) = ∇µX
t
h(µX

t ) and integrating
by parts, we have

Ep(µX
t )

[
uX
t

∗
PvX

θ (µX
t , t)

]
=

∫
vX
θ (µX

t , t)
∗
PuX

t · q(µX
t )∇µX

t
h(µX

t )dµX
t

= −
∫

h(µX
t )∇µX

t
·
[
q(µX

t )PvX
θ (µX

t , t)
]
dµX

t ,

(S16)

where

∇µX
t
·
[
q(µX

t )PvX
θ (µX

t , t)
]
= q(µX

t )
[
∇µX

t
· PvX

θ (µX
t , t) + vX

θ (µX
t , t)

∗
P∇µX

t
ln q(µX

t )
]

(S17)

and ln q(µX
t ) = −

(
A∗C−1

t A
)+

µX
t = −ûX

t,ML. Therefore,

Ep(µX
t )

[
uX
t

∗
PvX

θ (µX
t , t)

]
= Ep(µX

t )

[
−∇µX

t
· PvX

θ (µX
t , t) + vX

θ (µX
t , t)

∗
P ûX

t,ML

]
(S18)

where

LPCFM(θ) = E
[
uX
t

∗
PuX

t + vX
θ (µX

t , t)
∗
PvX

θ (µX
t , t) + 2∇µX

t
· PvX

θ (µX
t , t)− 2vX

θ (µX
t , t)

∗
P ûX

t,ML

]
= E

[∥∥P [vX
θ (µX

t , t)− ûX
t,ML

]∥∥2
2
+ 2∇µX

t
· PvX

θ (µX
t , t) +

∥∥PuX
t

∥∥2
2
−
∥∥P ûX

t,ML

∥∥2
2

]
= Et,q(zX),pX

t (x|zX),pY
t (y|zX)

[∥∥P [vX
θ (µX

t , t)− ûX
t,ML

]∥∥2
2
+ 2∇µX

t
· PvX

θ (µX
t , t)

]
+ const.

(S19)
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Then, using Eq. (S9) and writing back vX
θ (µX

t , t) = vX
θ (A∗y, t), we obtain by change of variables

that LPCFM(θ) can be transformed to the following expression up to a constant

Et,q(zX),pY
t (y|zX)

[∥∥P [vX
θ (A∗y, t)− ûX

t,ML

]∥∥2
2
+

2at
a′t

[(a′tσ0)
2 + (b′tσ1)

2]∇A∗y · PvX
θ (A∗y, t)

]
.

(S20)

Finally, it concludes the proof by noting that

Eq(zX)

[
pYt (y | zX)

]
= pYt (y) = Eq(zY )

[
pYt (y | zY )

]
, (S21)

where q(zY ) = q(y0)Eq(x1) [p(y1 | x1)] is sampled by the MRI and Monte Carlo estimation.

Lemma 1. The Y-space marginal vector field that generates the probability path pYt takes the form

uY
t (y) = AvX

θ∗(y, t)− (ata
′
tσ

2
0 + btb

′
tσ

2
1)∇y log pYt (y). (S22)

Proof. Eq. (16) shows that the Y-space conditional vector field is

uY
t (y | zX) = AuX

t (x | zX)− (ata
′
tσ

2
0 + btb

′
tσ

2
1)∇y log pYt (y | zX). (S23)

Therefore, by Proposition 1, the Y-space marginal vector field takes the form

uY
t (y) = Eqt(zX |y)

[
uY
t (y | zX)

]
= AEqt(zX |y)

[
uX
t (x | zX)

]
− (ata

′
tσ

2
0 + btb

′
tσ

2
1)Eqt(zX |y)

[
∇y log pYt (y | zX)

]
= AvX

θ∗(y, t)− (ata
′
tσ

2
0 + btb

′
tσ

2
1)∇y log pYt (y),

(S24)

where we have used the fact that

Eqt(zX |y)
[
∇y log pYt (y | zX)

]
=

∫
qt(z

X | y) 1

pYt (y | zX)
∇yp

Y
t (y | zX)dzX

=
1

pYt (y)

∫
q(zX)∇yp

Y
t (y | zX)dzX

=
1

pYt (y)
∇y

∫
q(zX)pYt (y | zX)dzX

=
1

pYt (y)
∇yp

Y
t (y)

= ∇y log pYt (y).

(S25)

Lemma 2. Note that pY1 (y) =
∫
p1(y | x)pX1 (x)dx = CN (y | 0, 2AA∗ + σ2

1ICd). Then,

uY
t (y) =

a′t
at

y − bt

(
b′t −

a′t
at

bt

)
(2AA∗ + σ2

1ICd)∇y log pYt (y). (S26)

Proof. Taking y0 as the conditioning variable, we have

uY
t (y) = Eqt(y0|y) [a

′
ty0 + b′ty1]

= Eqt(y0|y)

[
a′t

y − bty1

at
+ b′ty1

]
=

a′t
at

y +

(
b′t −

a′t
at

bt

)
Eqt(y0|y)[y1],

(S27)

where y1 = y−aty0

bt
.
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On the other hand, noting that pYt (y | y0) = CN
(
y | aty0, b

2
t (2AA∗ + σ2

1ICd)
)
, the score func-

tion can be written as

∇y log pYt (y) =
1

pYt (y)
∇yp

Y
t (y)

=
1

pYt (y)
∇y

∫
pYt (y | y0)q(y0)dy0

=
1

pYt (y)

∫
pYt (y | y0)q(y0)∇y log pYt (y | y0)dy0

= − 1

pYt (y)

∫
pYt (y | y0)q(y0)

(2AA∗ + σ2
1ICd)

−1(y − aty0)

b2t
dy0

= −
∫

qt(y0 | y)
(2AA∗ + σ2

1ICd)
−1bty1

b2t
dy0

= − (2AA∗ + σ2
1ICd)

−1

bt
Eqt(y0|y)[y1].

(S28)

Combining Eq. (S27) and Eq. (S28) by canceling out Eqt(y0|y)[y1] completes the proof.

Proposition 3 (Vector fields under projection). For at = 1− t and bt = t, the Y-space marginal
vector field uY

t (y) can be expressed by vX
θ∗(y, t) as

uY
t (y) = AvX

θ∗(y, t)−
ct

1− t

[
(ct + σ2

1)ICd + 2AA∗]−1 [
(1− t)AvX

θ∗(y, t) + y
]
, (S29)

where ct ≜ (1 − t)
(
1−t
t σ2

0 − σ2
1

)
. In addition, left-multiplying both sides with A∗ gives the more

computationally friendly formula when Cd > D:

A∗uY
t (y) = A∗AvX

θ∗(y, t)−
ct

1− t

[
(ct + σ2

1)ID + 2A∗A
]−1

A∗ [(1− t)AvX
θ∗(y, t) + y

]
.

(S30)

Proof. For at = 1− t and bt = t, Lemma 2 indicates

∇y log pYt (y) = −
1

t
(2AA∗ + σ2

1ICd)
−1
[
y + (1− t)uY

t (y)
]
. (S31)

Substituting this into Lemma 1 gives the equation

uY
t (y) = AvX

θ∗(y, t)−
(
1− t

t
σ2
0 − σ2

1

)
(2AA∗ + σ2

1ICd)
−1
[
y + (1− t)uY

t (y)
]
. (S32)

Denoting u ≜ uY
t (y) and v ≜ vX

θ∗(y, t), then solving for u in the above equation gives

u =
(
I + c(2AA∗ + σ2

1ICd)
−1
)−1

(
Av − c

1− t
(2AA∗ + σ2

1ICd)
−1y

)
, (S33)

where c ≜
(
1−t
t σ2

0 − σ2
1

)
(1− t).

By the Woodbury matrix identity (A+UCV )−1 = A−1−A−1U(C−1+V A−1U−1)−1V A−1,
we have (

I + c(2AA∗ + σ2
1I)

−1
)−1

= I − c
(
cI + 2AA∗ + σ2

1I
)−1

, (S34)
and note that(

I + c(2AA∗ + σ2
1I)

−1)
)−1

(2AA∗ + σ2
1I)

−1 =
(
cI + 2AA∗ + σ2

1I
)−1

. (S35)
Therefore,

u =
[
I − c

(
cI + 2AA∗ + σ2

1I
)−1
]
Av − c

1− t

(
cI + 2AA∗ + σ2

1I
)−1

y

= Av − c
(
cI + 2AA∗ + σ2

1I
)−1

[
Av +

1

1− t
y

]
= Av − c

1− t

(
cI + 2AA∗ + σ2

1I
)−1

[(1− t)Av + y] ,

(S36)

and by the identity A∗(cICd + 2AA∗ + σ2
1ICd)

−1 = (cID + 2A∗A+ σ2
1ID)−1A∗,

A∗u = A∗Av − c

1− t
(cID + 2A∗A+ σ2

1I)
−1A∗ [(1− t)Av + y] . (S37)
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Algorithm 2: PnP Cyclic Integration with PCFM for Noisy Measurements

Input: k-space measurement y0, pretrained optimal solution to PCFM vX
θ∗(·, t), number of

time steps T , adaptive step size γt.
Output: Reconstructed image x0 of y0.

1 for t = 0, . . . , (T−1)/T do
2 yt+1/T ← yt +

1
T u

Y
t (y) ▷ Forward integration using Proposition 3

3 Sample x1 ∼ p1(x | y). ▷ Posterior sampling with Eq. (22)
4 for t ∈ {1, . . . , 1/T} do
5 ỹt ← aty0 + bty1

6 x̃0 ← xt − tvX
θ∗(ỹt, t) ▷ PnP-Flow denoising step

7 x0 ← x̃0 − γtA
∗(Ax̃0 − ỹ0) ▷ Gradient step

8 xt−1/T ← at−1/Tx0 + bt−1/Tx1 ▷ Interpolation step

9 return x0.

B PLUG-AND-PLAY CYCLIC INTEGRATION WITH PCFM FOR NOISY
MEASUREMENTS

The plug-and-play (PnP) framework (Venkatakrishnan et al., 2013; Fang et al., 2024) utilizes off-
the-shelf denoising techniques to address the general inverse problem while optimizing the objective
function

min
x

{
1

2
∥y −A(x)∥22 +R(x)

}
, (S38)

where R(x) serves as a regularizer, encouraging solutions that are probable under the prior distribu-
tion of x. PnP substitutes the explicit solution of the proximal operator

proxR(y) ≜ argmin
x

{
1

2
∥y − x∥22 +R(x)

}
, (S39)

which is utilized to optimize the objective through methods such as proximal gradient descent (PGD)
(Beck, 2017), half quadratic splitting (HQS) (Geman & Yang, 1995), and alternating direction meth-
ods of multipliers (ADMM) (Boyd et al., 2011). In situations involving noisy k-space data, we utilize
the PGD and PnP-Flow frameworks (Martin et al., 2025). These frameworks alternate between a
denoising step using a pretrained flow matching model, aiming to approximate the proximal oper-
ator’s solution, and a gradient step to promote data consistency. Alg. 2 presents the discrete-time
algorithm implementing the PnP-based cyclic integration with the proposed PCFM framework.

C NUMERICAL METHODS

C.1 CONJUGATE GRADIENT

Conjugate gradient (CG) is a method for solving a linear system of equations Ax = b, when
the matrix A is symmetric (or Hermitian) positive-definite (SPD) and very large (often sparse).
Direct methods like Gaussian elimination are impractical due to computational cost and memory
requirements. CG reframes the problem of solving a linear system as an optimization problem. The
solution to Ax = b is precisely the vector x that minimizes the quadratic form:

ϕ(x) =
1

2
x∗Ax− x∗b. (S40)

An intuitive way to find this minimum is to take the steepest descent, where one repeatedly steps
in the direction of the negative gradient −∇ϕ(x) = b −Ax. However, the steepest descent often
performs poorly, taking many small zigzagging steps to reach the minimum.

CG dramatically improves upon this by choosing a sequence of search directions that are “smarter”.
Instead of using the residual at each step, it generates a set of search directions {p0,p1, . . . ,pk−1}
that are mutually A-orthogonal, i.e., p∗

iApj = 0 for i ̸= j. This property is crucial: minimizing the
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Algorithm 3: Conjugate Gradient (CG)
Input: A symmetric (or Hermitian) matrix A, a vector b, an intial guess x0, a maximum

number of iterations k, and a tolerance ϵ.
Output: An approximate solution x to Ax = b.

1 Set r0 ← b−Ax0 and p0 ← r0. ▷ Initialization
2 for j = 1, . . . , k do
3 vj ← Apj

4 αj ←
r∗
j rj

p∗
jvj

▷ Compute the step size

5 xj+1 ← xj + αjpj ▷ Update solution
6 rj+1 ← rj − αjvj ▷ Update residual
7 if ∥rj+1∥2 < ϵ then
8 break

9 βj ←
r∗
j+1rj+1

r∗
j rj

▷ Calculate the improvement factor

10 pj+1 ← rj+1 + βjpj ▷ Update search direction
11 return xj+1.

quadratic function along a new search direction pk does not compromise the minimization that has
already been achieved in the previous directions. At each iteration k, CG finds the optimal solution
xk within the affine Krylov subspace x0 +Kk(A, r0), where r0 ≜ b−Ax0 is the initial residual.
This means that after k steps, CG has found the best possible solution that can be formed by a linear
combination of {r0,Ar0, . . . ,A

k−1r0}. This guarantees convergence for an N × N matrix in at
most N steps, though in practice, a good approximation is often found in far fewer iterations. Alg. 3
provides the algorithm in detail.

D DETAILS OF THE COMPARED BASELINES

We benchmark our method against three types of baseline approaches.

(A) Supervised methods that require fully sampled MRIs during training:
• MoDL (Aggarwal et al., 2018) is a model-based end-to-end network that unrolls traditional

optimization procedure by regarding the CNN as a regularizer. We use 10 unrolling iterations
of the network. Training is performed by minimizing the L2 loss between the network output
and the ground truth.

• DDNM+ (Wang et al., 2023) is a diffusion model-based method for inverse problems solving.
Training is performed by denoising on fully sampled images with the DDPM framework (Ho
et al., 2020), whereas the inference is implemented by alternating between the DDIM sam-
pling steps (Song et al., 2021) and the range-null decomposition for enforcing measurement
consistency. Training is performed by the noise prediction objective with the cosine noise
schedule of iDDPM (Nichol & Dhariwal, 2021). We use the same network architecture and
training strategy as our proposed approach for this method.

• OT-ODE (Pokle et al., 2024) estimates the posterior vector field by combining the original
vector field learned from fully sampled images with the likelihood score approximated by
the ΠGDM estimation (Song et al., 2023). Training is performed by optimizing the original
CFM objective (Lipman et al., 2023). We use the same network architecture and training
strategy as our proposed approach for this method.

• PnP-Flow (Martin et al., 2025) integrates the Plug-and-Play framework with flow matching,
which alternates between gradient descent steps for measurement consistency, reprojections
onto the learned flow path, and denoising by the pre-trained vector field. Training is per-
formed by optimizing the original CFM objective (Lipman et al., 2023). We use the same
network architecture and training strategy as our proposed approach for this method. We set
the hyperparameter γt = tα with α = 0.1.

(B) Self-supervised methods that learn to reconstruct by additional subsampling of the available
k-space measurements.
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• SSDU (Yaman et al., 2020) proposes to split the available k-space measurements into two
disjoint subsets and then train a model-based reconstruction network to recover one of the
subsets from the other. We use the VarNet (Hammernik et al., 2018) with 10 unrolling itera-
tions as the network backbone. Training is achieved by minimizing the L2 loss.

• Weighted SSDU (Millard & Chiew, 2023) improves upon the SSDU framework by using
a subsampling mask of the same distribution as the original mask and re-weighting the L2
loss. We use the VarNet (Hammernik et al., 2018) with 10 unrolling iterations as the network
backbone.

• Robust SSDU (Millard & Chiew, 2024) provably recovers clean images from noisy, under-
sampled training data by simultaneously estimating missing k-space samples and denoising
the available samples. We use the VarNet (Hammernik et al., 2018) with 10 unrolling itera-
tions as the network backbone.

(C) Unsupervised methods that learn to reconstruct using all the available k-space measurements.

• REI (Chen et al., 2022) achieves unsupervised reconstruction by combining the k-space
SURE-based loss (Stein, 1981) for measurement consistency and the equivariant imaging
framework which builds on the group invariance assumption of the signal space (Chen et al.,
2021; Tachella et al., 2023). We use the VarNet (Hammernik et al., 2018) with 10 unrolling
iterations as the network backbone.

• MOI (Tachella et al., 2022) leverages the randomness in the imaging operator and proposes
an unsupervised loss that ensures consistency across all operators. We use the MoDL (Ag-
garwal et al., 2018) architecture with 10 unrolling iterations as the network backbone.

• ENSURE (Aggarwal et al., 2022) also leverages the randomness in the forward operators and
provides an unbiased estimate of the true mean squared error without fully sampled images.
We use the MoDL (Aggarwal et al., 2018) architecture with 10 unrolling iterations as the
network backbone. However, it uses an inaccurate numerical strategy to approximate the
loss function in the multi-coil scenario.

• GTF2M (Luo et al., 2025) proposes a ground-truth-free flow matching framework for single-
coil MRI. Reconstruction for multi-coil MRI is achieved by coil-wise reconstruction fol-
lowed by SENSE-based combination. We use the same network architecture and training
strategy as our proposed approach for this method. Nevertheless, the performance of this
method is suboptimal as the prior is learned from single-coil k-space measurements instead
of the combined forward operator of parallel MRI.

E ADDITIONAL RESULTS

E.1 INFERENCE TIME

Table S1 illustrates the average inference time of the various methods evaluated for the reconstruc-
tion of a single image from the CMRxRecon 2023 dataset. It is evident that among the generative
model-based techniques, our method demonstrates the fastest inference time.

E.2 ABLATION STUDY ON BACKWARD SAMPLING

Table S2 displays the results of the ablation study examining various backward sampling strategies
applied to the original initial noiseless CMRxRecon 2023 dataset. It can be noted that the PnP-based
backward sampling technique is less effective compared to Alg. 1 when tested on noiseless data.

E.3 ABLATION STUDY ON FORWARD SAMPLING

If the forward integration is omitted, the unconditional distribution p(y1 | y0) will be assumed to be
CN (0, Id). Table S3 displays results from the ablation study investigating the impact of incorporat-
ing the proposed forward integration steps. It is evident that incorporating forward integration steps
markedly enhances reconstruction performance.
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Table S1: Average inference time of the compared methods for reconstructing one image from the
CMRxRecon 2023 dataset. The inference time is calculated on an NVIDIA A5000 GPU using a
batch size of 4.

Training
Supervision

Reconstruction
Method Time (ms) NFEs ↓

Supervised

MoDL 58 1
DDNM+ 1000 100
OT-ODE 1750 100
PnP-Flow 938 100

Self-supervised
SSDU 19 1

Weighted SSDU 19 1
Robust SSDU 19 1

Unsupervised

REI 19 1
MOI 58 1

ENSURE 19 1
GTF2M 1563 20

PCFM (Ours) 500 20

Table S2: Ablation study on the backward integration strategy on the CMRxRecon 2023 cardiac
T1/T2 mapping MRI (noiseless). The difference in metrics is statistically significant between the
two strategies by the two-sided paired t-test (p < 0.05).

Reconstruction
Method

SSIM ↑ PSNR ↑
NFEs ↓

4× 8× 4× 8×

Zero-Filled 0.769 ± 0.057 0.747 ± 0.056 27.01 ± 1.97 26.11 ± 1.90 N/A

PnP-PCFM 0.808 ± 0.057 0.893 ± 0.038 28.82 ± 2.19 33.16 ± 2.82 20
PCFM 0.994 ± 0.008 0.974 ± 0.016 52.39 ± 9.81 40.50 ± 3.84 20

E.4 NOISY DATA

Table S4 displays the quantitative outcomes on the noise-free test data from the CMRxRecon 2023
dataset. A notable observation is that the model retains its performance as though the training data
were free of noise, suggesting that PCFM effectively learns the prior distribution of fully sampled
MRI even when trained on noisy and undersampled inputs.

Fig. S2 illustrates the reconstruction outcomes from cardiac MRI when subjected to additive Gaus-
sian noise at different levels. It can be noted that with an increase in noise level, the reconstruction
is more susceptible to contamination by measurement noise.

Table S3: Ablation study on the forward sampling strategy on the CMRxRecon 2023 cardiac T1/T2
mapping MRI (noiseless). The difference in metrics is statistically significant between the two
strategies by the two-sided paired t-test (p < 0.05).

Reconstruction
Method

SSIM ↑ PSNR ↑
NFEs ↓

4× 8× 4× 8×

Zero-Filled 0.769 ± 0.057 0.747 ± 0.056 27.01 ± 1.97 26.11 ± 1.90 N/A

PCFM w/o forward 0.988 ± 0.012 0.960 ± 0.021 46.21 ± 6.00 38.12 ± 3.51 10
PCFM 0.994 ± 0.008 0.974 ± 0.016 52.39 ± 9.81 40.50 ± 3.84 20

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table S4: Qualitative results of 4× and 8× parallel MRI reconstruction of CMRxRecon 2023 cardiac
T1/T2 quantitative mapping images using PCFM trained on noisy data while tested on clean data.

Training
Noise level

Reconstruction
Method

SSIM ↑ PSNR ↑
NFEs ↓

4× 8× 4× 8×

σ0 = 0.05 PCFM (Ours) 0.995 ± 0.005 0.974 ± 0.016 51.34 ± 6.21 40.51 ± 3.84 20

σ0 = 0.1 PCFM (Ours) 0.995 ± 0.005 0.974 ± 0.016 51.34 ± 6.19 40.50 ± 3.83 20

σ0 = 0.2 PCFM (Ours) 0.995 ± 0.005 0.974 ± 0.016 51.30 ± 6.21 40.55 ± 3.83 20

Zero-Filled DDNM

4x

OT-ODEMoDL GTF2M

8x

Ground-Truth ENSURE
SSIM=0.694
PSNR=24.43

SSIM=0.982
PSNR=39.95

SSIM=0.682
PSNR=24.24

SSIM=0.954
PSNR=37.40

SSIM=0.973
PSNR=41.46

SSIM=0.884
PSNR=31.31

SSIM=0.926
PSNR=33.01

SSIM=0.958
PSNR=40.00

SSIM=0.900
PSNR=32.91

SSIM=0.816
PSNR=28.69

SSIM=0.918
PSNR=32.45

SSIM=0.869
PSNR=31.00

PnP-Flow
SSIM=0.943
PSNR=34.93

SSIM=0.941
PSNR=35.80

SSDU Weighted SSDU
SSIM=0.850
PSNR=29.27

SSIM=0.841
PSNR=28.80

SSIM=0.796
PSNR=29.94

SSIM=0.834
PSNR=29.86

Robust SSDU
SSIM=0.893
PSNR=31.18

SSIM=0.873
PSNR=31.35

REI
SSIM=0.641
PSNR=19.78

SSIM=0.676
PSNR=22.72

MOI
SSIM=0.975
PSNR=38.36

SSIM=0.880
PSNR=32.00

PCFM
SSIM=0.999
PSNR=53.50

SSIM=0.972
PSNR=40.19

Figure S1: Visualization of reconstruction on two test samples of 4× and 8× accelerated multi-coil
cardiac MRI from the compared methods. The k-space are presented in log-scale absolute values.
The error maps are presented in values relative to the peak intensity in the ground-truth image.

Zero-Filled

4x

8x

Ground-Truth
SSIM=0.691
PSNR=24.42

SSIM=0.681
PSNR=24.24

Robust SSDU
SSIM=0.884
PSNR=36.30

SSIM=0.866
PSNR=31.41

PnP-PCFM
SSIM=0.916
PSNR=33.01

SSIM=0.887
PSNR=33.19

Zero-Filled
SSIM=0.684
PSNR=24.38

SSIM=0.682
PSNR=24.24

Robust SSDU
SSIM=0.848
PSNR=29.49

SSIM=0.850
PSNR=30.36

PnP-PCFM
SSIM=0.903
PSNR=32.59

SSIM=0.884
PSNR=33.25

Zero-Filled
SSIM=0.656
PSNR=24.39

SSIM=0.672
PSNR=24.10

Robust SSDU
SSIM=0.811
PSNR=28.46

SSIM=0.812
PSNR=29.33

PnP-PCFM
SSIM=0.844
PSNR=30.94

SSIM=0.858
PSNR=32.74

ENSURE
SSIM=0.833
PSNR=30.56

SSIM=0.746
PSNR=28.38

ENSURE
SSIM=0.723
PSNR=27.76

SSIM=0.716
PSNR=27.96

ENSURE
SSIM=0.457
PSNR=21.14

SSIM=0.486
PSNR=24.11

Figure S2: Visualization of reconstruction on two test samples of 4× and 8× accelerated multi-coil
cardiac MRI with additive Gaussian noise of various scales.

22


	Introduction
	Background
	Parallel MRI Reconstruction
	Conditional Flow Matching

	Method
	Projected Conditional Flow Matching
	Reconstruction via Dual-Space Cyclic Flow Integration

	Related Work
	Numerical Experiments
	Experimental setups
	Benchmark study on public datasets
	Noisy data

	Conclusion
	Proofs
	Plug-and-Play Cyclic Integration with PCFM for Noisy Measurements
	Numerical Methods
	Conjugate gradient

	Details of the compared baselines
	Additional Results
	Inference time
	Ablation study on backward sampling
	Ablation study on forward sampling
	Noisy data


