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Abstract

Memorization in generative text-to-image diffusion models is a phenomenon where instead
of valid image generations, the model outputs near-verbatim reproductions of training
images. This poses privacy and copyright risks, and remains difficult to prevent with-
out harming prompt fidelity. We present a mid-generation, geometry-informed criterion
that detects, and then helps avoid (mitigate), memorized outputs. Our method analyzes
the natural image distribution manifold as learnt by the diffusion model. We analyze
a memorization criterion that has a local curvature interpretation. Thus we can track
the generative process, and our criterion’s trajectory throughout it, to understand typical
geometrical structures traversed throughout this process. This is harnessed as a geometry-
aware indicator that distinguishes memorized from valid generations. Notably, our criterion
uses only the direction of the normalized score field, unlike prior magnitude-based meth-
ods; combining direction and magnitude we improve mid-generation detection SOTA by
∼ 5%. Beyond detecting memorization, we use this indicator as a plug-in to a mitiga-
tion policy to steer trajectories away from memorized basins while preserving alignment to
the text. Empirically, this demonstrates improved fidelity–memorization trade-off over the
competitors. By linking memorization to magnitude-invariant geometric signatures of the
generative process, our work opens a new direction for understanding—and systematically
mitigating—failure modes in diffusion models. Official code: bit.ly/4ndeISd

1. Introduction

Understanding the geometry of natural-image distributions has been studied for almost
a century Simoncelli (2024), where its roots lie in power-spectrum/statistical regularities
and multiscale structure Field (1987); Ruderman and Bialek (1994); van der Schaaf and
van Hateren (1996); Huang and Mumford (1999); Portilla and Simoncelli (2000); Simon-
celli and Olshausen (2001); Zoran and Weiss (2012); Wainwright and Simoncelli (2000). In
today’s age of generative AI, diffusion models enable sampling from this probability with
unprecedented quality. They do so by approximating the probability’s score field, and sim-
ulating a multi-step reverse diffusion generative process Hyvärinen (2005); Vincent (2011);
Song and Ermon (2019); Ho et al. (2020); Song et al. (2021); Dhariwal and Nichol (2021);
Rombach et al. (2022). In accordance, a growing body of work develops theory and analy-
ses of this approximated manifold Kadkhodaie et al. (2024); Bortoli et al. (2022); Benton
et al. (2024); Sakamoto and Suzuki (2024); Tang et al. (2024a); Potaptchik et al. (2024).
Both high-quality sampling as well as score-function analysis of the learned natural image
manifold are prominent features of memorization research.

Alongside the success of diffusion models came the prominent risk of memorization:
near-verbatim reproduction of training images, which pose copyright and privacy risks Car-
lini et al. (2023); Webster (2023); Hu and Pang (2023); Tang et al. (2024b); Zhai et al.
(2024); Pang et al. (2025). Recently, approaches analyzing the manifold geometry around
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points of memorization have shown significant potential in understanding and mitigating
this phenomenon Wen et al. (2024); Jeon et al. (2025); Brokman et al. (2025). The former
two emphasize the importance of geometry of memorization from mid-generation signals, so
that it can be detected to steer away generation from memorized outcomes while sampling.
Both offer methods that incorporate magnitude of score-functions.

This work advances the geometry-aware research of these phenomena. Our main con-
tributions are as follows:

• A novel magnitude-invariant mid-generation detection criterion based on the
direction (not the size) of classifier-free-guidance (CFG) guiding score field. This
criterion, κ∆, approximates a high-dimensional generalization of the surface mean
curvature - thus providing direct geometric interpretability.

• Shifting-geometry observations. We track the values of κ∆ as they change through-
out the image generation process. Memorized prompts show increasingly convex/attractive
geometry, with early positive κ∆ that strengthens throughgout the process, whereas
non-memorized prompts start with κ∆ < 0, pass smoothly through κ≈ 0, and often
culminate with a weak κ∆ > 0 (Figs. 1, 2). This clearly distinct.

• Improving the baseline. Since our criterion holds information about the direction
of ∇ log p(x), it holds complementary information to the previous magnitude-based
approaches. Thus, it is natural to combine it with such methods - raising AUC at
earliest generation steps from 0.925 to 0.97. Additionally - we demonstrate how
plugging our criterion, as a stand-alone, into a mitigation strategy improves the fi-
delity–memorization balance over the competitors.

2. Related Work

Several recent works probe memorization through local differentials of the score field. Wen et
al. Wen et al. (2024) use the norm of the predicted score (and the conditional–unconditional
gap under CFG) as a prompt-level detector and then mitigate by norm minimization via
soft–prompt optimization. Jeon et al. Jeon et al. (2025) extend this magnitude-based view
with a Hessian–score product (sharpness) criterion, deriving early-time tests and proposing
latent–noise optimization for mitigation. Closest to our perspective, p-Laplace–based de-
tectors apply higher-order differentials of the final score field Brokman et al. (2025). These
are post-hoc (image-based) approaches and thus not suited for mid-generation steering, or
mitigation in general - since these interfere during and not after the generative process.

Other approaches intervene without modeling the geometry of the probability manifold:
cross-attention analyses reveal token-level triggers and enable editing-time mitigation Ren
et al. (2024); neuron-level methods identify and suppress memorizing units Hintersdorf et al.
(2024).

In contrast to magnitude-dependent norms or post-hoc image tests, our geometry-aware
criterion is both magnitude-invariant and trajectory-aware: we normalize the conditional-
unconditional gap and track and approximate a well-known high-dimensional generalization
of the surface mean curvature along the generative path. hence - tracking its signed value
along the generative process has direct geometrical interpretations.
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Figure 1: Memorized vs non-memorized prompts, and the observed shifting ge-
ometry signature. Left: Two prompts that trigger memorization: for each we
show the associated training image and four near-verbatim generations produced
by the memorized prompt. Middle: Two non-memorized prompts with six valid
generations each (diverse, non-matching). Right: Temporal evolution of the cur-
vature signal κ∆ over generation steps; solid lines are the mean across generations
from 2 × 250 prompts (250 memorized, 250 non-memorized), shaded bands de-
note ±1 s.t.d. Memorized prompts (red) enter convex/attractive geometry, with
early κ∆ > 0 that strengthen, whereas non-memorized prompts (blue) start in
saddle-like/repelling geometry (κ∆ < 0), pass near-flat regions, and only later
become weakly positive. This geometry underpins our mid-generation detector
and steering policy.

3. Method

3.1. Diffusion model settings

Let X ⊂ Rd be data drawn from an unknown distribution with density p. Diffusion models
learn the score function s(x) := ∇x log p(x) at noise level t, typically via noise predic-
tion Song and Ermon (2019); Nichol and Dhariwal (2021); Miyasawa et al. (1961): Given a
noising process q(xt |x0) = N

(
xt;

√
ᾱt x0, (1− ᾱt)I

)
, the MMSE noise predictor aligns with

−st(xt). A neural network trained to predict noise thus estimates the score over time steps.

Forward and reverse processes. The forward process progressively corrupts x0 to
noise; the reverse process denoises from xT ∼ N (0, I) using the learned scores to recon-
struct x0 Ho et al. (2020); Song et al. (2021). In text-conditional settings, classifier-free
guidance (CFG) provides both unconditional and conditional scores, sθ(xt) and sθ(xt, c),
respectively Ho and Salimans (2022).

SDE view and latent diffusion. The reverse dynamics can be written as an SDE or
ODE driven by the score Song et al. (2021). In latent diffusion Rombach et al. (2022), the
process runs in a learned latent zt, with decoding x0 = D(z0). All quantities below apply
identically in latent space by replacing x with z.
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Figure 2: Demonstrating the generative process’ mid-generation geometry-shift.
Each row shows a 500-step generative process (snapshots every 100 steps) with
our criterion κ∆ computed per snapshot, and a surface that reflects the exact
same mean curvature: Our criterion is based on a known high-dimensional gen-
eralization of surface mean curvature - enabling interpretability of its values. 4
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3.2. Method: Normalized boundary flux via classifier-free guidance

We study the prompt-induced change in the score and its local geometry.

CFG score difference and normalization. Define the CFG difference, or the CFG
guiding score field as

s∆(xt) := sθ(xt, c) − sθ(xt),

and its unit regularized field ŝ∆(xt) := s∆(xt)
∥s∆(xt)∥+δ

, with δ > 0 a regularizer that prevents

division by zero. In standard CFG sampling, the effective guidance is sθ(xt) + ω s∆(xt) for
a guidance scale ω; here we isolate the directional effect via ŝ∆.

Normalized boundary flux (mean-curvature analogue). For a small ball BR(x0) ⊂
Rd and its boundary ∂BR(x0) with outward unit normal n, we define the normalized bound-
ary flux divergence

κ∆(x0) := − 1

|BR(x0)|

∫
∂BR(x0)

ŝ∆(x) · nds.

As R → 0, κ∆(x0) = ∇· ŝ∆(x0). This mirrors the classical level-set expression of mean
curvature of a surface (2D embedded in 3D) as the divergence of a unit normal field,
κ = ∇· ∇ϕ

∥∇ϕ∥+1 Sochen et al. (1998); thus, since the image probability manifold is high-

dimensional (and not a mere surface), κ∆ serves as a curvature-like measure of how prompt
conditioning bends the learned log-density geometry along ŝ∆.

Algorithm: Numeric calculation of our criterion. Sample N points yi uniformly
on ∂BR(x0), set ni = (yi − x0)/R. Using |∂BR|/|BR| = d/R, a Monte Carlo boundary
estimator is

κ̂∆(x0) ≈ d

RN

N∑
i=1

ŝ∆(yi) · ni.

In practice, we take small R, evaluate in the native sampling domain (pixel or latent),
and (optionally) track κ∆(xt) along the generation trajectory to profile prompt-induced
curvature over time. This estimator requires only ŝ∆(·) evaluations (no volume integrals),
aligns with CFG, and is directly compatible with standard diffusion pipelines.

Interpretable and practical surface curvature aspect. For interpretability, we dis-
cuss the observed dynamics as if we are traversing a 2D surface in 3D. Then κ∆ = ∇· ŝ∆
acts as a signed mean-curvature surrogate, and we can analyze whether it aligns with our
observed high-dimensional behavior, as in Fig. 2. Let the principal curvatures be κ1, κ2 so

M := 1
2(κ1 + κ2), G := κ1κ2.

Moreover, note that κ∆ gives mean-curvature information (M), while Gaussian curvature
(G) is not directly available; nevertheless - empirical observations of the generative process
bridge some of these gaps.

Memorized. Typical behavior:

κ∆(t) > 0 ∀t, ∃ tdip : κ∆(tdip) < κ∆(t0), Empirical observation: narrow stable set collapse.
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The empirical observation is consistent with dome-like (elliptic) geometry,

M > 0, and we infer G > 0 (both κi share sign),

even though G is not measured.
Non-memorized. Typical behavior:

κ∆(t0) < 0 −→ ∃ τ : κ∆(τ) = 0 −→ κ∆(t) ≳ 0 (small),

this is compatible with boundary-trap/absorbing dynamics and non-collapsed outputs; A
boundary trap means solution traverses into and remains in a compact absorbing set, and
is a typical case of curvature sign-switch as observed here. Note that here G may have
either sign - resulting in a flat or saddle point at the end of the process - indeed allowing
for diverse output images.

Takeaway. Memorization shows early, increasing M > 0 with empirically inferred
G > 0, i.e. a dome geometry that steepens as generation progresses; valid generations show
M < 0→0→M ≳ 0 with diversity preserved.

4. Experiments

In this section, we demonstrate the capabilities of our method. We evaluate the ability of
κ∆ and related metrics to distinguish memorized from non-memorized generations.

4.1. Settings and frameworks

We evaluate on Stable Diffusion v1.4 with classifier-free guidance (CFG) scale 7.5. Unless
stated otherwise, all detectors are computed at the first denoising step (t=T ), which is the
most actionable point for mitigation.

Prompt sets. Memorized prompts follow Wen et al. (2024); non-memorized prompts
are LLM-generated to avoid overlap with training data Wen (2025).

Detection baselines. We compare our direction-only criterion κ∆ against: (i) CFG-
mag—the score-norm gap under CFG Wen et al. (2024); (ii) HCP-mag—the Hessian–score
product magnitude Jeon et al. (2025); and (iii) PLAP—a post-hoc, image-based p-Laplace
detector Brokman et al. (2025). The first two are mid-generation; PLAP is designed for
post-generation.

Hybrid detectors. To test complementarity, we learn a linear SVM over the 2D feature
space [κ∆, baseline] on a small held-out split and report test AUC. We also compare against
a hybrid of CFG-mag and HCP-mag.

Mitigation framework. Following Wen et al. (2024), we perform soft-prompt opti-
mization at t=T for memorized prompts:

L(c) = Lmiti(xT , c) + λ∥c− c0∥2,

where c0 is the initial text embedding and xT ∼N (0, I). We instantiate Lmiti with κ∆ (ours)
or each baseline criterion and compare fidelity–memorization trade-offs. Other generation
hyperparameters follow the respective works.
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Figure 3: Early-step detection at t=T (first generation step): univariate his-
tograms and 2D hybrid. Left: per-criterion histograms for memorized (or-
ange) and non-memorized (blue) generations with AUCs overlaid. Our κ∆ sep-
arates well (AUC = 0.922), CFG magnitude is competitive (AUC = 0.885),
HCP magnitude is slightly higher in isolation (AUC = 0.932), while the
post-hoc PLAP signal is uninformative at this early generation step (AUC
= 0.550). Right: scatter of x=κ∆ vs. y=CFG-mag with a linear SVM
and regions. The hybrid (κ∆+CFG-mag) gives the best performance (AUC
= 0.976), exceeding either component alone and a magnitude-only hybrid
(HCP-mag + CFG-mag, AUC = 0.948). Directional geometry is highly informa-
tive at the first step and complements magnitude-based criteria to achieve SOTA.

4.2. Results

First generation step (t=T ) separability. Figure 3 summarizes detection at the first
denoising step, the most critical regime for on-the-fly mitigation. Our curvature surro-
gate κ∆ already yields strong separability between memorized and non-memorized prompts
(AUC = 0.922), outperforming the CFG magnitude baseline (CFG-mag, AUC = 0.885).
The Hessian–score magnitude (HCP-mag) is slightly higher in isolation (AUC = 0.932),
while the post-hoc 1-Laplace proxy (PLAP) is not informative at t=T (AUC = 0.550), as
expected for a criterion designed for post-generation.

Complementarity of direction and magnitude. Because κ∆ depends on direction
(normalized field) and CFG/HCP depend on magnitude, the signals are complementary. A
simple linear SVM trained on a small held-out calibration split combining (κ∆,CFG-mag)
achieves the best mid-generation discrimination (AUC = 0.976), improving over either
component alone and also over the hybrid (HCP-mag + CFG-mag) (AUC = 0.948). The
2D scatter and decision regions in Figure 3 (right) visualize this complementarity.

Temporal signature at scale. The population trajectories in Figures 1–2 show a con-
sistent shifting-geometry pattern across hundreds of prompts per class: memorized prompts
enter and remain in attractive (convex) regions with κ∆>0 that strengthen with time; non-
memorized prompts begin with κ∆<0, pass through near-flat κ∆≈0, and only later reach
weakly positive values. This gap persists over a wide range of generation steps and explains
why early-time κ∆ is predictive.
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Figure 4: Soft-prompt mitigation on a memorized prompt: A CLIP×CLIP of
the fidelity–memorization trade-off . Scatter shows Fidelity (CLIP cosine
to the prompt) vs. Memorization (CLIP cosine to the training image) for 3×1000
generations using three criteria inside Wen et al.’s soft-prompt optimizer: Our κ∆

(blue), the SAIL criterion ≈∥H∆s∆∥2 (green), and the gap norm ∥s∆∥2 (orange).
Memorization Region: The horizontal red band containing the top-right cluster
- we verified that it contains all memorized images. Fidelity Region: the vertical
band matching the fidelity of memorized copies. The desired mitigation out-
come is in the blue rectangle (bottom-right): matching the prompt fidelity of the
memorized image, with low similarity to the actual training image. Thumbnails
below illustrate typical outcomes by region: Drifted (low fidelity), Prompt-fidelity
/ non-memorized (target), and Memorization. Numbered markers correspond to
the highlighted examples. Compared with the competing criteria, our κ∆ con-
centrates samples in the target region and reduces both drift and memorization.
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Mitigation outcomes. Plugging κ∆ into the soft-prompt optimizer of Wen et al. (2024)
shifts samples toward the target high-fidelity, non-memorized region (Fig. 4, blue), reducing
both outright memorization (high training-image similarity) and fidelity drift (low prompt
alignment). Qualitatively, κ∆ steers trajectories away from convex basins associated with
verbatim copies while preserving text fidelity, in line with the observed temporal geometry.

Evaluation. Fidelity measures CLIP cosine similarity between the generated image and
the text prompt. Memorization denotes CLIP cosine similarity between the generated
image and the specific training image for the prompt. We visualize the joint distribution of
these metrics and show representative samples at different operating regions. We perform
this analysis on SD 1.4, on a known memorized prompt, “Mothers influence on her young
hippo.”

Findings. Figure 4 summarizes the trade-offs:

• κ∆ (ours): concentrates samples in the high-fidelity / low-memorization band. Qual-
itatively, outputs remain on-prompt (hippos) without reproducing the training in-
stance.

• SAIL sharpness ∥H∆s∆∥2: reduces memorization but at a substantial cost in
prompt fidelity; many samples drift off the target semantics.

• Gap norm ∥s∆∥2: either fails to suppress memorization for a non-trivial subset or,
when it succeeds, often degrades fidelity.

Overall, κ∆ delivers the most favorable fidelity–memorization balance among the three,
aligning with our hypothesis that a magnitude-invariant, geometry-aware signal is better
suited for mid-generation steering.

5. Summary

We introduced a magnitude–invariant, geometry–aware detector for diffusion memorization
based on the normalized boundary flux of the CFG gap, denoted κ∆. The quantity is
interpretable as a mean–curvature surrogate of the learned log–density along the genera-
tion trajectory, and it isolates the directional effect. Empirically, κ∆ reveals a consistent
shifting-geometry signature: memorized prompts quickly move into and remain in attrac-
tive (positive-curvature) regimes, while non-memorized prompts begin negative curvature
regimes, pass through near-flat geometry, and only later reach weak attraction. In terms of
limitations: While κ∆ is a novel mean-curvature proxy - if we want a complete analysis of
surfaces, incorporating a generalization of the Gaussian curvature would be fitting; Addi-
tionally, we use the SD-1.4 model; broader validation across diverse architectures remains
for future work. In terms of performance - we show across thousands of image generations
that κ∆ separates mem/non-mem already at the earliest step with strong AUC, and sets
a new SOTA when combined with norm-based criteria such as ∥s∆∥2 . Turning the sig-
nal into a plug-in policy for soft-prompt optimization improves the fidelity–memorization
trade-off relative to these baselines. Overall, this work proposes novel geometric signatures
and advances memorization research of generative models - improving practical tasks with
geometrical observations.
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alization in diffusion models arises from geometry-adaptive harmonic representations.
In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=ANvmVS2Yr0.

Koichi Miyasawa et al. An empirical bayes estimator of the mean of a normal population.
Bull. Inst. Internat. Statist, 38(181-188):1–2, 1961.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International conference on machine learning, pages 8162–8171. PMLR, 2021.

Yixin Pang, Haoran Sun, Rui Zhou, Jian Zhang, Yuhui Shi, Yinzhi Cao, and Wei Yang.
White-box membership inference attacks against diffusion models. Proceedings on Privacy
Enhancing Technologies (PoPETs), (3):149–170, 2025. URL https://petsymposium.

org/popets/2025/popets-2025-0068.php.

Javier Portilla and Eero P. Simoncelli. A parametric texture model based on joint statistics
of complex wavelet coefficients. International Journal of Computer Vision, 40(1):49–
71, 2000. doi: 10.1023/A:1026553619983. URL https://www.cns.nyu.edu/pub/lcv/

portilla99-reprint.pdf.

Andrei Potaptchik, Ryan Murray, Raanan Fattal, Amit Singer, and Joan Bruna. Lin-
ear convergence of diffusion models under the manifold hypothesis. arXiv preprint
arXiv:2410.09046, 2024. URL https://arxiv.org/abs/2410.09046.

Jie Ren, Yaxin Li, Shenglai Zeng, Han Xu, Lingjuan Lyu, Yue Xing, and Jiliang Tang.
Unveiling and mitigating memorization in text-to-image diffusion models through cross
attention. In European Conference on Computer Vision, pages 340–356. Springer, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 10684–10695, 2022. doi:
10.1109/CVPR52688.2022.01041.

Daniel L. Ruderman and William Bialek. Statistics of natural images: Scaling in the woods.
Physical Review Letters, 73(6):814–817, 1994. doi: 10.1103/PhysRevLett.73.814. URL
https://link.aps.org/doi/10.1103/PhysRevLett.73.814.

11

https://openreview.net/forum?id=ANvmVS2Yr0
https://petsymposium.org/popets/2025/popets-2025-0068.php
https://petsymposium.org/popets/2025/popets-2025-0068.php
https://www.cns.nyu.edu/pub/lcv/portilla99-reprint.pdf
https://www.cns.nyu.edu/pub/lcv/portilla99-reprint.pdf
https://arxiv.org/abs/2410.09046
https://link.aps.org/doi/10.1103/PhysRevLett.73.814


Proceedings Track
Kota Sakamoto and Taiji Suzuki. Geometry of diffusion models: Tubular neighborhoods
and singularities. In Proceedings of the ICML 2024 Workshop on Geometry-grounded
Representation Learning and Generative Modeling (GRaM), volume 251 of Proceedings
of Machine Learning Research, 2024. URL https://proceedings.mlr.press/v251/

sakamoto24a.html.

Eero P. Simoncelli. Geometry of the distribution of natural images. Invited lecture at
the NeurIPS 2024 Workshop “Symmetry and Geometry in Neural Representations”
(NeurReps 2024), Vancouver, Canada, 2024. URL https://slideslive.com/39030660/

geometry-of-the-distribution-of-natural-images. Video recording on SlidesLive.
Accessed 2025-09-02.

Eero P. Simoncelli and Bruno A. Olshausen. Natural image statistics and neural represen-
tation. Annual Review of Neuroscience, 24:1193–1216, 2001. doi: 10.1146/annurev.neuro.
24.1.1193. URL https://www.cns.nyu.edu/pub/eero/simoncelli01-reprint.pdf.

Nir Sochen, Ron Kimmel, and Ravi Malladi. A general framework for low level vision. IEEE
transactions on image processing, 7(3):310–318, 1998.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
arXiv preprint arXiv:2011.13456, 2021. URL https://arxiv.org/abs/2011.13456.

Chengchun Tang, Jianfeng Yang, Hang Zhao, and Yaodong Yu. Adaptivity of diffusion mod-
els to manifold structures. In Proceedings of The 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), volume 238 of Proceedings of Machine Learn-
ing Research, 2024a. URL https://proceedings.mlr.press/v238/tang24a.html.

Shuai Tang, Steven Wu, Sergul Aydore, Michael Kearns, and Aaron Roth. Membership
inference attacks on diffusion models via quantile regression. In International Confer-
ence on Machine Learning (ICML), volume 235 of Proceedings of Machine Learning
Research, pages 47819–47829, 2024b. URL https://proceedings.mlr.press/v235/

tang24g.html.

A. van der Schaaf and J. H. van Hateren. Modelling the power spectra of natural images:
Statistics and information. Vision Research, 36(17):2759–2770, 1996. doi: 10.1016/
0042-6989(96)00002-8.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
Computation, 23(7):1661–1674, 2011. doi: 10.1162/NECO a 00142.

Martin J. Wainwright and Eero P. Simoncelli. Scale mixtures of gaussians and the statistics
of natural images. In Advances in Neural Information Processing Systems (NeurIPS)
12, pages 855–861, 2000. URL https://proceedings.neurips.cc/paper/1999/file/

6a5dfac4be1502501489fc0f5a24b667-Paper.pdf.

12

https://proceedings.mlr.press/v251/sakamoto24a.html
https://proceedings.mlr.press/v251/sakamoto24a.html
https://slideslive.com/39030660/geometry-of-the-distribution-of-natural-images
https://slideslive.com/39030660/geometry-of-the-distribution-of-natural-images
https://www.cns.nyu.edu/pub/eero/simoncelli01-reprint.pdf
https://arxiv.org/abs/2011.13456
https://proceedings.mlr.press/v238/tang24a.html
https://proceedings.mlr.press/v235/tang24g.html
https://proceedings.mlr.press/v235/tang24g.html
https://proceedings.neurips.cc/paper/1999/file/6a5dfac4be1502501489fc0f5a24b667-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/6a5dfac4be1502501489fc0f5a24b667-Paper.pdf


Proceedings Track
Tracking Memorization Geometry throughout the Diffusion Model Generative Process

Ryan Webster. A reproducible extraction of training images from diffusion models. arXiv
preprint arXiv:2305.08694, 2023. doi: 10.48550/arXiv.2305.08694. URL https://arxiv.

org/abs/2305.08694.

Yuxin Wen. Diffusion memorization examples. https://github.com/YuxinWenRick/

diffusion_memorization/blob/main/examples/sdv1_500_memorized.jsonl, 2025.
Accessed: 2025-09-03.

Yuxin Wen, Yuchen Liu, Chen Chen, and Lingjuan Lyu. Detecting, explaining, and mit-
igating memorization in diffusion models. In The Twelfth International Conference on
Learning Representations, 2024.

Shengfang Zhai, Huanran Chen, Yinpeng Dong, Jiajun Li, Qingni Shen, Yansong Gao,
Hang Su, and Yang Liu. Membership inference on text-to-image diffusion models via
conditional likelihood discrepancy. In Advances in Neural Information Processing Systems
(NeurIPS), 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/

hash/874411a224a1934b80d499068384808b-Abstract-Conference.html.

Daniel Zoran and Yair Weiss. Natural images, gaussian mixtures and dead leaves. In
Advances in Neural Information Processing Systems (NeurIPS), pages 1736–1744, 2012.

Appendix A. Mid-Generation Detection

We provide snapshots of the metric evaluated at 3 for generation steps t = 50, 100, 150, 200, 250, 300.

Figure 5: Generation step t = 50.
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Figure 6: Generation step t = 100.

Figure 7: Generation step t = 150.

Figure 8: Generation step t = 200.
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Figure 9: Generation step t = 250.

Figure 10: Generation step t = 300.
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