
Multi-Hypothesis 3D Hand Mesh Recovering from
a Single Blurry Image

Yuming Chen1, Rongyu Chen2, Zhongqun Zhang1, Yihua Cheng1*, Hyung Jin Chang1.
1University of Birmingham

2National University of Singapore
yxc487@alumni.bham.ac.uk, rchen@comp.nus.edu.sg, zxz064@student.bham.ac.uk,

{y.cheng.2, h.j.chang}@bham.ac.uk

Abstract—Recovery of 3D hand mesh from blurry hand images
is challenging due to the ambiguity. Most existing works attempt
to solve this issue by exploiting physical and temporal constraints.
However, those works ignore the fact that multiple feasible
solutions exist. In this paper, we propose a two-stage Multi-
Hypothesis Hand Mesh Recovery network, consisting of a genera-
tion and selection model. In the first stage, the generation model
explicitly extracts the temporal information with an unfolder.
Then, a multi-hypothesis Transformer generates multiple diverse
hypotheses with a lightweight hypothesis embedding set. In the
second stage, the selection model selects a subset of good-quality
hypotheses. We additionally combine the classifying and ranking
loss to better align with the target of the selection model. Exten-
sive experiments show that the proposed method produces much
more accurate results on blurry images. Source code is available
at https://github.com/RandSF/Multi Hypothesis BlurHandNet.

Index Terms—multi-hypothesis, 3D reconstruction, hand mesh
regression, computer vision

I. INTRODUCTION

Recovering 3D human mesh is an active and challenging
problem. It is essential in Augmented Reality [1], Motion
Analysis [2], and other applications involving human interac-
tion. Recent advancements have been made in producing 3D
hand mesh from sharp images [3], [4], However, ideal sharp
images are not always obtained when deployed in the wild. For
example, camera shake or fast movement of the subject during
shooting can cause blurry images. This situation is prevalent
in daily life for flexible hands with a lot of movement space.
Therefore, for this important scenario, the conventional model
trained on sharp images will face the problem of the domain
gap, resulting in poor performance on blurry images.

Monocular 3D estimation [6]–[9] is challenging due to the
commonly existing depth and occlusion ambiguity. However,
blur hand pose estimation has its inherent blur ambiguity [10].
It is a one-to-many inverse problem [6] rather than a one-to-
one deterministic mapping. For example, a fast motion and
its reverse sequence can be photographed to obtain a similar
blurry image, and it is difficult to determine the sequence from
a single blur frame.

In short, the blurry image corresponds to multiple reason-
able and feasible motion sequences. The ambiguous nature of
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Fig. 1. Overview of single-hypothesis vs. multi-hypothesis. A recent state-of-
the-art discriminative model [5], outputs a single solution that is inconsistent
with the blurry image. The proposed generative model outputs multiple
hypotheses among which the most accurate one is picked up by the selection
model (red box).

the task itself makes the traditional deterministic discrimina-
tive model fall into a local optimal solution or collapses the
model to the mean prediction [6], as shown in Fig. 1.

Inspired by the related field of sharp image pose estimation,
we argue that making multiple feasible predictions is expected
to ease such challenges and, for the first time, propose a
more natural and precise formulation of the blur hand task
into a one-to-many multi-hypothesis generation task to model
ambiguity. Unlike the conventional method of only regressing
a single motion sequence, this task expects the model to
simultaneously output complete, feasible, and diverse multiple
motion sequences as long as they correspond to the blurred
hand image, which, of course, includes the annotated solution
in the data.

Interest in multi-hypothesis estimation is increasing [6]–
[9]. Some of them aggregate all hypotheses to get the final
prediction [7], [9] or aggregate a subset of hypotheses [10],
[11], but the diversity of hypotheses is not promoted. These
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previous methods mainly focus on studying depth and oc-
clusion ambiguity, which is consistent with visible cues of a
single 2D image. However, this is not suitable for our scenario
because blur will lead to different feasible motion sequences
in time.

To address these challenges, we proposed a two-stage net-
work consisting of the generation and selection model. In the
first stage, the generation model generates multiple estimations
with a Multi-Hypothesis Transformer. To mitigate the impact
of insufficient diversity in the data, a diversity-promoting loss
is proposed to further enhance the diversity of hypotheses.

In the second stage, the selection model makes selections
conditioned on the image with a combined classifying-ranking
loss. Compared with the widely used pairwise loss [12],
the combined classifying-ranking loss aligns the task better
without losing the ranking information of hypotheses. The
experiment in Section IV shows that our model is superior
to the state-of-the-art methods.

In conclusion, our contributions are summarized as follows:
• We observe significant ambiguity in the blurry hand

and, for the first time, propose a more intuitive way to
formulate the inverse problem task into a one-to-many
multi-hypothesis motion generation task to capture the
unique blur ambiguity.

• A multi-hypothesis generation model is proposed as an
efficient approach to generate multiple hypotheses with
minimal additional parameters compared with BlurHand-
Net [5], the state-of-the-art of the task.

• Along with the generation model, the effective Combined
Classifying-Ranking (CCR) loss is designed to train a se-
lection model to assess the score of generated hypotheses
to select hypotheses with better quality conditioned on the
image.

• The proposed multi-hypothesis generation and selection
method achieved state-of-the-art results on the blur hand
benchmark. Detailed ablation studies are conducted to
better understand and reveal the advantages of our method
for better modeling the blur ambiguity task.

II. RELATED WORK

A. 3D Hand Mesh Estimation

Works of 3D Hand Mesh Estimation inspire from Human
Mesh Estimation [13], [14]. MANO [15], a parameterized
hand model, is introduced to provide prior knowledge. The
following work regresses the mesh based on the estimated
joint and shape parameters [16] or directly estimates the vertex
coordinates [17], [18]. HandOccNet [3] introduces a trans-
former [19]-based structure to explicitly deal with the self-
occlusion problem. Deformer [4] utilizes the temporal infor-
mation of video with a spatial-temporal transformer. HaMeR
[20] scales up ViT and the dataset to improve performance
and generalization. However, these works are orthogonal to
the ambiguity caused by blurriness. Recently, [5] proposed a
dataset, BlurHand, and a network, BlurHandNet, to overcome
the ambiguity problem. It is different from our method as it
does not involve Multi-Hypothesis Estimation.

B. Recovering Mesh from Blur

Most methods solve the problem of recovering mesh from
blur by images and video debluring [21]–[23]. Recently, the
Shape from Blur [24] proposed to use an optimization method
to recover 3D shapes from a single blurry image. The Human
from Blur [25] extends the Shape from Blur and proposes
the first method for human pose estimation from substantially
blurred images. They use a 3D human model, a texture
map, and a sequence of poses and solve the problem by
backpropagating the pixel-wise reprojection error to recover
the best human motion representation. The Deformer [26]
reasons about the relationship between hand parts within the
same spatial-temporal dimension from a blurry hand image.
The BlurHandNet [5] unfolds a blurry input image to a 3D
hand mesh sequence to utilize temporal information. However,
those methods ignore that multiple feasible solutions exist
in Mesh from Blur. Our method focuses on finding multiple
plausible mesh hypotheses.

C. Multi-Hypothesis Estimation

The above discriminative models output only a single esti-
mation mesh for a given image. There are a couple of works
[6], [7], [27], [28] that make multiple predictions generatively
to explore the plausible estimation aligned well with the image.
MHFormer [7] generates and aggregates three hypotheses
once to produce a refined final output. MION [9] refines
the hypotheses with PNCC positional embedding and Mesh
Refine Transformer. These works aggregate all hypotheses
with an extra module. On the other hand, some works [28],
[29] simply select the best hypothesis with a minimal distance
to the GT. GenPose [10] makes multi-hypothesis predictions
given a partially observed cloud point and selects the better
ones with an EnergyNet. ScoreHypo [11] trains a ScoreNet to
select a better human pose from a RGB image. GenPose and
ScoreHypo show that selection can improve the final output.
However, these works do not focus on the blurriness task.

III. METHOD

A. Overview

Given a blurry image, our target is to recover a 3D hand
mesh sequence that contains three key frames, the start,
middle, and the end frame.

We use MANO [15] to simplify the estimation problem.
MANO is a hand model that parameterizes 3D hand mesh
V ∈ R778×3 into pose θ ∈ R48 and shape β ∈ R10. Given a
blurry image I ∈ RH×W×3, we will produce three 3D hand
meshes that represent the three key frames.

Conventional methods usually build an estimation network
to directly estimate one result from blurry images. In this
work, we argue that a single estimation cannot well handle
the problem of blurry images due to the ambiguity.

We instead propose a generative model pipeline where we
first generate multiple hypotheses and then use a selection
model to choose a reasonable subset of them.

To address the challenges of pose ambiguity caused by blur-
riness and self-occlusions, we introduce the multi-hypothesis
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Fig. 2. Overall pipeline of our method, which consists of two key components, the Multi-Hypothesis generation model and selection model. Given a
blurry hand image, our method first extracts the global feature by a ResNet, and then the Unfolders decode it into three. The generation model generates K
hypotheses given a blurry image. The selection model selects better hypotheses based on the outputs of the generation model and the blurry image.

method. Given a blurry image I ∈ RH×W×3, the generation
model is expected to make multiple plausible hand mesh
estimates Hk, k = 1, . . . ,K, where Hk = θk0 ⊕· · ·⊕θkT is the
hypothesis that contains a pose sequence. K, and T are the
number of hypotheses and the length of sequence, respectively.
Further, we train a selection model to predict the quality signal
r̂k ∈ R of each hypothesis conditional on the image I. During
inference, the generation model generates K hypotheses, and
we select the top-n of them according to the score signal ŝk.

B. Multi-Hypothesis Generation

Figure 2 shows the overall pipeline of our work. It contains
a generation model and a selection model. The generation
model consists of an ResNet-based [30] Encoder, and a Multi-
Hypothesis Transformer with a MANO parameter regressor.

Encoder. We use ResNet [30] and a bottom-up Feature
Pyramid Network (FPN) [31] with deconvolution layer as the
encoder. It outputs a joint-wise feature FJt

for each timestep
given a blurry image I. The image is first fed into the ResNet
[30] backbone to get a basic feature FB ∈ RC× H

32×
W
32 .

Then we use T separated deconvolution layers to predict the
temporal feature Ft ∈ RH

8 ×W
8 ×E where H×W , C, E denote

the resolution, the number of channels, and the dimension
of feature, respectively. We obtain a heatmap of each joint
with a 1 × 1 convolution layer and regress the 2D position
of joints J2D

t ∈ RJ×2 through the differentiable soft-max
operator [32], where J = 21 is the number of hand joints.
Finally we apply grid sampling on Ft and obtain FJt

∈ RJ×E ,
the joint-wise feature of timestep t. The temporal joint-wise
feature FJ = FJ0

⊕ · · · ⊕ FJT
∈ RT×J×E is obtained by

concatenating all joint-wise features, where ⊕ is the operation
of concatenation.

Multi-Hypothesis Transformer (blue part in Fig. 2) is a
transformer [19]-encoder module to generate refined temporal
joint-wise features F k

J ∈ RT×J×E of multiple hypotheses,
where k indicates different hypotheses. F k

J feeds into the
transformer as a sequence of T × J tokens. Previous works
either produce each hypothesis with a weight-independent
network [7], [9], [28], or samples solutions from a distribution
on the parameter space of MANO [11]. We find it more
efficient to generate hypotheses with a small embedding set
{zk}Kk=1, whose size is the number of hypotheses. We set
zk ∈ RE . K different features {F k

J }Kk=1 are obtained by
adding the hypothesis feature zk to FJ token-wise. {F k

J }Kk=1

are forwarded to the transformer independently, i.e., they are
processed as separated sequences and concatenated along the
batch dimension. The output is K refined features {F k+

J }Kk=1.

Regressor produces MANO pose and shape parameters and
camera parameters. Specifically, the pose parameter {θkt }Tt=1

is estimated for each hypothesis separately based on F k
J .

The shape parameter {βt}Tt=1 and the camera parameter
{πt}Tt=1, πt ∈ R3 is estimated for all hypotheses based on
FB since change of pose is able to cover the main ambiguity
of an image and shared shape and translation parameters
prevent hypotheses deviating from each other too much, which
stabilizes the learning. The 3D hand mesh Vk

t and 3D joint
Jk
t is calculated by forwarding θkt , βt into the MANO layer.

Multi-hypothesis losses. The overall training loss of the
generation model is

Lgen =λjointLjoint + λprojLproj + λMANOLMANO

+ λauxLaux + λdivLdiv

(1)



where

Ljoint = min
k

T∑
t=1

∥∥Jk
t − J∗

t

∥∥
1

(2)

Lproj = min
k

T∑
t=1

∥∥ΠJk
t −ΠJ∗

t

∥∥
1

(3)

LMANO = min
k

T∑
t=1

∥∥θkt − θ∗t
∥∥
1
+

T∑
t=1

∥βt − β∗
t ∥1 (4)

where J∗
t is groundtruth 3D joints, Π is the operation that

obtains 2D reprojective joints. θ∗t and β∗
t is the groundtruth

MANO parameters.
Notice that the loss only propagates the gradient of the best

hypothesis as we do not want the hypothesis set to collapse to
the mean prediction. Different hypotheses are able to capture
different patterns of ambiguity in this way.

We also employ an auxiliary task

Laux =

T∑
t=1

∥∥J2D
t −ΠJ∗

t

∥∥ (5)

to improve the expressiveness of the Decoder, where J2D
t is

the 2D joints regressed by the encoder in the heatmap manner.
To explicitly enhance the diversity across different generated

hypotheses, we use a modified diversity promoting loss [33],
[34]

Ldiv =
1

K(K − 1)

K∑
k=1

K∑
m=k+1

T∑
t=1

e
−∥Fk

Jt
−Fm

Jt∥1
α (6)

where α is a normalizing factor. Compared with the original
version [33], [34], we promote the distance in feature space
instead of the output space to avoid influencing the quality of
outputs. λjoint, λproj , λMANO, λaux and λdiv are constant
coefficients.

C. Selection Model

The Selection Model is to pick the better ones from the
hypotheses {Hk}Kk=0. Aggregating all hypotheses to obtain a
single final estimation via an aggregation module [7], [9] can
be computationally expensive as the number of hypotheses
goes large. More importantly, our method is aiming at propos-
ing diverse plausible estimations. The aggregation manner fails
to provide diversity, as all hypotheses are trained to fit every
sample. To this end, the Selection Model assigns a score signal
to each hypothesis. During inference, the hypotheses with n-th
highest score are selected as the most possible hand meshes
that shape the image. We measure the possibility with Mean
Per Joint Position Error (MPJPE).

Architecture. The Selection Model utilizes a backbone
with the same architecture of the Generation Model, and
uses a transformer [19]-decoder module with cross attention
(CA). Being receive the hypotheses {Hk}Kk=0 from the Gen-
eration Model, the Selection Model predicts the score for
each hypothesis. Specifically, the output MLP layer of the

transformer produces a two-dimensional value (µk, νk) instead
of producing the score signal ŝk directly. The quality signal
ŝk is calculated following

ŝk =
expµk

expµk + exp νk

which is the softmax value of µ corresponding to
softmax(µk, νk). It can be considered as the conditional
probability p(yk = 1|Hk, I), where yk = 1 indicates that
the k-th hypothesis to be the top-n one among all hypotheses.

Combined Classifying and Ranking (CCR) Loss. Pre-
vious works [10], [11] train a Selection Model with pair-
wise ranking loss [12] and take n hypotheses with the highest
predicted score. However, the pair-wise loss is inconsistent
with the goal of selecting the top-n of K hypotheses without
ranking all of them. The pair-wise ranking loss exceeds the
demand. On the other hand, such a task can be addressed
by learning a binary classifier to distinguish whether the
hypothesis is top-n. That is maximizing the probability of
p(yk|Hk, I), where

yk =

{
1, if Hk is top-n
0, if Hk is not top-n

Nevertheless, formulating the task to be a classification task
neglects the ranking information hypotheses endowed.

To utilize the ranking information, applying both the clas-
sifying and ranking loss is a straightforward idea. However,
p(yk = 1|Hk, I) does not contain ranking information mathe-
matically. p(yi = 1|Hi, I) > p(yj = 1|Hj , I) does not means
Hi is better than Hj . Thus, simply applying pairwise ranking
loss to p(yk|Hk, I) deviates from our expectation.

Inspired by [35], we propose Combined Classifying and
Ranking loss, which simultaneously the two objects without
conflict by maximizing the likelihood of joint distribution
p(x,y|I) of hypotheses x and their classes y. The CCR loss is
formulated as a summation of classification loss and ranking
loss,

Lccr = αLclass + (1− α)Lrank (7)

where α ∈ [0, 1] is the hyper-parameter for balance. Further
discussion is attached to the supplementary.

The classifying part is the cross entropy loss to supervise
the classification result given a hypothesis,

Lclass = − log
yk expµk + (1− yk) exp νk

expµk + exp νk
(8)

It maximizes the softmax value of µk corresponding to νk for
the top-n hypotheses, and νk corresponding to µk for those
non-top-n ones.

The ranking part is the cross entropy loss to learn the quality
distribution given image I, which is

Lrank = − log
yk expµk + (1− yk) exp νk∑K

j=1 [y
k expµj + (1− yk) exp νj ]

(9)

For the top-n hypothesis, Lrank maximizes the softmax value
of µk corresponding to µ−k, the value of all other hypotheses,
and νk corresponding to ν−k for the non-top-n ones.



Fig. 3. Qualitative results of comparison of our method and BlurHandNet [5] on BlurHand [5] test set. Hypothesis-1, hypothesis-2 and hypothesis-3 represent
the best, median, and worst hypothesis, respectively.

IV. EXPERIMENTS

A. Datasets and Metrics

BlurHand. BlurHand (BH) is a 3D hand pose dataset
proposed by [5] based on InterHand2.6M [36]. It contains
blurry images and corresponding 3D annotations. The blurry
image is synthesized with five sequential sharp frames from
a 30 fps video. The annotations include 3D joint coordinates,
MANO pose and shape parameters of 1st, 3rd and 5th frames.
We train and test our model following the train-test split,
containing 121,839 and 34,057 samples, respectively.

Metrics. Consistent with previous work [5], we use Mean
Per Joint Position Error (MPJPE) and Mean Per Vertex Po-
sition Error (MPVPE). The metrics measure the L2 distance
between estimation and the ground truth.

MPJPE =

J∑
j=1

√(
Jj − J∗

j

)2
,MPVPE =

V∑
v=1

√
(Vv −V∗

v)
2

B. Implement Details

The size of embedding is E = 512. The length of the
sequence is T = 3 following [5]. The number of hand joints
is J = 21. The generative model was trained for 96,450 steps
using a batch size of 24 with the AdamW optimizer [39]. The
learning rate is initially set to be 0.0001, and decays to 0 with
a cosine annealing scheduler. We train the reward model for
the same steps using a batch size of 48.

TABLE I
COMPARISON TO THE STATE-OF-THE-ARTS ON BLURHAND DATASET [5].
THE BEST RESULT IS BOLD AND THE SECOND BEST ONE IS UNDERLINED.

Method MPJPE↓ (mm) MPVPE↓ (mm)
past middle future middle

I2L-MeshNet [18] 24.32 23.08
METRO [31] 20.54 27.03

Pose2Pose [37] 18.80 17.42
BlurHandNet [5] 18.08 16.80 18.21 15.30

EBHNet [38] 17.23 16.45 17.17 15.02
Ours (best) 16.95 15.45 17.07 13.92

Ours (aggregate) 18.02 16.76 18.20 15.22

epochs with a learning rate initialized to be 0.0002
and cosinely decays to 0. Values of the constant coef-
ficient λjoint, λproj , λMANO, λaux, λdiv, λccl are set to be
(10, 2, 1, 8, 0.01, 1), respectively. The generation model is
trained to produces K = 16 hypotheses. The Selection Model
takes the top-n of them as the feasible predictions. We set the
top-n number to be n = 4.

In the following sections, we report the minimal distance
to the GT among the top-n hypotheses as ”MPJPE”, and the
minimal distance among all K hypotheses as ”best-MPJPE”.

1) Comparisons with state-of-the-arts: Table I shows the
comparison results with state-of-the-art methods on the Blur-
Hand dataset. ”Ours(best)” represents the result of the hypoth-
esis with the minimum distance to the GT in the selected
subset. ”Ours(aggregate)” represents the result of aggregating



TABLE II
ABLATION ON DIVERSITY PROMOTING LOSS.

Method best-MPJPE↓

DP loss noise VAE Embedding past middle future
✓ ✓ 16.48 14.62 16.67
✓ ✓ 16.22 14.52 16.34

✓ 16.03 14.35 16.14
✓ ✓ 15.52 14.12 15.66

selected hypotheses by simple average pooling. Our method
outperforms the current best approaches, BlurHandNet [5] and
EBHNet [38]. When a single final estimation is required,
our hypothesis with a simple aggregation strategy is still
competitive with BlurHandNet.

We provide a qualitative comparison of the mesh sequence
of our approach and BlurHandNet at all time steps. Fig.3
shows that our method generates multiple diverse hypotheses.
One of these selected hypotheses fits the groundtruth. It can be
seen that for some severely ambiguous parts, like fingertips,
BlurHandNet is likely to make wrong predictions. Our method
is able to cover the correct estimation.

C. Ablation Study

1) Number of the hypothesis: We are interested in the
effectiveness of the multi-hypothesis method. Concretely, how
the number of all hypotheses K, and the number of selected
hypotheses n influence the performance. Table III shows that
best-MPJPE decreases as the number of hypotheses K grows.
The best-MPJPE can be regarded as the lower bound of error
our method can reach. When K = 1, our method, which no
longer has the advantage of the Multi-Hypothesis method and
Selection Model, degenerates back to BlurHandNet [5]. With
a fixed K, the MPJPE decreases as n grows larger, and our
method outperforms BlurHandNet [5] when n ≥ 2. Selecting
a single best hypothesis is not robust due to the blurriness
compared with selecting on sharp images like [11]. When the
selection number n increases to 2, the model benefits from
multi-hypotheses and gets a better result than BlurHandNet.

2) Hypothesis Embedding: Unlike learning a latent space
for probabilistic generative decoder [11], [27], our method
adds fixed embeddings to the feature FJ . However, learnable
embedding is more meaningful than merely adding noise.
Table II shows the comparative results of the methods to
generate a hypothesis. ”noise” simply adding noise sampled
from a Gaussian with zero expectation and variance of 1/E.
”VAE” applies a VAE [40] which learns a Gaussian distribu-
tion N (µ,Σ|FJ) to generate F k

J . We report the best-MPJPE
to evaluate the error lower bound of each method.

3) Diversity of Hypotheses: We promote the diversity of
hypotheses to cover more plausible predictions. Table II gives
a quantitative evaluation of diversity. ”DP loss” indicates the
model is trained with loss.6. The overall generalization ability
is diminished without diversity and leads to a worse result.

4) Effect of Selection: In this part, we verify the impact
of the Selection Model. Table IV reports the results of dif-
ferent selection strategies. ”Random Selection”, the baseline,

TABLE III
best-MPJPE OF THE MIDDLE FRAME WITH DIFFERENT VALUES OF K .

MPJPE OF THE MIDDLE FRAME WITH DIFFERENT VALUES OF n.

best-MPJPE↓

K 1 4 16 32
Ours 16.78 15.27 14.12 13.78

MPJPE↓

n 1 2 3 4
Ours 17.40 16.39 15.86 15.45

TABLE IV
COMPARISON AMONG DIFFERENT SELECTION STRATEGIES.

Method MPJPE↓

Random Selection 15.69
Projective Selection [41] 16.22

Selection Model w/ Pair-wise loss [11], [12] 15.62
Selection Model w/ CCR loss (Ours) 15.45

randomly ranks hypotheses. ”Projective Selection” indicates
ranking hypotheses according to the distance to the 2D joints
J2D predicted by the Encoder. It is a basic method to select
hypotheses in 2D-3D lifting tasks [41], where the GT 2D
joints are known. ”Selection Model” uses the Selection Model
to rank hypotheses. ”w/ Pair-wise loss” trains the Selection
Model with pair-wise loss as [10], [11] do. ”w/ CCR loss”
trains the Selection Model with the CCR loss. All methods
take n = 4 candidates among K = 16 hypotheses.

As table IV shows, selecting with the Selection Model
can effectively distinguish the good hypotheses. CCR loss is
superior to the pair-wise loss. As we mentioned in Section
III-C, the CCR loss better aligns the classification task while
reserving the ranking information and utilizing it for the task.
Projective Selection, as a heuristic method, gets the worst
result as the predicted 2D joints are noisy, leading to incorrect
selection.

V. CONCLUSION

This paper proposes a two-stage method to address the
ambiguity problem of blurry images. We introduce a gener-
ation model that generates multiple feasible pose sequences
efficiently with minimal additional parameters. To select hy-
potheses that better align with the blurry image, we further
propose a selection model. Our method outperforms the state-
of-the-art on the BlurHand Dataset [5].

Although our method provides reliable and diverse estimates
for blurry images. It is not flexible enough. Change on K
and n incurs retraining a new model or loss of performance.
Additionally, the evaluation of diversity is still indirect [6]. To
produce a generalized solution, we can leverage reinforcement
learning [42] to directly encourage the best estimate.
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SUPPLEMENTARY MATERIAL

I. LOSS OF SELECTION MODEL

The selection model is expected to select the relatively
”good” hypotheses from a set of hypotheses.1 Let x denotes
the hypothesis set {x1, . . . , xK} = {H1, . . . ,HK} and y =
{y1, . . . , yK} denotes the corresponding labels. yk = 1 if Hk

is relatively ”good”, otherwise yk = 0.
It can be regarded as a classification problem that classifies

the hypotheses into two classes: whether the hypothesis is
”good” or not. Thus, a point-wise loss [12] can be applied to
select the hypotheses. It can be formulated as a binary cross-
entropy loss:

Lpointwise(x
k) = yk log(ŝk) + (1− yk) log(1− ŝk) (10)

where ŝk = Sϕ(H
k|I) is the estimated score of Hk given

image I. A higher score indicates a higher probability to be
”good”.

However, the score of hypothesis Hk also conditions on
other hypotheses H−k, which are not involved in Eq.10 in
our scenario. A point-wise loss tends to result in suboptimal
estimated scores.

A widely used training loss in previous works [11] is the
pair-wise loss [12], which can be formulated as a Bradley-
Terry model [43]. It assumes that the estimated score ŝk =
Sθ(x

k|I) satisfies

P (xi ≻ xj |I) = σ(ŝi − ŝj) (11)

where LHS is the probability that xi is better than xj given
image I. The training loss maximizes the probabilities of all
hypothesis pairs, that is

Lpairwise(x
i, xj) = − 1

1 + exp(−(ŝi − ŝj))
(12)

where xi and xj satisfies xi ≻ xj .
Pair-wise loss leverages the other hypotheses and trains a

relative score. However, pair-wise loss ranks all hypothesis
pairs equally, while previous works [11] only consider the
average result of the top-n hypotheses instead of utilising the
order of them. The groundtruth order for pairs within the top-
n ones and within the non-top-n ones are extra constraints for
our targets.

To better fit our target, we combine the point-wise loss and
pair-wise loss by aiming at maximizing the joint probability
of P (x,y|I) as x and y are coupled. We use two heads to
explicitly predict the logit value of p(x, y = 0) and p(x, y =
1), denoted as ν and µ, respectively. The joint probability is
optimized from two sides.

One is p(y|x, I), the conditional probability of y given a
hypothesis Hk. Following the definition of probability, we
have

p(yk, xk|I) = p(yk|xk, I)p(xk|I) (13)

1Heuristically, we consider hypotheses with the top-n scores to be relatively
”good”.

Notice that our generation model generates K hypotheses
with the same probabilities. Thus, p(xk|I) is a constant which
can be dropped in gradient computation. The classifying
losscan be formulated as

Lclass = −p(yk|xk, I) (14)

= − (yk) expµk + (1− yk) exp νk

expµk + exp νk
(15)

The other side is p(x|y, I), the conditional probability of x.
We have

p(xk|yk, I) = p(yk|xk, I)
p(xk|I)
p(yk|I)

(16)

.
Notice that p(yk|I) does not equal to n/K or (n−K)/K

as ”top-n in K hypotheses” is a heuristic approach to the rel-
atively ”good” hypotheses. Instead, the probability of making
a real ”good” hypothesis can be empirically estimated by

p(yk|I) =
∑
xi∈x

p(yi = yk|xi, I)p(xi|I) (17)

∝
∑
xi∈x

[
(yk) expµi + (1− yk) exp νi

]
(18)

Then we have the ranking loss

Lrank = −p(xk|yk, I) (19)

= − (yk) expµk + (1− yk) exp νk∑
xi∈x [(y

k) expµi + (1− yk) exp νi]
(20)

By minimizing Eq.20, the hypotheses with y = 1 are ranked
in front of those with y = 0 and vice versa.

The combined classifying and ranking (CCR) loss is
obtained by

Lccr = αLclass + (1− α)Lrank (21)

where α ∈ [0, 1] is the hyper-parameter for balance.
In [35], there is a discussion of the loss function with the

same formulation. But its discussion is conducted from the
perspective of combining point-wise ranking loss and list-wise
ranking loss [12].

II. ADDITIONAL QUALITATIVE RESULTS

Diversity of Hypotheses. In Figure 5, we visualize the hy-
potheses under different extend of blurriness. It shows that the
hypotheses become more diverse as the image becomes blurry.
Figure 6 shows more qualitative results of the hypotheses.

Failure Cases. Figure 4 show an example of failure
cases. Under extreme motion conditions, the multi-hypothesis
method is unable to cover the correct pose but still proposes
plausible results.



Fig. 4. One failure case that makes the wrong prediction at the middle frame due to the motion of hand.

Fig. 5. Visualization of mesh sequence in one image, past, middle, future represent the color of each timestep, respectively. It better shows how the hypothesis
differs from each one.
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Fig. 6. More visualization cases at the middle frame of our method.
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