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ABSTRACT

While multimodal foundation models can now natively work with data beyond
text, they remain underutilized in analyzing the considerable amounts of multi-
dimensional time-series data in fields like healthcare, finance, and social sciences,
representing a missed opportunity for richer, data-driven insights. This paper pro-
poses a simple but effective method that leverages the existing vision encoders
of these models to “see” time-series data via plots, avoiding the need for addi-
tional, potentially costly, model training. Our empirical evaluations show that
this approach outperforms providing the raw time-series data as text, with the ad-
ditional benefit that visual time-series representations demonstrate up to a 90%
reduction in model API costs. We validate our hypothesis through synthetic data
tasks of increasing complexity, progressing from simple functional form identifi-
cation on clean data, to extracting trends from noisy scatter plots. To demonstrate
generalizability from synthetic tasks with clear reasoning steps to more complex,
real-world scenarios, we apply our approach to consumer health tasks — specifi-
cally fall detection, activity recognition, and readiness assessment — which involve
heterogeneous, noisy data and multi-step reasoning. The overall success in plot
performance over text performance (up to an 120% performance increase on zero-
shot synthetic tasks, and up to 150% performance increase on real-world tasks),
across both GPT and Gemini model families, highlights our approach’s potential
for making the best use of the native capabilities of foundation models.

1 INTRODUCTION

Multimodal models like GPT4 (Achiam et al., 2023) and Gemini (Gemini Team et al., [2023) are
trained to understand visual information natively. However, they are not specifically trained to
understand time-series data — in particular, the tokenizers for large language models (LLMs) are not
well-suited for representing large sequences of floating point numbers (Spathis & Kawsar, [2024)).
This mirrors the human approach (Card et al. [1999; |Yalcin et al., [2016); we cannot easily make
sense of a long array of floating point numbers - instead our first instinct is often to visualize the
data through plotting, followed by extracting insights through statistical analysis.

We investigate the hypothesis that multimodal models understand time-series data better through
their vision encoders than through the textual representation of the sequences using synthetic and
real-world data experiments. Our synthetic data experiments allow us to closely control the difficulty
of tasks through the addition of noise and by changing the number of points in each function. We
also use a mix of tasks that require a differing number of reasoning steps, as well as different kinds
of reasoning, to get a correct answer.

Fall detection and activity recognition are both real-world tasks that make use of inertial measure-
ment units (IMUs) from mobile phones or wearable devices. IMUs are 6-dimensional waveforms
consisting of 3 axes of acceleration data and 3 axes of angular velocity data. The fall detection task
consists of classifying an IMU waveform segment into one of three classes: Fall, Active Daily Liv-
ing (ADL) or Near Fall (a hard negative class). The activity recognition task consists of classifying
a waveform segment into one of five classes: Sitting, Standing, Walking, Cycling or Stairs.

By contrast, the readiness assessment task is a binary classification of 28 days of training load data
from a single user into a state of undertraining or overtraining. Because of the tabular nature of the
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data, the plot version is presented as a bar plot. This is not the ideal setting for our method - we
believe it’s best used when the amount of data exceeds what’s reasonably presentable in a text table.

Our findings show that when using our plot-based approach multimodal models perform much better
on tasks where the result is dependent on understanding the overall trend. We find specific examples
of this when identifying the functional form, the number of clusters, the correlation between two
functions, and on the real-world pattern-recognition tasks of activity recognition and fall detection.
For example, GPT4o0 using plots on the functional form identification task shows a performance
improvement of 122% over using the text representation. On other tasks that require more advanced
reasoning such as multi-step or connecting trend shapes with sequence magnitudes (e.g. identifying
derivatives), and on tasks with tabular data (e.g. readiness assessment), the performance is equiv-
alent. However, there is a substantial cost difference between vision and text prompts, which is
particularly pronounced on very long-context tasks, as the same information in a long sequence that
requires many (10,000’s to 100,000’s) text tokens can be represented in one plot with many fewer
(100’s to 1000’s) vision tokens. While vision tokens are more expensive than text tokens, the differ-
ence in unit cost is much lower than the orders of magnitude difference in overall prompt length, so
that the total cost is still much lower using the vision approach. This difference is especially rele-
vant on tasks where extensive few-shots are required to achieve good performance, and optimizing
token efficiency translates to significant resource savings. Not only does this plot-based approach
achieve better performance while being more efficient, it is also completely generalizable across any
task that involves reasoning about a long, complex time-series as it requires zero additional model
training.

Our work empirically evaluates the relative performance of the native capabilities of existing mul-
timodal foundation models on visual versus textual representations of time-series data. This con-
tribution furthers the understanding of modern foundation models, which is important in real-world
contexts as user-facing products continue to develop multimodal sophistication and users interrogate
data types that are more complex than can be easily represented with text only. While we do not
claim to achieve the same absolute performance as models trained for specific tasks, and likely our
approach will not match such models, our results presented here nonetheless show that in contexts
when one relies on a foundation model to ingest any general time-series data with a priori unknown
characteristics, a visual representation is on balance likely to yield better, and cheaper, results.

2 RELATED WORK

Forecasting We use the term “time-series understanding” in this paper to distinguish from time-
series forecasting. Time-series forecasting predicts future data points based on points seen so far,
whereas we are primarily interested in the setting where we connect the time-series data to a multi-
modal model for further analysis. In particular, we want to show that multimodal models can reason
about overall trends, the relationship between multiple time-series, overall clustering of data, and
other time-series understanding tasks. Forecasting has been a very productive area of the field —
for a closer look at the literature, the survey paper by [Zhang et al.| (2024)) tracks a wide range of
time-series understanding and forecasting work.

Time-series models There are several existing approaches that train time-series encoders for specific
tasks or domains. For example,|Chan et al.|(2024) trained a domain-specific encoder for multimodal
medical time-series analysis. Similarly, (Cosentino et al.|(2024) trained an encoder for the sleep
data in their Digital Well-being task. In this paper, we are not claiming that our approach would
outperform a task-specific model on a specific task — we claim that one can achieve much better
performance from a foundation model by exploiting its native multimodal capabilities compared to
using only text.

Others have also shown that training foundation models with Transformer architectures specifically
to work in time-series contexts can lead to good results across tasks including mostly forecasting
but also classification, anomaly detection and imputation. These trained models do especially well
when the input time-series are carefully pre-processed and tokenized, including patching, scaling
and quantization |Das et al.| (2023)); Woo et al.| (2024); |Goswami et al.| (2024); |Ansari et al.| (2024);
Cai et al.| (2023). While they did not train a new model, in LLMTime (Gruver et al.| 2024) the
authors showed that with careful tokenization, text-only LLMs can perform well at forecasting tasks;
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we perform ablations based on their methods and select the best tokenizations accordingly for our
text baselines.

In this work, our goal is to show that simply plotting the data without additional data preprocessing
or model training is at the very least an easy first step, and might be a helpful approach when training
a task-specific encoder from scratch may not be feasible due to the requirements on having additional
paired data, compute and expertise.

Vision models and visual representations While studying multimodal models’ abilities to reason
about visual inputs, Rahmanzadehgervi et al.| (2024) found that multimodal models are unable to
reason effectively, although some follow-up work by |Corinl (2024) indicated that prompt engineering
can fix losses. In any case, our results do not necessarily contradict this - for many of our tasks
humans may be able to get perfect scores, and indeed the multimodal models do not. Regardless,
our main claim that plots are better suited than text as input to a multimodal model for time-series
understanding holds true.

Perhaps an inversion of our approach, DePlot (Liu et al., 2023)) translated visual plots to numeric
tables and operated on the tabular data. This approach may be sound for discrete data where the
number of points remains small — cases where a human would be expected to understand a table of
data well.

Closely related to our work are those methods that use vision-embedding models like Contrastive
Language-Image Pre-training (CLIP) by |[Radford et al.| (2021). 'Wimmer & Rekabsaz|(2023) used
CLIP to embed plots of financial time-series data, from which features are extracted for use by down-
stream classifiers. Since we use the vision encoders of the multimodal foundation models directly,
there is no need for further feature extraction or downstream classifiers in our approach. IMU2CLIP
(Moon et al., [2023)) and ImageBind (Girdhar et al., 2023) used video and image data paired with
waveforms to learn joint embeddings. Both of these works rely on existing paired waveform and
video data to “bind” the modalities together, whereas we can simply plot the waveforms and use the
existing multimodal vision encoder to derive our time-series embeddings.

Measuring understanding Past work has also investigated various approaches to measuring the
degree to which models can understand and reason about various modalities of inputs, such as charts
(CharXiv (Wang et al., 2024))), tables and figures (SPIQA (Pramanick et al.,|2024)) and time-series
themselves (TimeSeriesExam (Cai et al., 2024)). These works generally involve generating novel
evaluation datasets, and in some cases (e.g. (Wang et al., 2024), (Pramanick et al., [2024))) rely
on language models to generate the questions themselves. In our work we deliberately avoid this
approach as it can introduce biases during evaluation that are hard to account for (e.g. favoring their
own output as in (Panickssery et al.,2024)). In TimeSeriesExam (Cai et al.,2024)), the authors also
found, as we do, that models perform better on plot-based representations of time-series than the
analogues text-based representations, though only demonstrate this on synthetic data as part of a
carefully optimised exam generation algorithm.

3 METHODOLOGY

We evaluate our visual prompting method on both synthetic data and real-world use-cases. Syn-
thetic data allows us to control the difficulty of the task by adding noise and altering the number
of data points, and to investigate specific kinds of reasoning in isolation. We chose the synthetic
tasks to align with the different steps of reasoning we hypothesize are required for the representa-
tive real-world use cases we test on. Note that in this context, “reasoning” refers to the high-level
steps we believe humans would take to get to the right answer, rather than any formal modelling ap-
proach such as chain of thought. These tasks include understanding the local and global longitudinal
signatures (trend and magnitude) of a time-series, and potentially comparing it with several other
time-series (as in the case of multidimensional sensing). We summarize in Section@]the different
tasks in our experiments, along with the type of reasoning we are probing.

The goal of our work is to study specifically the difference in performance achieved by models
when ingesting visual versus textual representations rather than the absolute performance on any
one task with either modality. As such the appropriate baseline, and the one we use, is the models’
performances on textual representations. We nonetheless include random choice baselines for con-
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text to show there is utility in leveraging these models at all, and compare against state-of-the-art
task-specific models (for two of the real-world tasks) for context.

3.1 STRUCTURED PROMPTING

We used the open-source structured prompting library Langfun (Peng| |2023) for all tasks in this pa-
per, with the exception of the Readiness task (Section[4.2) which is processed in a privacy-preserving
sandbox environment. The prompts and Langfun code snippets for all tasks (except Readiness) are
provided in Appendix[A.4]for reproducibility. The structured prompting approach in Langfun allows
us to use target schemas for outputs, though we do not use the controlled generation feature (Gemini
models) or structured output (GPT40 models), simply relying on the native formatting of the model
to the correct schema.

3.2 MODELS

We tested all synthetic data tasks on two frontier models: Gemini Pro 1.5 (gemini-pro-001) and
GPT4o0 (gpt40-2024-08-06) and two smaller models Gemini Flash 1.5 (gemini-flash-001) and
GPT40-mini (gpt4o-mini-2024-07-18). We use a temperature of 0.1 for all our experiments, Sup-
plementary Tables [S33}{S33] includes our ablations on temperature. All other sampling parameters
remain at API defaults.

3.3 FLOATING POINT REPRESENTATION

In order to find the best textual representations, we ran ablations (Appendix [A.3) inspired by LLM-
Time (Gruver et al., 2024) on which floating point precision (2, 4, 8, 16) and separator (space or
comma and space) to use. We also tested the scaling approach suggested by LLMTime. We found
that the lower precision led to better performance. On synthetic tasks, the best performing separator
differs per model, on Gemini we make use of the space separator whereas on the GPT4o family we
use comma and space. On real-world tasks we make use of the space separator for all models as
we did not observe a difference in performance on these tasks and the space separator uses fewer
tokens.

3.4 STATISTICAL METHODS

For our aggregate results, we aggregate individual model responses to an overall performance quality
metric (accuracy or mean absolute error (MAE)) over the task dimensions as described in Supple-
mental Section[A.T.T] This produces multiple points from which we extract a distribution presented
as a box-plot where the central line is the median, the edges of the boxes are the inter-quartile range
(IQR), the whisker lengths extend to 1.5 times the IQR and outliers are presented as individual
points. For our more detailed plots in Appendix we show 95% confidence intervals constructed
from 1.96 times the standard error of the mean of the metric.

For real-world tasks, since we don’t have the ability to regenerate the same problem, we instead make
use of bootstrapping (with 1,000 replicates) to produce distributions of the macro-averaged F; scores
from which we construct similar box-plots as for the synthetic tasks. Note that the distributions
plotted in the real-world box-plots are thus expected to be tighter than the synthetic task plots, as
they don’t reflect independent replicates.

In Table 2] we present the median and IQRs of the differences between plot and text performances,
with the difference taken such that a positive value always means the plot method performs better
than the text method. For synthetic tasks, the median and IQR are calculated by directly creating
the distribution of differences between the plot and text performances of different instances of the
experiment, while for real-world tasks we create a distribution of differences by randomly sampling
1,000 random pairs of the bootstrapped metric distributions described immediately earlier.

For synthetic tasks only, we test for significant differences between the plot and text performances
with a two-sided Wilcoxon signed-rank test (Wilcoxon, [1945). We apply a Bonferroni (Bland &
Altman, [1995)) correction for multiple comparisons within a task block. We could not apply the
same hypothesis testing framework to the real-world tasks as the performance distributions were
bootstrapped and thus not independent, violating the assumptions of the Wilcoxon test.
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4 EXPERIMENTS AND RESULTS

Time-series

Type of data Task Reasoning length
Functional form id. Understanding of one overall trend 10’s - 1,000’s
Correlation of two lines Understanding of two overall trends  10’s - 1,000’s
Synthetic : : .
2D cluster counting Understanding and counting N over: 10%s - 1,000’
all trends
Derivative id. Multi-step reasoning connecting two 10°s - 1,000’s
overall trends
Quadratic derivative id. Multi-step feasoning connecting two. . 1,000’s
trends and magnitudes
Fall detection from IMU data Clgss1fy a pa}ttern. based on local 10,000’s
spikes in multiple signals
Activity recognition from Classify a pattern based on global ,
Real-world IMU data trends in multiple signals 10,000%
Readiness from wearable Compare a local trend with a global 10%s
measures of training intensity  trend

Table 1: Summary of the tasks we study in this paper, including the reasoning each requires and
the length of the input time-series (based on the number of points). The “reasoning” column is a
high-level summary of the steps needed to answer the tasks’ questions correctly; tasks are detailed

in Sections [4.T|and [4.2] and Supplementary Information Section

Task Few- . . Gemini Gemini Pro
(Metric) Shots GPT4o-mini Flash 1.5 GPT4o 1.5
Functional form id. 0 0.32 0.22 0.46 0.04
(Accuracy) (0.18,0.41)*  (0.11,0.40)*  (0.31, 0.52)* (-0.08, 0.25)
Correlation of two 0 0.33 0.25 0.17 0.33
lines (Accuracy) (0.17,0.33)*  (0.17,0.33)*  (0.00, 0.17)* (0.17, 0.50)*
2D cluster counting 0 1.02 1.67 2.29 1.82
(MAE) (0.53,1.09)*  (1.49, 1.80)*  (1.84,2.44)* (1.36, 2.06)*
Derivative id. 0 0.16 0.08 0.00 -0.02
(Accuracy) (0.12,0.24)*  (-0.04, 0.20) (-0.18,0.12) (-0.16, 0.08)
0 0.27 0.15 -0.17 0.17
Quadratic derivative (0.23,0.38)*  (0.02,0.30)*  (-0.30,-0.10)*  (-0.01, 0.24)
id. 3 0.17 0.32 0.10 0.28
(Accuracy) (0.12,0.33)*  (0.13,0.349)*  (-0.07,0.17) (0.19, 0.43)*
Fall detection 1 0.03 0.11 0.32 0.13
(F, score) (0.02, 0.05) (0.09, 0.12) (0.31, 0.34) (0.10, 0.15)
1 10 0.21 0.17 0.50 0.40
(0.19, 0.22) (0.15,0.19) (0.49, 0.52) (0.38, 0.42)
Activity detection 1 0.09 0.12 0.03 0.20
(F, score) (0.07,0.11) (0.10, 0.14) (0.01, 0.06) (0.18, 0.22)
L 5 0.11 0.23 0.18 0.23
(0.09, 0.13) (0.21, 0.25) (0.15, 0.20) (0.21, 0.25)
Readiness 0 B -0.08 0.07
(I score) (-0.11, -0.06) (0.05, 0.09)

Table 2: Summary of the experiments with 38 out of 42 results showing better performance on
plots (bold numbers). Cells contain metric medians and IQRs. Stars in synthetic tasks only indicate
statistically significant differences between plot and text metrics at 95% confidence corrected for
multiple comparisons; we could not perform the same hypothesis testing on the real-world tasks.
See Section [3.4] for statistical details and Supplementary Table [S2] for relative differences between

approaches.
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4.1 SYNTHETIC DATA TASKS

Figure [I] summarizes all the zero-shot versions of the synthetic data tasks showing that plot-based
methods outperform the text-based methods across GPT and Gemini model families, with few ex-
ceptions. Detailed task descriptions are provided in Supplementary Information Section [A-T.1} and
non-aggregated results over dataset parameters such as number of points and noise level are available
in Supplementary Information Section[A.2]
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Figure 1: Zero-shot synthetic data results showing plot- and text-based accuracy (MAE for the
cluster counting task) distributions for all models, with horizontal lines representing random perfor-
mance. The results generally show better performance for plots compared to text across models.

Functional form identification (id.) This is the simplest task that requires only identifying one
overall trend and correctly classifying it into one of five functional tasks (linear, quadratic, cubic,
exponential or periodic). We generate a set number of points with a controlled level of noise accord-
ing to one of the five function classes, and test the model’s ability to label the global trend into the
correct class.

Correlation of two lines This task now requires understanding the trends in two lines and comparing
them against each other to correct identify whether the lines are positively or negatively correlated.
Here we generate two linear series with controlled number of points and noise and predetermined
slopes, measure the sign of the correlation analytically using the Pearson correlation coefficient, and
probe the model’s ability to identify the directional correlation.

2D cluster counting In this task, the model needs to correctly identify the N number of clusters
present in a set of points. To test this, we generate random points on a 2D grid with a set number
of clusters and controlled minimum distance between cluster centers and standard deviation of the
points about the centres. The model is then instructed to count the number of clusters.

Derivative identification This is a harder task: the model must now identify the correct first deriva-
tive (out of four choices) of the function provided in the question. The function and choices are
presented as either plots or text. We pass various known functions to the model alongside four syn-
thetic first derivatives, each corresponding to different functional classes, with controlled levels of
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noise and number of points. The models are then asked to identify which of the multiple choices
corresponds to the true derivative.

Quadratic derivative identification As a hard variant of derivative identification, we always pass
a quadratic function and present four different linear functions as multiple choice answers, with
controlled levels of noise and number of points. The model must now identify the correct linear
function (out of four choices) that corresponds to the quadratic function’s derivative, so it must pay
attention to both the sign and magnitude of the linear slopes.

In order to investigate the quadratic derivative task further, we also ran experiments providing few-
shot examples with reasoning traces with results shown in Figure 2] Here we find that GPT4o text
zero-shot remains an outlier in its strong performance, but for the other models plot outperforms
text, with few shots improving performance in the Gemini family for both plot and text, but reducing
performance in the GPT family of models for both plot and text.

Quadratic Derivative Identification: Accuracy by Plot and Text by number of few shots
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Figure 2: Quadratic derivative identification results show zero-shot plots outperform text, except for
the outlier GPT40 model. When using few-shots, more examples generally improves the gain.

4.2 REAL-WORLD TASKS

Our synthetic tasks built up in complexity from understanding one trend globally (functional form
identification) to understanding several trends simultaneously using global and local information
(correlation and cluster counting) and complex multi-step reasoning (derivative identifications). We
now probe tasks on real-world data that require a mix of these reasoning abilities, including simul-
taneous understanding of multiple sensor signals to uncover either local or global trends in the first
two tasks (fall detection and activity recognition), and extracting two trends of different timescales
in the last task (readiness).

Fall detection from inertial measurement units (IMUs) An IMU segment is a 6D-vector com-
posed of 3-axes accelerometer signals and 3-axes gyroscope signals. The first real-world task we
evaluate (results in Figure[3) is to classify whether a 15-second IMU segment recorded at 128hz con-
tains a fall, a “near” fall or showed “active daily living” (ADL). The dataset used in the open-source
IMU Fall Detection dataset (IMUFD, |Aziz et al.|(2017)).

Few-shot fall detection is a pattern-recognition task - typically a fall shows up on the IMU as a big
spike in magnitude on multiple axes. What makes the task hard is the inclusion of the hard negative
class of “Near” falls, where the participants of the study pretend to trip but recover before actually
falling, creating similarly large changes in magnitude on the IMU.

Activity recognition from IMUs A further real-world IMU task we evaluate is to classify whether

a 15-second IMU segment is one of five activity classes: “sit”, “stand”, “stairs”, “walk” or “bike”
(results in Figure ). The dataset used in the open-source Heterogeneity Human Activity Recogni-
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Fall Detection: F1 Score by Plot and Text by number of few shots
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Figure 3: Results of fall detection task show consistently better plot performances across models
and number of few-shots, with plot performance generally increasing with number of shots. The
top plot models have 10-shot (sensitivity, specificity) as follows: Gemini Pro 1.5 - (0.84, 0.95) and
GPT4o - (0.92, 0.81), compared to the state-of-the-art task-specific support-vector machine model
reported by [Aziz et al] (2017) which achieves (0.96, 0.96) (see Supplementary Table [ST] for more
details).

Activity Recognition: F1 Score by Plot and Text by number of few shots
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Figure 4: Results of activity detection task for all models across few-shot numbers (where context
length allowed), showing overall improved performance for plots. The performance of the state-of-
the-art deep-learning model reported by |[Kumar & Selvam| (2022 is included for reference.

tion dataset (HHAR, [Stisen et al.[|(2015)). As with Fall Detection we test performance with 1, 3, 5
and 10 few-shot examples, with 383 samples per model and number of few-shots. For this task the
text representation of the 10 few-shot examples exceeded the GPT40 and GPT40-mini 128k context
windows, so these results are only shown for the Gemini models.

Activity recognition requires evaluating the entire IMU segment and correlating signals between
different axes and sensors to determine the likely activity, as the noisy signals may only subtly
change between “sit” and “stand” or “walk” and “stairs”. The HHAR dataset was deliberately
collected to be heterogeneous containing data collected from four different types of smartphone and
two different types of smartwatch. The classes in the dataset aren’t balanced so performance is
reported using an F} score.
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Readiness Estimating fitness readiness for a workout is a mul-
ticomponent task that involves assessment of health metrics, Readiness:

sleep, training load, and subjective feedback (Cosentino et al.} 1o T Score for Plotvs Text
2024). Among those, training load analysis can be evaluated S
quantitatively and involves plot interpretation. Therefore, we random
framed the task as a binary classification problem (training 08

load trending upwards or downwards) and use the calculated %l
acute-chronic workload ratio (ACWR) to obtain ground truth %I

labels.

0.6
ACWR is a ratio of acute training load (total training impulse,
or TRIMP, over the past 7 days) divided by chronic training
load (28-day average of acute load). An ACWR equal to 1.0 0.4
means that the user has exercised at the same intensity con-
tinuously over the past week compared to the month, below
1.0 means that they are trending downward, and above 1.0
means they are trending upwards. Precise ACWR calculation
involves multiple mathematical operations, so we assess the
model’s ability to understand the trend from monthly TRIMP

values without explicit calculation. % Gemini Flash 1.5 Gemini Pro 1.5

F1 Score

0.2

We use training load data from 350 fitness case studies

(Cosentino et al, 2024) and present it as tables or TRIMP bar Figure 5:.R.esu1ts of readiness task
plots (results shown in Figure [5). Each case study contains for Gemini models only (as the
data from 30 consecutive days. We use a simplified version dataset cannot be sent to other
of the textual prompt and visualization from [Cosentino et al, Mmodels), demonstrating approxi-
(2024) and do not split TRIMP in different heart rate zones. Mmate parity between the text and
We tested Gemini 1.5 Pro and Gemini 1.5 Flash for both plot plot approaches.

and text approaches as zero-shot tasks. Since this task involved

analyzing just 30 data points we did not expect the plot prompt

to excel here. Interestingly, models of different sizes showed

opposite trends: Gemini 1.5 Pro had a slight increase in performance when using plots, while Gem-
ini 1.5 Flash had a slight increase in performance when using text, though the magnitudes of the
gains were small.

4.3 ABLATIONS

We considered a variety of text and plot ablations to confirm if there were any large gains. All
ablations were performed on Gemini Pro 1.5. We used the function identification task to test for any
performance differences; details, results and visualizations are reported in Section

4.4 Cost

Using plots for time-series data can often be more cost-efficient and token-efficient. Token efficiency
matters when your context is large and the context-window is limited; for example we needed to
downsample our raw signals to fit them into the 128k context window for GPT4o0(-mini), particu-
larly with the large few-shot experiments (Section[4.2). For example, when using the Gemini API
(Googlel [2024), images account for 258 tokens if both dimensions are less than 384 x 384 pixels,
after which 4 additional crops are added for a total of 1290 tokens. Text tasks can easily be 10x
larger (e.g. 10-shot activity recognition Section requiring more than the entire 128k context
available. Depending on the task it may be possible to reduce the number of text tokens by further
sub-sampling of the data, but this may result in reduced task performance. The optimal sampling
rate may also be task- and dataset-specific.

Plot experiments also end up being cheaper. As an example, for our most expensive experiment
on few-shot activity recognition, we can estimate the input token cost of our 5-shot experiment for
both plot and text on GPT40 (OpenAl} 2024). The text version of this task required nearly 128k text
tokens (costing $0.32 per 5-shot question); by contrast, the plot version required 50 images (costing
$0.032), a 10x difference in overall costs for input tokens. In addition to being cheaper, the plotting
approach also scales better for longer time-series, as the number of tokens required for the textual
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approach grows with the number of data points while a plot of the same size will generate the same
number of tokens independent of the number of data points being plotted.

5 CONCLUSIONS AND FUTURE WORK

The key finding from our rigorous empirical evaluation is that engaging the vision encoder of a mul-
timodal foundation model through the use of plot representations leads to significant performance
and efficiency gains on time-series understanding tasks, compared with relying on the text encoder.
By processing data visually instead of textually, these models can better capture temporal patterns
and relationships. We established our results on synthetic data with well-controlled characteristics
and reasoning types, and also showed that this approach holds on real, noisy and complex tasks re-
lated to making sense of consumer health signals. This is analogous to the gains that humans benefit
from when visualising data (Card et al., [1999; Yalcin et al., 2016), though we do not claim that the
mechanisms by which visual data are processed by the models we study here are the same as those
with which humans process visual stimuli.

The method presented here is powerful in its simplicity and generalizability and relies on the native
capabilities of multimodal models requiring no additional training — we believe that it is particularly
useful when the following conditions are met:

e You want to use an off-the-shelf multimodal model to interpret your time-series data, as
might be the case in user-facing applications that rely on general models to understand a
broad range of potential user inputs including natural language.

e Your use-case is not restricted to a specific task or modality, and generalizability across
tasks is more important than accuracy on a single task. We showed that plots act as a gen-
eralizable time-series encoder across many tasks, even though they may not be better than
a task-specific encoder trained for one task. Training task-specific encoders for multimodal
models can be limited by availability of paired training data, compute and expertise.

e You don’t want to downsample your data. In many cases the textual representation of real
time-series outstrips the maximum context length, and so the plot-based approach is the
only way to present the data without downsampling.

Our focus in this work is specific to time-series understanding (i.e., reasoning about known data).
Forecasting is also important to time-series analysis and in the future we suspect that leveraging the
vision components of multimodal models might yield positive results in this area too.

In this work, all plots were generated by human-written code in order to avoid any bias. As such we
do not rigorously study what the optimal plotted form of a certain time-series might be for visual
understanding; this is likely to be a function of the exact downstream task or user request, but could
in theory be automated and forms the basis for future work. Looking forward, in real applications
we anticipate that plotting could be part of a tool-use framework, where the model is prompted to
choose how and when to plot the data, after which it uses the plot representation it created.

Lastly, further work remains in the explainability context — while we demonstrate empirically that
visual representations generally outperform textual representations of time-series data, we have not
probed why mechanistically this is so.

6 REPRODUCIBILITY STATEMENT
Our evaluations are run on publicly available models that have publicly available APIs. The exact
model versions used are detailed in Section[3.2}

Our structured prompting methods are detailed in[3.1]and we include the actual prompts and target
dataclasses used in Supplementary Section[A.4]

All the data for the synthetic tasks is by definition synthesized and the detailed task descriptions in
Supplementary Section[A.T.T| provide the necessary details to recreate these synthetic datasets.

The IMU Fall Detection Dataset (IMUFD, |Aziz et al.| (2017))) and Heterogeneity Human Activity
Recognition dataset (HHAR, [Stisen et al.| (2015)) used respectively for the fall detection and ac-
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tivity recognition tasks are both publicly available. Pre- and post-processing steps are detailed in
Supplementary Section

The dataset for the Readiness task is not currently publicly available. However the task details in
Section[4.2) would enable reproduction of the results with access to a comparable dataset.
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