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Abstract
The optimization of neural networks under weight decay remains poorly understood from a theo-
retical standpoint. While weight decay is standard practice in modern training procedures, most
theoretical analyses focus on unregularized settings. In this work, we investigate the loss landscape of
the ℓ2-regularized training loss for two-layer ReLU networks. We show that the landscape becomes
benign – i.e., free of spurious local minima – under large overparametrization, specifically when the
network width m satisfies m ≳ min(nd, 2n), where n is the number of data points and d the input
dimension. More precisely in this regime, almost all constant activation regions contain a global
minimum and no spurious local minima. We further show that this level of overparametrization is not
only sufficient but also necessary via the example of orthogonal data. Finally, we demonstrate that
such loss landscape results primarily hold relevance in the large initialization regime. In contrast, for
small initializations – corresponding to the feature learning regime – optimization can still converge
to spurious local minima, despite the global benignity of the landscape.

1. Introduction

While the empirical success of machine learning, particularly with overparametrized architectures,
has been remarkable across a range of tasks [28, 30], our theoretical understanding of why these
models perform so well remains limited. A large portion of the theoretical literature in machine
learning has focused on providing optimization guarantees that ensure convergence to a global
minimum of the training loss . While these results offer important foundations, they often rely on
strong assumptions and idealized settings, such as smooth activations and infinitely wide architectures
[11, 19, 29, 39, 49, 58] or initialization regimes that are not representative of the feature learning
happening in practice when training neural networks [1, 12, 19, 29]. More specific optimization
analyses provide a comprehensive understanding of training dynamics, yet they are frequently
restricted to simplified regimes, such as specific data examples [6, 23, 36] or linear architectures [59],
limiting their applicability to realistic models and datasets.

Another line of work shifts focus from dynamics to geometry, aiming to characterize the structure
of the loss landscape itself [55]. These studies investigate conditions under which the landscape
is benign – that is, when the non-convexity of the loss does not pose a fundamental obstacle to

© E. Boursier, M. Bowditch, M. Englert & R. Lazić.
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finding global minima efficiently, and the loss landscape is free from spurious minima that could
impede optimization. While the literature suggests that the loss landscape of overparametrized
neural networks is often benign [32, 34, 56], such results do not directly guarantee that standard
optimization algorithms will converge to global minima of the training loss. In particular, several
works demonstrate the existence of a descending direction from any non-minimizing parameter, i.e.,
a direction along which the training loss does not increase. However, certain spurious local minima
may still persist [24, 50], where this descending direction corresponds to a flat direction: one in
which the loss remains constant rather than decreasing. As a result, common optimization methods
can still become trapped in these local minima, hindering convergence.

Boursier and Flammarion [4] further demonstrated, through an analysis of training dynamics,
that even infinitely wide ReLU networks can converge to spurious local minima of the unregularized
loss when initialized with sufficiently small weights. This result highlights that, despite the existence
of descent directions and locally benign structures in the loss landscape, optimization algorithms may
still converge to undesirable stationary points. In particular, convergence to spurious local minima
remains possible, even in the presence of descending paths, underscoring a gap between geometric
properties of the loss landscape and the practical behavior of optimization dynamics.

While much of the existing literature has provided valuable insights into training without regu-
larization, the importance of regularization, such as weight decay, cannot be overstated in practice.
Weight decay is standard in modern neural network training, playing a crucial role in control-
ling model complexity and ensuring generalization [2, 52], particularly when training large, over-
parametrized networks on real-world data. Despite its widespread use, the theoretical understanding
of how regularization influences the loss landscape and optimization dynamics remains incomplete.
In this work, we study the training dynamics of two-layer ReLU networks under weight decay. Our
analysis begins with a geometric perspective, characterizing the loss landscape induced by weight
decay. We then examine how this geometric understanding translates (or fails to translate) into
practical optimization behaviors by analyzing the training dynamics on specific data examples.

Contributions. After introducing the considered problem and setting in Section 2, we study the
(regularized) loss landscape of overparametrized networks in Section 3. We show that, under large
overparametrization – specifically, when the number of parameters m exceeds min(2n, nd), where
n is the number of training examples and d is the data dimension – the loss landscape exhibits
a favorable structure: most activation regions contain a global minimum of the training loss and
are devoid of spurious local minima. This result suggests that, in this overparametrized regime,
convergence to global minima is typically straightforward. However, the loss landscape alone does
not fully explain the trajectory of optimization. We then study the limitations of this loss landscape
analysis, particularly emphasizing its relevance in the large initialization regime. In Appendix D,
we illustrate through a specific data example that with small initializations (i.e., in the mean field
or feature learning regime), the parameters may converge to suboptimal solutions, even though the
loss landscape suggests otherwise. Furthermore, in Appendix E, we explore the case of orthogonal
data and demonstrate that the large overparametrization m ≳ min(2n, nd) is not merely a sufficient
condition for a benign loss landscape, but is also necessary to guarantee convergence to a global
minimum of the regularized loss, regardless of the initialization regime. Finally, we experimentally
illustrate our different findings in Section 4, providing concrete examples where our theoretical results
are validated and offering a deeper understanding of the optimization dynamics in various regimes.
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At a high level, our work underscores the additional challenges introduced when incorporating
a regularization term into the training loss. Specifically, we find that a significantly larger over-
parametrization is required to ensure convergence to a global minimum, both from a landscape
perspective and from an optimization perspective, especially in the case of orthogonal data. Fur-
thermore, we also highlight the limitations of relying solely on the loss landscape analysis: while
it provides valuable insights in the large initialization regime, this picture becomes more complex
in the small initialization regime. In this case, the implicit bias of optimization plays a critical role,
potentially guiding the optimization process towards a local minimum in a manner that is specific
and non-random. Notably, this can lead to convergence to a spurious local minimum, despite the
landscape predominantly containing global minima.

We further discuss related work in Appendix B, and future work in Appendix F.

2. Setting

We consider a two-layer ReLU network parametrized by θ := (W,a) ∈ Rm×(d+1) that corresponds
to the function fθ defined for any x ∈ Rd as

fθ(x) = a⊤σ(Wx), (1)

where W ∈ Rm×d corresponds to the inner layer of the network, a ∈ Rm is the output layer and the
ReLU activation σ : z 7→ max(0, z) is applied component wise. Additionally, we write wi ∈ Rd

for the i-th row of the matrix W . With training data (xk, yk)k∈[n] ∈ R(d+1)×n, we consider the
following regularized regression problem

min
θ

1

n

n∑
k=1

(fθ(xk)− yk)
2 + λ∥θ∥22 (Reg-λ)

where λ > 0 is the regularization parameter. When interpolation is possible (e.g. if m ≥ n), solutions
of Equation (Reg-λ) converge towards solutions of the following problem as λ → 0:

min
θ

∥θ∥22 such that fθ(xk) = yk for any k ∈ [n]. (min-norm)

A key aspect of the ReLU activation is that it is piecewise linear. As a consequence, Ergen and
Pilanci [20] proposed an equivalent convex problem to both Equations (Reg-λ) and (min-norm). This
equivalent problem is designed via a partitioning of the parameter space into cones where the output
function fθ behaves linearly in both W and a inside each of these cones. Formally, we associate to
each binary matrix A ∈ {0, 1}m×(n+1) the activation cone CA given by

CA :=
{
(W,a) ∈ Rm×(d+1) | for any i ∈ [m], k ∈ [n],1(w⊤

i xk ≥ 0) = Ai,k

and 1(ai ≥ 0) = Ai,n+1

}
. (2)

Note that some activation cones might be empty sets. These activation cones play a key role in
the optimization of two-layer ReLU networks. Notably, they allow for the formulation of convex
problems equivalent to both Equations (Reg-λ) and (min-norm), yielding insightful conclusions
on their global minima [20, 57]. They also are crucial in understanding the training dynamics of
two-layer ReLU networks, as all neurons with the same activation (i.e., row Ai) follow the same
dynamics (up to rescaling) [38].

3



BENIGNITY OF LOSS LANDSCAPE WITH WEIGHT DECAY

Notations. For a set C, we denote its closure by C. We note f(t) = O(g(t)), if there exists a
constant C such that for any t, |f(t)| ≤ Cg(t). Similarly we note f(t) = Ω(g(t)), if there exists a
constant C > 0 such that f(t) ≥ Cg(t).

3. Overparametrization and benign loss landscape

Karhadkar et al. [31] study the unregularized problem, given by Equation (Reg-λ) with λ = 0. They
show, when the model is mildly overparametrized (m ≳ n/d), that only a small fraction of activation
cones contain bad stationary points. Theorem 1 below provides a similar picture when λ > 0, stating
that in the case of large overparametrization, nearly all activation cones do not contain bad local
minima. Additionally, we show that nearly all activation cones also contain global minima, which is
another strong argument in favor of the benignity of the loss landscape.

Theorem 1 Let ε ∈ (0, 1). If m = Ω
(
min(nd, 2n) log(nε )

)
, then for any λ > 0, in all except at

most an ε fraction of non-empty activation cones CA it simultaneously holds:

(i) the activation cone CA contains a global minimum of Equation (Reg-λ) (respectively Equa-
tion (min-norm));

(ii) the activation cone CA does not contain any bad local minimum of Equation (Reg-λ) restricted
to CA (respectively Equation (min-norm)).

Theorem 1 states that a large overparametrization (having m ≳ min(nd, 2n)) is here sufficient to
have a benign loss landscape, i.e., having only few regions with bad local minima and most of them
with global ones. Moreover, the notion of bad local minimum in Theorem 1 is restricted to CA,
which is a stronger notion of local minimality1 and thus leads to stronger benignity properties of the
loss landscape. This large overparametrization requirement is actually necessary for benignity, as
illustrated on the orthogonal example in Appendix E.

In comparison, Karhadkar et al. [31] showed that a mild overparametrization (m ≳ n) is sufficient
to get only a small fraction of cones with bad local minima for the unregularized problem. Although
it remains unknown whether such a mild overparametrization also leads to global minima of the
unregularized problem in most of the cones (i.e., the first point of Theorem 1), it still suggests, from
a loss landscape point of view, that reaching the global minimum of the unregularized problem is
generally much easier than the regularized one. While such an observation seems intuitive, Theorem 1
precisely quantifies this difference: while the unregularized landscape is benign with m ≳ n neurons,
the regularized landscape only becomes benign with m ≳ min(nd, 2n) neurons. Note that such a
difference is not due to a possible looseness in our bound, since Theorem 3 below justifies that such
a level of overparametrization is required to get a benign regularized landscape.

Sketch of proof. Thanks to the results of Wang et al. [57], using a convex problem equivalent to
the problem in Equation (Reg-λ), there exists a neural network globally minimizing the latter with
only n+1 non-zero neurons. From there, any cone containing (at least) n+1 neurons with the same
activation pattern as the n+1 neurons of this optimal network can be shown to satisfy the two proper-
ties of Theorem 1 (see Lemma 1). We then show that when choosing an activation cone uniformly at
random, there is a high probability to get such n+1 neurons. Actually, this is equivalent to the coupon

1. Any local minimum in Θ is indeed also a local minimum in any subset S ⊆ Θ containing this point.
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Figure 1: Proportion of activation cones containing global minima (blue) and bad local minima (or-
ange) across varying m, n, and d. The vertical dotted line corresponds to the number of non-
empty neuron activation patterns, of which there are 4 ·

∑d−1
i=0

(
n−1
i

)
= O

(
min(2n, nd)

)
.

collector problem [see, e.g., 21]: drawing m independent coupons uniformly at random among a set
of min(nd, 2n) coupons – which are all the possible neuron activation patterns – and lower bounding
the probability that n+ 1 winning coupons are collected within these m random coupons.

On its own, the loss landscape result of Theorem 1 justifies that when selecting an interpolator of
the training data at random with large overparametrization, there is a high probability that the obtained
estimator is small norm and even that it might be close to a global minimum of Equation (min-norm).
This observation is directly related to the fact that selecting a neural network with weights sampled
uniformly at random, conditioned on the fact that it interpolates the data, yields a good generalization
to new unseen data [7, 9]. Indeed such a network sampled at random should be of small norm with
high probability and should thus generalize well.

4. Experiments

In this section, we present experimental results confirming the benign landscape results of Theorem 1.
Additional experiments related to Appendix E can be found in Appendix A.

Figure 1 illustrates the proportion of non-empty activation cones, whose closure contains a global
minimum or local minimum of Equation (Reg-λ) with λ = 0.01, for different values of width m, num-
ber of data points n and data dimension d. Data is generated by drawing independent data points xi at
random according to a standard Gaussian distribution, where the labels yi are given by the correspond-
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ing output of a teacher two-layer ReLU network of width 10. Shaded areas correspond to the min/max
deviations observed over 5 random datasets. Experimental details can be found in Appendix A.
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Figure 2: The same setup as for Figure 1 except that the data consists of n random orthogonal unit
vectors, with the labels again given by the corresponding output of a teacher two-layer
ReLU network of width 10. The proportion of activation cones containing global minima
(blue) and local minima (orange) across varying m, n, and d for such orthogonal datasets is
shown. The vertical dotted line corresponds to the number of non-empty neuron activation
patterns, of which there are 4 ·

∑d−1
i=0

(
n−1
i

)
= O

(
min(2n, nd)

)
many.

As predicted by Theorem 1, the fraction of non-empty activation cones containing global minima
of Equation (Reg-λ) approaches 1 as soon as the network width exceeds the number of non-empty
neuron activation patterns, equal to 4 ·

∑d−1
i=0

(
n−1
i

)
thanks to Cover [13], which is upper bounded by

O
(
min(2n, nd)

)
. Before this overparametrization level, only a few cones contain global minima of

Equation (Reg-λ), confirming the tightness of our bound in Theorem 1 and that it is not only specific
to the orthogonal data case. Additionally, the number of cones containing bad local minima is close
to 0 after this threshold. Maybe surprisingly, this fraction remains small for smaller values of the
width – in contrast with the orthogonal case (see Figure 2) where this fraction is close to 1 for small m.
However, it still reaches a significant value (of order 0.1) before the width threshold, suggesting that
convergence towards a bad local minimum is significantly probable for these values of the width.
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Appendix A. Additional experiments

A.1. Experimental details

Activation cones with optimal points. To estimate the probabilities in Figure 1, we sample from
the uniform distribution over the nonempty activation cones (i.e., sample a random element from the
set {A | CA ̸= ∅}). We then optimize the regularized loss Equation (Reg-λ) over (W,a) ∈ Rm×(d+1)

under the constraints that for all i ∈ [m], k ∈ [n], 1(w⊤
i xk ≥ 0) = Ai,k and 1(ai ≥ 0) = Ai,n+1,

i.e., under the constraint that each neuron has the activation pattern that A implies for that neuron.
To solve this convex objective under the given linear constraints, we first follow Wang et al. [57]

to remove duplicate rows of A, i.e., we keep at most one neuron for each activation pattern. This
does not change the value of any local or global minimum that can be obtained [see 57, Theorems 1
and 2]. We then use Clarabel [25] as a quadratic programming solver that is distributed with CVXPY
[17] (Apache License 2.0) to solve the resulting optimization problem.

In addition, we find the globally optimal regularized loss, by solving the same problem, but
with one neuron for every possible activation pattern. In other words, we take m̂ large enough
[4 ·
∑d−1

i

(
n−1
i

)
to be exact 13] and choose Â ∈ {0, 1}m̂×(n+1) such that each row of Â is distinct

and CÂ ̸= ∅.
If the regularized loss obtained for A is no larger than the globally optimal regularized loss plus

the numerical tolerance 10−7, we consider CA to contain a global optimum.
We repeat this procedure 100 times for independently sampled A and plot the proportion of

nonempty activation cones that contain a global optimum in Figure 1 for λ = 0.01 and different
values of n, d, and m. The plots show the min/max deviations over five different random datasets.

Stationary points. If an activation cone does not contain a global optimum, we check whether
the point at which the regularized loss is minimized subject to the constraints implied by A, is a
stationary point. Specifically, we compute the gradient of the weights (W,a) at this point. For this,
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we define the derivative of the ReLU function at x to be 0 for x < −5 · 10−5 and 1 for x > 5 · 10−5.
For other values of x, we introduce tunable parameters, one for each ReLU, for the derivative that lies
between 0 and 1. We then use the quadratic programming solver Clarabel to tune these parameters
such that the norm of the gradient of the network is minimized. If the absolute values of the entries in
the resulting gradient are all less than 5 · 10−5, we declare the point a local minimum within the cone.

Figure 1 also shows the proportion of activation cones that have stationary points which are not
optimal. Again this is based on the sample of 100 As and over the five random datasets.

Compute. Experiments for Figure 1 took less than 10 CPU hours on Dual Intel Xeon E5-2643 v3
CPUs and experiments for Figure 2 took around 100 CPU hours on Dual Intel Xeon E5-2643 v3
CPUs.

A.2. Random vector selection

Figure 3 shows the same results as Figure 1 except that we no longer sample uniformly over the
nonempty activation cones. Instead, we sample an activation cones by generating m random vectors
v1, . . . , vm in Rd and m scalars a1, . . . , am with all numbers drawn independently from a standard
Guassian distribution. We then obtain the nonempty activation cone A by defining for all i ∈ [m]
and k ∈ [n], Ai,k := 1(w⊤

i xk ≥ 0) and Ai,n+1 := 1(ai ≥ 0).
In other words, we sample a nonempty activation cone by generating a random network and

observing the activation patterns that the neurons of the random network have.

Compute. Experiments for Figure 3 required about the same resources as experiments for Figure 1.

Appendix B. Related work

No spurious valley and mode connectivity. Early studies of loss landscapes focused on identifying
settings in which all local minima are global [32, 34]. However, once ReLU activations are introduced
into the architecture, spurious local minima become prevalent [24, 27, 50, 60].

Despite the existence of such spurious minima, the loss landscape of ReLU networks retains
some favorable geometric properties. In the regime of mild overparametrization – i.e., when the
number of hidden units exceeds the number of training samples – Haeffele and Vidal [26], Venturi
et al. [56] indeed showed that there is no bad valley for the unregularized loss. That is, from any
point in the parameter space, there exists a continuous path along which the training loss does not
increase and that leads to a global minimum. Moreover, under this same overparametrization, the
set of global minima (and more generally, all sublevel sets) is connected [43–45, 53, 54], a property
commonly referred to as mode connectivity [18, 22].

Building on convex reformulations of the training objective for two-layer ReLU networks, Kim
et al. [33], Wang et al. [57] extended these results to the regularized setting. More precisely they
demonstrated that, with an appropriate (albeit non-explicit) level of overparametrization, there exists
no bad valley and the set of global minima of the ℓ2-regularized loss remains connected. Although
such results do not preclude the existence of spurious local minima, they do imply that no spurious
strict local minimum exists.

Loss landscape through activation patterns. A characteristic feature of ReLU networks is that
the parameter space can be partitioned into distinct regions, determined by the training data, such
that the network behaves as a linear model within each region. Each of these regions corresponds
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Figure 3: We sample a nonempty activation cone by generating a random network and observing
the activation patterns that the neurons of the random network have. The plot shows the
proportion of activation cones containing global minima (blue) and bad local minima
(orange) across varying m, n, and d, when sampled in this way. The vertical dotted line
corresponds to the number of non-empty neuron activation patterns, of which there are
4 ·
∑d−1

i=0

(
n−1
i

)
= O

(
min(2n, nd)

)
many.

to a fixed activation pattern of the hidden neurons, creating a piecewise-linear structure in the loss
landscape. This piecewise-linear partitioning underpins the convex reformulations proposed by Ergen
and Pilanci [20], Mishkin and Pilanci [41], Pilanci and Ergen [47], Wang et al. [57], which enabled
the characterization of mode connectivity for the ℓ2-regularized loss [33]. It has also served as a
foundation in numerous optimization studies [5, 6, 10, 40], where the training dynamics become
more tractable when analyzed within a fixed activation pattern.

While the total number of global and local minima is infinite, the number of distinct activation
regions is finite for a given dataset and fixed network width. Leveraging this observation, Karhadkar
et al. [31] introduces a novel perspective on the unregularized loss landscape: rather than focusing
on individual critical points, they analyze the distribution of constant activation regions that contain
global minima versus those containing spurious local minima. They show that, under mild over-
parametrization, regions containing spurious local minima are relatively rare. In the special case of
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univariate input data, they further demonstrate that most activation regions contain at least one global
minimum. Our first contribution builds upon this approach by incorporating an ℓ2 regularization
term into the analysis. We extend the characterization of the loss landscape to the regularized setting
and provide more general results regarding the proportion of activation regions that contain global
minima.

Appendix C. Proof of Theorem 1

In this section, we will also use the notion of neuron cone, which is directly related to the activation
cones defined in Equation (2). For that, we define the activation function

An :
Rd+1 → {0, 1}n+1

(w, a) 7→ (1(w⊤xk ≥ 0)k∈[n]),1(a ≥ 0))
.

For any binary vector u ∈ {0, 1}n+1, we associate the neuron cone Cu ⊆ Rd+1 defined as

Cu = A−1
n (u).

Notably, for any binary matrix A ∈ {0, 1}m×(n+1) neuron cones and activation cones are related by
the following equality:

CA =
m∏
i=1

CAi .

In words, the parameters (W,a) ∈ Rm×(d+1) belong to the activation cone CA if and only if for
any i ∈ [m], the i-th neuron belongs to the neuron cone associated to the i-th row of A, i.e.,
An(wi, ai) = Ai.

Taking m ≥ n + 1, Wang et al. [57, Theorem 1] state that there exists a network with width
n+1 reaching the global minimum of Equation (Reg-λ). Similarly, Ergen and Pilanci [20] show that
there exists a network with width n+1 reaching the global minimum of Equation (min-norm). From
now, we only focus on Equation (Reg-λ), but our arguments can be directly extended to considering
Equation (min-norm).

In other words, there exists (W ⋆, a⋆) ∈ Rm×(d+1) such that

Lλ(W
⋆, a⋆) = min

θ

1

n

n∑
k=1

(fθ(xk)− yk)
2 + λ∥θ∥22,

An(w
⋆
i , a

⋆
i ) ̸= An(w

⋆
j , a

⋆
i ) for any i, j ≤ n+ 1 such that i ̸= j

and w⋆
i = 0, a⋆i = 0 for any i > n+ 1.

From there using the permutation invariance of the parametrization, we can show that every activation
cone containing at least one neuron (w, a) such that An(w) = An(w

⋆
i ) and sign(a) = sign(a⋆i ) for

all i ∈ [n+ 1] necessarily contains a global minimum of the problem (and no bad local minimum).
This is stated formally by Lemma 1 below.

Lemma 1 For any activation cone CA, if for any i ∈ [n + 1], there exists j ∈ [m] such that
Aj = An(w

⋆
i , a

⋆
i ), then:

(i) CA contains a global minimum of Equation (Reg-λ);
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(ii) CA does not contain any bad local minimum of Equation (Reg-λ) restricted to CA.

From Lemma 1, it is sufficient to count the fraction of non-empty cones CA satisfying the following
property

for any i ∈ [n+ 1], there exists j ∈ [m] such that Aj = An(w
⋆
i , a

⋆
i ). (3)

This can be done using a simple bound for the coupon collector problem.

Lemma 2 (Lemma 11 by Karhadkar et al. 31) Let ε ∈ (0, 1) and p ≤ q be positive integers.
Let Z1, . . . , Zr be r independent, uniformly at random variables in [q]. If r ≥ q ln(pε ), then
[p] ⊆ {Z1, . . . , Zr} with probability at least 1− ε.

Indeed, note that if we choose uniformly at random a (non-empty) activation cone CA, it is equivalent
to choosing independently, m (non-empty) neuron cones (Cui)i∈[m] uniformly at random. Indeed,
each ui ∈ {0, 1}n+1 then corresponds to the i-th row of the matrix A ∈ {0, 1}m×(n+1). Thus, we
have the following equality, assuming A is a binary matrix in {0, 1}m×(n+1), drawn uniformly at
random among the set of matrices such that CA is non-empty; and that the binary vectors ui are
drawn i.i.d., uniformly at random among the set of binary vectors u such that Cu is non-empty.

P(A satisfies Equation (3)) = P(∀i ∈ [n+ 1],∃j ∈ [m], uj = An(w
⋆
i ))

= P
(
{An(w

⋆
1), . . . , An(w

⋆
n+1)} ⊆ {u1, . . . , um}

)
.

Thanks to Lemma 2, this yields that when m ≥ q ln(n+1
ε ), P(A satisfies Equation (3)) ≥ 1 − ε,

where q is the total number of non-empty neuron cones.
Moreover, Cover [13] bounds the total number of non-empty cones as q = O

(
min(2n, nd)

)
,

which finally yields Theorem 1.

C.1. Proof of Lemma 1

Lemma 1 is shown by means of merging, scaling and permuting the neurons, which are tools used in
a long line of work [see, e.g., 20, 57].
Proof Consider A ∈ {0, 1}m×(n+1) such that for any i ∈ [n + 1], there exists j ∈ [m] such that
Aj = An(w

⋆
i , a

⋆
i ).

As the cones of non-zero w⋆
i are pairwise distinct, we actually have a permutation ρ : [n+ 1] →

[n+ 1] such that for any i ∈ [n+ 1]: Aρ(i) = An(w
⋆
i , a

⋆
i ). From there, simply note that the closure

of the cone CA contains the zero matrix, and more generally zero neurons on any row of our choice.
Notably, this implies that (W ⋆, a⋆), up to a permutation, belongs to CA, i.e., (W ⋆,ρ, a⋆,ρ) ∈ CA

where
w⋆,ρ(ρ(i)) = w⋆

i ,

a⋆,ρ(ρ(i)) = a⋆i for any i ∈ [m].

Since the objective function Lλ is invariant under permutation, we then have Lλ(W
⋆, a⋆) =

Lλ(W
⋆,ρ, a⋆,ρ). This proves the first point, i.e., that CA contains a global minimum of Equa-

tion (Reg-λ).

For the second point, consider a local minimum (W,a) ∈ CA. Additionally, we assume in the
following without loss of generality that (W ⋆, a⋆) ∈ CA – i.e., we consider that the permutation ρ
described above is the identity. Also, we write

βi = aiwi and β⋆
i = a⋆iw

⋆
i for any i ∈ [m].
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Note that rescaling any neuron (wi, ai) to (cwi,
1
cai) does not change the output function fθ, but

changes the squared norm of the parameters (W,a). As a consequence, it is known that any local
minimum of Equations (Reg-λ) and (min-norm) is balanced, i.e., ∥wi∥2 = |ai| for any i ∈ [m]
[3, 42, 46, 51]. As a consequence, (W,a) and (W ⋆, a⋆) are both balanced. Moreover, a direct
consequence of this balanced property is the following equality

∥(W,a)∥22 = 2
m∑
i=1

∥βi∥2,

∥(W ⋆, a⋆)∥22 = 2
m∑
i=1

∥β⋆
i ∥2.

From there, we can define for any B ∈ Rm×d the alternative loss function as

L̃(B) =
1

n

n∑
k=1

(hB(xk)− yk)
2 + 2λ∥B∥1,2,

where hB(xk) =
m∑
i=1

AikB
⊤
i xk

and ∥B∥2,1 =
m∑
i=1

∥Bi∥2.

For B ∈ Rm×d (respectively B⋆) defined as the matrix whose rows are given by βi ∈ Rd (respectively
β⋆
i ∈ Rd), note that

L̃(B) = 1

n

n∑
k=1

(f(W,a)(xk)− yk)
2 + λ∥(W,a)∥22

and L̃(B⋆) =
1

n

n∑
k=1

(f(W ⋆,a⋆)(xk)− yk)
2 + λ∥(W ⋆, a⋆)∥22.

Notably, note that the parametrization hB is linear in B. As a consequence, the function L̃ is
convex and we can thus define Bt = tB⋆ + (1− t)B for any t ∈ [0, 1] such that :

L̃(Bt) ≤ tL̃(B⋆) + (1− t)L̃(B).

Assume now that (W,a) is a bad local minimum, i.e., it is not a global one. In particular, the above
inequality implies that for any t ∈ (0, 1]:

L̃(Bt) < L̃(B). (4)

For any t ∈ [0, 1], we can then define (W t, at) ∈ Rm×(d+1) as

ati = sign(ai)
√
∥βt

i∥2,

W t
i =

βt
i

ati
,
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where we omitted that we define W t
i = 0 if ati = 0. By convexity of the cone CA, (W t, at) ∈ CA.

Moreover, a quick computation directly yields that

L̃(Bt) =
1

n

n∑
k=1

(f(W t,at)(xk)− yk)
2 + λ∥(W t, at)∥22.

It is also easy to check that (W t, at) → (W,a) as t → 0. Thanks to Equation (4), this then implies
that (W,a) is not a local minimum. By contradiction, it is a global minimum, which concludes the
proof of Lemma 1.

Appendix D. Connecting loss landscape with optimization dynamics

Although insightful and directly related to a random selection of the weights, loss landscape results
such as Theorem 1 do not provide any guarantee on the convergence of typical optimization schemes
towards global minima of the objective. In this section, we consider subgradient flow on the objective
loss of Equation (Reg-λ) with a small regularization parameter λ, i.e., a solution of the following
differential inclusion for almost any t ∈ R+:

θ̇(t) ∈ −∂θLλ(θ) (5)

where Lλ(θ) =
1

n

n∑
k=1

(fθ(xk)− yk)
2 + λ∥θ∥22.

Due to the non-convexity of the objective function Lλ, the initialization is known to play a key role.
In particular, large initializations are known to lead to the Neural Tangent Kernel (NTK) regime
in the unregularized case. In this regime, the training resembles random features, where the inner
layer is fixed at initialization and only output layer weights are adjusted during training [12]. In the
case of small regularization, the dynamics are more complex but still follow the NTK regime at the
beginning. It is only after reaching near interpolation of the training data that grokking is happening,
where inner layer weights will also be adjusted until reaching a stationary point of Lλ [35, 37, 48].
We believe that the loss landscape result of Theorem 1 is relevant in this large initialization regime,
as the inner layer weights are nearly chosen at random at the beginning of the grokking phase. From
here, the dynamics are driven by the regularization parameter (while maintaining interpolation) and
should converge to a nearby local minimum. In particular, if most of the activation cones only include
global minima, there is a good chance to converge to such a global minimum given the random
nature of the training dynamics – that largely depends on the randomly selected initialization. Such
an intuition is empirically confirmed in Section 4, although a deeper understanding of this grokking
phase remains to be theoretically developed.

In opposition when considering small-scale initializations, the features change drastically before
reaching interpolation. They do so following the implicit bias of gradient flow on the unregularized
loss, which annihilates the random features approximation once interpolation is reached. While
this implicit bias for small initialization has been shown to coincide with the global minimum of
Equation (min-norm) in multiple works, Chistikov et al. [10] provided a family of data examples
where the unregularized gradient flow instead converges to a bad local minimum of Equation (min-
norm). Building on those examples, we can show that even with regularization and arbitrarily large
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overparametrization, the parameters will converge towards an interpolating stationary point which is
not a global minimum of Equation (Reg-λ) in the small initialization regime.

In the remainder of this section, we write e1, . . . , ed for the standard basis of Rd, Sd−1 for the
d-dimensional unit sphere, ∥v∥ for the Euclidean norm of a vector v, ∥v∥H :=

√
v⊤Hv for the energy

norm with respect to a symmetric positive definite matrix H , v := v/∥v∥ for the normalization of a
non-zero vector v, and ∡(u, v) := arccos(u⊤v) for the angle between non-zero vectors u and v,

For any d ≥ 3, first we fix centers (x̂k)k∈[d] as the following unit vectors:

x̂1 := e1

x̂2 :=
8
9e1 −

4
9e2 +

1
9e3

x̂3 :=
8
9e1 +

4
9e2 +

1
9e3

x̂k := 8
9e1 +

√
17
9 ek for all k ≥ 4;

and we fix teacher v⋆ as the unit vector

v⋆ :=
4
5e1 +

3
5e3.

Then the next assumption details our requirements on the training dataset. To streamline the
presentation, we assume that n = d, i.e., the number of samples equals the dimension, and that
the points xk are unit vectors. In part (a), we assume that each point xk is near the corresponding
center x̂k, namely their cosine is at least 1− η where η > 0 is a small threshold depending only on d,
and also that each label yk is given by the inner product with the teacher v⋆. In part (b), we exclude
some special cases of the empirical covariance matrix H that do not decrease the Lebesgue measure.

Assumption 1 We consider training datasets that consist of points X := (xk)k∈[d] ∈ (Sd−1)d ⊆
Rd×d and labels (yk)k∈[d] ∈ Rd such that:

(a) for all k ∈ [d], we have x⊤k x̂k > 1− η and yk = v⊤⋆ xk;

(b) the eigenvalues of H := 1
dXX⊤ are distinct, and v⋆ is not in a span of fewer than d eigenvec-

tors of H .

Note that the set of all training point matrices X that we consider has non-zero Lebesgue measure
in (Sd−1)d, so it cannot be regarded as a single special case.

Below, our second assumption in this section concerns the subgradient flow in Equation (5). In
part (a), we assume that the network is initialized randomly with scale α (uniformly in direction
for the inner layer, and uniformly in sign for the output layer) where α > 0 is small constant, and
that the two layers are balanced. The balancedness at initialization is a standard assumption in the
literature [see, e.g., 6, 10, 40], and it would be not difficult although technically complicating to
relax it to domination of the inner by the output layer, i.e., ∥wi(0)∥ ≤ |ai(0)| for all i ∈ [m]. In
part (b), we exclude some unrealistic flows that might otherwise be possible theoretically due to the
use of the subdifferential: we require that, whenever a neuron deactivates on all training points, then
it stays deactivated for the remainder of the training.

Assumption 2 For all i ∈ [m] we have

(a) wi(0)
iid∼ U(α Sd−1) and ai(0)

iid∼ U({−α, α});
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(b) for any t ∈ R+, if wi(t)
⊤xk ≤ 0 for all k ∈ [d], then wi(t

′)⊤xk ≤ 0 for all t′ ≥ t and all
k ∈ [d].

Let µmin denote the smallest eigenvalue of the empirical covariance matrix H .

Theorem 2 Let Assumptions 1 and 2 hold for small enough η. With probability at least 1− (34)
m,

and for all ε ∈ (0, 12 ], there exists α⋆ > 0 such that, for all initialization scales α ≤ α⋆ and all
regularization parameters λ ≤ µminα

ε, every subgradient flow in Equation (5) converges to a
network θ∞ = limt→∞ θ(t) such that:

(i) the mean square error 1
d

∑d
k=1(fθ∞(xk)− yk)

2 is at most λ2/µmin;

(ii) if m ≥ 2 then θ∞ is not a global minimum of the regularized loss Lλ.

Sketch of proof. We first establish that, if m ≥ 2 then for every dataset that satisfies Assumption 1
and small enough η and λ, although the training labels are given by inner products with a single
teacher vector, it is impossible to globally minimize the regularized loss Lλ by a rank-1 network,
i.e., where all neurons are non-negative scalings of a single neuron. In particular, we show how the
ReLU non-linearity makes it possible to construct a rank-2 network for which Lλ is smaller than the
minimum over all rank-1 networks.

The remainder of the proof consists of a detailed analysis of the subgradient flow starting from a
scale-α random initialization as in Assumption 2, which with probability at least 1− (34)

m has at
least one neuron with positive output weight and active on at least one training point. We delineate
and analyze three phases of the training as follows.

1. We show that, for small enough α, the weight decay due to the ℓ2 regularization reinforces a
first alignment phase in which every neuron remains small, and either aligns closely to a single
direction determined by the training dataset, or deactivates from all training points.

2. Building on Chistikov et al. [10], we show that the next phase, which is much more complex
due to simultaneous growing and turning of the active neurons, proceeds sufficiently fast so
that the effect of the weight decay is limited, and concludes with the active neurons still closely
aligned and their composite vector being at most distance αε/2 away from the teacher vector.

3. Finally we show that, in the last phase, the deactivated neurons converge to 0, whereas the rest
converge to perfect alignment with their composite vector tending to the point that minimizes
the regularized loss by trading off the mean square error with the λ-scaled ℓ2 norm. In the most
involved part of the proof, inspired by Chatterjee [8] but complicated by the prominent presence
of weight decay in this phase, we provide a novel argument for a local Polyak-Łojasiewicz
inequality, which then enables us to bound any disalignment of the neurons that may temporarily
occur.

Theorem 2 can therefore be seen as a new kind of testimony to the double-edged power of
the early alignment phase in the small initialization regime. Namely, in unregularized regression
settings, the early alignment was recently shown to be able to lead both to a failure of interpolation
[4] and to enhanced generalization through minimization of population loss [5]. In contrast, we have
now demonstrated that it is also able to render ineffective ℓ2 regularization with arbitrarily small
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parameter λ, i.e., to prevent weight decay from steering the optimization towards interpolators with
smaller norm if that would involve increasing their rank.

We remark that the limit networks θ∞ in Theorem 2 are local minima only if they do not contain
any zero neurons (and the probability of that decays exponentially in network width m), otherwise
they are saddle points of the regularized loss because such zero neurons can be used to compose
small perturbations that maintain the mean square error but decrease the network norm. Thus, again
in contrast to unregularized regression where early alignment can break interpolation by causing
convergence to stationary points that are usually local minima [4], here early alignment can disarm
weight decay but not completely as the latter nevertheless ensures that the limit is usually a saddle
of Lλ. This is in line with the recent insights of D’Angelo et al. [15], indeed Theorem 2 shows that in
its setting, weight decay does not lead to near interpolators of smaller norm but has other beneficial
properties.

In this section we showed that the benignity of the loss landscape established in Theorem 1
is of limited relevance to the small initialization regime; indeed, Theorem 2 holds for all network
widths m ≥ 2 and in all dimensions d ≥ 3. Along the way, we performed a detailed analysis of
the optimization in the setting of Theorem 2, from initalization until convergence to bad stationary
points.

Finally, we provide a detailed proof of Theorem 2, in which it will be convenient to use ϵ := ε/2,
where ε is as in the theorem statement.

We start by letting (x†k)k∈[d] denote the rows of the inverse of the data matrix, i.e., the columns
of (X−1)⊤, and with the following technical proposition.

Proposition 1 Provided η is sufficiently small, we have:

(a) (xk)k∈[d] are linearly independent;

(b) ∡(v⋆, xk) < π/4 for all k ∈ [d];

(c) cos∡(v⋆, x
†
2) > sin∡(x†2, x

†
3).

Proof Part (a) is straightforward to check.
It suffices to show (b) for (x̂k)k∈[d], and to show (c) for the columns (x̂†k)k∈[d] of (X̂−1)⊤, where

X̂ is the matrix whose columns are (x̂k)k∈[d].
For (b), for all k ∈ [d] we have v⊤⋆ x̂k ≥ 8

9
4
5 = 32

45 > 1√
2
= cos(π/4).

For (c), first observe that:

x̂†2 = − 9
4
√
2
e2 +

9√
2
e3 x̂†3 =

9
4
√
2
e2 +

9√
2
e3.

Now we have

cos∡(v⋆, x̂
†
2) =

27
5
√
2√

81
2 + 81

32

= 12
5
√
17

and

sin∡(x̂†2, x̂
†
3) =

√√√√1−

(
81
2 − 81

32
81
2 + 81

32

)2

=

√
1− 152

172
= 8

17 ,
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so indeed the former is greater than the latter.

Note that, by Proposition 3 (a), we have µmin > 0, so the empirical covariance matrix H is
positive definite.

We define u⋆ ∈ Rd uniquely by

u⊤⋆ H(v⋆ − u⋆) = 1 and ∥H(v⋆ − u⋆)∥ = λ. (6)

Then let Θu⋆ denote the set of all network parameters θ = (W,a) ∈ Rm×(d+1) such that the
two layers are balanced, the output weights are non-negative, the hidden neurons are non-negative
scalings of u⋆ ∈ Rd, and the squares of the output weights sum to ∥u⋆∥, i.e.,

ai = ∥wi∥ for all i ∈ [m]

wi = ai u⋆ for all i ∈ [m]∑
i∈[m]a

2
i = ∥u⋆∥.

The next proposition consists of two parts. In (a), we establish that all networks in Θu⋆ have the
same value of the regularized loss Lλ, which we denote by L⋆

λ. Part (b) then states that, provided the
network width is at least 2, the latter value is not minimal, and thus none of the networks in Θu⋆ are
global minima. In Lemma 5 below, we shall prove that limt→∞ θ(t) is a network in Θu⋆ , and the
proof will also show that the latter are exactly the rank-1 minimizers of Lλ.

Proposition 2 Provided η and λ are sufficiently small:

(a) for every θ ∈ Θu⋆ we have Lλ(θ) = ∥v⋆ − u⋆∥2H + 2λ∥u⋆∥ =: L⋆
λ;

(b) if m ≥ 2 then min{Lλ(θ) | θ ∈ Rm×(d+1)} < L⋆
λ.

Proof Part (a) follows by observing that

∀k ∈ [d], fθ(xk) = u⊤⋆ xk =: zk.

For (b), letting
ζ := cos∡(u⋆, x

†
2)− sin∡(x†2, x

†
3),

for small enough η and λ we have that Proposition 1 holds, ζ > 0, and it is straightforward to check
that ζ/∥x†2∥ < z2.

The main idea here is that the properties of the dataset, in particular the inequality in Proposi-
tion 1 (c), allow us to express u⋆ as the sum of two neurons, where the first is close to u⋆ and the
second is crafted using a shortening by projection whose validity relies on the ReLU non-linearity.
Specifically, we define:

u1 := u⋆ − ζ x†2 u2 := ζ(x†2 − x†3 x
†
3

⊤
x†2).

Next we define θ = (W,a) ∈ Rm×(d+1) by expressing u1 and u2 using balanced inner and
output layers:

wi :=
1√
∥ui∥

ui and ai :=
√
∥ui∥ for both i ∈ {1, 2}
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wi := 0 and ai := 0 for all i > 2.

Recalling that x†k
⊤
xk′ = 1(k = k′) for all k, k′ ∈ [d] by the definition of (x†k)k∈[d], and that

x†3
⊤
x†2 > 0 for small enough η, we have that, on all training points, the network θ agrees with every

network in Θu⋆ :

fθ(x2) = σ(u⊤1 x2) + σ(u⊤2 x2) = (z2 − ζ/∥x†2∥) + ζ/∥x†2∥ = z2

fθ(x3) = σ(u⊤1 x3) + σ(u⊤2 x3) = z3 + σ(−(ζ/∥x†3∥)x
†
3

⊤
x†2) = z3

fθ(xk) = u⊤⋆ xk = zk for all k /∈ {2, 3}.

Now we verify that the network θ has smaller norm:

∥θ∥2 =
∑

i∈{1,2}(a
2
i + ∥wi∥2)

= 2(∥u1∥+ ∥u2∥)

= 2
(√

∥u⋆∥2 + ζ2 − 2ζ cos∡(u⋆, x
†
2) + ζ sin∡(x†2, x

†
3)
)

≤ 2
(
1/2 + ∥u⋆∥2/2 + ζ

(
ζ/2− cos∡(u⋆, x

†
2) + sin∡(x†2, x

†
3)
))

= 1 + ∥u⋆∥2 − ζ2

≤ 2∥u⋆∥ − ζ2/2,

where the last inequality holds for small enough λ.

Hence Lλ(θ) =
1

d

d∑
k=1

(fθ(xk)− yk)
2 + λ∥θ∥2

≤ ∥u⋆ − v⋆∥2H + 2λ∥u⋆∥ − λ ζ2/2

< L⋆
λ.

Now we turn to considering a subgradient flow as in Equation (5), beginning with a proposition
about the random initialization according to Assumption 2 (a). To state it, we define notations for the
sets of indices of training points that are on the boundary or strictly inside of the active half-space of
a ReLU neuron w ∈ Rd:

K0(w) := {k ∈ [d] | w⊤xk = 0} K+(w) := {k ∈ [d] | w⊤xk > 0};

define notations si for the signs of the output weights (which we shall shortly show stay unchanged
throughout the training), and I+ for the set of indices of neurons that have positive output weight and
are initially active on at least one training point:

si := sign(ai(0)) I+ := {i ∈ [m] | si = 1 and K+(wi(0)) ̸= ∅};

and define the vector that will be the focus of the early alignment:

γ :=
2

d

∑
k∈[d]

yk xk.

The proposition lower bounds the probability that the initialization has the following regularity
properties: the set I+ just defined is non-empty, no neuron is exactly orthogonal to some training
point, and no neuron with negative output weight has exactly the same direction as the vector γ.
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Proposition 3 With probability at least 1− (34)
m, we have: I+ ̸= ∅, K0(wi(0)) = ∅ for all i ∈ [m],

and ∡(wi(0), γ) > 0 for all i ∈ [m] with si = −1.

Proof The 2m events si = 1 and K+(wi(0)) ̸= ∅ are independent and have probability at least 1
2 ,

so the probability that I+ = ∅ is at most (34)
m. The events K0(wi(0)) ̸= ∅ and ∡(wi(0), γ) = 0 all

have probability 0.

In the next proposition, part (a) states that the balancedness between the inner and output layers
at initialization is preserved throughout the training, and that the output layer signs do not change;
and part (b) spells out the time derivatives of the hidden neurons and their normalized versions, as
well as of the output weights and the logarithms of their absolute values.

Proposition 4

(a) For all i ∈ [m] and all t ∈ R+ we have ai(t) = si∥wi(t)∥.

(b) For all i ∈ [m] and almost all t ∈ R+ we have:

ẇi(t) = ai(t) gi(t)− 2λwi(t) ẇi(t) = si
(
gi(t)− wi(t)wi(t)

⊤gi(t)
)

ȧi(t) = wi(t)
⊤gi(t)− 2λai(t)

d(ln ∥wi(t)∥)
dt

= siwi(t)
⊤gi(t)− 2λ,

where
gi(t) ∈

2

d

∑
k∈[d]

(yk − fθ(t)(xk))∂σ(wi(t)
⊤xk)xk.

Proof Since, in our setting of two-layer ReLU networks and regularized square loss, the chain
rule applies [see, e.g., 16, Theorem 5.8], the equations for ẇi(t) and ȧi(t) in part (b) follow by
straightforward expansions.

Now, for all i ∈ [m] and almost all t ∈ R+ we have

d(a2i (t)− ∥wi(t)∥2)/dt = −4λ(a2i (t)− ∥wi(t)∥2),

and recall that we have balancedness at the initialization, i.e., ai(0) = si∥wi(0)∥. Hence, for part (a),
it remains to show that each ai(t) maintains its initial sign, i.e., remains non-zero. That follows by
the next lower bound on the derivative of ln |ai(t)|, where the last inequality is a consequence of the
loss being non-increasing [see, e.g., 16, Lemma 5.2]:

d| ln ai(t)|
dt

≥ −∥gi(t)∥ − 2λ ≥ −2

d

∑
k∈[d]

|yk − fθ(t)(xk)| − 2λ

≥ −2
√
Lλ(θ(t))− 2λ ≥ −2

√
Lλ(θ(0))− 2λ.

The remainder of part (b), namely the equations for ẇi(t) and d(ln ∥wi(t)∥)/dt, now follow by
straightforward calculations.

At this moment we are equipped for the first of three lemmas, which will contain our analysis of
the training split into three phases. It describes the state of the network at time

T1 := ϵ ln(1/α)/∥γ∥,
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which we regard as the end of the early alignment phase. Namely, all neurons with positive output
weight and that were initially active on at least one training point are still small, active on all training
points, and closely aligned to the vector γ; and all other neurons are even smaller, and for the
remainder of the training remain deactivated from all training points and shrink by the weight decay.

Lemma 3 Provided the initialization has the properties in Proposition 3, and provided η and α are
sufficiently small, the following hold.

(a) For all i ∈ I+ we have:

∥wi(T1)∥ < 2α1−ϵ K+(wi(T1)) = [d] wi(T1)
⊤ γ ≥ 1− αϵ.

(b) For all i ∈ [m] \ I+ and all t ≥ T1 we have:

∥wi(T1)∥ ≤ α1+2λϵ/∥γ∥ K+(wi(t)) = ∅ ∥wi(t)∥ = e−2λ(t−T1)∥wi(T1)∥.

Proof First we show the next claim, which has as a corollary the assertion ∥wi(T1)∥ < 2α1−ϵ in
part (a).

Claim 1 Provided α is sufficiently small, for all i ∈ [m] and all t ∈ [0, T1] we have ∥wi(t)∥ <
2α1−ϵt/T1 .

Proof [Proof of Claim 1] For a contradiction, suppose

t = inf{t ∈ [0, T1] | ∥wi(t)∥ ≥ 2α1−ϵt/T1 for some i ∈ [m]}.

Since each wi(t) is continuous, there exists i ∈ [m] such that ∥wi(t)∥ = 2α1−ϵt/T1 , and for all
j ∈ [m] and all τ ∈ [0, t] we have ∥wj(τ)∥ ≤ 2α1−ϵτ/T1 . We then observe that

∥wi(t)∥ ≤ α exp(t max
τ∈[0,t]

∥gi(τ)∥) by Proposition 4 (b), Grönwall’s inequality

≤ α exp
(
t
(
∥γ∥+ 2 max

k∈[d]
τ∈[0,t]

|fθ(τ)(xk)|
))

by Proposition 4 (b) and ∥xk∥ = 1

≤ α exp
(
t
(
∥γ∥+ 2m max

j∈[m]
τ∈[0,t]

∥wj(τ)∥2
))

by Equation (1) and Proposition 4 (a)

≤ α exp
(
t
(
∥γ∥+ 8m max

τ∈[0,t]
α2−2ϵτ/T1

))
since ∥wj(τ)∥ ≤ 2α1−ϵτ/T1

≤ α exp
(
t(∥γ∥+ 8mα2−2ϵ)

)
since α ≤ 1 and τ ≤ T1

≤ α exp(t∥γ∥+ 8mT1α
2−2ϵ) since t ≤ T1

= α1−ϵt/T1−8mϵα2−2ϵ/∥γ∥ since exp(T1∥γ∥) = α−ϵ

< α1−ϵt/T1−(ln 2)/ ln(1/α) for small enough α

= 2α1−ϵt/T1 ,

which contradicts ∥wi(t)∥ = 2α1−ϵt/T1 .

Second we show a claim from which ∥wi(T1)∥ ≤ α1+2λϵ/∥γ∥ follows by recalling that eT1∥γ∥ =
α−ϵ.
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Claim 2 Provided η and α are sufficiently small, with probability 1, for all i ∈ [m] \ I+ and almost
all t ∈ [0, T1] we have d(ln ∥wi(t)∥)/dt ≤ −2λ.

Proof [Proof of Claim 2] Consider i ∈ [m] \ I+.
If K+(wi(0)) = ∅, we can assume that also K0(wi(0)) = ∅, which occurs with probability 1.

Then from Proposition 4 (b) for all t ∈ R+ we have ẇi(t) = 0 and d(ln ∥wi(t)∥)/dt = −2λ, i.e.,
hidden neuron wi(t) has constant direction and its length decreases exponentially at constant rate 2λ.

Otherwise, we have si = −1. Consider t ∈ [0, T1] for which Proposition 4 (b) applies. By the
equation for d(ln ∥wi(t)∥)/dt, it suffices to show that wi(t)

⊤gi(t) ≥ 0. But since

wi(t)
⊤gi(t) =

2

d

∑
k∈[d]

(yk − fθ(t)(xk))σ(wi(t)
⊤xk) =

2

d

∑
k∈K+(wi(t))

(yk − fθ(t)(xk))wi(t)
⊤xk,

it suffices to verify that fθ(t)(xk) ≤ yk for all k ∈ [d], which follows Proposition 1 (b) and Claim 1
for small enough α.

Now observe that the second assertion K+(wi(T1)) = [d] in part (a) follows from the third one
wi(T1)

⊤ γ ≥ 1− αϵ and Proposition 1 (b) for small enough α.
Next observe that the remainder of part (b) (i.e., that we have K+(wi(t)) = ∅ and ∥wi(t)∥ =

e−2λ(t−T1)∥wi(T1)∥ for all t ≥ T1) follows from: K+(wi(T1)) = ∅, Assumption 2 (b), Proposi-
tion 4 (a), and the equation for ȧi(t) in Proposition 4 (b).

Therefore it remains to establish that wi(T1)
⊤ γ ≥ 1−αϵ for all i ∈ I+, and that K+(wi(T1)) =

∅ for all i ∈ [m] \ I+. These follow by the proofs of Chistikov et al. [10, Lemmas 3 and 5, and
Proposition 18], which carry over to our setting without significant modifications once Chistikov
et al. [10, Lemma 19] is replaced by Claims 1 and 2 above. The latter is the only part affected
by the regularization, i.e., by the presence of the −2λ term in the equation for d(ln ∥wi(t)∥)/dt
in Proposition 4 (b); the remainder of the reasoning is based on the equation for ẇi(t), which is
the same with and without the regularization. Note also that Chistikov et al. [10, Assumption 1] is
satisfied due to Assumptions 1 and 2, Proposition 1 (a), and Proposition 3 above.

Now we come to the second lemma, which handles the intermediate phase of the training that
begins when the early alignment ends at time T1. At times t ≥ T1, a key role will be played by the
vector

v(t) :=
∑
i∈I+

ai(t)wi(t)

obtained by composing the aligned neurons. Again, the lemma describes the state of the network at
the end of the phase. Namely, at some time T2, the composite vector v(T2) will be near to the teacher
vector v⋆, and all the constituent neurons will still be closely aligned (no longer with the vector γ but
with each other).

Lemma 4 Provided the initialization has the properties in Proposition 3, and provided η and α are
sufficiently small and λ ≤ µminα

2ϵ, there exists T2 > T1 such that:

(a) ∥v⋆ − v(T2)∥ ≤ αϵ.

(b) wi(T2)
⊤wi′(T2) ≥ 1− 4αϵ for all i, i′ ∈ I+.
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Proof Let:

g(t) := 2H(v⋆ − v(t)) δ(t) := ∥v(t)∥
(
g(t) + v(t)v(t)⊤g(t)

)
.

By Lemma 3 and the proof of Chistikov et al. [10, Theorem 6], the time

T2 := inf{t ≥ T1 | ∥v̇(t)− δ(t)∥ ≥ 3αϵ/2∥δ(t)∥ or ∥v⋆ − v(t)∥ ≤ αϵ}

is finite, and moreover for all t ∈ [T1, T2], all i, i′ ∈ I+, and all k ∈ [d] we have:

v(t)⊤xk >
√
8αϵ/2 wi(t)

⊤wi′(t) > 1− 4αϵ v(t)⊤g(t) > αϵ/3.

Consequently, since sin ξ ≤
√
2(1− cos ξ), for all t ∈ [T1, T2], all i ∈ I+, and all k ∈ [d], we

also have:

wi(t)
⊤xk > 0 fθ(t)(xk) = v(t)⊤xk gi(t) = g(t) wi(t)

⊤g(t) > αϵ/3/2

and v(t) is differentiable.
We already have part (b). To establish part (a), it suffices to show that ∥v̇(T2) − δ(t2)∥ <

3αϵ/2∥δ(T2)∥. We reason as follows, where the argument T2 of all vectors is omitted for readability:

∥v̇ − δ∥ =
∥∥∥∑
i∈I+

∥wi∥2
(
g + wiw

⊤
i g − 4λwi

)
− δ
∥∥∥ by Proposition 4 and gi = g

=
∥∥∥∑
i∈I+

∥wi∥2
(
g + wiw

⊤
i g − 4λwi

)
−
∑
i∈I+

∥wi∥2
(
(v⊤wi)g + v w⊤

i g
)∥∥∥ since v =

∑
i∈I+

v v⊤aiwi

=
∥∥∥∑
i∈I+

∥wi∥2
(
(1− v⊤wi)g − 4λwi

)
+
∑
i∈I+

∥wi∥2(wi − v)w⊤
i g
∥∥∥ by rearranging

≤
∑
i∈I+

∥wi∥2
(
|1− v⊤wi| ∥g∥+ 4λ

)
by the triangle inequality

+
∑
i∈I+

∥wi∥2∥wi − v∥w⊤
i g and w⊤

i g ≥ 0

≤ (4αϵ∥g∥+ 4λ)
∑
i∈I+

∥wi∥2 since v⊤wi ≥ 1− 4αϵ

+
√
8αϵ/2

∑
i∈I+

∥wi∥2w⊤
i g and sin ξ ≤

√
2(1− cos ξ)

= (4αϵ∥g∥+ 4λ)
∑
i∈I+

∥wi∥2 +
√
8αϵ/2 v⊤g since v =

∑
i∈I+

∥wi∥2wi

≤ 4αϵ∥g∥+ 4λ

1− 4αϵ
∥v∥+

√
8αϵ/2 v⊤g since v⊤wi ≥ 1− 4αϵ
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≤ 4αϵ(∥g∥+ µminα
ϵ)

1− 4αϵ
∥v∥+

√
8αϵ/2 v⊤g since λ ≤ µminα

2ϵ

≤ 6αϵ

1− 4αϵ
∥v∥∥g∥+

√
8αϵ/2 v⊤g since ∥g∥ ≥ 2µmin∥v⋆ − v∥

≤
( 6αϵ

1− 4αϵ
+
√
8αϵ/2

)
∥δ∥ since ∡(g, v v⊤g) ≤ π/2

< 3αϵ/2∥δ∥ for small enough α

and since ∥v∥ > 0 by Proposition 4 (a).

Finally, our third lemma gives an account of the late convergence phase that begins when the
intermediate phase ends at time T2. It establishes that the subgradient flow converges to a network
in Θu⋆ , i.e., a rank-1 minimizer of the regularized loss Lλ.

Lemma 5 Provided the initialization has the properties in Proposition 3, and provided η and α are
sufficiently small and λ ≤ µminα

2ϵ, we have that limt→∞ θ(t) ∈ Θu⋆ .

Proof Let
T3 := inf{t ≥ T2 | wi(t)

⊤wi′(t) ≤ 1− αϵ/2 for some i, i′ ∈ I+}.

Thus, recalling Lemma 3 (b), for small enough α, all t ∈ [T2, T3), all i, i′ ∈ I+, and all k ∈ [d]
we have wi(t)

⊤xk > 0 and fθ(t)(xk) = v(t)⊤xk, hence

Lλ(θ(t)) = ∥v⋆ − v(t)∥2H + 2λ
∑
i∈[m]

∥wi(t)∥2, (7)

so if i ∈ I+ then

−1

2
∇wi(t)Lλ = (∇wi(t)v(t))

⊤H(v⋆ − v(t))− λwi(t)

= ai(t)H(v⋆ − v(t))− λwi(t)

= ai(t)H(v⋆ − u⋆) + ai(t)H(u⋆ − v(t))− λwi(t)

= ai(t)
(
H(u⋆ − v(t)) + λ(u⋆ − wi(t))

)
−1

2
∇ai(t)Lλ = (∇ai(t)v(t))

⊤H(v⋆ − v(t))− λai(t)

= wi(t)
⊤H(v⋆ − v(t))− λai(t)

= wi(t)
⊤H(v⋆ − u⋆) + wi(t)

⊤H(u⋆ − v(t))− λai(t)

= wi(t)
⊤(H(u⋆ − v(t)) + λ(u⋆ − wi(t))

)
,

and if i ∈ [m] \ I+ then

−1

2
∇wi(t)Lλ = −λwi(t) −1

2
∇ai(t)Lλ = −λai(t),

therefore putting the two cases together we have

−1

2
∇wi(t)Lλ = ai(t)hi(t) −1

2
∇ai(t)Lλ = wi(t)

⊤hi(t) (8)

28



BENIGNITY OF LOSS LANDSCAPE WITH WEIGHT DECAY

where

hi(t) :=

{
H(u⋆ − v(t)) + λ(u⋆ − wi(t)) if i ∈ I+,

−λwi(t) if i ∈ [m] \ I+.
(9)

Consider t ∈ [T2, T3), and let µmax denote the largest eigenvalue of H .
For small enough α, by Lemma 4 we have

Lλ(θ(T2)) ≤ µmaxα
2ϵ + 2µminα

2ϵ 1 + αϵ

1− 4αϵ
≤ (µmax + 3µmin)α

2ϵ, (10)

so by the loss being non-increasing [see, e.g., 16, Lemma 5.2] and Equation (7) we have

∥v⋆ − v(t)∥ ≤

√
Lλ(θ(t))

µmin
≤

√
Lλ(θ(T2))

µmin
≤
√(µmax

µmin
+ 3
)
α2ϵ < αϵ/2. (11)

Thus, at each time t in this phase, we not only have that the I+ neurons are closely aligned (by
the definition of time T3 at the start of the current proof) but also that their composite vector v(t) is
inside a small ball around the teacher vector v⋆ (which also contains the claimed limit u⋆).

Letting Qi(t) := ∥wi(t)∥2
(
Id + wi(t)wi(t)

⊤) for all i ∈ [m], we have:∥∥∥1
2
∇Lλ(θ(t))

∥∥∥2
=
∑
i∈I+

∥H(u⋆ − v(t)) + λ(u⋆ − wi(t))∥2Qi(t)
by Equation (8)

+
∑

i∈[m]\I+

∥λwi(t)∥2Qi(t)
and Equation (9)

≥
∑
i∈I+

∥wi(t)∥2∥H(u⋆ − v(t)) + λ(u⋆ − wi(t))∥2 by omitting

+
∑

i∈[m]\I+

∥wi(t)∥2∥λwi(t)∥2
∥∥∥1
2
∇ai(t)Lλ

∥∥∥2 terms

=
∑
i∈I+

∥wi(t)∥2∥H
1
2 (u⋆ − v(t)) + λH− 1

2 (u⋆ − wi(t))∥2H since H is pos. def.

+ λ2
∑

i∈[m]\I+

∥wi(t)∥2 and by simplifying

≥ µmin

∑
i∈I+

∥wi(t)∥2∥H
1
2 (u⋆ − v(t)) + λH− 1

2 (u⋆ − wi(t))∥2

+ λ2
∑

i∈[m]\I+

∥wi(t)∥2 since ∥ · ∥2H ≥ µmin∥ · ∥2

= µmin

(∑
i∈I+

∥wi(t)∥2
)
∥u⋆ − v(t)∥2H expanding the square

+ 2µminλ(u⋆ − v(t))⊤
(∑
i∈I+

∥wi(t)∥2 u⋆ − v(t)
)

and recalling that,

+ µminλ
2
∑
i∈I+

∥wi(t)∥2∥u⋆ − wi(t)∥2H−1 by Proposition 4 (a),
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+ λ2
∑

i∈[m]\I+

∥wi(t)∥2 v(t) =
∑
i∈I+

∥wi(t)∥2wi(t)

≥ µmin

(∑
i∈I+

∥wi(t)∥2
)
∥u⋆ − v(t)∥2H by decomposing v(t)

+ 2µminλ(u⋆ − u⋆u
⊤
⋆ v(t))

⊤(∑
i∈I+

∥wi(t)∥2 u⋆ − u⋆u
⊤
⋆ v(t)

)
as v(t)− u⋆u

⊤
⋆ v(t)

+
µmin

µmax
λ2
∑
i∈I+

∥wi(t)∥2∥u⋆ − wi(t)∥2 plus u⋆u⊤⋆ v(t),

+ λ2
∑

i∈[m]\I+

∥wi(t)∥2 and ∥ · ∥2H−1 ≥ µ−1
max∥ · ∥2

= µmin

(∑
i∈I+

∥wi(t)∥2
)
∥u⋆ − v(t)∥2H since u⊤⋆ u⋆ = 1,

+ 2µminλ(∥u⋆∥ − u⊤⋆ v(t))
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

∥u⋆ − wi(t)∥2

+ 2
µmin

µmax
λ2
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

= 2(1− u⊤⋆ wi(t)), and

+ λ2
∑

i∈[m]\I+

∥wi(t)∥2 v(t) =
∑
i∈I+

∥wi(t)∥2wi(t).

Now, if ∥u⋆∥ − u⊤⋆ v(t) ≥ − λ
2µmax

then

2µminλ(∥u⋆∥ − u⊤⋆ v(t))
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)
≥ − µmin

µmax
λ2
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)
,

and if ∥u⋆∥ − u⊤⋆ v(t) < − λ
2µmax

then

2µminλ(∥u⋆∥ − u⊤⋆ v(t))
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

≥ −4µminµmax(∥u⋆∥ − u⊤⋆ v(t))
2
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

≥ −4µminµmax∥u⋆ − v(t))∥2
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

≥ −4µmax∥u⋆ − v(t))∥2H
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

≥ −1

2
µmin

(∑
i∈I+

∥wi(t)∥2
)
∥u⋆ − v(t)∥2H

since 1− u⊤
⋆ v(t)∑

i∈I+
∥wi(t)∥2 ≤ µmin

8µmax
for small enough α by Equation (11).

Therefore, in either case, for small enough α we have∥∥∥1
2
∇Lλ(θ(t))

∥∥∥2 ≥ 1

2
µmin

(∑
i∈I+

∥wi(t)∥2
)
∥u⋆ − v(t)∥2H
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+
µmin

µmax
λ2
(∑
i∈I+

∥wi(t)∥2 − u⊤⋆ v(t)
)

+ λ2
∑

i∈[m]\I+

∥wi(t)∥2

≥ 1

4
µmin∥u⋆ − v(t)∥2H

+
µmin

µmax
λ2
(∑
i∈[m]

∥wi(t)∥2 − u⊤⋆ v(t)
)
. (12)

Using the lower bound on the square of the gradient in Equation (12), which we obtained by
distinguishing the two cases depending on whether the projection of v(t) onto the direction of u⋆
significantly exceeds the length of u⋆, we are now able to show a local Polyak-Łojasiewicz inequality.
However, we first need to adjust the regularized loss by subtracting from it the value of each network
in the set Θu⋆ (see Proposition 2 (a)).

Letting
L̂λ(θ) := Lλ(θ)− L⋆

λ,

observe that:

L̂λ(θ(t)) = ∥v⋆ − v(t)∥2H − ∥v⋆ − u⋆∥2H
+ 2λ

(∑
i∈[m]

∥wi(t)∥2 − ∥u⋆∥
)

by Equation (7)

= ∥v⋆ − v(t)∥2H − ∥v⋆ − u⋆∥2H
+ 2
(∑
i∈[m]

∥wi(t)∥2 − ∥u⋆∥
)
∥H(v⋆ − u⋆)∥ by Equation (6)

= ∥u⋆ − v(t)∥2H
+ 2(u⋆ − v(t))⊤H(v⋆ − u⋆) by expanding

+ 2
(∑
i∈[m]

∥wi(t)∥2 − ∥u⋆∥
)
∥H(v⋆ − u⋆)∥ ∥(u⋆ − v(t)) + (v⋆ − u⋆)∥2H

= ∥u⋆ − v(t)∥2H by Equation (6)

+ 2λ
(∑
i∈[m]

∥wi(t)∥2 − u⊤⋆ v(t)
)

and simplifying (13)

≤ 1

κ
∥∇L̂λ(θ(t))∥2 by Equation (12)

where κ := min{µmin, 2λµmin/µmax}.
Hence, by Grönwall’s inequality and Equation (10), we have

L̂λ(θ(t)) ≤ (µmax + 3µmin)α
2ϵe−(t−T2)/κ. (14)

For a contradiction, suppose T3 < ∞, and let i, i′ ∈ I+ be such that 1−wi(T3)
⊤wi′(T3) = αϵ/2.

Then:

1− wi(T3)
⊤wi′(T3)
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≤ 4αϵ −
∫ T3

T2

d

dt
wi(t)

⊤wi′(t) dt by Lemma 4 (b)

= 4αϵ − 2

∫ T3

T2

((
hi(t)− wi(t)wi(t)

⊤hi(t)
)⊤

wi′(t)

+ wi(t)
⊤(hi′(t)− wi′(t)wi′(t)

⊤hi′(t)
))

dt by Equation (8)

= 4αϵ − 2

∫ T3

T2

(1− wi(t)
⊤wi′(t))(

H(u⋆ − v(t)) + λu⋆
)⊤

(wi(t) + wi′(t)) dt by Equation (9)

≤ 4αϵ − 2

∫ T3

T2

(1− wi(t)
⊤wi′(t))

H(u⋆ − v(t))⊤(wi(t) + wi′(t)) dt for small enough α

≤ 4αϵ + 4αϵ/2

∫ T3

T2

∥H(u⋆ − v(t))∥ dt as 1− wi(t)
⊤wi′(t) < αϵ/2

≤ 4αϵ + 4αϵ/2

∫ T3

T2

√
L̂λ(θ(t))

µmin
dt by Equation (13)

≤ 4αϵ + 4α3ϵ/2

√
µmax

µmin
+ 3

∫ T3

T2

exp
(
− t− T2

2κ

)
dt by Equation (14)

≤ 4αϵ + 8κα3ϵ/2

√
µmax

µmin
+ 3 by integrating

< αϵ/2 for small enough α,

which is a contradiction, and therefore T3 = ∞, i.e., the I+ neurons remain closely aligned at all
times t ≥ T2.

Now, since by Equation (13) we have

L̂λ(θ(t)) = ∥u⋆ − v(t)∥2H + λ
∑
i∈I+

∥wi(t)∥2∥u⋆ − wi(t)∥2 + 2λ
∑

i∈[m]\I+

∥wi(t)∥2, (15)

from Equation (14) we conclude that the composite vector v(t) converges to u⋆, all the constituent
neurons converge to perfect alignment, and all other neurons converge to 0:

lim
t→∞

v(t) = u⋆ ∀i ∈ I+, lim
t→∞

wi(t) = u⋆ ∀i ∈ [m] \ I+, lim
t→∞

wi(t) = 0.

Thus, to infer that limt→∞ θ(t) ∈ Θu⋆ , it suffices to observe that for all i ∈ I+ we have

|d∥wi(t)∥2/dt|
= 2∥wi(t)∥2

∣∣2wi(t)
⊤H(u⋆ − v(t))− λ∥u⋆ − wi(t)∥2

∣∣ by Equations (8) and (9)

≤ 5∥H(u⋆ − v(t))∥+ 2λ∥wi(t)∥2∥u⋆ − wi(t)∥2 for small enough α

≤ 5

√
L̂λ(θ(t))/µmin + 2L̂λ(θ(t)) by Equation (15)

≤ O(1) exp
(
− t− T2

2κ

)
, by Equation (14)
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so limt→∞ ∥wi(t)∥2 exists.

Theorem 2 now follows by Proposition 3, fixing η > 0 and α⋆ > 0 so that Proposition 2
and Lemma 5 hold for all α ≤ α⋆ and λ ≤ µminα

2ϵ = µminα
ε, and recalling that by Equation (6)

we have ∥v⋆ − u⋆∥2H ≤ ∥H(v⋆ − u⋆)∥2/µmin = λ2/µmin.

Appendix E. Is mild overparametrization sufficient? Case of orthogonal data

Theorem 1 claims that, when m ≳ min(2n, nd), most of activation cones contain a global minimum,
making the loss landscape “benign”. Such a benignity appears for milder regimes (m ≳ n is
sufficient) without any regularization. A fundamental question is then: how tight is the requirement
on m in Theorem 1? Is the loss landscape benign for milder overparametrizations?

This section answers this question by considering the example of orthogonal data inputs. On
this example, Theorem 3 shows that the requirement m ≳ min(2n, nd) is indeed necessary for
Theorem 1 without any further data assumption. Moreover, it also illustrates more generally that
gradient flow converges to a bad stationary point of Equation (Reg-λ) with high probability when
m ≲ min(2n, nd) for any typical initialization scheme (independently of its scale).

Assumption 3 The data inputs are pairwise orthogonal: for any j, k ∈ [n] such that j ̸= k,
x⊤j xk = 0.

Theorem 3 Consider data satisfying Assumption 3, network width m ≥ 2 and regularization
parameter 0 < λ ≤ min

(√∑
k,yk>0 y

2
k∥xk∥2,

√∑
k,yk<0 y

2
k∥xk∥2

)
. Then only a fraction at

most m2−max(card{k∈[n]|yk>0},card{k∈[n]|yk<0}) of activation cones CA are such that their closure CA

contains a global minimum of either Equation (Reg-λ) or Equation (min-norm).
Moreover, consider the gradient flow solution θ of Equation (5), either for the regularized loss

(λ > 0). If the inner layer weights wi(0) are initialized independently at random, following a rotation
invariant distribution, then with probability at least 1−m2−max(card{k∈[n]|yk>0},card{k∈[n]|yk<0}):

if inf
t→∞

θ(t) = θ∞ exists, it is not a global minimum Lλ.

Note that for typical data (e.g., if yk ̸= 0 for all k), the max term in Theorem 3 is larger than n
2 . As a

consequence, Theorem 3 implies that as long as the number of neurons m is small with respect to 2
n
2 ,

only a small fraction of activation cones contain global minima of the regularized (or min-norm) loss
in their closure. This suggests that the requirement m ≳ min(2n, nd) – note that in the orthogonal
case 2n ≤ nd – of Theorem 1 is somewhat necessary to have a benign loss landscape.

While loss landscape claims are generally agnostic of the dynamics encountered during the
training of the network, Theorem 3 also claims that this m ≳ min(2n, nd) condition is also required
to guarantee, with high probability, convergence towards a global minimum of the regularized loss.
In other words, Theorem 3 implies that as soon as m ≲ min(2n, nd), the network will not converge
towards the global minimum of the regularized loss Lλ when trained via gradient flow, even with
large initializations.

In the unregularized case with orthogonal data, Boursier et al. [6] have shown that with m ≳ 2n

neurons and a small initialization, gradient flow converges arbitrarily close to a global minimum
of Equation (min-norm). Moreover, Dana et al. [14] recently showed that with only m ≳ log(n)
neurons, the unregularized flow still converges towards an interpolator of the training data, without
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any guarantee on the norm of the obtained estimator. Since the solutions of Equation (min-norm) and
Equation (Reg-λ) correspond as λ → 0, Theorem 3 completes the picture by showing that below this
m ≳ 2n threshold, the convergence point is not a global minimum of Equation (min-norm), although
it might interpolate the data.

Sketch of proof. The orthogonal data case alleviates several complexities of the training dynamics.
In particular, any hidden weight neuron wi(t) has a constant activation pattern over time (see
Lemma 7 in the appendix), so that for the limit point to be a global minimum of Equation (Reg-λ) (or
Equation (min-norm)), one needs the activation cone of hidden weights to include at initialization a
global minimum of the problem. Moreover in the orthogonal case, a cone includes a global minimum
if and only if it contains two precise activation patterns, i.e., rows of the activation binary matrix A
in Equation (2) (see Lemma 6).

From there, we can again reduce the problem to a coupon collector problem: drawing m coupons
uniformly at random – given by the activation patterns of the hidden weights at initialization – among
a set of 2n possible patterns, we can then upper bound the probability to collect the two winning
tickets described by Lemma 6.

We now provide a detailed proof of Theorem 3, in which a main argument is the following key
lemma.

Lemma 6 If the data satisfies Assumption 3, and we have that

m ≥ 2 and 0 < λ < min
(√∑

k,yk>0 y
2
k∥xk∥2,

√∑
k,yk<0 y

2
k∥xk∥2

)
,

then any global minimum (W ⋆, a⋆) ∈ Rm×(d+1) of either Equation (Reg-λ) or (min-norm) is such
that there exist j−, j+ ∈ [m] satisfying:

∀k ∈ [n], yk < 0 =⇒ x⊤k w
⋆
j+ > 0,

∀k ∈ [n], yk > 0 =⇒ x⊤k w
⋆
j− > 0.

In words, Lemma 6 states that any global minimum of either Equations (Reg-λ) and (min-norm) is
such that it has one neuron wj+ that is positively correlated with all the training inputs corresponding
to positive labels. Similarly, there is a neuron wj− that is positively correlated to all the training
inputs corresponding to negative labels. For the case of Equation (min-norm), this is a known fact
that the global minima are equivalent to two such neurons [6, Proposition 1]. Lemma 6 extends it to
the regularized problem (Reg-λ). Lemma 6 is here weaker than Proposition 1 from Boursier et al.
[6], as it only gives a necessary condition for global minima. It is yet sufficient to our purpose, which
is proving Theorem 3.

Similarly to the proof of Theorem 1, we introduce the notion of weight cone. For that, we define
the following activation function which here omits the sign of the output neuron:

Ãn :
Rd → {0, 1}n
w 7→ (1(w⊤xk ≥ 0)k∈[n]))

.

Similarly, we associate to any binary vector u ∈ {0, 1}n the weight cone C̃u ⊆ Rd as

C̃u = Ã−1
n (u).
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For any binary matrix A ∈ {0, 1}m×(n+1), we can decompose it in block as A =
[
A0A1

]
with

A0 ∈ {0, 1}m×n and A1 ∈ {0, 1}m×1 such that activation and weight cones are related following

CA =
m∏
i=1

(C̃A0
i
×RA1

i
),

where we define R1 = R+ and R0 = R∗
−. In words, the parameters (W,a) ∈ Rm×(d+1) belong to

the activation cone CA if and only if for any i ∈ [m], the i-th weight belongs to the weight cone
associated to the i-th row of A and the sign of ai corresponds to the last element of such a row, i.e.,
(Ãn(wi),1(ai ≥ 0)) = Ai.

From here, we can relate the fraction of non-empty cones containing global minima to the coupon
collector problem. Indeed, if we choose uniformly at random an activation cone CA, it is equivalent
to choosing independently, m weight cones (C̃ui)i∈[m] and signs of output 1(ai ≥ 0) uniformly at
random – there is no empty activation cone in the case of orthogonal data.

Thus assuming A is a binary matrix in {0, 1}m×(n+1), drawn uniformly at random among the set
of binary matrices; and that the binary vectors ui ∈ Rn are drawn i.i.d., uniformly at random among
the set of binary vectors u, we have the following inequality, thanks to Lemma 6:

P(CA contains a global minimum of Equation (Reg-λ) or (min-norm))

≤ P(∃j ∈ [m],∀k s.t. yk > 0, ujk = 1 and ∃j ∈ [m], ∀k s.t. yk < 0, ujk = 1)

≤ min (P(∃j ∈ [m],∀k s.t. yk > 0, ujk = 1),P(∃j ∈ [m], ∀k s.t. yk > 0, ujk = 1)) .

Now note that in the orthogonal case, all weight cones are non-empty, i.e., choosing ui uniformly at
random among the set of non-empty weight cones is the same as choosing its components uik as
independent Bernoulli variables of parameter 1/2. As a consequence using a simple union bound,

P(∃j ∈ [m],∀k s.t. yk > 0, ujk = 1) ≤ m2−card{k∈[n]|yk>0}.

So that this finally yields when choosing CA uniformly at random:

P(CA contains a global minimum of Equation (Reg-λ) or (min-norm))

≤ m2−max(card{k∈[n]|yk>0},card{k∈[n]|yk<0}).

This finally yields the first part of Theorem 3.
From there, Lemma 7 below implies that the weight cones do not change during training in the

presence of orthogonal data.

Lemma 7 If the data satisfies Assumption 3, then for any λ ≥ 0, the gradient flow solution θ of
Equation (5) is such that for any i ∈ [m] and t ∈ R:

Ãn(wi(0)) = Ãn(wi(t)).

Proof This is a direct consequence of the following differential inclusion on any neuron i ∈ [m] and
data point k ∈ [n]:

d(wi(t)
⊤xk)

dt
= ẇi(t)

⊤xk
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∈ 2
ai(t)

n
(yk − fθ(t))∂σ(wi(t)

⊤xk)∥xk∥2 − 2λwi(t)
⊤xk.

The simplicity of the ODE comes from the orthogonality assumption. From there and using the
expression of the subgradient of the ReLU activation, one can note that

wi(t)
⊤xk < 0 =⇒ d(wi(t)

⊤xk)

dt
= −2λwi(t)

⊤xk.

This directly implies, using Grönwall’s inequality, the fact that wi(t)
⊤xk < 0 cannot become

non-negative (in finite time) if it starts being negative. By continuity of wi(t), this also implies
that it cannot become negative if it starts being non-negative. In other words, this implies that
1(wi(t)

⊤xk ≥ 0) is constant during training.

As a consequence, any initialization θ(0) such that limt→∞ θ(t) exists satisfies for any i ∈ [m] and
k ∈ [n],

wi(0)
⊤xk ≥ 0 =⇒ lim

t→∞
wi(t)

⊤xk ≥ 0

wi(0)
⊤xk < 0 =⇒ lim

t→∞
wi(t)

⊤xk ≤ 0
(16)

Equation (16) can be rewritten in a more compact way as

∀i ∈ [m], lim
t→∞

wi(t) ∈ Ã−1
n (wi(0)).

As a consequence, any initialization that does not satisfy the second point of Theorem 3, i.e., any
initialization such that limt→∞ θ(t) exists and is a global minimum is thus such that

∃j ∈ [m], ∀k s.t. yk > 0, Ãn(wj(0))k = 1,

∃j ∈ [m], ∀k s.t. yk < 0, Ãn(wj(0))k = 1.
(17)

Moreover by orthogonality of the data and rotation invariance of the initialization, the weight
activations Ãn(wi(0)) are chosen uniformly at random at initialization among {0, 1}n. The property
given by Equation (17) thus happens with probability at most

m2−max(card{k∈[n]|yk>0},card{k∈[n]|yk<0}),

using the same argument as above. Since this property is necessary for the initialization to not satisfy
the second point of Theorem 3, this allows to conclude.

E.1. Proof of Lemma 6

Consider a global minimum (W,a) of Equation (Reg-λ). First note that a stationary point (W,a) of
Equation (Reg-λ) is satisfies the following equality for any i ∈ [m]:

ai
n

n∑
k=1

(fθ(xk)− yk)∂σ(w
⊤
i xk)xk + λwi ∈ 0.

The first equality implies

wi ∈
ai
λn

n∑
k=1

(yk − fθ(xk))∂σ(w
⊤
i xk)xk,
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where σ(w⊤
i xk) = 1(w⊤

i xk > 0), except when w⊤
i xk = 0. But then, the orthogonality directly

implies that it indeed corresponds to the choice of subgradient 0, i.e.,

wi =
ai
λn

n∑
k=1

(yk − fθ(xk))1(w
⊤
i xk > 0)xk.

Moreover, we know that any global minimum is balanced, i.e., a2i = ∥wi∥2. Denoting λk =
yk−fθ(xk)

λn , Bi = {k ∈ [n] | w⊤
i xk > 0} and si = sign(ai), the KKT condition finally rewrites for

any i ∈ [m]:

wi = si∥wi∥
∑
k∈Bi

λkxk.

In particular, for any k ∈ [n],

w⊤
i xk = siλk∥wi∥∥xk∥21(w⊤

i xk > 0),

i.e., if we define Ak = {i ∈ [m] | w⊤
i xk > 0}, it implies that

Ak ⊆ {i ∈ [m] | siλk > 0}. (18)

Moreover, it also implies that for any i and k,

w⊤
i xk ≤ 0 =⇒ w⊤

i xk = 0. (19)

From there, we can use a merging argument to show that the neural network (W,a) is equivalent to
the network (W̃ , ã) defined by

∀i > 2, (w̃i, ãi) = 0

ã1 =

√√√√√
∥∥∥∥∥∥
∑
i,si=1

∥wi∥wi

∥∥∥∥∥∥
2

and ã1 = −

√√√√√
∥∥∥∥∥∥
∑

i,si=−1

∥wi∥wi

∥∥∥∥∥∥
2

w̃1 =

∑
i,si=1 ∥wi∥wi

ã1
and w̃2 =

∑
i,si=−1 ∥wi∥wi

ã2
.

It is indeed easy to check that for any k ∈ [n], fθ(xk) = fθ̃(xk). Moreover, we have by triangle
inequality that

1

2
∥θ̃∥22 = ∥w̃1∥22 + ∥w̃2∥22

≤
∑
i∈[m]

∥wi∥22

=
1

2
∥θ∥22.

By minimization of Equation (Reg-λ), the inequality is an equality. The equality case of triangle
inequality then implies that

∀i, j ∈ [m], si = sj ̸= 0 =⇒ wi

∥wi∥
=

wj

∥wj∥
.
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As a consequence, we can define

D+ =
∑
i,si=1

∥wi∥wi and D− =
∑

i,si=−1

∥wi∥wi.

Using Equation (19), we then have the following equality for any k ∈ [n] :

fθ(xk) =
∑
i,si=1

∥wi∥σ(x⊤k wi)−
∑

i,si=−1

∥wi∥σ(x⊤k wi)

=
∑
i,si=1

∥wi∥x⊤k wi −
∑

i,si=−1

∥wi∥x⊤k wi

= D⊤
+xk −D⊤

−xk.

Moreover, the above computations imply D⊤
+xk ≥ 0 and D⊤

−xk ≥ 0.
Additionally if λk ≥ 0, Equation (18) implies that Ak ⊆ {i ∈ [m] | si = 1}. As a consequence

if λk ≥ 0,

fθ(xk) =
∑
i∈Ak

aiw
⊤
i xk

=
∑
i,si=1

aiw
⊤
i xk

= D⊤
+xk, (20)

so that if λk ≥ 0, fθ(xk) ≥ 0, i.e.,

λk ≥ 0 =⇒ fθ(xk) ≥ 0. (21)

We also have the following lemma.

Lemma 8 If the data satisfies Assumption 3, and we have that

m ≥ 2 and 0 < λ ≤ min
(√∑

k,yk>0 y
2
k∥xk∥2,

√∑
k,yk<0 y

2
k∥xk∥2

)
,

then any global minimum θ⋆ of Equation (Reg-λ) is such that for any k ∈ [n],

yk ̸= 0 =⇒ fθ⋆(xk) ̸= 0.

In particular, Equation (21) then becomes

λk ≥ 0 =⇒ fθ(xk) > 0 or yk = 0.

As by definition, λk = yk−fθ(xk)
λn , this directly implies that

λk ≥ 0 =⇒ yk ≥ 0.

But the symmetric argument also holds, i.e.,

λk ≤ 0 =⇒ yk ≤ 0.

The converse leads to yk > 0 =⇒ λk > 0. Equation (20) then implies that for any k s.t. yk > 0,
D⊤

+xk > 0. Moreover as fθ(xk) ̸= 0, there is at least one i such that si = 1 and wi ̸= 0. Such a wi

is then proportional to D+ and thus corresponds to wj+ in Lemma 6.
Symmetrical arguments hold for the existence of wj− .
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E.2. Proof of Lemma 8.

Since m ≥ 2, we can use the same merging argument as in Appendix E.1 to show that any global
minimum is equivalent to a network with only two non-zero neurons. We can thus restrict here our
analysis, without loss of generality, to a global minimum of Equation (Reg-λ) θ⋆ = (W ⋆, a⋆) such
that

∀i > 2, (w⋆
i , a

⋆
i ) = 0,

a⋆1 ≥ 0 and a⋆2 ≤ 0.

Now assume by contradiction that fθ⋆(xk) = 0 for some k such that yk ̸= 0. Also assume without
loss of generality that yk > 0 – the negative case is dealt with symmetrically. Using the construction
from Appendix E.1, Equations (18) and (19) imply in particular that x⊤k w

⋆
1 = 0.

Suppose in a first case that a⋆1 ̸= 0. From there for an arbitrarily small ε > 0, adding εxk to w⋆
1

decreases the objective of Equation (Reg-λ).
Indeed, define θε = (W ε, aε) as:

∀i ≥ 2, (wε
i , a

ε
i ) = (w⋆

i , a
⋆
i ),

(wε
1, a

ε
1) = (w⋆

1 + εxk, a
⋆
1).

Using the orthogonality between the xk then yields

Lλ(θ
ε) = Lλ(θ

⋆)− 2(a⋆1)εyk∥xk∥2 + (a⋆1)
2ε2∥xk∥4 + λε2∥xk∥2,

which is indeed smaller than Lλ(θ
⋆) for a small enough ε > 0. This then contradicts the global

minimality of θ⋆.
Suppose now that a⋆1 = 0. In that case, w⋆

1 = 0 by balancedness. We can then replace θ⋆ by θε

where

∀i ≥ 2, (wε
i , a

ε
i ) = (w⋆

i , a
⋆
i ),

aε1 = ε∥D+∥,
wε
1 = εD+,

were D+ =
∑

k,yk>0 ykxk. We can again compare the objectives as ε → 0:

Lλ(θ
ε) = Lλ(θ

⋆)− 1

n

∑
k,yk>0

2ε2∥D+∥∥xk∥2y2k + 2λε2∥D+∥2 +O
(
ε4
)
,

= Lλ(θ
⋆)− 2

n
ε2∥D+∥3 + 2λε2∥D+∥2 +O

(
ε4
)
.

The assumption on λ then leads to a decrease of the loss, contradicting that θ⋆ is a global minimum.
This proves Lemma 8 by contradiction.

Appendix F. Future work

In this work, we quantified under what level of overparametrization the regularized loss landscape
with two-layer ReLU networks is benign. However, this benignity comes at the expense of a large
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overparametrization (in contrast with the unregularized case), and is not necessarily relevant to the
training dynamics happening for small initializations.

In Theorem 2, the scale bound α⋆ depends on the random directions of the hidden neurons
and the random signs of the output weights at network initialization. Future work could seek to
remove the latter dependencies, possibly by building on the recent techniques of Boursier and
Flammarion [4], and to bound the regularization parameter λ independently of α. Moreover, the
final estimator still has a simple structure, enforcing the idea that weight decay is not necessarily
helpful to reach minimal norm interpolators, but might however lead to simple interpolators with
good generalization properties [15]. Exploring the properties of such spurious local minima is a
challenging and interesting direction, left open for future work.

Additionally, we showed that the overparametrization m ≳ min(2n, nd) is necessary to reach
minimal norm interpolators. With fewer parameters however, it is not clear how far from “norm
minimality” would the final estimator be. While this estimator might not be optimal, we believe it
could still be relatively good (e.g., having a norm only slightly larger than the minimal one) and
generalize well, which could explain why such a level of overparametrization might not be required
in practice. Such a question is also left open for future work.

40


	Introduction
	Setting
	Overparametrization and benign loss landscape
	Experiments
	Appendix
	 Appendix
	Additional experiments
	Experimental details
	Random vector selection

	Related work
	Proof of Theorem 1
	Proof of Lemma 1

	Connecting loss landscape with optimization dynamics
	Is mild overparametrization sufficient? Case of orthogonal data
	Proof of Lemma 6
	Proof of Lemma 8.

	Future work


