

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIVERSE AND SPARSE MIXTURE-OF-EXPERTS FOR CAUSAL SUBGRAPH-BASED OUT-OF-DISTRIBUTION GRAPH LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Current state-of-the-art methods for out-of-distribution (OOD) generalization lack the ability to effectively address datasets with heterogeneous causal subgraphs at the instance level. Existing approaches that attempt to handle such heterogeneity either rely on data augmentation, which risks altering label semantics, or impose causal assumptions whose validity in real-world datasets is uncertain. We introduce a novel *Mixture-of-Experts (MoE)* framework that can model heterogeneous causal subgraphs without relying on restrictive assumptions. Our key idea is to address instance-level heterogeneity by enforcing semantic *diversity* among experts, each generating a distinct causal subgraph, while a learned gate assigns *sparse* weights that adaptively focus on the most relevant experts for each input. Our theoretical analysis shows that these two properties jointly reduce OOD error. In practice, our experts are scalable and do not require environment labels. Empirically, our framework achieves strong performance on the GOOD benchmark across both synthetic and real-world structural shifts.

1 INTRODUCTION

Out-of-distribution (OOD) generalization concerns learning models that remain reliable when the test distribution differs from training (Ye et al., 2021). Despite recent progress, it remains a fundamental challenge, especially for graphs (Fan et al., 2023), whose complexity admits shifts not only in node or edge attributes but also in structural properties such as size, sparsity, or motif frequency (Wu et al., 2018). Such structural shifts can mislead models, as spurious topological correlations often dominate learning (Gui et al., 2022).

A dominant paradigm in graph OOD learning is *causal subgraph* identification: each graph is assumed to contain a subgraph G_c responsible for the label, while the remaining structure G_s reflects spurious variation (Gui et al., 2023; Sui et al., 2025; An et al., 2024; Yao et al., 2025; Chen et al., 2022). In principle, recovering G_c should yield predictions robust to distribution shifts. In practice, however, existing methods rely on restrictive causal assumptions (e.g., G_s is independent of the label) that may fail in practice (Gui et al., 2022; 2023). For example, in sentiment analysis, stylistic markers such as word length can frequently track sentiment, meaning G_s is not independent of the label.

A further challenge is *instance heterogeneity*: even within a single environment and label class, different samples may rely on fundamentally different causal subgraphs. For example, in molecular property prediction, multiple chemotypes can produce the same biological activity, meaning two “active” molecules may depend on entirely different causal subgraphs (Wu et al., 2018). Methods that assume a single invariant G_c across environments or labels cannot capture such variability and therefore struggle under instance-level causal diversity (Sui et al., 2025). Some approaches attempt to approximate this heterogeneity via data augmentation (Wu et al., 2024; Sui et al., 2023), but perturbing graph structure cannot guarantee label correctness and may change the true causal subgraph—especially in motif-centric datasets such as GOOD-Motif, where labels correspond directly to specific subgraphs (Gui et al., 2022; Wu et al., 2018). These limitations motivate methods that directly model causal diversity at the instance level, rather than approximating it through augmentation.

We address this gap by introducing a *Mixture-of-Experts (MoE)* framework specifically designed for causal subgraph-based OOD graph learning. Unlike prior MoE approaches that rely on predefined shift types or augmentation strategies, our method employs experts as causal subgraph extractors, enabling them to specialize in distinct causal mechanisms. A learned gating network adaptively selects the most relevant experts for each instance. Our theoretical analysis shows that (i) *semantic diversity* is necessary for meaningful specialization, and (ii) *instance-level sparsity* naturally follows from diversity via induced loss gaps. Together, these results provide a principled justification for MoE in OOD graph learning. Importantly, our framework does not rely on environment labels or causal assumptions, making it assumption-light. Building on this foundation, our contributions are threefold:

1. **Theory:** We provide a principled justification for MoE in graph OOD learning by deriving a formal risk bound, showing that *semantic diversity* among experts and *instance-level sparsity* during gating jointly reduce OOD error.
2. **Implementation:** We design a causal subgraph-based MoE framework that instantiates these principles through a decorrelation regularizer for diversity and a learnt gating mechanism for sparsity, without requiring environment labels or strong causal assumptions.
3. **Empirics:** On the GOOD benchmark (Gui et al., 2022), our framework achieves strong performance across synthetic and real-world structural shifts. Ablations verify the necessity of diversity and sparsity.

2 BACKGROUND

Graph OOD Learning. In graph learning, each input is a graph x with an associated label y . In an OOD setting, models are trained on data drawn from certain environments but are expected to perform well when evaluated on new environments that were not seen during training. We focus on *covariate shift*, where the relationship between x and y is stable but the distribution of graph inputs changes. This reflects realistic cases where the causal mechanism is preserved, yet nuisance factors such as graph size, sparsity, or motif frequency vary.

Causal subgraph paradigm. A common basis for graph OOD learning is the *causal subgraph paradigm*: each graph input contains a causal subgraph G_c that determines the label y , while the complement G_s captures spurious variation. Successfully identifying G_c would yield shift-invariant predictions, but since G_c is unobserved, existing methods rely on assumptions about the underlying structural causal model (SCM) (Gui et al., 2023; Sui et al., 2025; Chen et al., 2022; An et al., 2024; Yao et al., 2025; Wu et al., 2022; Miao et al., 2022). Examples include assuming $G_s \perp y$ (Gui et al., 2023) or that G_c is invariant across environments or classes (Sui et al., 2025). Such assumptions are often unrealistic: Such assumptions are often unrealistic: they overlook *instance heterogeneity*, and they may fail when G_s correlates with y (e.g., molecular scaffolds shared by active compounds (Zhang et al., 2024)).

Instance heterogeneity. Instance heterogeneity refers to the setting where the causal subgraph varies not only across environments but also across individual samples within the same dataset and label class. Formally, if each graph G contains a (possibly latent) causal subgraph G_c sufficient to predict y , then the collection of such G_c 's need not be identical across the dataset; this variability constitutes causal diversity. Such diversity arises naturally in real-world domains and is also present in the GOOD benchmark (Gui et al., 2022). In GOOD-HIV, multiple chemotypes can yield the same biological activity, and in GOOD-SST2, sentiment can be expressed through structurally distinct syntactic patterns. As a result, two instances from the same environment with the same label may rely on fundamentally different causal subgraphs, and methods that assume a single invariant G_c across environments or classes cannot account for such causal diversity. While some works attempt to approximate heterogeneity via data augmentation (Lu et al., 2024; Yao et al., 2024; Wu et al., 2024; Chen et al., 2023; Sui et al., 2023; Miao et al., 2022), perturbations do not guarantee label correctness and may alter the true causal subgraph—especially in motif-centric datasets such as GOOD-Motif (Gui et al., 2022). These limitations motivate the need for frameworks that directly model causal diversity at the instance level. We propose an alternative perspective: model heterogeneity directly through a *MoE framework* by allowing multiple experts to extract diverse causal subgraphs and using instance-specific gating to focus on the most relevant ones.

Causal Assumptions. Many OOD graph methods rely on assumptions about the underlying SCM, particularly regarding how the causal subgraph G_c , spurious subgraph G_s , and label y interact. A common assumption is that G_s is conditionally independent of y given G_c (Gui et al., 2023; Sui et al., 2025; Chen et al., 2022; An et al., 2024; Yao et al., 2025; Wu et al., 2022; Miao et al., 2022). However, this assumption does not hold under alternative SCMs such as FIIF (fully informative invariant features), where G_s is entirely determined by G_c , or PIIF (partially informative invariant features), where G_s is partly driven by G_c but still correlated with y . In practice, such independence conditions are rarely guaranteed. In molecular property prediction, for instance, structural scaffolds often correlate with biological activity, violating $G_s \perp y$. In social or textual graphs, stylistic markers frequently track sentiment, creating direct $G_s \rightarrow y$ dependencies. Even in controlled benchmarks such as the GOOD benchmark (Gui et al., 2022), these SCM-level assumptions are *not* guaranteed. Consequently, relying on a single causal assumption can lead to brittle behavior. In contrast, our method imposes no SCM-level assumptions: we avoid invariance-based losses and instead allow instance-specific expert selection, yielding robustness to diverse causal mechanisms.

MoE for GNNs. MoE architectures (Jacobs et al., 1991; Shazeer et al., 2017) consist of multiple experts combined through a gating function, and in graph domains they have primarily been applied to improve scalability and efficiency (Wang et al., 2023a; Chen et al., 2025; Hu et al., 2022). To the best of our knowledge, GraphMETRO is the only OOD-oriented MoE approach to date, assigning each expert to a predefined shift type and training them as augmentation strategies invariant to those shifts (Wu et al., 2024). This approach naturally inherits the label validity risks mentioned above. In contrast, we employ MoE for *causal subgraph identification*, encouraging experts to capture diverse causal hypotheses and directly addressing instance heterogeneity. Additional related work is discussed in Appendix B.

3 METHOD

In this section, we derive an explicit risk bound that decomposes OOD error into *coverage* and *selection* terms, and we show how *diversity* and *sparsity* jointly serve to reduce it. All proofs are deferred to Appendix A.

3.1 PRELIMINARIES AND NOTATION

We consider supervised learning on graphs, where each instance is $x = (V, E, X)$ with node set V , edge set E , and node features X , together with an associated label $y \in \mathcal{Y}$. Let \mathcal{X} denote the input space of graphs and \mathcal{D} a distribution over $(x, y) \in \mathcal{X} \times \mathcal{Y}$. We write $\mathcal{D}_{\mathcal{X}}$ for the marginal on \mathcal{X} . A predictor h maps x to logits $z_h(x) \in \mathbb{R}^C$, where $C = |\mathcal{Y}|$ is the number of classes and $c \in \{1, \dots, C\}$ indexes a class. Predictions are evaluated with the cross-entropy loss $\ell_{\text{CE}}(z, y)$ (Goodfellow et al., 2016), and the risk of h under distribution \mathcal{D} is

$$R_{\mathcal{D}}(h) = \mathbb{E}_{(x, y) \sim \mathcal{D}}[\ell_{\text{CE}}(z_h(x), y)].$$

We define OOD generalization with respect to a family of environments \mathcal{M} , where each $m \in \mathcal{M}$ corresponds to a distribution \mathcal{D}_m over $\mathcal{X} \times \mathcal{Y}$. Training occurs on a subset $\mathcal{M}_{\text{train}}$, while evaluation is on unseen test environments $\mathcal{M}_{\text{test}}$ with $\mathcal{M}_{\text{test}} \setminus \mathcal{M}_{\text{train}} \neq \emptyset$. We denote a particular unseen test environment by m' , with associated distribution $\mathcal{D}_{m'}$. The objective is to control the worst-case risk

$$R_{\text{OOD}}(h) = \sup_{m \in \mathcal{M}_{\text{test}}} R_{\mathcal{D}_m}(h).$$

We focus on the case of *covariate shift*, where the marginal distribution over \mathcal{X} varies across environments while the conditional distribution $P(y | x)$ remains stable.

Mixture-of-Experts. Let $\{h_i\}_{i=1}^K$ denote K experts, and let $\pi(x) \in \Delta^K$ be a gating distribution (sometimes we omit the dependence on x and write simply π). Each expert h_i outputs logits $z_i(x) \in \mathbb{R}^C$. The MoE aggregates predictions via

$$z_{\text{mix}}(x) = \sum_{i=1}^K \pi_i(x) z_i(x), \quad \hat{y}(x) = \arg \max_{c \in \{1, \dots, C\}} z_{\text{mix}}(x)[c].$$

162 For expert h_i , the cross-entropy loss is $\ell_i(x, y) = \ell_{\text{CE}}(z_i(x), y)$, and the MoE risk under distribution
 163 \mathcal{D} is

$$164 R_{\mathcal{D}}(\text{MoE}) = \mathbb{E}_{(x, y) \sim \mathcal{D}}[\ell_{\text{CE}}(z_{\text{mix}}(x), y)].$$

165 We also define the auxiliary mixture-of-losses quantity

$$167 \bar{\ell}(x, y) := \sum_{i=1}^K \pi_i(x) \ell_i(x, y),$$

170 which by Jensen's inequality (Jensen, 1906) upper-bounds the mixture-of-predictions loss.
 171

172 3.2 DIVERSITY BETWEEN EXPERTS (COVERAGE)

174 For a MoE model to be effective, experts must represent distinct hypotheses; otherwise the gate
 175 has no meaningful choice and the model collapses. We therefore encourage *semantic diversity*:
 176 experts should emphasize different subgraphs in the input, providing *coverage* over latent causal
 177 mechanisms. As we will show, such diversity not only prevents model collapse but also induces
 178 non-trivial specialization, which in turn forces sparse gating.

179 **Definition 3.1** (Semantic diversity). *Let expert i produce a mask probability vector $\mathbf{v}_i^{(x)} \in [0, 1]^{|I_x|}$
 180 on input graph x (nodes/edges indexed by I_x). Standardize*

$$182 \tilde{\mathbf{v}}_i^{(x)} = \frac{\mathbf{v}_i^{(x)} - \mu_i^{(x)} \mathbf{1}}{\sigma_i^{(x)} + \varepsilon}, \quad \mu_i^{(x)} = \frac{1}{|I_x|} \sum_{u \in I_x} \mathbf{v}_i^{(x)}(u), \quad (\sigma_i^{(x)})^2 = \frac{1}{|I_x|} \sum_{u \in I_x} (\mathbf{v}_i^{(x)}(u) - \mu_i^{(x)})^2,$$

185 with a small $\varepsilon > 0$ to avoid division by zero. Let $\rho_{ij}^{(x)} = \frac{1}{|I_x|} \langle \tilde{\mathbf{v}}_i^{(x)}, \tilde{\mathbf{v}}_j^{(x)} \rangle$. We say the experts are
 186 semantically diverse if

$$188 \frac{1}{K(K-1)} \sum_{i \neq j} \mathbb{E}_{x \sim \mathcal{D}_x} [|\rho_{ij}^{(x)}|] \leq \tau_{\text{corr}} \quad \text{for some } \tau_{\text{corr}} > 0.$$

191 By enforcing low correlation between experts' masks, semantic diversity ensures experts attend to
 192 different parts of the input graph. Under standard GNN encoders whose logits are Lipschitz in
 193 masked embeddings (Scarselli et al., 2008; Joshi et al., 2023), low mask correlation encourages
 194 encoding of distinct structural signals, discouraging collapse onto the same subgraph. This guarantees
 195 *coverage* of multiple causal hypotheses, giving the MoE leverage to identify causal subgraphs under
 196 heterogeneity.

197 3.3 INSTANCE-LEVEL SPARSITY (SELECTION)

199 If one expert predicts the causal mechanism for an input while others do not, the mixture is reliable
 200 only if the gate concentrates sufficient mass on that expert: the *selection* effect. This ensures
 201 that once distinct causal mechanisms exist among the experts (via semantic diversity), the gate can
 202 isolate the correct one. To formalize this, we introduce a metric, the *loss gap*, which measures the
 203 discrepancy between the best and next-best expert on an instance.

204 **Definition 3.2** (Loss gap). *For (x, y) , let $i^*(x, y) = \arg \min_{i \in [K]} \ell_i(x, y)$ denote the best expert,
 205 where $[K] = \{1, \dots, K\}$. The loss gap is*

$$207 \Delta(x, y) = \min_{j \neq i^*(x, y)} (\ell_j(x, y) - \ell_{i^*}(x, y)) \geq 0.$$

209 We now show that loss gaps quantitatively constrain the gate's allocation.

211 **Proposition 3.3** (Loss gap implies sparsity). *Let $\{\ell_i(x, y)\}_{i=1}^K$ be the per-expert losses and
 212 $i^*(x, y) \in \arg \min_{i \in [K]} \ell_i(x, y)$ be any minimizer. Define the mixture-of-losses $\bar{\ell}(x, y) =$
 213 $\sum_{i=1}^K \pi_i(x) \ell_i(x, y)$ and the loss gap*

$$215 \Delta(x, y) := \begin{cases} \min_{k \neq i^*(x, y)} (\ell_k(x, y) - \ell_{i^*}(x, y)), & K \geq 2, \\ 0, & K = 1. \end{cases}$$

216 Then

217
$$\bar{\ell}(x, y) \geq \ell_{i^*}(x, y) + (1 - \pi_{i^*}(x)) \Delta(x, y).$$

218 Equivalently, for any $\Delta(x, y) > 0$,

219
$$\pi_{i^*}(x) \geq 1 - \frac{\bar{\ell}(x, y) - \ell_{i^*}(x, y)}{\Delta(x, y)}.$$

220 This bound shows that to keep the mixture loss close to the best expert, the gate must assign sufficient
221 weight to that expert. Furthermore, *larger loss gaps make this requirement stronger*. Such loss gaps
222 are expected to arise as a consequence of diversity, which forces experts to attend to decorrelated
223 subgraphs. We formalize this in the following assumption:224 **Assumption 3.4** (Diversity induces loss gaps). *Let $\Delta(x, y)$ be as in Definition 3.2. There exist
225 $\gamma > 0$, $\rho \in [0, 1)$, and a measurable set $\mathcal{S} \subseteq \mathcal{X} \times \mathcal{Y}$ with $\mathcal{D}(\mathcal{S}) \geq 1 - \rho$ such that*

226
$$\Delta(x, y) \geq \gamma \quad \forall (x, y) \in \mathcal{S},$$

227 and on \mathcal{S} the minimizer $i^*(x, y)$ coincides with an expert aligned with the environment’s causal
228 mechanism. Semantic diversity (Definition 3.1) promotes this condition by forcing experts to attend
229 to decorrelated subgraphs.230 This assumption formalizes the idea that, under semantic diversity, one causal expert should out-
231 perform others by a margin on most inputs. Intuitively, if one expert captures the causal subgraph,
232 then by semantic diversity, the others focus on decorrelated (likely spurious) subgraphs, yielding
233 non-trivial loss gaps. This is validated empirically in Section 4. Hence, with sufficient diversity,
234 loss gaps should arise on a large fraction of inputs, and the MoE can match the best expert only by
235 selecting it via sparse gating: *diversity necessitates sparsity*.236

3.4 AN OOD RISK DECOMPOSITION: COVERAGE AND SELECTION

237 We now show how these two properties jointly control OOD risk by decomposing risk into a cover-
238 age term (controlled by diversity) and a selection term (controlled by sparsity). First, we make the
239 following assumption:240 **Assumption 3.5** (Mechanism coverage). *Let $\{\mathcal{D}_m : m \in \mathcal{M}\}$ denote environments and $h_{m'}^* \in$
241 $\arg \min_h R_{\mathcal{D}_{m'}}(h)$ the oracle predictor for environment $\mathcal{D}_{m'}$. For any OOD environment $\mathcal{D}' =$
242 $\mathcal{D}_{m'}$, there exists an expert $i^*(m') \in [K]$ (depending only on the environment) such that*

243
$$R_{\mathcal{D}_{m'}}(h_{i^*(m')}) \leq R_{\mathcal{D}_{m'}}(h_{m'}^*) + \varepsilon_{\text{cov}}(m').$$

244 That is, for every unseen environment, at least one expert *covers* it by achieving risk within $\varepsilon_{\text{cov}}(m')$
245 of the oracle predictor. To minimize OOD risk, the MoE must then *select* this expert by allocating
246 enough probability to it, yielding:247 **Theorem 3.6** (OOD risk: coverage + selection). *Fix an OOD environment $\mathcal{D}' = \mathcal{D}_{m'}$. For the
248 environment-aligned expert $i^*(m')$, define*

249
$$\Gamma_{m'}(x, y) := \max_{j \neq i^*(m')} (\ell_j(x, y) - \ell_{i^*(m')}(x, y)).$$

250 Then, under Assumptions 3.5 and 3.4,

251
$$R_{\mathcal{D}'}(\text{MoE}) \leq \underbrace{R_{\mathcal{D}'}(h_{m'}^*)}_{\text{oracle risk}} + \underbrace{\varepsilon_{\text{cov}}(m')}_{\text{coverage via diversity}} + \underbrace{\mathbb{E}_{(x, y) \sim \mathcal{D}'}[(1 - \pi_{i^*(m')}(x)) \Gamma_{m'}(x, y)]}_{\text{selection penalty via sparsity}}.$$

252 This decomposition expresses OOD risk as three parts. The first is the *oracle risk*, the irreducible
253 error in the target environment. The second is the *coverage term*, kept small by semantic diversity:
254 only when experts are sufficiently diverse can the pool cover unseen test environments by ensuring at
255 least one aligns with the causal mechanism. The third is the *selection penalty*, kept small by sparsity:
256 loss gaps make the aligned expert identifiable, but only a sparse gate can reliably concentrate on it.
257 Together, these conditions show that to jointly reduce OOD error, *diversity is needed to ensure a
258 good expert exists, and sparsity is needed to ensure that it is selected*.

Figure 1: An illustration of the proposed MoE architecture. Each expert extracts a distinct candidate causal subgraph and produces predictions, which are combined by the gating network into the final output.

3.5 IMPLEMENTATION

A detailed illustration of our implementation is shown in Figure 1. Given an input graph $x = (V, E, X)$, we first compute node embeddings with a shared GNN encoder. For each expert $i \in [K]$, a small expert-specific MLP takes the concatenated embeddings of edge endpoints and outputs a mask logit $\ell_e^{(i)}$ for every edge $e \in E$, which is later transformed into a binary selection through the Gumbel-sigmoid straight-through estimator for differentiability (Maddison et al., 2017; Jang et al., 2017). The resulting masked graph $x^{(i)}$, representing the extracted causal subgraph by expert i , is then passed through an expert-specific GNN and classifier head to produce logits $z_i(x^{(i)})$. Predictions are combined by a lightweight MLP gate that consumes expert-derived statistics (e.g., confidence, entropy) and outputs a weight vector $\pi(x) \in \Delta^K$ over experts. The final prediction is obtained as the weighted average of expert logits using $\pi(x)$. The entire model is trained end-to-end with a combination of task, regularization, diversity, and gating losses.

Task loss. For each expert i , the overall task loss is

$$\ell_{\text{CE}}(x, y) = \sum_i \pi_i(x) \ell_i(x, y),$$

where $\ell_i(x, y)$ is the per-sample cross-entropy for expert i . By weighting the loss with the gate probabilities, experts that contribute more to the final prediction receive stronger gradients, while those assigned little weight are suppressed, promoting specialization.

Regularization Loss. To control the size of extracted subgraphs, we regularize the average fraction of edges retained by each expert. For expert i on input x , let $\rho_i^{(x)}$ denote its observed keep-rate. We then penalize deviations from a target $\rho \in [0, 1]$ using

$$\ell_{\text{reg}}^{(i)} = (\rho_i^{(x)} - \rho)^2,$$

which discourages degenerate solutions where experts keep either too few or too many edges.

Diversity loss. To prevent experts from collapsing onto identical subgraphs, we compute

$$\ell_{\text{div}} = \frac{1}{K(K-1)} \sum_{i \neq j} \max\{0, |\rho_{ij}^{(x)}| - \tau_{\text{corr}}\},$$

where $\rho_{ij}^{(x)}$ denotes the correlation between the masks of experts i and j on input x and the model is penalized when this correlation exceeds threshold τ_{corr} . This directly follows from the semantic diversity condition (Definition 3.1) and drives experts to specialize on distinct subgraphs, in turn ensuring coverage.

Gating loss. We train the gate with a teacher-student objective. The teacher distribution q is defined by normalizing the negative per-expert cross-entropy losses, giving higher weight to lower-loss experts, while the student distribution is the gate output $p = \pi(x)$. This alignment teaches the gate

324 which experts are competent on which inputs. Since the task loss is gate-weighted, non-selected
 325 experts are not heavily penalized, reinforcing specialization rather than forcing uniformity among
 326 experts. To further shape the gate, we add sparsity and balance regularizers, yielding the objective
 327

$$\ell_{\text{gate}} = \text{KL}(p\|q) + \lambda_{\text{sparse}} \ell_{\text{sparse}}(p) + \lambda_{\text{bal}} \ell_{\text{bal}}(p).$$

329 Here, ℓ_{sparse} penalizes high-entropy distributions to enforce instance-level *sparsity*, while ℓ_{bal} en-
 330 courages even usage across the batch to avoid expert starvation, supporting *coverage*. These terms
 331 are complementary: sparsity sharpens routing for each input, while balance spreads usage globally.
 332 For stability, training begins with a short warm-up phase of uniform routing so all experts receive
 333 sufficient training signals before specialization. The gate can be fine-tuned after experts have been
 334 trained to better align with the learned specializations.

335 **Total loss.** The final training objective is

$$\mathcal{L} = \ell_{\text{CE}} + \lambda_{\text{reg}} \ell_{\text{reg}} + \lambda_{\text{div}} \ell_{\text{div}} + \lambda_{\text{gate}} \ell_{\text{gate}}.$$

338 This loss function implements the components of the theoretical framework while incorporating
 339 additional regularizers that prevent degenerate solutions and expert starvation.

340 **Computational efficiency.** Our MoE architecture is designed to introduce only modest computa-
 341 tional overhead. As illustrated in Figure 1, all experts share a single subgraph extractor, and only
 342 lightweight per-expert output heads (MLPs) are replicated. Each expert consists of one GNN en-
 343 coder followed by a small classifier (MLP), in contrast to existing OOD graph methods that require
 344 multiple full GNNs for classification (Gui et al., 2023; An et al., 2024).

345 Theoretically, if a GNN forward pass costs $\mathcal{O}(f(G))$ and each MLP forward pass costs $\mathcal{O}(g(G))$,
 346 then the total complexity of our MoE is:

$$\mathcal{O}(f(G) + K g(G) + K f(G) + K g(G) + g(G)),$$

349 corresponding respectively to the shared extractor, per-expert heads, per-expert GNNs, per-expert
 350 classifiers, and the gating network. Since GNN computation dominates MLP computation, $f(G) \gg$
 351 $g(G)$ (Goodfellow et al., 2016; Kipf & Welling, 2017), this simplifies to:

$$\mathcal{O}(K f(G)),$$

354 indicating that the overhead grows linearly in the number of experts K and is dominated by the
 355 shared GNN encoder.

356 **Assumption-light design without auxiliary invariance losses.** Many prior OOD graph methods
 357 learn causal subgraphs through auxiliary objectives (e.g., adversarial discriminators in LECI (Gui
 358 et al., 2023), structural alignment in UIL (Sui et al., 2025)). While effective in single-model settings,
 359 these approaches are *computationally expensive* when replicated across experts and may be *unstable*
 360 (e.g., requiring finely tuned adversarial schedules that vary across experts). More critically, they rely
 361 on *restrictive causal assumptions* (e.g., $G_s \perp Y$, invariant G_c) that rarely hold in heterogeneous
 362 real-world data (Zhang et al., 2024). By contrast, our design avoids such auxiliary losses entirely.
 363 As a result, it scales gracefully with the number of experts and requires neither environment labels
 364 nor restrictive causal assumptions. This key design choice makes our method both highly scalable
 365 and assumption-light. We provide further discussion in Appendix D.

366 4 EXPERIMENTS

369 We now evaluate our method empirically, guided by five research questions: **RQ1**: Does the method
 370 achieve strong performance on both synthetic and real-world datasets with structural shifts? **RQ2**:
 371 Does the method achieve strong performance across different causal assumptions? **RQ3**: Are the
 372 key components of the framework necessary to obtain the reported improvements? **RQ4**: Does
 373 enforcing semantic diversity induce larger loss gaps and promote expert specialization? **RQ5**: How
 374 sensitive is performance to hyperparameters?

375 **Datasets.** We evaluate on the GOOD benchmark (Gui et al., 2022), which provides training,
 376 OOD validation, and OOD test splits. Our study covers six datasets with structural shifts: HIV-
 377 Scaffold/Size (molecular), Motif-Basis/Size (synthetic motifs), Twitter-Length (social), and SST2-
 Length (sentiment). These span both synthetic and real-world domains under diverse structural

378 **Table 1: Results on graph classification datasets with structural shifts from the GOOD bench-**
 379 **mark.** Values are classification accuracy (ROC-AUC for HIV) on OOD test sets, averaged over 5
 380 runs with standard deviation in parentheses. Table sections correspond to domain generalization,
 381 data augmentation, and causal subgraph methods. We also report average performance and rank
 382 across datasets. Best results are in **bold**. \dagger indicates methods requiring environment labels.

Method	HIV \uparrow Scaffold	HIV \uparrow Size	Twitter \uparrow Length	Motif \uparrow Basis	Motif \uparrow Size	SST2 \uparrow Length	Avrg \uparrow	Avrg Rank \downarrow
ERM	69.89 (1.95)	58.12 (2.5)	58.56 (1.0)	64.32 (10.4)	54.29 (5.4)	80.23 (0.8)	64.24	10.83
Coral	72.33 (2.1)	60.33 (3.5)	57.33 (0.9)	65.39 (9.6)	52.39 (2.9)	79.23 (1.8)	64.50	10.33
IRM \dagger	71.11 (2.7)	60.67 (1.4)	57.79 (1.9)	62.64 (10.9)	54.14 (5.2)	80.37 (1.7)	64.45	10.33
VREx \dagger	70.94 (3.1)	61.10 (3.0)	56.55 (0.7)	65.13 (5.0)	56.97 (6.3)	79.85 (1.6)	65.09	10.83
GDRO \dagger	67.13 (2.3)	56.91 (3.0)	56.73 (0.9)	62.63 (8.9)	52.01 (3.6)	81.33 (0.9)	62.79	12.50
DANN \dagger	67.69 (2.9)	62.05 (2.1)	56.09 (1.7)	52.65 (6.8)	49.33 (5.4)	80.59 (0.9)	61.40	13.00
GM	66.06 (4.0)	66.24 (2.9)	56.97 (3.1)	67.33 (5.9)	61.43 (6.5)	81.96 (0.6)	66.67	7.83
AIA	71.23 (1.4)	62.33 (4.6)	57.13 (1.8)	74.18 (5.9)	56.07 (5.3)	80.91 (1.0)	66.98	7.67
GALA	74.51 (1.8)	64.89 (1.7)	60.79 (0.7)	79.11 (3.2)	72.13 (1.4)	82.42 (0.7)	72.31	2.67
LIIRS	70.70 (2.3)	64.46 (2.9)	58.76 (1.4)	74.16 (3.0)	72.61 (6.9)	81.20 (0.7)	70.32	5.83
GSAT	70.76 (1.5)	61.76 (2.1)	57.13 (0.8)	62.27 (0.8)	54.12 (5.2)	80.62 (0.5)	64.44	10.67
CIGA	71.33 (1.1)	63.09 (1.6)	58.01 (2.2)	38.01 (1.4)	55.69 (6.7)	80.56 (1.7)	61.12	9.17
DIR	68.06 (5.5)	61.22 (0.8)	57.19 (0.9)	36.10 (2.5)	43.98 (3.1)	81.13 (0.7)	57.95	12.17
LECI \dagger	74.28 (1.7)	65.76 (1.4)	59.90 (0.2)	85.74 (3.0)	71.92 (1.4)	83.27 (0.3)	73.48	2.67
UIL \dagger	62.51 (1.7)	64.79 (0.8)	59.66 (0.9)	61.77 (4.8)	68.47 (3.1)	82.03 (0.4)	66.54	7.83
Ours	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.80 (1.4)	75.52 (2.9)	83.73 (1.4)	75.29	1.50

401 covariate shifts. We also evaluate on CFP-Motif (Gui et al., 2023), which provides datasets with
 402 three different causal assumptions: covariate, FIIF, and PIIF. Unless otherwise specified, results are
 403 averaged over five seeds.

404 **Hyperparameters.** All models adopt the Graph Isomorphism Network (GIN) (Xu et al., 2019), the
 405 default GOOD backbone, with standard hyperparameters. Unless otherwise noted, we use eight
 406 experts within our MoE model. We tune mask keep-rate prior ρ , batch size, and learning rate over
 407 10 trials on the OOD validation set.

408 **Baselines.** We compare against three groups of methods. (1) General domain generalization al-
 409 gorithms: ERM, IRM (Arjovsky et al., 2019), Coral (Sun & Saenko, 2016), V-REx (Krueger
 410 et al., 2021), GroupDRO (GDRO for brevity) (Sagawa et al., 2020), and DANN (Ganin et al.,
 411 2016). (2) Data augmentation methods that address instance heterogeneity: GraphMETRO (GM
 412 for brevity) (Wu et al., 2024), AIA (Chen et al., 2023), and GALA (Sui et al., 2023). (3) Causal
 413 subgraph algorithms: LIIRS (Yao et al., 2025), GSAT (Miao et al., 2022), CIGA (Chen et al., 2022),
 414 DIR (Wu et al., 2022), LECI (Gui et al., 2023), and UIL (Sui et al., 2025). All results are reproduced
 415 using official repositories and hyperparameter settings.

416 4.1 RESULTS AND DISCUSSION

417 **RQ1: Does the method achieve strong performance on both synthetic and real-world datasets**
 418 **with structural shifts?** On the synthetic datasets (HIV-Scaffold/Size and Motif-Basis/Size), our
 419 method achieves the best performance except on HIV-Scaffold. Notably, on Motif-Basis, a common
 420 sanity test for causal subgraph methods since labels are determined by the presence of specific
 421 motifs (Gui et al., 2022; 2023), our method achieves 92.8% accuracy which is comparable to oracle-
 422 level performance (Gui et al., 2023), and an 8.2% relative improvement over the next best method.
 423 On HIV-Scaffold, the severe class imbalance (over 95% majority class) makes the task especially
 424 challenging, and our method attains 71.55 ROC-AUC, ranking fourth overall. On the real-world
 425 datasets (Twitter and SST2), our method outperforms all baselines, demonstrating robustness under
 426 noisy, real-world distribution shifts. Across all datasets, our method achieves the *highest average*
 427 *score (75.29) and lowest average rank (1.5)*. The closest competitors are LECI (73.48 average, 2.67
 428 rank) and GALA (72.31 average, 2.67 rank), confirming substantial improvements over existing
 429 baselines.

432
 433 Table 2: Results on different causal assumption datasets from CFP-Motif. Values are are classifi-
 434 cation accuracy with standard deviation in parentheses. Baseline results are from Gui et al. (2023).
 435 Best results are in **bold**.

	Covariate ↓	FIIF ↓	PIIF ↓
ERM	57.56 (9.59)	37.22 (3.70)	62.45 (9.21)
IRM	58.11 (5.14)	44.33 (1.52)	68.34 (10.40)
VREx	48.78 (7.81)	34.78 (1.34)	63.33 (6.55)
Coral	57.11 (8.35)	42.68 (7.09)	60.33 (8.85)
DANN	49.45 (8.05)	43.22 (6.64)	62.56 (10.39)
DIR	44.67 (0.00)	42.00 (6.77)	47.22 (8.79)
GSAT	68.22 (7.23)	51.56 (6.59)	61.22 (8.80)
CIGA	56.78 (2.99)	39.11 (7.70)	45.67 (7.52)
LECI	83.20 (5.89)	77.73 (3.85)	69.40 (7.54)
Ours	90.83 (1.73)	84.17 (3.88)	77.19 (6.04)

447
 448 Table 3: Performance of the MoE framework on the GOOD benchmark under ablations of each loss
 449 term. Standard deviations are reported in parentheses.

Dropping	HIV ↑		Twitter ↑		Motif ↑		SST2 ↑
	Scaffold	Size	Length	Basis	Size	Length	
ℓ_{div}	65.95 (2.5)	65.23 (0.8)	60.10 (0.9)	91.13 (1.1)	70.07 (2.8)	82.20 (1.3)	
ℓ_{gate}	68.56 (0.9)	61.91 (1.2)	59.92 (0.5)	89.60 (2.7)	74.36 (2.0)	81.97 (1.2)	
ℓ_{reg}	68.55 (3.9)	64.79 (2.2)	60.60 (1.9)	67.48 (7.0)	73.75 (2.5)	83.46 (1.5)	
Standard (full loss)	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.80 (1.4)	75.52 (2.9)	83.73 (1.4)	

450
 451
 452
 453
 454
 455
 456
 457
 458 **RQ2: Does the method achieve strong performance across different causal assumptions?** On
 459 the CFP-Motif dataset (Table 2), our method achieves the best performance under all three causal
 460 assumptions, with LECI as the strongest baseline. We attribute this improvement to avoiding aux-
 461 iiliary invariance losses that implicitly enforce a fixed causal assumption. By not committing to a
 462 particular SCM, our method adapts more effectively to the different causal assumptions present in
 463 CFP-Motif.

464
 465 **RQ3: Are the key components of the framework necessary for the reported improvements?**
 466 Table 3 presents an ablation study on the GOOD benchmark, evaluating the contribution of each
 467 major component: *semantic diversity*, *instance-level sparsity*, and *regularization*. We systemati-
 468 cally remove the corresponding loss terms and observe substantial performance degradations across
 469 most datasets, with particularly large drops on Motif-Basis, HIV-Scaffold, and HIV-Size. These re-
 470 sults indicate that all three components are essential for achieving the full performance gains of our
 471 framework.

472
 473 **RQ4: Does enforcing semantic diversity induce larger loss gaps and promote expert special-
 474 ization?** To evaluate Assumption 3.4 (semantic diversity induces loss gaps), we compute the total
 475 loss gap within each batch and then average it over the entire test set. We then compare models
 476 trained with and without the diversity objective. Table 4 shows that semantic diversity consistently
 477 increases the average per-batch loss gap across datasets. On Twitter, the gap rises from 0.13 to 0.19
 478 (a 46% increase); on SST2, from 0.07 to 0.22 (over 200% increase); and on Motif-Basis, from 0.076
 479 to 0.12 (a 58% increase). These results empirically validate our assumption that semantic diversity
 480 among experts induces larger loss gaps.

481
 482 **RQ5: How sensitive is performance to hyperparameters?** We first evaluate the effect of the edge
 483 keep-rate prior ρ on Twitter, SST2, and Motif-Basis by perturbing it around the tuned value (shown
 484 in brackets). Table 5 shows that accuracy varies by at most 1–2% under shifts of ± 0.1 or ± 0.2 ,
 485 confirming robustness to moderate deviations. For example, Twitter peaks at $\rho = 0.55$ (61.13%),
 486 SST2 at $\rho = 0.20$ (83.73%), and Motif-Basis at $\rho = 0.55$ (92.80%), with nearby settings yielding
 487 comparable results. These results demonstrate that our framework is not overly sensitive to the edge
 488 keep-rate prior ρ . Furthermore, our hyperparameters are tuned over a modest budget of only 10
 489 trials. We then analyze the impact of the number of experts in Table 6, which compares 1, 4, and 8

486
 487 Table 4: Total loss gaps per-batch under abla-
 488 tions of diversity on Twitter, SST2, and Motif-
 489 Basis. Standard deviations are reported in
 490 parentheses.

492	Dataset	Diversity	Loss Gap
493	Twitter	w/	0.19 (0.011)
		w/o	0.13 (0.004)
495	SST2	w/	0.22 (0.12)
		w/o	0.07 (0.19)
497	Motif-Basis	w/	0.12 (0.035)
		w/o	0.076 (0.024)

Table 5: Sensitivity analysis of the edge keep-rate prior ρ on Twitter, SST2, and Motif-Basis. The value in brackets indicates the tuned ρ selected via validation for each dataset, with performance shown at this setting and at perturbed values.

ρ	Twitter \uparrow (0.55)	SST2 \uparrow (0.2)	Motif-Basis \uparrow (0.55)
-0.2	58.75	–	90.13
-0.1	60.33	82.06	89.76
Tuned	61.13	83.73	92.80
+0.1	59.51	83.15	92.03
+0.2	60.64	83.46	90.54

500 Table 6: Performance of the MoE framework with 1, 4, and 8 experts. Standard deviations are
 501 reported in parentheses.

503	Experts	HIV \uparrow Scaffold	Twitter \uparrow Size	Motif \uparrow Basis	SST2 \uparrow Length	Avg \uparrow
505	1	67.13 (2.2)	63.48 (0.9)	58.68 (1.7)	89.3 (2.1)	65.31 (1.2)
506	4	70.65 (1.3)	65.35 (1.3)	60.48 (0.7)	91.79 (1.5)	76.4 (2.1)
507	8	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.8 (1.4)	75.52 (2.9)

510 experts. Moving from 1 to 4 experts yields substantial gains across all datasets, demonstrating the
 511 importance of expert diversity and sparse gating. Increasing further to 8 experts provides smaller
 512 but generally positive improvements (except on Motif-Size). Importantly, with only 4 experts, the
 513 MoE framework achieves an average accuracy of 74.68%, outperforming all baselines in Table 1,
 514 suggesting that our method is not highly sensitive to the exact number of experts once diversity is
 515 present.

5 CONCLUSION

519 In this work, we introduce a causal subgraph-based MoE framework that explicitly addresses
 520 instance-level heterogeneity, enabling different experts to capture distinct causal explanations within
 521 the same class. Our framework demonstrates that *diversity* among experts provides coverage of het-
 522 erogeneous causal mechanisms, while *sparsity* in the gating step enables effective selection, together
 523 reducing OOD error. We operationalize these principles in a scalable, assumption-light architecture
 524 that requires neither environment labels nor restrictive causal assumptions. Empirically, the method
 525 achieves strong performance on the GOOD benchmark across both synthetic and real-world shifts,
 526 with ablations and visualizations confirming that experts specialize in distinct causal mechanisms.
 527 Looking ahead, broadening causal perspectives on OOD graph learning, through richer causal mech-
 528 anisms, more flexible expert designs, and closer theory-practice integration, remains an important
 529 direction for building robust and generalizable graph learning systems. We hope this work estab-
 530 lishes MoE as a strong foundation for causal-based OOD graph learning.

531 REPRODUCIBILITY STATEMENT

533 All mathematical proofs are provided in Appendix A. Implementation details are provided in Ap-
 534 pendix C. The source code and reproduction instructions are available in an [anonymized repository](#).

536 REFERENCES

538 Weizhi An, Wenliang Zhong, Feng Jiang, Hehuan Ma, and Junzhou Huang. Causal subgraphs
 539 and information bottlenecks: Redefining ood robustness in graph neural networks. In *European
 Conference on Computer Vision*, pp. 473–489. Springer, 2024.

540 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 541 *arXiv preprint arXiv:1907.02893*, 2019.
 542

543 Xuanze Chen, Jiajun Zhou, Shanqing Yu, and Qi Xuan. Mixture of experts meets decoupled message
 544 passing: Towards general and adaptive node classification. In *Companion Proceedings of the*
 545 *ACM on Web Conference 2025*, pp. 907–910, 2025.

546 Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu,
 547 Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
 548 generalization on graphs. *Advances in Neural Information Processing Systems*, 35:22131–22148,
 549 2022.

550 Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant
 551 graph learning via environment augmentation learn invariance? *Advances in Neural Information*
 552 *Processing Systems*, 36:71486–71519, 2023.

553 Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks
 554 on out-of-distribution graphs. *IEEE transactions on pattern analysis and machine intelligence*,
 555 46(1):322–337, 2023.

556 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 557 Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
 558 *Journal of machine learning research*, 17(59):1–35, 2016.

559 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT press, 2016.

560 Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark.
 561 *Advances in Neural Information Processing Systems*, 35:2059–2073, 2022.

562 Shurui Gui, Meng Liu, Xiner Li, Youzhi Luo, and Shuiwang Ji. Joint learning of label and envi-
 563 ronment causal independence for graph out-of-distribution generalization. *Advances in Neural*
 564 *Information Processing Systems*, 36:3945–3978, 2023.

565 Fenyu Hu, Liping Wang, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Graphdive: Graph
 566 classification by mixture of diverse experts. In Lud De Raedt (ed.), *Proceedings of the Thirty-First*
 567 *International Joint Conference on Artificial Intelligence, IJCAI-22*, pp. 2080–2086. International
 568 Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/289.
 569 URL <https://doi.org/10.24963/ijcai.2022/289>. Main Track.

570 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 571 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances*
 572 *in neural information processing systems*, 33:22118–22133, 2020.

573 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 574 local experts. *Neural computation*, 3(1):79–87, 1991.

575 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
 576 *International Conference on Learning Representations (ICLR 2017)*. OpenReview. net, 2017.

577 Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
 578 moyennes. *Acta mathematica*, 30(1):175–193, 1906.

579 Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expressive
 580 power of geometric graph neural networks. In *International conference on machine learning*, pp.
 581 15330–15355. PMLR, 2023.

582 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
 583 works. In *International Conference on Learning Representations (ICLR)*, 2017.

584 David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 585 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
 586 lation (rex). In *International conference on machine learning*, pp. 5815–5826. PMLR, 2021.

594 Bin Lu, Ze Zhao, Xiaoying Gan, Shiyu Liang, Luoyi Fu, Xinbing Wang, and Chenghu Zhou. Graph
 595 out-of-distribution generalization with controllable data augmentation. *IEEE Transactions on*
 596 *Knowledge and Data Engineering*, 36(11):6317–6329, 2024.

597 C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete
 598 random variables. In *Proceedings of the international conference on learning Representations*.
 599 International Conference on Learning Representations, 2017.

600 Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic at-
 601 tention mechanism. In *International conference on machine learning*, pp. 15524–15543. PMLR,
 602 2022.

603 Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
 604 neural networks. In *International Conference on Learning Representations*, 2020.

605 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
 606 The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.

607 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 608 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 609 *International Conference on Learning Representations*, 2017.

610 Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and Xiangnan
 611 He. Unleashing the power of graph data augmentation on covariate distribution shift. *Advances*
 612 in *Neural Information Processing Systems*, 36:18109–18131, 2023.

613 Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, and Xiang Wang. A unified
 614 invariant learning framework for graph classification. In *Proceedings of the 31st ACM SIGKDD*
 615 *Conference on Knowledge Discovery and Data Mining* V. 1, pp. 1301–1312, 2025.

616 Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
 617 *European conference on computer vision*, pp. 443–450. Springer, 2016.

618 Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kom-
 619 pella, Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with ex-
 620 plicit diversity modeling. *Advances in Neural Information Processing Systems*, 36:50825–50837,
 621 2023a.

622 Zitai Wang, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, and Qingming Huang. A unified
 623 generalization analysis of re-weighting and logit-adjustment for imbalanced learning. *Advances*
 624 in *Neural Information Processing Systems*, 36:48417–48430, 2023b.

625 Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating
 626 complex graph distribution shifts via mixture of aligned experts. *Advances in Neural Information*
 627 *Processing Systems*, 37:9358–9387, 2024.

628 Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
 629 rationales for graph neural networks. In *International Conference on Learning Representations*,
 630 2022.

631 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 632 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learn-
 633 ing. *Chemical science*, 9(2):513–530, 2018.

634 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 635 networks? *International Conference on Learning Representations*, 2019.

636 Huaxiu Yao, Xinyu Yang, Xinyi Pan, Shengchao Liu, Pang Wei Koh, and Chelsea Finn. Improv-
 637 ing domain generalization with domain relations. In *The Twelfth International Conference on*
 638 *Learning Representations*, 2024.

639 Tianjun Yao, Yongqiang Chen, Kai Hu, Tongliang Liu, Kun Zhang, and Zhiqiang Shen. Learn-
 640 ing graph invariance by harnessing spuriousity. In *The Thirteenth International Conference on*
 641 *Learning Representations*, 2025.

648 Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
 649 theoretical framework of out-of-distribution generalization. *Advances in Neural Information Pro-*
 650 *cessing Systems*, 34:23519–23531, 2021.

651 Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong Li,
 652 and Kaize Ding. A survey of deep graph learning under distribution shifts: from graph out-
 653 of-distribution generalization to adaptation. *CoRR*, 2024.

656 A APPENDIX: PROOFS

658 This appendix collects the proofs of all formal results stated in the main body, together with some
 659 natural extensions. Our goal is not to introduce new theory but to provide full technical details and
 660 clarify intermediate steps that were omitted for brevity in the main text.

662 A.1 SPARSITY REQUIREMENT IN AN EXTREME CASE

664 We begin with a simple but instructive lemma that is not included in the main body. It captures an
 665 extreme case of expert selection, where exactly one expert achieves a positive margin and all others
 666 are non-positive (that is, only one expert is correct). While not needed for the main theoretical
 667 results, we include it here because it highlights in the clearest possible terms why sparse gating
 668 is necessary: in such scenarios, correct predictions are only guaranteed if the gating mechanism
 669 concentrates sufficient mass on the correct expert.

670 **Lemma A.1** (Sparsity requirement in an extreme case). *Let per-expert margins be*

$$671 m_i(x) = z_i(x)[y] - \max_{c \neq y} z_i(x)[c],$$

672 and let the mixture logits be

$$674 z_{\text{mix}}(x) = \sum_{i=1}^K \pi_i(x) z_i(x), \quad \pi(x) \in \Delta^K.$$

675 *If there exists an expert i^* with $m_{i^*}(x) > 0$ and $m_j(x) \leq 0$ for all $j \neq i^*$, then the mixture margin*

$$676 m_{\text{mix}}(x) := z_{\text{mix}}(x)[y] - \max_{c \neq y} z_{\text{mix}}(x)[c]$$

677 *is strictly positive whenever*

$$678 \pi_{i^*}(x) > \alpha, \quad \alpha = \frac{-\min_{j \neq i^*} m_j(x)}{m_{i^*}(x) - \min_{j \neq i^*} m_j(x)} \in [0, 1].$$

684 *Proof.* We have

$$685 m_{\text{mix}}(x) = \sum_i \pi_i(x) z_i(x)[y] - \max_{c \neq y} \sum_i \pi_i(x) z_i(x)[c] \\ 686 \geq \sum_i \pi_i(x) z_i(x)[y] - \sum_i \pi_i(x) \max_{c \neq y} z_i(x)[c] = \sum_i \pi_i(x) m_i(x),$$

687 using $\max_c \sum_i a_{ic} \leq \sum_i \max_c a_{ic}$. With $m_{i^*}(x) > 0$ and $m_j(x) \leq 0$ for $j \neq i^*$,

$$688 \sum_i \pi_i(x) m_i(x) \geq \pi_{i^*}(x) m_{i^*}(x) + (1 - \pi_{i^*}(x)) \min_{j \neq i^*} m_j(x).$$

689 Thus $m_{\text{mix}}(x) > 0$ whenever

$$690 \pi_{i^*}(x) m_{i^*}(x) + (1 - \pi_{i^*}(x)) \min_{j \neq i^*} m_j(x) > 0,$$

691 which rearranges to $\pi_{i^*}(x) > \alpha$ as stated. \square

692 The previous lemma considered the binary-style case where only one expert is correct and all others
 693 are strictly incorrect. We now extend the analysis to the multiclass setting by allowing non-causal
 694 experts to have bounded negative margins. This produces a similar threshold condition on the gating
 695 weight, ensuring that the correct expert dominates when sufficiently favored by the gate.

702 **Lemma A.2** (Multiclass sparse threshold under bounded negative margins). *Let the one-vs-rest*
 703 *margin of expert i at input x be*

$$704 \quad m_i(x) := z_i(x)[y] - \max_{c \neq y} z_i(x)[c].$$

706 *Suppose there exists a (causal) expert i^* and constants $m > 0$ and $\gamma \geq 0$ such that*

$$707 \quad m_{i^*}(x) \geq m, \quad m_j(x) \geq -\gamma \text{ for all } j \neq i^*.$$

709 *Then the mixture margin satisfies*

$$710 \quad m_{\text{mix}}(x) \geq \sum_{i=1}^K \pi_i(x) m_i(x) \geq \pi_{i^*}(x) m - (1 - \pi_{i^*}(x)) \gamma,$$

713 *and in particular $m_{\text{mix}}(x) > 0$ whenever*

$$714 \quad \pi_{i^*}(x) > \frac{\gamma}{m + \gamma}.$$

717 *Proof.* By the max-sum inequality $\max_c \sum_i a_{ic} \leq \sum_i \max_c a_{ic}$,

$$718 \quad m_{\text{mix}}(x) = z_{\text{mix}}(x)[y] - \max_{c \neq y} z_{\text{mix}}(x)[c]$$

$$719 \quad = \sum_i \pi_i(x) z_i(x)[y] - \max_{c \neq y} \sum_i \pi_i(x) z_i(x)[c] \geq \sum_i \pi_i(x) m_i(x).$$

722 Using the margin bounds $m_{i^*}(x) \geq m$ and $m_j(x) \geq -\gamma$ for $j \neq i^*$,

$$724 \quad \sum_i \pi_i(x) m_i(x) \geq \pi_{i^*}(x) m + \sum_{j \neq i^*} \pi_j(x) (-\gamma) = \pi_{i^*}(x) m - (1 - \pi_{i^*}(x)) \gamma.$$

726 Hence

$$727 \quad m_{\text{mix}}(x) \geq \pi_{i^*}(x) m - (1 - \pi_{i^*}(x)) \gamma,$$

728 which is strictly positive precisely when $\pi_{i^*}(x) > \gamma/(m + \gamma)$. \square

730 A.2 LOSS GAP IMPLIES SPARSITY

731 The margin-based results above illustrate the role of sparsity in terms of logits and decision boundaries. We now provide a complementary perspective using losses directly. This proposition shows that a positive loss gap between the best expert and all others induces a lower bound on the gating weight assigned to the best expert. This connects the concept of expert specialization to loss-based analysis.

736 **Proposition A.3** (Loss gap implies sparsity). *Let $\{\ell_i(x, y)\}_{i=1}^K$ be the per-expert losses and*
 737 *$i^*(x, y) \in \arg \min_{i \in [K]} \ell_i(x, y)$ be any minimizer. Define the mixture-of-losses $\bar{\ell}(x, y) =$*
 738 *$\sum_{i=1}^K \pi_i(x) \ell_i(x, y)$ and the loss gap*

$$740 \quad \Delta(x, y) := \begin{cases} \min_{k \neq i^*(x, y)} (\ell_k(x, y) - \ell_{i^*}(x, y)), & K \geq 2, \\ 0, & K = 1. \end{cases}$$

742 Then

$$743 \quad \bar{\ell}(x, y) \geq \ell_{i^*}(x, y) + (1 - \pi_{i^*}(x)) \Delta(x, y).$$

745 Equivalently, for any $\Delta(x, y) > 0$,

$$746 \quad \pi_{i^*}(x) \geq 1 - \frac{\bar{\ell}(x, y) - \ell_{i^*}(x, y)}{\Delta(x, y)}.$$

749 *Proof.* Since i^* is a minimizer, for all $j \neq i^*$ we have $\ell_j(x, y) - \ell_{i^*}(x, y) \geq \Delta(x, y)$. Therefore,

$$751 \quad \bar{\ell}(x, y) - \ell_{i^*}(x, y) = \sum_{j=1}^K \pi_j(x) (\ell_j(x, y) - \ell_{i^*}(x, y)) = \sum_{j \neq i^*} \pi_j(x) (\ell_j(x, y) - \ell_{i^*}(x, y)) \geq$$

$$753 \quad \sum_{j \neq i^*} \pi_j(x) \Delta(x, y) = (1 - \pi_{i^*}(x)) \Delta(x, y),$$

755 which yields the stated inequality. Rearranging gives the equivalent lower bound on $\pi_{i^*}(x)$. \square

756 A.3 OOD RISK: COVERAGE + SELECTION
757

758 Finally, we return to the main theorem on OOD risk. This result decomposes the risk of the MoE
759 into three interpretable terms: the oracle risk (if the aligned expert were always selected), a coverage
760 penalty (arising when no expert perfectly matches the test distribution), and a selection penalty
761 (arising when the gating function fails to concentrate on the aligned expert). The proof makes
762 explicit the role of Jensen’s inequality and shows how the sparsity results above fit into the broader
763 risk bound.

764 **Theorem A.4** (OOD risk: coverage + selection). *Fix an OOD environment $\mathcal{D}' = \mathcal{D}_{m'}$. For the
765 environment-aligned expert $i^*(m')$, define*

$$766 \Gamma_{m'}(x, y) := \max_{j \neq i^*(m')} (\ell_j(x, y) - \ell_{i^*(m')}(x, y)).$$

767 Then, under Assumptions 3.5 and 3.4,

$$768 R_{\mathcal{D}'}(\text{MoE}) \leq \underbrace{R_{\mathcal{D}'}(h_{m'}^*)}_{\text{oracle risk}} + \underbrace{\varepsilon_{\text{cov}}(m')}_{\text{coverage via diversity}} + \underbrace{\mathbb{E}_{(x,y) \sim \mathcal{D}'}[(1 - \pi_{i^*(m')}(x)) \Gamma_{m'}(x, y)]}_{\text{selection penalty via sparsity}}.$$

774 *Proof.* By convexity of cross-entropy in the logits,

$$775 R_{\mathcal{D}'}(\text{MoE}) = \mathbb{E}_{\mathcal{D}'}[\ell_{\text{CE}}(z_{\text{mix}}(x), y)] \leq \mathbb{E}_{\mathcal{D}'}[\bar{\ell}(x, y)], \quad \bar{\ell}(x, y) := \sum_{i=1}^K \pi_i(x) \ell_i(x, y).$$

776 Fix (x, y) and abbreviate $i^* = i^*(m')$. Decompose

$$777 \bar{\ell}(x, y) = \pi_{i^*}(x) \ell_{i^*}(x, y) + \sum_{j \neq i^*} \pi_j(x) \ell_j(x, y) = \ell_{i^*}(x, y) + \sum_{j \neq i^*} \pi_j(x) (\ell_j(x, y) - \ell_{i^*}(x, y)).$$

778 By definition of $\Gamma_{m'}(x, y)$, each difference satisfies $\ell_j(x, y) - \ell_{i^*}(x, y) \leq \Gamma_{m'}(x, y)$, hence

$$779 \bar{\ell}(x, y) \leq \ell_{i^*}(x, y) + \left(\sum_{j \neq i^*} \pi_j(x) \right) \Gamma_{m'}(x, y) = \ell_{i^*}(x, y) + (1 - \pi_{i^*}(x)) \Gamma_{m'}(x, y).$$

780 Taking expectations under \mathcal{D}' yields

$$781 R_{\mathcal{D}'}(\text{MoE}) \leq \mathbb{E}_{\mathcal{D}'}[\ell_{i^*}(x, y)] + \mathbb{E}_{\mathcal{D}'}[(1 - \pi_{i^*}(x)) \Gamma_{m'}(x, y)] = \\ 782 R_{\mathcal{D}'}(h_{i^*}) + \mathbb{E}_{\mathcal{D}'}[(1 - \pi_{i^*}(x)) \Gamma_{m'}(x, y)].$$

783 Finally, by Assumption 3.5, $R_{\mathcal{D}'}(h_{i^*}) \leq R_{\mathcal{D}'}(h_{m'}^*) + \varepsilon_{\text{cov}}(m')$, which proves the claim. \square

794 B DETAILED RELATED WORKS
795

796 B.1 CAUSAL SUBGRAPH-BASED OOD LEARNING.

797 LECI enforces label–environment independence by learning edge masks such that the label is inde-
798 pendent of the environment and the environment is independent of the causal subgraph (Gui et al.,
799 2023). UIL jointly enforces semantic and structural invariance, aligning graphs across environments
800 using graphon distances (Sui et al., 2025). LIRS instead learns spurious features first and removes
801 them from ERM-learned features, thereby capturing a broader set of invariant subgraphs (Yao et al.,
802 2025). DIR discovers label-causal subgraph rationales by intervening on the training distribution
803 and selecting features invariant across the induced environments, filtering out spurious shortcuts
804 (Wu et al., 2022). CIGA learns causally invariant graph representations by extracting subgraphs
805 that maximally preserve label-relevant intra-class information (Chen et al., 2022). GSAT applies
806 an information-bottleneck–driven stochastic attention to mask task-irrelevant nodes/edges, yielding
807 faithful rationales (Miao et al., 2022). CSIB learns label-causal subgraphs under a causal model
808 while jointly optimizing invariant risk with a graph information bottleneck to balance invariance
809 versus compression for FIIF/PIIF (An et al., 2024).

810 B.2 INSTANCE HETEROGENEITY.
811812 GSAT enforces adversarial consistency to discourage reliance on unstable features, thereby enabling
813 more robust predictions across heterogeneous samples (Miao et al., 2022). GALA explicitly models
814 multiple latent graph views and aggregates them to capture sample-level causal diversity (Chen et al.,
815 2023). AIA generates new environments through adversarial augmentation while preserving stable
816 features, simulating heterogeneity under covariate shift (Sui et al., 2023). Other approaches such
817 as FLAG (Lu et al., 2024), StableGNN (Yao et al., 2024), and GraphMETRO (Wu et al., 2024)
818 similarly expand training coverage via data augmentation.
819820 GSAT enforces adversarial consistency to discourage reliance on unstable features, thereby enabling
821 more robust predictions across heterogeneous samples (Miao et al., 2022). GALA explicitly models
822 multiple latent graph views and aggregates them to capture sample-level causal diversity (Chen et al.,
823 2023). AIA generates new environments through adversarial augmentation while preserving stable
824 features, simulating heterogeneity under covariate shift (Sui et al., 2023). FLAG enforces large-scale
825 augmentation by applying instant feature-level adversarial noise during training while preserving
826 graph topology (Lu et al., 2024). StableGNN pools subgraphs into high-level variables and adds a
827 causal-variable distinguishing penalty term to prioritize stable correlations under distribution shifts
828 (Fan et al., 2023).
829830 B.3 MIXTURE-OF-EXPERTS FOR GNNS.
831832 MoE architectures allocate computation across experts selected by a gating function (Jacobs et al.,
833 1991; Shazeer et al., 2017). On graphs, GMoE leverages MoE layers to scale graph transformers
834 efficiently (Wang et al., 2023a). MixGNN employs expert routing to improve efficiency on large-
835 scale graph tasks (Chen et al., 2025). Other variants (Hu et al., 2022) similarly focus on distributing
836 computation or scaling to large graphs. These methods demonstrate the potential of MoE for graphs
837 but do not target OOD generalization.
838839 B.4 GRAPHMETRO.
840841 In the OOD setting, GraphMETRO decomposes distributional heterogeneity and aligns referential
842 representations across shifts by a gated mixture-of-experts with shift-specialized experts (Wu et al.,
843 2024). However, this design requires the selection of shift types before training with no guarantee
844 that the selected shift types are the ones that will be encountered at test time. Furthermore, these
845 perturbations risk altering label semantics unknowingly. In contrast, our approach uses MoE not for
846 augmentation, but for *causal subgraph identification*, encouraging experts to extract diverse causal
847 subgraphs and thereby directly modeling instance heterogeneity.
848849 B.5 OUR APPROACH.
850851 Unlike prior methods, we do not rely on strong assumptions about the underlying SCM, as in
852 many causal approaches, nor do we risk altering the label semantics through perturbations, as
853 in augmentation-based methods. Our framework instead learns to identify candidate causal sub-
854 graphs through expert-specific masks, with a sparse gating mechanism selecting among them on
855 a per-instance basis. This design encourages experts to specialize in distinct causal explanations
856 and allows the model to adaptively choose the most relevant one for each input, thereby capturing
857 instance-level heterogeneity.
858859 C IMPLEMENTATION DETAILS
860861 C.1 EXPERT SUBGRAPH EXTRACTION
862863 Given an input graph $x = (V, E, X)$, we first compute node embeddings using a shared GNN
864 encoder. Each expert $k \in [K]$ produces *edge-level mask logits* $\ell_e^{(k)}$ via a small expert-specific MLP
865 applied to the concatenated embeddings of the edge endpoints. The logits are transformed into
866 binary masks using a Gumbel–sigmoid straight-through estimator:
867

$$m_e^{(k)} = \mathbf{1} \left\{ \sigma \left(\frac{\ell_e^{(k)} + g}{\tau} \right) > 0.5 \right\},$$

864 where g is Gumbel noise, σ is the sigmoid, and $\tau = 0.1$ is the temperature. Hard binary masks
 865 $m_e^{(k)}$ are used in the forward pass to produce the masked graph $G^{(k)}$, while gradients flow through
 866 the continuous relaxation during backpropagation. Node weights are induced from their incident
 867 edges, and isolated nodes are removed. Each expert has its own GNN encoder and classifier head.
 868 Unless otherwise specified, we adopt the Graph Isomorphism Network (GIN) following the GOOD
 869 benchmark configuration: hidden dimension 300, depth 3, dropout 0.5.
 870

871 C.2 TASK LOSS

873 For each expert k , we compute the per-sample cross-entropy

$$874 \ell_{\text{CE}}^{(k)}(x, y) = \text{CE}(\theta_k(G^{(k)}), y).$$

876 The overall task loss is a gate-weighted aggregation across experts:

$$877 \ell_{\text{CE}}(x, y) = \sum_{k=1}^K \pi_k(x) \ell_{\text{CE}}^{(k)}(x, y),$$

880 ensuring that experts favored by the gate receive stronger gradients, thereby encouraging specialization.
 881

883 C.3 MASK REGULARIZATION

885 To control the size of extracted subgraphs, we regularize the average fraction of edges retained by
 886 each expert. For expert k , the observed keep-rate on graph g is

$$888 \hat{\rho}_g^{(k)} = \frac{1}{|E|} \sum_{e \in E} m_e^{(k)}.$$

890 We penalize deviations from a target $\rho \in [0, 1]$ via

$$892 \ell_{\text{reg}}^{(k)} = (\hat{\rho}_g^{(k)} - \rho)^2.$$

893 This discourages degenerate solutions where experts keep either too few or too many edges.
 894

895 C.4 DIVERSITY LOSS

897 To prevent collapse of experts onto identical subgraphs, we enforce the semantic diversity condition
 898 (Definition 3.1). Masks are standardized, correlations are computed, and we penalize high off-
 899 diagonal correlations:

$$900 \ell_{\text{div}} = \frac{1}{K(K-1)} \sum_{i \neq j} \max\{0, |C_{ij}^{(g)}| - \tau_{\text{corr}}\},$$

903 where $C_{ij}^{(g)}$ is the correlation between standardized masks of experts i and j on graph g . This loss
 904 directly encourages experts to specialize on different subgraphs.
 905

906 C.5 GATING MECHANISM

908 **Gate inputs.** The gate does not operate directly on the raw graph but instead consumes diagnostic,
 909 label-free features derived from each expert's outputs. For expert k and sample b , we construct a
 910 feature vector $\Phi_{b,k} \in \mathbb{R}^{10}$:

$$912 \Phi_{b,k} = \left[\max_c p_{b,k}(c), \text{margin}_{b,k}, H(p_{b,k}), -\log \sum_c e^{z_{b,k}(c)}, -\text{KL}(p_{b,k} \| p_{b,k}^{\text{weak}}), \right. \\ 913 \left. -\frac{1}{K-1} \sum_{j \neq k} \text{KL}(p_{b,k} \| p_{b,j}), H(p_{b,k}^{\text{env}}), H(p_{b,k}^{\text{spur}}), n_b, m_b \right],$$

914 where $p_{b,k} = \text{softmax}(z_{b,k})$ are class probabilities from expert k , $\text{margin}_{b,k}$ is the difference
 915 between the top-1 and top-2 probabilities, $H(\cdot)$ is Shannon entropy, and the energy term is
 916

– $\log \sum_c \exp(z_{b,k}(c))$. The KL terms capture stability under weak augmentations and pairwise disagreement between experts. $p_{b,k}^{\text{env}}$ and $p_{b,k}^{\text{spur}}$ are outputs of environment and spurious classifiers, while n_b and m_b denote the number of nodes and edges. The feature vector is passed through a two-layer MLP with hidden dimension 64 and ReLU activations. Outputs are normalized with Entmax($\alpha = 1.38$), yielding sparse gate probabilities $\pi_{b,1:K}$.

Gate loss. The gate is trained with three complementary objectives:

(i) *Teacher–student alignment.* A teacher distribution q_b is constructed from expert competence signals:

$$r_{b,k} = -\ell_{\text{CE}}(z_{b,k}, y_b) - w_{\text{la}} \ell_{\text{LA},b,k} - w_{\text{ea}} \ell_{\text{EA},b,k}, \quad q_b = \text{softmax}\left(\frac{r_b}{\tau_{\text{oracle}}}\right).$$

The student is the gate output $p_b = \text{Entmax}_{\alpha=1.38}(s_b)$, where s_b are gate scores. The alignment loss is

$$L_{\text{align}} = \text{KL}(q_b \parallel p_b).$$

(ii) *Balanced usage.* To avoid collapse to a single expert, we regularize the average gate distribution over a batch:

$$L_{\text{balance}} = \text{KL}(u \parallel \bar{p}), \quad \bar{p} = \frac{1}{B} \sum_b p_b,$$

where u is uniform over experts.

(iii) *Per-sample sparsity.* To encourage sparse routing, we penalize high-entropy gate outputs:

$$L_{\text{sparse}} = \frac{1}{B} \sum_{b=1}^B H(p_b), \quad H(p_b) = - \sum_{k=1}^K p_{b,k} \log p_{b,k}.$$

The final gate loss is

$$L_{\text{gate}} = L_{\text{align}} + L_{\text{balance}} + L_{\text{sparse}}.$$

C.6 FINAL OBJECTIVE

The overall training loss is

$$\mathcal{L} = \ell_{\text{CE}} + \lambda_{\text{reg}} \ell_{\text{reg}} + \lambda_{\text{div}} \ell_{\text{div}} + \lambda_{\text{gate}} L_{\text{gate}}.$$

Here $\ell_{\text{reg}} = \frac{1}{K} \sum_k \ell_{\text{reg}}^{(k)}$, and $\lambda_{\text{reg}}, \lambda_{\text{div}}, \lambda_{\text{gate}}$ are loss weights. This formulation integrates the task, coverage, selection, and diversity principles while guarding against degenerate solutions and expert starvation.

C.7 HYPERPARAMETER SETTINGS

For all experiments, we adopt a common set of fixed hyperparameters. Each expert network is implemented as a Graph Isomorphism Network (GIN) with hidden dimension 300, three layers, and a dropout rate of 0.5. The gating network is a two-layer MLP with hidden dimension 64 and ReLU activations, followed by an Entmax transformation with $\alpha = 1.38$ to produce sparse routing probabilities. The loss weights are set to 1.0 for the task cross-entropy, mask regularization, and diversity losses, and 0.1 for the gate loss. Optimization is performed with Adam using a weight decay of 10^{-4} . The learning rate is reduced by a factor of two if the validation performance does not improve by at least 0.001 for 10 consecutive epochs.

In addition to these fixed settings, we tune a small number of hyperparameters. The mask keep-rate prior ρ is sampled uniformly between 0.1 and 0.9. The learning rate is selected from $\{0.001, 0.0005, 0.0001\}$, and the batch size is chosen from $\{32, 64, 128, 256, 512\}$. Hyperparameter tuning is conducted with 10 independent trials per dataset, each initialized with a different random seed. The best configuration is selected based on validation performance, retrained on the training set, and finally evaluated on the held-out test sets over five different seeds. This procedure ensures consistent model selection without any test leakage.

972 **D CAUSAL ASSUMPTIONS**
973974 **Problem setup.** Each input is a graph $x = (V, E, X)$ with label $y \in \mathcal{Y}$. Let G_c denote
975 *causal/stable* substructures and G_s denote *spurious/environmental* substructures. We focus on *co-
976 variate shift*: the marginal over graphs changes across environments, while $p(y | x)$ is stable, i.e.,
977 $p_{\text{train}}(x) \neq p_{\text{test}}(x)$ but $p_{\text{train}}(y | x) = p_{\text{test}}(y | x)$.
978979 **FIIF vs. PIIIF.** Following (Gui et al., 2023), fully/partially informative invariant features formalize
980 how G_s interacts with G_c and environments E . Under **FIIF**, G_s is influenced by both G_c and E ,
981 creating spurious dependence $Y \leftarrow G_c \rightarrow G_s$; under **PIIIF**, a collider induces $G_s \leftrightarrow Y$ through
982 G_c (e.g., $Y \leftarrow G_c \rightarrow G \leftarrow G_s$). These regimes explain why G_s can correlate with Y even when
983 noncausal.
984985 **WHAT PRIOR METHODS ASSUME**
986987 **LECI (Gui et al., 2023).** LECI jointly enforces (i) *label–environment causal independence*: $G_c \perp E$ and (ii)
988 *label–spurious independence*: $G_s \perp Y$ (operationalized via adversarial objectives), aiming
989 to recover invariant subgraphs. In FIIF/PIIIF regimes, these constraints are used to filter G_s and keep
990 G_c .
991992 **UIL (Sui et al., 2025).** UIL posits a stronger *structural* invariance: the stable (causal) part
993 of graphs within each class shares a class-specific *graphon* pattern that is invariant across all
994 (seen/unseen) environments; semantic invariance is then layered on top. In effect, G_c is assumed
995 *structurally invariant across environments*.
996997 **DIR and related.** DIR (Wu et al., 2022) also targets invariant rationales/causal attention, typi-
998 cally constructing interventional/augmented environments and enforcing invariance of the predictive
999 mechanism across them.
10001001 **WHY THESE ASSUMPTIONS BREAK IN PRACTICE**
10021003 **Concrete examples.**
10041005

- **Chemistry.** Multiple active chemotypes for the same endpoint; scaffold/time/source shifts
1006 alter G_s and even the prevalence of certain G_c ’s, violating structural uniqueness and $G_s \perp Y$ (Wu et al., 2018; Hu et al., 2020).
- **Social/text graphs.** Domain-specific syntax/community structures change across splits;
1007 G_s (e.g., degree/length) correlates with Y via FIIF/PIIIF pathways (Gui et al., 2022).
1008

1009 **General reasons.** (i) *Instance heterogeneity*: real tasks often admit *multiple* causal explanations
1010 within the same class (different G_c ’s per instance). In molecular property prediction, distinct chemo-
1011 types/functional groups can yield the same label (e.g., multiple acidic moieties), and scaffold splits
1012 explicitly emphasize cross-chemotype variation; thus any single class-graphon assumption can be
1013 violated. (ii) *Y – G_s correlation (FIIF/PIIIF)*: even when G_s is noncausal, it may correlate with Y
1014 via G_c , making $G_s \not\perp Y$ and breaking LECI-style independence assumptions. Recent theory shows
1015 that environment augmentation cannot, in general, identify invariance without additional biases;
1016 moreover, G_s and Y can have *arbitrary* correlation, making environment inference/labeling funda-
1017 mentally hard (Chen et al., 2023).
10181019 **OUR ASSUMPTION (MINIMAL AND ROBUST)**
10201021 We assume only that **each graph admits at least one causal subgraph G_c that governs Y** . We
1022 do *not* assume (i) G_c is unique within a class, (ii) G_c is structurally identical across environments
1023 (no class-graphon), or (iii) $G_s \perp Y$ or $G_c \perp E$. This minimal assumption tolerates instance-level
1024 heterogeneity (different G_c ’s per instance), admits FIIF/PIIIF couplings, and aligns with practical
1025 datasets where multiple mechanisms yield the same label (e.g., multiple binding motifs or syntax
1026 patterns). **Benefit:** we avoid brittle structural/independence assumptions and instead learn to *select*
1027 among diverse causal hypotheses at the instance level.
1028

1026 Table 7: Performance of the MoE framework with 1, 4, and 8 experts. Standard deviations are
 1027 reported in parentheses.
 1028

1029 1030 Experts	HIV \uparrow		Twitter \uparrow		Motif \uparrow		SST2 \uparrow	
	Scaffold	Size	Length	Basis	Size	Length	Avg \uparrow	
1031 1	67.13 (2.2)	63.48 (0.9)	58.68 (1.7)	89.3 (2.1)	65.31 (1.2)	81.11 (1.1)	70.84	
1032 4	70.65 (1.3)	65.35 (1.3)	60.48 (0.7)	91.79 (1.5)	76.40 (2.1)	83.41 (1.2)	74.68	
1033 8	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.8 (1.4)	75.52 (2.9)	83.73 (1.4)	75.29	

1034
 1035
EMPIRICAL SUPPORT: SINGLE-EXPERT PERFORMANCE
 1036

1037 Table 7 provides empirical evidence for the strength of this assumption-light design. In the single-
 1038 expert setting, the model reduces to the simplest form of causal subgraph extraction: a single extractor,
 1039 regularized by ρ , feeding into a GNN trained like standard ERM. The GNN is optimized only
 1040 with the task loss, while the extractor is trained with the task loss plus the regularization term. This
 1041 design makes no additional assumptions about the underlying causal SCM beyond the sparsity prior,
 1042 representing a minimal instantiation of causal subgraph methods. Remarkably, despite its simplic-
 1043 ity, this approach outperforms all but one causal baseline (LECI) in average performance across all
 1044 datasets. This result suggests that the explicit structural assumptions encoded in prior causal meth-
 1045 ods may in fact be too restrictive or fragile, and that a more assumption-light approach can provide
 1046 stronger and more reliable generalization.
 1047

1048 **E DATASET DETAILS**
 1049

1050 We provide dataset-specific information for the four GOOD tasks used in the main paper. Each
 1051 task introduces a different type of structural or distributional shift, following the benchmark design
 1052 in Gui et al. (2022).

1053 **GOOD-HIV.** This task is a molecular property prediction problem derived from the MoleculeNet
 1054 HIV dataset. Each graph corresponds to a molecule, where nodes are atoms and edges are chemical
 1055 bonds. The prediction task is binary classification: whether the molecule inhibits HIV replication.
 1056 To evaluate OOD generalization, two types of environment splits are defined. The *scaffold split*
 1057 partitions molecules according to their core scaffolds, such that training and test sets contain molecules
 1058 with distinct underlying structures. The *size split* creates a distribution shift by separating molecules
 1059 based on the number of heavy atoms, exposing models to molecules of substantially different sizes at
 1060 test time. These shifts test whether models can generalize beyond memorized molecular backbones
 1061 and size ranges.
 1062

1063 **GOOD-Motif.** This synthetic dataset is designed to provide controlled graph-level classification
 1064 tasks with interpretable shifts. Each graph is generated by attaching motifs (e.g., cycles, cliques,
 1065 houses) onto a random base graph. The label depends on the presence or type of motif. The bench-
 1066 mark defines two kinds of shifts. In the *motif-basis split*, the set of motifs used for training differs
 1067 from those used in evaluation, requiring extrapolation across structural primitives. In the *size split*,
 1068 the base graphs differ in size between environments, requiring robustness to distribution shifts in
 1069 graph order and density. This dataset isolates structural shifts in a controlled synthetic setting, mak-
 1070 ing it useful for probing whether models can truly capture causal motif information.
 1071

1072 **GOOD-Twitter.** This dataset consists of ego-networks from Twitter users. Each ego-network is
 1073 represented as a graph where the central node corresponds to the ego user, and edges represent social
 1074 connections among the ego and their neighbors. The task is binary classification of user attributes.
 1075 The primary distribution shifts are *domain shifts* across different user communities, which result in
 1076 differences in graph sparsity, degree distributions, and local structural motifs. Since ego-networks
 1077 are sampled from diverse domains, training and test sets differ significantly in their structural prop-
 1078 erties, requiring models to generalize across heterogeneous social network subgraphs.
 1079

GOOD-SST2. This dataset is based on the Stanford Sentiment Treebank 2 (SST2). Each sentence
 1079 is parsed into a dependency tree, which serves as the input graph. The task is binary classification of

1080 Table 8: Effect of learned gating on Twitter and SST2. Uniform: uniform averaging of logits (no
 1081 gating). Majority: majority voting (no gating). Top 1: sparse selection of the top-1 expert predicted
 1082 by the gate. Top 2: sparse selection of the top-2 experts predicted by the gate. Gate Weight (Soft):
 1083 weighted averaging of logits using the gate weights (used in our method).

Learned Gating	Twitter	SST2
Uniform	59.92	82.72
Majority	58.39	82.99
Top 1	56.36	79.36
Top 2	59.11	82.13
Gate Weight (Soft)	61.13	83.73

1093 sentence sentiment (positive vs. negative). The distribution shifts are introduced by partitioning the
 1094 data according to linguistic structures. Specifically, environments differ in the average tree depth and
 1095 branching factors, leading to structural shifts in dependency graphs. These shifts test whether graph
 1096 models can capture sentiment cues in syntactic structures when faced with substantial variation in
 1097 parse tree topology across domains.

1098 Overall, these four datasets cover both *real-world* domains and *synthetic* graphs, and they introduce
 1099 diverse OOD challenges, including scaffold and size shifts, motif-basis changes, domain hetero-
 1100 geneity, and structural variation. This variety makes them a comprehensive testbed for evaluating
 1101 the robustness of graph OOD methods.

1103 F ADDITIONAL EXPERIMENTS

1104 In this section, we provide additional experiments and discussions.

1105 F.1 HIV DATASET

1106 For HIV dataset, we apply class balanced sampling during batch sampling and logit adjustment
 1107 during training (Wang et al., 2023b). This follows the convention of LIRS and GALA who apply
 1108 similar techniques to mitigate the class imbalance (Yao et al., 2025; Chen et al., 2023). Without these
 1109 techniques, our performance on HIV-Scaffold and HIV-Size drops slightly from 71.55 to 70.65 and
 1110 66.98 to 65.35, respectively. In this case, our method still achieves the best average performance
 1111 and average rank across all evaluated baselines.

1112 F.2 GATING MECHANISM

1113 We next assess the contribution of the gating mechanism. Our framework employs a learned gate that
 1114 assigns input-dependent weights to experts, forming a weighted combination of their predictions.
 1115 Table 8 compares this design to several alternatives. On both Twitter and SST2, uniform averaging
 1116 already benefits from expert complementarity, but it falls short of the learned gate (59.92 vs. 61.13 on
 1117 Twitter, 82.72 vs. 83.73 on SST2). Majority voting performs similarly or worse (58.39 and 82.99),
 1118 suggesting that ignoring the confidence of individual experts limits robustness. Sparse selection
 1119 of only the top-1 or top-2 experts consistently underperforms (e.g., 56.36/79.36 and 59.11/82.13),
 1120 showing that over-reliance on top-k experts on all samples discards useful complementary information.
 1121 By contrast, the learned gate yields the best performance on both datasets, highlighting that
 1122 adaptive weighting is crucial for fully exploiting expert specialization. Importantly, the gate not only
 1123 aggregates predictions effectively but also mitigates expert collapse by encouraging specialization
 1124 into complementary substructures.

1125 F.3 VISUALIZATION

1126 We visualize the predicted subgraphs from different experts on the Motif-Basis dataset. The ground
 1127 truth causal subgraph is house. We can see that the expert that predicts the house subgraph is the
 1128 expert that is most specialized in predicting the house subgraph.

1154 Figure 2: Predicted subgraphs from different experts on the Motif-Basis dataset. Ground truth causal
1155 subgraph: house.

1156
1157 **LARGE LANGUAGE MODELS STATEMENT**
1158

1159 Large Language Models were used exclusively for editorial purposes, such as refining language and
1160 improving readability. All scientific contributions were developed solely by the authors.
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187