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ABSTRACT

Current state-of-the-art methods for out-of-distribution (OOD) generalization lack
the ability to effectively address datasets with heterogeneous causal subgraphs at
the instance level. Existing approaches that attempt to handle such heterogeneity
either rely on data augmentation, which risks altering label semantics, or impose
causal assumptions whose validity in real-world datasets is uncertain. We intro-
duce a novel Mixture-of-Experts (MoE) framework that can model heterogeneous
causal subgraphs without relying on restrictive assumptions. Our key idea is to
address instance-level heterogeneity by enforcing semantic diversity among ex-
perts, each generating a distinct causal subgraph, while a learned gate assigns
sparse weights that adaptively focus on the most relevant experts for each input.
Our theoretical analysis shows that these two properties jointly reduce OOD error.
In practice, our experts are scalable and do not require environment labels. Em-
pirically, our framework achieves strong performance on the GOOD benchmark
across both synthetic and real-world structural shifts.

1 INTRODUCTION

Out-of-distribution (OOD) generalization concerns learning models that remain reliable when the
test distribution differs from training (Ye et al., 2021). Despite recent progress, it remains a funda-
mental challenge, especially for graphs (Fan et al., 2023), whose complexity admits shifts not only
in node or edge attributes but also in structural properties such as size, sparsity, or motif frequency
(Wu et al., 2018). Such structural shifts can mislead models, as spurious topological correlations
often dominate learning (Gui et al., 2022).

A dominant paradigm in graph OOD learning is causal subgraph identification: each graph is as-
sumed to contain a subgraph Gc responsible for the label, while the remaining structure Gs reflects
spurious variation (Gui et al., 2023; Sui et al., 2025; An et al., 2024; Yao et al., 2025; Chen et al.,
2022). In principle, recovering Gc should yield predictions robust to distribution shifts. In practice,
however, existing methods rely on restrictive causal assumptions (e.g., Gs is independent of the la-
bel) that may fail in practice (Gui et al., 2022; 2023). For example, in sentiment analysis, stylistic
markers such as word length can frequently track sentiment, meaning Gs is not independent of the
label.

A further challenge is instance heterogeneity: even within a single environment and label class, dif-
ferent samples may rely on fundamentally different causal subgraphs. For example, in molecular
property prediction, multiple chemotypes can produce the same biological activity, meaning two
“active” molecules may depend on entirely different causal subgraphs (Wu et al., 2018). Methods
that assume a single invariant Gc across environments or labels cannot capture such variability and
therefore struggle under instance-level causal diversity (Sui et al., 2025). Some approaches attempt
to approximate this heterogeneity via data augmentation (Wu et al., 2024; Sui et al., 2023), but
perturbing graph structure cannot guarantee label correctness and may change the true causal sub-
graph—especially in motif-centric datasets such as GOOD-Motif, where labels correspond directly
to specific subgraphs (Gui et al., 2022; Wu et al., 2018). These limitations motivate methods that
directly model causal diversity at the instance level, rather than approximating it through augmenta-
tion.
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We address this gap by introducing a Mixture-of-Experts (MoE) framework specifically designed for
causal subgraph–based OOD graph learning. Unlike prior MoE approaches that rely on predefined
shift types or augmentation strategies, our method employs experts as causal subgraph extractors,
enabling them to specialize in distinct causal mechanisms. A learned gating network adaptively
selects the most relevant experts for each instance. Our theoretical analysis shows that (i) semantic
diversity is necessary for meaningful specialization, and (ii) instance-level sparsity naturally follows
from diversity via induced loss gaps. Together, these results provide a principled justification for
MoE in OOD graph learning. Importantly, our framework does not rely on environment labels or
causal assumptions, making it assumption-light. Building on this foundation, our contributions are
threefold:

1. Theory: We provide a principled justification for MoE in graph OOD learning by deriving
a formal risk bound, showing that semantic diversity among experts and instance-level
sparsity during gating jointly reduce OOD error.

2. Implementation: We design a causal subgraph-based MoE framework that instantiates
these principles through a decorrelation regularizer for diversity and a learnt gating mech-
anism for sparsity, without requiring environment labels or strong causal assumptions.

3. Empirics: On the GOOD benchmark (Gui et al., 2022), our framework achieves strong
performance across synthetic and real-world structural shifts. Ablations verify the necessity
of diversity and sparsity.

2 BACKGROUND

Graph OOD Learning. In graph learning, each input is a graph x with an associated label y. In
an OOD setting, models are trained on data drawn from certain environments but are expected to
perform well when evaluated on new environments that were not seen during training. We focus on
covariate shift, where the relationship between x and y is stable but the distribution of graph inputs
changes. This reflects realistic cases where the causal mechanism is preserved, yet nuisance factors
such as graph size, sparsity, or motif frequency vary.

Causal subgraph paradigm. A common basis for graph OOD learning is the causal subgraph
paradigm: each graph input contains a causal subgraph Gc that determines the label y, while the
complement Gs captures spurious variation. Successfully identifying Gc would yield shift-invariant
predictions, but since Gc is unobserved, existing methods rely on assumptions about the underlying
structural causal model (SCM) (Gui et al., 2023; Sui et al., 2025; Chen et al., 2022; An et al., 2024;
Yao et al., 2025; Wu et al., 2022; Miao et al., 2022). Examples include assuming Gs ⊥ y (Gui et al.,
2023) or that Gc is invariant across environments or classes (Sui et al., 2025). Such assumptions
are often unrealistic: Such assumptions are often unrealistic: they overlook instance heterogeneity,
and they may fail when Gs correlates with y (e.g., molecular scaffolds shared by active compounds
(Zhang et al., 2024)).

Instance heterogeneity. Instance heterogeneity refers to the setting where the causal subgraph
varies not only across environments but also across individual samples within the same dataset and
label class. Formally, if each graph G contains a (possibly latent) causal subgraph Gc sufficient to
predict y, then the collection of such Gc’s need not be identical across the dataset; this variability
constitutes causal diversity. Such diversity arises naturally in real-world domains and is also present
in the GOOD benchmark (Gui et al., 2022). In GOOD-HIV, multiple chemotypes can yield the
same biological activity, and in GOOD-SST2, sentiment can be expressed through structurally dis-
tinct syntactic patterns. As a result, two instances from the same environment with the same label
may rely on fundamentally different causal subgraphs, and methods that assume a single invariant
Gc across environments or classes cannot account for such causal diversity. While some works at-
tempt to approximate heterogeneity via data augmentation (Lu et al., 2024; Yao et al., 2024; Wu
et al., 2024; Chen et al., 2023; Sui et al., 2023; Miao et al., 2022), perturbations do not guarantee
label correctness and may alter the true causal subgraph—especially in motif-centric datasets such
as GOOD-Motif (Gui et al., 2022). These limitations motivate the need for frameworks that directly
model causal diversity at the instance level. We propose an alternative perspective: model hetero-
geneity directly through a MoE framework by allowing multiple experts to extract diverse causal
subgraphs and using instance-specific gating to focus on the most relevant ones.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Causal Assumptions. Many OOD graph methods rely on assumptions about the underlying SCM,
particularly regarding how the causal subgraph Gc, spurious subgraph Gs, and label y interact. A
common assumption is that Gs is conditionally independent of y given Gc (Gui et al., 2023; Sui
et al., 2025; Chen et al., 2022; An et al., 2024; Yao et al., 2025; Wu et al., 2022; Miao et al., 2022).
However, this assumption does not hold under alternative SCMs such as FIIF (fully informative
invariant features), where Gs is entirely determined by Gc, or PIIF (partially informative invariant
features), where Gs is partly driven by Gc but still correlated with y. In practice, such independence
conditions are rarely guaranteed. In molecular property prediction, for instance, structural scaffolds
often correlate with biological activity, violating Gs⊥y. In social or textual graphs, stylistic markers
frequently track sentiment, creating direct Gs → y dependencies. Even in controlled benchmarks
such as the GOOD benchmark (Gui et al., 2022), these SCM-level assumptions are not guaranteed.
Consequently, relying on a single causal assumption can lead to brittle behavior. In contrast, our
method imposes no SCM-level assumptions: we avoid invariance-based losses and instead allow
instance-specific expert selection, yielding robustness to diverse causal mechanisms.

MoE for GNNs. MoE architectures (Jacobs et al., 1991; Shazeer et al., 2017) consist of multiple
experts combined through a gating function, and in graph domains they have primarily been applied
to improve scalability and efficiency (Wang et al., 2023a; Chen et al., 2025; Hu et al., 2022). To the
best of our knowledge, GraphMETRO is the only OOD-oriented MoE approach to date, assigning
each expert to a predefined shift type and training them as augmentation strategies invariant to those
shifts (Wu et al., 2024). This approach naturally inherits the label validity risks mentioned above.
In contrast, we employ MoE for causal subgraph identification, encouraging experts to capture
diverse causal hypotheses and directly addressing instance heterogeneity. Additional related work
is discussed in Appendix B.

3 METHOD

In this section, we derive an explicit risk bound that decomposes OOD error into coverage and
selection terms, and we show how diversity and sparsity jointly serve to reduce it. All proofs are
deferred to Appendix A.

3.1 PRELIMINARIES AND NOTATION

We consider supervised learning on graphs, where each instance is x = (V,E,X) with node set
V , edge set E, and node features X , together with an associated label y ∈ Y . Let X denote the
input space of graphs and D a distribution over (x, y) ∈ X × Y . We write DX for the marginal
on X . A predictor h maps x to logits zh(x) ∈ RC , where C = |Y| is the number of classes and
c ∈ {1, . . . , C} indexes a class. Predictions are evaluated with the cross-entropy loss ℓCE(z, y)
(Goodfellow et al., 2016), and the risk of h under distribution D is

RD(h) = E(x,y)∼D[ℓCE(zh(x), y)].

We define OOD generalization with respect to a family of environmentsM, where each m ∈ M
corresponds to a distribution Dm over X × Y . Training occurs on a subsetMtrain, while evaluation
is on unseen test environmentsMtest withMtest \ Mtrain ̸= ∅. We denote a particular unseen test
environment by m′, with associated distribution Dm′ . The objective is to control the worst-case risk

ROOD(h) = sup
m∈Mtest

RDm
(h).

We focus on the case of covariate shift, where the marginal distribution over X varies across envi-
ronments while the conditional distribution P (y | x) remains stable.

Mixture-of-Experts. Let {hi}Ki=1 denote K experts, and let π(x) ∈ ∆K be a gating distribution
(sometimes we omit the dependence on x and write simply π). Each expert hi outputs logits zi(x) ∈
RC . The MoE aggregates predictions via

zmix(x) =

K∑
i=1

πi(x) zi(x), ŷ(x) = arg max
c∈{1,...,C}

zmix(x)[c].

3
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For expert hi, the cross-entropy loss is ℓi(x, y) = ℓCE(zi(x), y), and the MoE risk under distribution
D is

RD(MoE) = E(x,y)∼D[ℓCE(zmix(x), y)].

We also define the auxiliary mixture-of-losses quantity

ℓ̄(x, y) :=

K∑
i=1

πi(x) ℓi(x, y),

which by Jensen’s inequality (Jensen, 1906) upper-bounds the mixture-of-predictions loss.

3.2 DIVERSITY BETWEEN EXPERTS (COVERAGE)

For a MoE model to be effective, experts must represent distinct hypotheses; otherwise the gate
has no meaningful choice and the model collapses. We therefore encourage semantic diversity:
experts should emphasize different subgraphs in the input, providing coverage over latent causal
mechanisms. As we will show, such diversity not only prevents model collapse but also induces
non-trivial specialization, which in turn forces sparse gating.

Definition 3.1 (Semantic diversity). Let expert i produce a mask probability vector v(x)
i ∈ [0, 1]|Ix|

on input graph x (nodes/edges indexed by Ix). Standardize

ṽ
(x)
i =

v
(x)
i − µ

(x)
i 1

σ
(x)
i + ε

, µ
(x)
i = 1

|Ix|

∑
u∈Ix

v
(x)
i (u), (σ

(x)
i )2 = 1

|Ix|

∑
u∈Ix

(
v
(x)
i (u)− µ

(x)
i

)2
,

with a small ε > 0 to avoid division by zero. Let ρ(x)ij = 1
|Ix| ⟨ṽ

(x)
i , ṽ

(x)
j ⟩. We say the experts are

semantically diverse if

1

K(K − 1)

∑
i ̸=j

Ex∼DX

[
|ρ(x)ij |

]
≤ τcorr for some τcorr > 0.

By enforcing low correlation between experts’ masks, semantic diversity ensures experts attend to
different parts of the input graph. Under standard GNN encoders whose logits are Lipschitz in
masked embeddings (Scarselli et al., 2008; Joshi et al., 2023), low mask correlation encourages en-
coding of distinct structural signals, discouraging collapse onto the same subgraph. This guarantees
coverage of multiple causal hypotheses, giving the MoE leverage to identify causal subgraphs under
heterogeneity.

3.3 INSTANCE-LEVEL SPARSITY (SELECTION)

If one expert predicts the causal mechanism for an input while others do not, the mixture is reli-
able only if the gate concentrates sufficient mass on that expert: the selection effect. This ensures
that once distinct causal mechanisms exist among the experts (via semantic diversity), the gate can
isolate the correct one. To formalize this, we introduce a metric, the loss gap, which measures the
discrepancy between the best and next-best expert on an instance.

Definition 3.2 (Loss gap). For (x, y), let i⋆(x, y) = argmini∈[K] ℓi(x, y) denote the best expert,
where [K] = {1, . . . ,K}. The loss gap is

∆(x, y) = min
j ̸=i⋆(x,y)

(
ℓj(x, y)− ℓi⋆(x, y) ) ≥ 0.

We now show that loss gaps quantitatively constrain the gate’s allocation.

Proposition 3.3 (Loss gap implies sparsity). Let {ℓi(x, y)}Ki=1 be the per-expert losses and
i⋆(x, y) ∈ argmini∈[K] ℓi(x, y) be any minimizer. Define the mixture-of-losses ℓ̄(x, y) =∑K

i=1 πi(x) ℓi(x, y) and the loss gap

∆(x, y) :=

{
mink ̸=i⋆(x,y)

(
ℓk(x, y)− ℓi⋆(x, y)

)
, K ≥ 2,

0, K = 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Then
ℓ̄(x, y) ≥ ℓi⋆(x, y) +

(
1− πi⋆(x)

)
∆(x, y).

Equivalently, for any ∆(x, y) > 0,

πi⋆(x) ≥ 1− ℓ̄(x, y)− ℓi⋆(x, y)

∆(x, y)
.

This bound shows that to keep the mixture loss close to the best expert, the gate must assign sufficient
weight to that expert. Furthermore, larger loss gaps make this requirement stronger. Such loss gaps
are expected to arise as a consequence of diversity, which forces experts to attend to decorrelated
subgraphs. We formalize this in the following assumption:
Assumption 3.4 (Diversity induces loss gaps). Let ∆(x, y) be as in Definition 3.2. There exist
γ > 0, ρ ∈ [0, 1), and a measurable set S ⊆ X × Y with D(S) ≥ 1− ρ such that

∆(x, y) ≥ γ ∀(x, y) ∈ S,

and on S the minimizer i⋆(x, y) coincides with an expert aligned with the environment’s causal
mechanism. Semantic diversity (Definition 3.1) promotes this condition by forcing experts to attend
to decorrelated subgraphs.

This assumption formalizes the idea that, under semantic diversity, one causal expert should out-
perform others by a margin on most inputs. Intuitively, if one expert captures the causal subgraph,
then by semantic diversity, the others focus on decorrelated (likely spurious) subgraphs, yielding
non-trivial loss gaps. This is validated empirically in Section 4. Hence, with sufficient diversity,
loss gaps should arise on a large fraction of inputs, and the MoE can match the best expert only by
selecting it via sparse gating: diversity necessitates sparsity.

3.4 AN OOD RISK DECOMPOSITION: COVERAGE AND SELECTION

We now show how these two properties jointly control OOD risk by decomposing risk into a cover-
age term (controlled by diversity) and a selection term (controlled by sparsity). First, we make the
following assumption:
Assumption 3.5 (Mechanism coverage). Let {Dm : m ∈ M} denote environments and h⋆

m′ ∈
argminh RDm′ (h) the oracle predictor for environment Dm′ . For any OOD environment D′ =
Dm′ , there exists an expert i⋆(m′) ∈ [K] (depending only on the environment) such that

RDm′ (hi⋆(m′)) ≤ RDm′ (h
⋆
m′) + εcov(m

′).

That is, for every unseen environment, at least one expert covers it by achieving risk within εcov(m
′)

of the oracle predictor. To minimize OOD risk, the MoE must then select this expert by allocating
enough probability to it, yielding:
Theorem 3.6 (OOD risk: coverage + selection). Fix an OOD environment D′ = Dm′ . For the
environment-aligned expert i⋆(m′), define

Γm′(x, y) := max
j ̸=i⋆(m′)

(
ℓj(x, y)− ℓi⋆(m′)(x, y)

)
.

Then, under Assumptions 3.5 and 3.4,

RD′(MoE) ≤ RD′(h⋆
m′)︸ ︷︷ ︸

oracle risk

+ εcov(m
′)︸ ︷︷ ︸

coverage via diversity

+ E(x,y)∼D′
[
(1− πi⋆(m′)(x)) Γm′(x, y)

]︸ ︷︷ ︸
selection penalty via sparsity

.

This decomposition expresses OOD risk as three parts. The first is the oracle risk, the irreducible
error in the target environment. The second is the coverage term, kept small by semantic diversity:
only when experts are sufficiently diverse can the pool cover unseen test environments by ensuring at
least one aligns with the causal mechanism. The third is the selection penalty, kept small by sparsity:
loss gaps make the aligned expert identifiable, but only a sparse gate can reliably concentrate on it.
Together, these conditions show that to jointly reduce OOD error, diversity is needed to ensure a
good expert exists, and sparsity is needed to ensure that it is selected.
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Figure 1: An illustration of the proposed MoE architecture. Each expert extracts a distinct candidate
causal subgraph and produces predictions, which are combined by the gating network into the final
output.

3.5 IMPLEMENTATION

A detailed illustration of our implementation is shown in Figure 1. Given an input graph x =
(V,E,X), we first compute node embeddings with a shared GNN encoder. For each expert i ∈ [K],
a small expert-specific MLP takes the concatenated embeddings of edge endpoints and outputs a
mask logit ℓ(i)e for every edge e ∈ E, which is later transformed into a binary selection through
the Gumbel–sigmoid straight-through estimator for differentiability (Maddison et al., 2017; Jang
et al., 2017). The resulting masked graph x(i), representing the extracted causal subgraph by expert
i, is then passed through an expert-specific GNN and classifier head to produce logits zi(x

(i)).
Predictions are combined by a lightweight MLP gate that consumes expert-derived statistics (e.g.,
confidence, entropy) and outputs a weight vector π(x) ∈ ∆K over experts. The final prediction is
obtained as the weighted average of expert logits using π(x). The entire model is trained end-to-end
with a combination of task, regularization, diversity, and gating losses.

Task loss. For each expert i, the overall task loss is

ℓCE(x, y) =
∑
i

πi(x) ℓi(x, y),

where ℓi(x, y) is the per-sample cross-entropy for expert i. By weighting the loss with the gate
probabilities, experts that contribute more to the final prediction receive stronger gradients, while
those assigned little weight are suppressed, promoting specialization.

Regularization Loss. To control the size of extracted subgraphs, we regularize the average fraction
of edges retained by each expert. For expert i on input x, let ρ(x)i denote its observed keep-rate. We
then penalize deviations from a target ρ ∈ [0, 1] using

ℓ(i)reg = (ρ
(x)
i − ρ)2,

which discourages degenerate solutions where experts keep either too few or too many edges.

Diversity loss. To prevent experts from collapsing onto identical subgraphs, we compute

ℓdiv = 1
K(K−1)

∑
i ̸=j

max{0, |ρ(x)ij | − τcorr},

where ρ
(x)
ij denotes the correlation between the masks of experts i and j on input x and the model

is penalized when this correlation exceeds threshold τcorr. This directly follows from the semantic
diversity condition (Definition 3.1) and drives experts to specialize on distinct subgraphs, in turn
ensuring coverage.

Gating loss. We train the gate with a teacher–student objective. The teacher distribution q is defined
by normalizing the negative per-expert cross-entropy losses, giving higher weight to lower-loss ex-
perts, while the student distribution is the gate output p = π(x). This alignment teaches the gate

6
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which experts are competent on which inputs. Since the task loss is gate-weighted, non-selected
experts are not heavily penalized, reinforcing specialization rather than forcing uniformity among
experts. To further shape the gate, we add sparsity and balance regularizers, yielding the objective

ℓgate = KL(p∥q) + λsparse ℓsparse(p) + λbal ℓbal(p).

Here, ℓsparse penalizes high-entropy distributions to enforce instance-level sparsity, while ℓbal en-
courages even usage across the batch to avoid expert starvation, supporting coverage. These terms
are complementary: sparsity sharpens routing for each input, while balance spreads usage globally.
For stability, training begins with a short warm-up phase of uniform routing so all experts receive
sufficient training signals before specialization. The gate can be fine-tuned after experts have been
trained to better align with the learned specializations.

Total loss. The final training objective is

L = ℓCE + λregℓreg + λdivℓdiv + λgateℓgate.

This loss function implements the components of the theoretical framework while incorporating
additional regularizers that prevent degenerate solutions and expert starvation.

Computational efficiency. Our MoE architecture is designed to introduce only modest computa-
tional overhead. As illustrated in Figure 1, all experts share a single subgraph extractor, and only
lightweight per-expert output heads (MLPs) are replicated. Each expert consists of one GNN en-
coder followed by a small classifier (MLP), in contrast to existing OOD graph methods that require
multiple full GNNs for classification (Gui et al., 2023; An et al., 2024).

Theoretically, if a GNN forward pass costs O(f(G)) and each MLP forward pass costs O(g(G)),
then the total complexity of our MoE is:

O
(
f(G) +K g(G) +K f(G) +K g(G) + g(G)

)
,

corresponding respectively to the shared extractor, per-expert heads, per-expert GNNs, per-expert
classifiers, and the gating network. Since GNN computation dominates MLP computation, f(G)≫
g(G) (Goodfellow et al., 2016; Kipf & Welling, 2017), this simplifies to:

O(K f(G)),

indicating that the overhead grows linearly in the number of experts K and is dominated by the
shared GNN encoder.

Assumption-light design without auxiliary invariance losses. Many prior OOD graph methods
learn causal subgraphs through auxiliary objectives (e.g., adversarial discriminators in LECI (Gui
et al., 2023), structural alignment in UIL (Sui et al., 2025)). While effective in single-model settings,
these approaches are computationally expensive when replicated across experts and may be unstable
(e.g., requiring finely tuned adversarial schedules that vary across experts). More critically, they rely
on restrictive causal assumptions (e.g., Gs ⊥ Y , invariant Gc) that rarely hold in heterogeneous
real-world data (Zhang et al., 2024). By contrast, our design avoids such auxiliary losses entirely.
As a result, it scales gracefully with the number of experts and requires neither environment labels
nor restrictive causal assumptions. This key design choice makes our method both highly scalable
and assumption-light. We provide further discussion in Appendix D.

4 EXPERIMENTS

We now evaluate our method empirically, guided by five research questions: RQ1: Does the method
achieve strong performance on both synthetic and real-world datasets with structural shifts? RQ2:
Does the method achieve strong performance across different causal assumptions? RQ3: Are the
key components of the framework necessary to obtain the reported improvements? RQ4: Does
enforcing semantic diversity induce larger loss gaps and promote expert specialization? RQ5: How
sensitive is performance to hyperparameters?

Datasets. We evaluate on the GOOD benchmark (Gui et al., 2022), which provides training,
OOD validation, and OOD test splits. Our study covers six datasets with structural shifts: HIV-
Scaffold/Size (molecular), Motif-Basis/Size (synthetic motifs), Twitter-Length (social), and SST2-
Length (sentiment). These span both synthetic and real-world domains under diverse structural
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Table 1: Results on graph classification datasets with structural shifts from the GOOD bench-
mark. Values are classification accuracy (ROC-AUC for HIV) on OOD test sets, averaged over 5
runs with standard deviation in parentheses. Table sections correspond to domain generalization,
data augmentation, and causal subgraph methods. We also report average performance and rank
across datasets. Best results are in bold. † indicates methods requiring environment labels.

Method HIV ↑ Twitter ↑ Motif ↑ SST2 ↑ Avrg ↑ Avrg
Rank ↓Scaffold Size Length Basis Size Length

ERM 69.89 (1.95) 58.12 (2.5) 58.56 (1.0) 64.32 (10.4) 54.29 (5.4) 80.23 (0.8) 64.24 10.83
Coral 72.33 (2.1) 60.33 (3.5) 57.33 (0.9) 65.39 (9.6) 52.39 (2.9) 79.23 (1.8) 64.50 10.33
IRM† 71.11 (2.7) 60.67 (1.4) 57.79 (1.9) 62.64 (10.9) 54.14 (5.2) 80.37 (1.7) 64.45 10.33
VREx† 70.94 (3.1) 61.10 (3.0) 56.55 (0.7) 65.13 (5.0) 56.97 (6.3) 79.85 (1.6) 65.09 10.83
GDRO† 67.13 (2.3) 56.91 (3.0) 56.73 (0.9) 62.63 (8.9) 52.01 (3.6) 81.33 (0.9) 62.79 12.50
DANN† 67.69 (2.9) 62.05 (2.1) 56.09 (1.7) 52.65 (6.8) 49.33 (5.4) 80.59 (0.9) 61.40 13.00

GM 66.06 (4.0) 66.24 (2.9) 56.97 (3.1) 67.33 (5.9) 61.43 (6.5) 81.96 (0.6) 66.67 7.83
AIA 71.23 (1.4) 62.33 (4.6) 57.13 (1.8) 74.18 (5.9) 56.07 (5.3) 80.91 (1.0) 66.98 7.67
GALA 74.51 (1.8) 64.89 (1.7) 60.79 (0.7) 79.11 (3.2) 72.13 (1.4) 82.42 (0.7) 72.31 2.67

LIRS 70.70 (2.3) 64.46 (2.9) 58.76 (1.4) 74.16 (3.0) 72.61 (6.9) 81.20 (0.7) 70.32 5.83
GSAT 70.76 (1.5) 61.76 (2.1) 57.13 (0.8) 62.27 (0.8) 54.12 (5.2) 80.62 (0.5) 64.44 10.67
CIGA 71.33 (1.1) 63.09 (1.6) 58.01 (2.2) 38.01 (1.4) 55.69 (6.7) 80.56 (1.7) 61.12 9.17
DIR 68.06 (5.5) 61.22 (0.8) 57.19 (0.9) 36.10 (2.5) 43.98 (3.1) 81.13 (0.7) 57.95 12.17
LECI† 74.28 (1.7) 65.76 (1.4) 59.90 (0.2) 85.74 (3.0) 71.92 (1.4) 83.27 (0.3) 73.48 2.67
UIL† 62.51 (1.7) 64.79 (0.8) 59.66 (0.9) 61.77 (4.8) 68.47 (3.1) 82.03 (0.4) 66.54 7.83
Ours 71.55 (1.4) 66.98 (1.0) 61.13 (1.1) 92.80 (1.4) 75.52 (2.9) 83.73 (1.4) 75.29 1.50

covariate shifts. We also evaluate on CFP-Motif (Gui et al., 2023), which provides datasets with
three different causal assumptions: covariate, FIIF, and PIIF. Unless otherwise specified, results are
averaged over five seeds.

Hyperparameters. All models adopt the Graph Isomorphism Network (GIN) (Xu et al., 2019), the
default GOOD backbone, with standard hyperparameters. Unless otherwise noted, we use eight
experts within our MoE model. We tune mask keep-rate prior ρ, batch size, and learning rate over
10 trials on the OOD validation set.

Baselines. We compare against three groups of methods. (1) General domain generalization al-
gorithms: ERM, IRM (Arjovsky et al., 2019), Coral (Sun & Saenko, 2016), V-REx (Krueger
et al., 2021), GroupDRO (GDRO for brevity) (Sagawa et al., 2020), and DANN (Ganin et al.,
2016). (2) Data augmentation methods that address instance heterogeneity: GraphMETRO (GM
for brevity) (Wu et al., 2024), AIA (Chen et al., 2023), and GALA (Sui et al., 2023). (3) Causal
subgraph algorithms: LIRS (Yao et al., 2025), GSAT (Miao et al., 2022), CIGA (Chen et al., 2022),
DIR (Wu et al., 2022), LECI (Gui et al., 2023), and UIL (Sui et al., 2025). All results are reproduced
using official repositories and hyperparameter settings.

4.1 RESULTS AND DISCUSSION

RQ1: Does the method achieve strong performance on both synthetic and real-world datasets
with structural shifts? On the synthetic datasets (HIV-Scaffold/Size and Motif-Basis/Size), our
method achieves the best performance except on HIV–Scaffold. Notably, on Motif–Basis, a common
sanity test for causal subgraph methods since labels are determined by the presence of specific
motifs (Gui et al., 2022; 2023), our method achieves 92.8% accuracy which is comparable to oracle-
level performance (Gui et al., 2023), and an 8.2% relative improvement over the next best method.
On HIV–Scaffold, the severe class imbalance (over 95% majority class) makes the task especially
challenging, and our method attains 71.55 ROC-AUC, ranking fourth overall. On the real-world
datasets (Twitter and SST2), our method outperforms all baselines, demonstrating robustness under
noisy, real-world distribution shifts. Across all datasets, our method achieves the highest average
score (75.29) and lowest average rank (1.5). The closest competitors are LECI (73.48 average, 2.67
rank) and GALA (72.31 average, 2.67 rank), confirming substantial improvements over existing
baselines.
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Table 2: Results on different causal assumption datasets from CFP-Motif. Values are are classifi-
cation accuracy with standard deviation in parentheses. Baseline results are from Gui et al. (2023).
Best results are in bold.

Covariate ↓ FIIF ↓ PIIF ↓
ERM 57.56 (9.59) 37.22 (3.70) 62.45 (9.21)
IRM 58.11 (5.14) 44.33 (1.52) 68.34 (10.40)
VREx 48.78 (7.81) 34.78 (1.34) 63.33 (6.55)
Coral 57.11 (8.35) 42.68 (7.09) 60.33 (8.85)
DANN 49.45 (8.05) 43.22 (6.64) 62.56 (10.39)
DIR 44.67 (0.00) 42.00 (6.77) 47.22 (8.79)
GSAT 68.22 (7.23) 51.56 (6.59) 61.22 (8.80)
CIGA 56.78 (2.99) 39.11 (7.70) 45.67 (7.52)
LECI 83.20 (5.89) 77.73 (3.85) 69.40 (7.54)

Ours 90.83 (1.73) 84.17 (3.88) 77.19 (6.04)

Table 3: Performance of the MoE framework on the GOOD benchmark under ablations of each loss
term. Standard deviations are reported in parentheses.

Dropping HIV ↑ Twitter ↑ Motif ↑ SST2 ↑
Scaffold Size Length Basis Size Length

ℓdiv 65.95 (2.5) 65.23 (0.8) 60.10 (0.9) 91.13 (1.1) 70.07 (2.8) 82.20 (1.3)

ℓgate 68.56 (0.9) 61.91 (1.2) 59.92 (0.5) 89.60 (2.7) 74.36 (2.0) 81.97 (1.2)

ℓreg 68.55 (3.9) 64.79 (2.2) 60.60 (1.9) 67.48 (7.0) 73.75 (2.5) 83.46 (1.5)

Standard (full loss) 71.55 (1.4) 66.98 (1.0) 61.13 (1.1) 92.80 (1.4) 75.52 (2.9) 83.73 (1.4)

RQ2: Does the method achieve strong performance across different causal assumptions? On
the CFP-Motif dataset (Table 2), our method achieves the best performance under all three causal
assumptions, with LECI as the strongest baseline. We attribute this improvement to avoiding aux-
iliary invariance losses that implicitly enforce a fixed causal assumption. By not committing to a
particular SCM, our method adapts more effectively to the different causal assumptions present in
CFP-Motif.

RQ3: Are the key components of the framework necessary for the reported improvements?
Table 3 presents an ablation study on the GOOD benchmark, evaluating the contribution of each
major component: semantic diversity, instance-level sparsity, and regularization. We systemati-
cally remove the corresponding loss terms and observe substantial performance degradations across
most datasets, with particularly large drops on Motif-Basis, HIV-Scaffold, and HIV-Size. These re-
sults indicate that all three components are essential for achieving the full performance gains of our
framework.

RQ4: Does enforcing semantic diversity induce larger loss gaps and promote expert special-
ization? To evaluate Assumption 3.4 (semantic diversity induces loss gaps), we compute the total
loss gap within each batch and then average it over the entire test set. We then compare models
trained with and without the diversity objective. Table 4 shows that semantic diversity consistently
increases the average per-batch loss gap across datasets. On Twitter, the gap rises from 0.13 to 0.19
(a 46% increase); on SST2, from 0.07 to 0.22 (over 200% increase); and on Motif-Basis, from 0.076
to 0.12 (a 58% increase). These results empirically validate our assumption that semantic diversity
among experts induces larger loss gaps.

RQ5: How sensitive is performance to hyperparameters? We first evaluate the effect of the edge
keep-rate prior ρ on Twitter, SST2, and Motif-Basis by perturbing it around the tuned value (shown
in brackets). Table 5 shows that accuracy varies by at most 1–2% under shifts of ±0.1 or ±0.2,
confirming robustness to moderate deviations. For example, Twitter peaks at ρ = 0.55 (61.13%),
SST2 at ρ = 0.20 (83.73%), and Motif-Basis at ρ = 0.55 (92.80%), with nearby settings yielding
comparable results. These results demonstrate that our framework is not overly sensitive to the edge
keep-rate prior ρ. Furthermore, our hyperparameters are tuned over a modest budget of only 10
trials. We then analyze the impact of the number of experts in Table 6, which compares 1, 4, and 8
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Table 4: Total loss gaps per-batch under abla-
tions of diversity on Twitter, SST2, and Motif-
Basis. Standard deviations are reported in
parentheses.

Dataset Diversity Loss Gap

Twitter w/ 0.19 (0.011)
w/o 0.13 (0.004)

SST2 w/ 0.22 (0.12)
w/o 0.07 (0.19)

Motif-Basis w/ 0.12 (0.035)
w/o 0.076 (0.024)

Table 5: Sensitivity analysis of the edge keep-
rate prior ρ on Twitter, SST2, and Motif-Basis.
The value in brackets indicates the tuned ρ se-
lected via validation for each dataset, with per-
formance shown at this setting and at perturbed
values.

ρ
Twitter ↑

(0.55)
SST2 ↑

(0.2)
Motif-Basis ↑

(0.55)

-0.2 58.75 – 90.13
-0.1 60.33 82.06 89.76

Tuned 61.13 83.73 92.80
+0.1 59.51 83.15 92.03
+0.2 60.64 83.46 90.54

Table 6: Performance of the MoE framework with 1, 4, and 8 experts. Standard deviations are
reported in parentheses.

Experts HIV ↑ Twitter ↑ Motif ↑ SST2 ↑ Avrg ↑Scaffold Size Length Basis Size Length

1 67.13 (2.2) 63.48 (0.9) 58.68 (1.7) 89.3 (2.1) 65.31 (1.2) 81.11 (1.1) 70.84
4 70.65 (1.3) 65.35 (1.3) 60.48 (0.7) 91.79 (1.5) 76.4 (2.1) 83.41 (1.2) 74.68
8 71.55 (1.4) 66.98 (1.0) 61.13 (1.1) 92.8 (1.4) 75.52 (2.9) 83.73 (1.4) 75.29

experts. Moving from 1 to 4 experts yields substantial gains across all datasets, demonstrating the
importance of expert diversity and sparse gating. Increasing further to 8 experts provides smaller
but generally positive improvements (except on Motif-Size). Importantly, with only 4 experts, the
MoE framework achieves an average accuracy of 74.68%, outperforming all baselines in Table 1,
suggesting that our method is not highly sensitive to the exact number of experts once diversity is
present.

5 CONCLUSION

In this work, we introduce a causal subgraph–based MoE framework that explicitly addresses
instance-level heterogeneity, enabling different experts to capture distinct causal explanations within
the same class. Our framework demonstrates that diversity among experts provides coverage of het-
erogeneous causal mechanisms, while sparsity in the gating step enables effective selection, together
reducing OOD error. We operationalize these principles in a scalable, assumption-light architecture
that requires neither environment labels nor restrictive causal assumptions. Empirically, the method
achieves strong performance on the GOOD benchmark across both synthetic and real-world shifts,
with ablations and visualizations confirming that experts specialize in distinct causal mechanisms.
Looking ahead, broadening causal perspectives on OOD graph learning, through richer causal mech-
anisms, more flexible expert designs, and closer theory–practice integration, remains an important
direction for building robust and generalizable graph learning systems. We hope this work estab-
lishes MoE as a strong foundation for causal-based OOD graph learning.

REPRODUCIBILITY STATEMENT

All mathematical proofs are provided in Appendix A. Implementation details are provided in Ap-
pendix C. The source code and reproduction instructions are available in an anonymized repository.
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A APPENDIX: PROOFS

This appendix collects the proofs of all formal results stated in the main body, together with some
natural extensions. Our goal is not to introduce new theory but to provide full technical details and
clarify intermediate steps that were omitted for brevity in the main text.

A.1 SPARSITY REQUIREMENT IN AN EXTREME CASE

We begin with a simple but instructive lemma that is not included in the main body. It captures an
extreme case of expert selection, where exactly one expert achieves a positive margin and all others
are non-positive (that is, only one expert is correct). While not needed for the main theoretical
results, we include it here because it highlights in the clearest possible terms why sparse gating
is necessary: in such scenarios, correct predictions are only guaranteed if the gating mechanism
concentrates sufficient mass on the correct expert.
Lemma A.1 (Sparsity requirement in an extreme case). Let per-expert margins be

mi(x) = zi(x)[y]−max
c ̸=y

zi(x)[c],

and let the mixture logits be

zmix(x) =

K∑
i=1

πi(x) zi(x), π(x) ∈ ∆K .

If there exists an expert i⋆ with mi⋆(x) > 0 and mj(x) ≤ 0 for all j ̸= i⋆, then the mixture margin

mmix(x) := zmix(x)[y]−max
c ̸=y

zmix(x)[c]

is strictly positive whenever

πi⋆(x) > α, α =
−minj ̸=i⋆ mj(x)

mi⋆(x)−minj ̸=i⋆ mj(x)
∈ [0, 1).

Proof. We have
mmix(x) =

∑
i

πi(x) zi(x)[y]−max
c̸=y

∑
i

πi(x) zi(x)[c]

≥
∑
i

πi(x) zi(x)[y]−
∑
i

πi(x) max
c ̸=y

zi(x)[c] =
∑
i

πi(x)mi(x),

using maxc
∑

i aic ≤
∑

i maxc aic. With mi⋆(x) > 0 and mj(x) ≤ 0 for j ̸= i⋆,∑
i

πi(x)mi(x) ≥ πi⋆(x)mi⋆(x) + (1− πi⋆(x))min
j ̸=i⋆

mj(x).

Thus mmix(x) > 0 whenever

πi⋆(x)mi⋆(x) + (1− πi⋆(x))min
j ̸=i⋆

mj(x) > 0,

which rearranges to πi⋆(x) > α as stated.

The previous lemma considered the binary-style case where only one expert is correct and all others
are strictly incorrect. We now extend the analysis to the multiclass setting by allowing non-causal
experts to have bounded negative margins. This produces a similar threshold condition on the gating
weight, ensuring that the correct expert dominates when sufficiently favored by the gate.
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Lemma A.2 (Multiclass sparse threshold under bounded negative margins). Let the one-vs-rest
margin of expert i at input x be

mi(x) := zi(x)[y] − max
c̸=y

zi(x)[c].

Suppose there exists a (causal) expert i⋆ and constants m > 0 and γ ≥ 0 such that
mi⋆(x) ≥ m, mj(x) ≥ −γ for all j ̸= i⋆.

Then the mixture margin satisfies

mmix(x) ≥
K∑
i=1

πi(x)mi(x) ≥ πi⋆(x)m −
(
1− πi⋆(x)

)
γ,

and in particular mmix(x) > 0 whenever

πi⋆(x) >
γ

m+ γ
.

Proof. By the max-sum inequality maxc
∑

i aic ≤
∑

i maxc aic,
mmix(x) = zmix(x)[y]−max

c̸=y
zmix(x)[c]

=
∑
i

πi(x) zi(x)[y]−max
c ̸=y

∑
i

πi(x) zi(x)[c] ≥
∑
i

πi(x)mi(x).

Using the margin bounds mi⋆(x) ≥ m and mj(x) ≥ −γ for j ̸= i⋆,∑
i

πi(x)mi(x) ≥ πi⋆(x)m +
∑
j ̸=i⋆

πj(x) (−γ) = πi⋆(x)m −
(
1− πi⋆(x)

)
γ.

Hence
mmix(x) ≥ πi⋆(x)m −

(
1− πi⋆(x)

)
γ,

which is strictly positive precisely when πi⋆(x) > γ/(m+ γ).

A.2 LOSS GAP IMPLIES SPARSITY

The margin-based results above illustrate the role of sparsity in terms of logits and decision bound-
aries. We now provide a complementary perspective using losses directly. This proposition shows
that a positive loss gap between the best expert and all others induces a lower bound on the gating
weight assigned to the best expert. This connects the concept of expert specialization to loss-based
analysis.
Proposition A.3 (Loss gap implies sparsity). Let {ℓi(x, y)}Ki=1 be the per-expert losses and
i⋆(x, y) ∈ argmini∈[K] ℓi(x, y) be any minimizer. Define the mixture-of-losses ℓ̄(x, y) =∑K

i=1 πi(x) ℓi(x, y) and the loss gap

∆(x, y) :=

{
mink ̸=i⋆(x,y)

(
ℓk(x, y)− ℓi⋆(x, y)

)
, K ≥ 2,

0, K = 1.

Then
ℓ̄(x, y) ≥ ℓi⋆(x, y) +

(
1− πi⋆(x)

)
∆(x, y).

Equivalently, for any ∆(x, y) > 0,

πi⋆(x) ≥ 1− ℓ̄(x, y)− ℓi⋆(x, y)

∆(x, y)
.

Proof. Since i⋆ is a minimizer, for all j ̸= i⋆ we have ℓj(x, y)− ℓi⋆(x, y) ≥ ∆(x, y). Therefore,

ℓ̄(x, y)− ℓi⋆(x, y) =

K∑
j=1

πj(x)
(
ℓj(x, y)− ℓi⋆(x, y)

)
=

∑
j ̸=i⋆

πj(x)
(
ℓj(x, y)− ℓi⋆(x, y)

)
≥

∑
j ̸=i⋆

πj(x)∆(x, y) =
(
1− πi⋆(x)

)
∆(x, y),

which yields the stated inequality. Rearranging gives the equivalent lower bound on πi⋆(x).
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A.3 OOD RISK: COVERAGE + SELECTION

Finally, we return to the main theorem on OOD risk. This result decomposes the risk of the MoE
into three interpretable terms: the oracle risk (if the aligned expert were always selected), a coverage
penalty (arising when no expert perfectly matches the test distribution), and a selection penalty
(arising when the gating function fails to concentrate on the aligned expert). The proof makes
explicit the role of Jensen’s inequality and shows how the sparsity results above fit into the broader
risk bound.

Theorem A.4 (OOD risk: coverage + selection). Fix an OOD environment D′ = Dm′ . For the
environment-aligned expert i⋆(m′), define

Γm′(x, y) := max
j ̸=i⋆(m′)

(
ℓj(x, y)− ℓi⋆(m′)(x, y)

)
.

Then, under Assumptions 3.5 and 3.4,

RD′(MoE) ≤ RD′(h⋆
m′)︸ ︷︷ ︸

oracle risk

+ εcov(m
′)︸ ︷︷ ︸

coverage via diversity

+ E(x,y)∼D′
[
(1− πi⋆(m′)(x)) Γm′(x, y)

]︸ ︷︷ ︸
selection penalty via sparsity

.

Proof. By convexity of cross-entropy in the logits,

RD′(MoE) = ED′
[
ℓCE(zmix(x), y)

]
≤ ED′

[
ℓ̄(x, y)

]
, ℓ̄(x, y) :=

K∑
i=1

πi(x) ℓi(x, y).

Fix (x, y) and abbreviate i⋆ = i⋆(m′). Decompose

ℓ̄(x, y) = πi⋆(x) ℓi⋆(x, y) +
∑
j ̸=i⋆

πj(x) ℓj(x, y) = ℓi⋆(x, y) +
∑
j ̸=i⋆

πj(x)
(
ℓj(x, y)− ℓi⋆(x, y)

)
.

By definition of Γm′(x, y), each difference satisfies ℓj(x, y)− ℓi⋆(x, y) ≤ Γm′(x, y), hence

ℓ̄(x, y) ≤ ℓi⋆(x, y) +
( ∑

j ̸=i⋆

πj(x)
)
Γm′(x, y) = ℓi⋆(x, y) +

(
1− πi⋆(x)

)
Γm′(x, y).

Taking expectations under D′ yields

RD′(MoE) ≤ ED′
[
ℓi⋆(x, y)

]
+ ED′

[
(1− πi⋆(x)) Γm′(x, y)

]
=

RD′(hi⋆) + ED′
[
(1− πi⋆(x)) Γm′(x, y)

]
.

Finally, by Assumption 3.5, RD′(hi⋆) ≤ RD′(h⋆
m′) + εcov(m

′), which proves the claim.

B DETAILED RELATED WORKS

B.1 CAUSAL SUBGRAPH-BASED OOD LEARNING.

LECI enforces label–environment independence by learning edge masks such that the label is inde-
pendent of the environment and the environment is independent of the causal subgraph (Gui et al.,
2023). UIL jointly enforces semantic and structural invariance, aligning graphs across environments
using graphon distances (Sui et al., 2025). LIRS instead learns spurious features first and removes
them from ERM-learned features, thereby capturing a broader set of invariant subgraphs (Yao et al.,
2025). DIR discovers label-causal subgraph rationales by intervening on the training distribution
and selecting features invariant across the induced environments, filtering out spurious shortcuts
(Wu et al., 2022). CIGA learns causally invariant graph representations by extracting subgraphs
that maximally preserve label-relevant intra-class information (Chen et al., 2022). GSAT applies
an information-bottleneck–driven stochastic attention to mask task-irrelevant nodes/edges, yielding
faithful rationales (Miao et al., 2022). CSIB learns label-causal subgraphs under a causal model
while jointly optimizing invariant risk with a graph information bottleneck to balance invariance
versus compression for FIIF/PIIF (An et al., 2024).
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B.2 INSTANCE HETEROGENEITY.

GSAT enforces adversarial consistency to discourage reliance on unstable features, thereby enabling
more robust predictions across heterogeneous samples (Miao et al., 2022). GALA explicitly models
multiple latent graph views and aggregates them to capture sample-level causal diversity (Chen et al.,
2023). AIA generates new environments through adversarial augmentation while preserving stable
features, simulating heterogeneity under covariate shift (Sui et al., 2023). Other approaches such
as FLAG (Lu et al., 2024), StableGNN (Yao et al., 2024), and GraphMETRO (Wu et al., 2024)
similarly expand training coverage via data augmentation.

GSAT enforces adversarial consistency to discourage reliance on unstable features, thereby enabling
more robust predictions across heterogeneous samples (Miao et al., 2022). GALA explicitly models
multiple latent graph views and aggregates them to capture sample-level causal diversity (Chen et al.,
2023). AIA generates new environments through adversarial augmentation while preserving stable
features, simulating heterogeneity under covariate shift (Sui et al., 2023). FLAG enforces large-scale
augmentation by applying instant feature-level adversarial noise during training while preserving
graph topology (Lu et al., 2024). StableGNN pools subgraphs into high-level variables and adds a
causal-variable distinguishing penalty term to prioritize stable correlations under distribution shifts
(Fan et al., 2023).

B.3 MIXTURE-OF-EXPERTS FOR GNNS.

MoE architectures allocate computation across experts selected by a gating function (Jacobs et al.,
1991; Shazeer et al., 2017). On graphs, GMoE leverages MoE layers to scale graph transformers
efficiently (Wang et al., 2023a). MixGNN employs expert routing to improve efficiency on large-
scale graph tasks (Chen et al., 2025). Other variants (Hu et al., 2022) similarly focus on distributing
computation or scaling to large graphs. These methods demonstrate the potential of MoE for graphs
but do not target OOD generalization.

B.4 GRAPHMETRO.

In the OOD setting, GraphMETRO decomposes distributional heterogeneity and aligns referential
representations across shifts by a gated mixture-of-experts with shift-specialized experts (Wu et al.,
2024). However, this design requires the selection of shift types before training with no guarantee
that the selected shift types are the ones that will be encountered at test time. Furthermore, these
perturbations risk altering label semantics unknowingly. In contrast, our approach uses MoE not for
augmentation, but for causal subgraph identification, encouraging experts to extract diverse causal
subgraphs and thereby directly modeling instance heterogeneity.

B.5 OUR APPROACH.

Unlike prior methods, we do not rely on strong assumptions about the underlying SCM, as in
many causal approaches, nor do we risk altering the label semantics through perturbations, as
in augmentation-based methods. Our framework instead learns to identify candidate causal sub-
graphs through expert-specific masks, with a sparse gating mechanism selecting among them on
a per-instance basis. This design encourages experts to specialize in distinct causal explanations
and allows the model to adaptively choose the most relevant one for each input, thereby capturing
instance-level heterogeneity.

C IMPLEMENTATION DETAILS

C.1 EXPERT SUBGRAPH EXTRACTION

Given an input graph x = (V,E,X), we first compute node embeddings using a shared GNN
encoder. Each expert k ∈ [K] produces edge-level mask logits ℓ(k)e via a small expert-specific MLP
applied to the concatenated embeddings of the edge endpoints. The logits are transformed into
binary masks using a Gumbel–sigmoid straight-through estimator:

m(k)
e = 1

{
σ
(

ℓ(k)
e +g
τ

)
> 0.5

}
,
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where g is Gumbel noise, σ is the sigmoid, and τ = 0.1 is the temperature. Hard binary masks
m

(k)
e are used in the forward pass to produce the masked graph G(k), while gradients flow through

the continuous relaxation during backpropagation. Node weights are induced from their incident
edges, and isolated nodes are removed. Each expert has its own GNN encoder and classifier head.
Unless otherwise specified, we adopt the Graph Isomorphism Network (GIN) following the GOOD
benchmark configuration: hidden dimension 300, depth 3, dropout 0.5.

C.2 TASK LOSS

For each expert k, we compute the per-sample cross-entropy

ℓ
(k)
CE (x, y) = CE

(
θk(G

(k)), y
)
.

The overall task loss is a gate-weighted aggregation across experts:

ℓCE(x, y) =

K∑
k=1

πk(x) ℓ
(k)
CE (x, y),

ensuring that experts favored by the gate receive stronger gradients, thereby encouraging specializa-
tion.

C.3 MASK REGULARIZATION

To control the size of extracted subgraphs, we regularize the average fraction of edges retained by
each expert. For expert k, the observed keep-rate on graph g is

ρ̂(k)g =
1

|E|
∑
e∈E

m(k)
e .

We penalize deviations from a target ρ ∈ [0, 1] via

ℓ(k)reg =
(
ρ̂(k)g − ρ

)2
.

This discourages degenerate solutions where experts keep either too few or too many edges.

C.4 DIVERSITY LOSS

To prevent collapse of experts onto identical subgraphs, we enforce the semantic diversity condition
(Definition 3.1). Masks are standardized, correlations are computed, and we penalize high off-
diagonal correlations:

ℓdiv =
1

K(K − 1)

∑
i̸=j

max{0, |C(g)
ij | − τcorr},

where C
(g)
ij is the correlation between standardized masks of experts i and j on graph g. This loss

directly encourages experts to specialize on different subgraphs.

C.5 GATING MECHANISM

Gate inputs. The gate does not operate directly on the raw graph but instead consumes diagnostic,
label-free features derived from each expert’s outputs. For expert k and sample b, we construct a
feature vector Φb,k ∈ R10:

Φb,k =
[
max

c
pb,k(c), marginb,k, H(pb,k), − log

∑
c

ezb,k(c), −KL(pb,k ∥ pweak
b,k ),

− 1
K−1

∑
j ̸=k

KL(pb,k ∥ pb,j), H(penvb,k ), H(pspurb,k ), nb, mb

]
,

where pb,k = softmax(zb,k) are class probabilities from expert k, marginb,k is the difference
between the top-1 and top-2 probabilities, H(·) is Shannon entropy, and the energy term is
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− log
∑

c exp(zb,k(c)). The KL terms capture stability under weak augmentations and pairwise
disagreement between experts. penvb,k and pspurb,k are outputs of environment and spurious classifiers,
while nb and mb denote the number of nodes and edges. The feature vector is passed through
a two-layer MLP with hidden dimension 64 and ReLU activations. Outputs are normalized with
Entmax(α = 1.38), yielding sparse gate probabilities πb,1:K .

Gate loss. The gate is trained with three complementary objectives:

(i) Teacher–student alignment. A teacher distribution qb is constructed from expert competence
signals:

rb,k = −ℓCE(zb,k, yb)− wla ℓLA,b,k − wea ℓEA,b,k, qb = softmax
(

rb
τoracle

)
.

The student is the gate output pb = Entmaxα=1.38(sb), where sb are gate scores. The alignment
loss is

Lalign = KL(qb ∥ pb).

(ii) Balanced usage. To avoid collapse to a single expert, we regularize the average gate distribution
over a batch:

Lbalance = KL(u ∥ p̄), p̄ = 1
B

∑
b

pb,

where u is uniform over experts.

(iii) Per-sample sparsity. To encourage sparse routing, we penalize high-entropy gate outputs:

Lsparse =
1
B

B∑
b=1

H(pb), H(pb) = −
K∑

k=1

pb,k log pb,k.

The final gate loss is
Lgate = Lalign + Lbalance + Lsparse.

C.6 FINAL OBJECTIVE

The overall training loss is

L = ℓCE + λregℓreg + λdivℓdiv + λgateLgate.

Here ℓreg = 1
K

∑
k ℓ

(k)
reg , and λreg, λdiv, λgate are loss weights. This formulation integrates the task,

coverage, selection, and diversity principles while guarding against degenerate solutions and expert
starvation.

C.7 HYPERPARAMETER SETTINGS

For all experiments, we adopt a common set of fixed hyperparameters. Each expert network is
implemented as a Graph Isomorphism Network (GIN) with hidden dimension 300, three layers,
and a dropout rate of 0.5. The gating network is a two-layer MLP with hidden dimension 64 and
ReLU activations, followed by an Entmax transformation with α = 1.38 to produce sparse routing
probabilities. The loss weights are set to 1.0 for the task cross-entropy, mask regularization, and
diversity losses, and 0.1 for the gate loss. Optimization is performed with Adam using a weight
decay of 10−4. The learning rate is reduced by a factor of two if the validation performance does
not improve by at least 0.001 for 10 consecutive epochs.

In addition to these fixed settings, we tune a small number of hyperparameters. The mask
keep-rate prior ρ is sampled uniformly between 0.1 and 0.9. The learning rate is selected from
{0.001, 0.0005, 0.0001}, and the batch size is chosen from {32, 64, 128, 256, 512}. Hyperparam-
eter tuning is conducted with 10 independent trials per dataset, each initialized with a different
random seed. The best configuration is selected based on validation performance, retrained on the
training set, and finally evaluated on the held-out test sets over five different seeds. This procedure
ensures consistent model selection without any test leakage.
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D CAUSAL ASSUMPTIONS

Problem setup. Each input is a graph x = (V,E,X) with label y ∈ Y . Let Gc denote
causal/stable substructures and Gs denote spurious/environmental substructures. We focus on co-
variate shift: the marginal over graphs changes across environments, while p(y | x) is stable, i.e.,
ptrain(x) ̸= ptest(x) but ptrain(y | x) = ptest(y | x).

FIIF vs. PIIF. Following (Gui et al., 2023), fully/partially informative invariant features formalize
how Gs interacts with Gc and environments E. Under FIIF, Gs is influenced by both Gc and E,
creating spurious dependence Y ← Gc → Gs; under PIIF, a collider induces Gs ↔ Y through
Gc (e.g., Y ← Gc → G ← Gs). These regimes explain why Gs can correlate with Y even when
noncausal.

WHAT PRIOR METHODS ASSUME

LECI (Gui et al., 2023). LECI jointly enforces (i) label–environment causal independence: Gc⊥
E and (ii) label–spurious independence: Gs⊥Y (operationalized via adversarial objectives), aiming
to recover invariant subgraphs. In FIIF/PIIF regimes, these constraints are used to filter Gs and keep
Gc.

UIL (Sui et al., 2025). UIL posits a stronger structural invariance: the stable (causal) part
of graphs within each class shares a class-specific graphon pattern that is invariant across all
(seen/unseen) environments; semantic invariance is then layered on top. In effect, Gc is assumed
structurally invariant across environments.

DIR and related. DIR (Wu et al., 2022) also targets invariant rationales/causal attention, typi-
cally constructing interventional/augmented environments and enforcing invariance of the predictive
mechanism across them.

WHY THESE ASSUMPTIONS BREAK IN PRACTICE

Concrete examples.

• Chemistry. Multiple active chemotypes for the same endpoint; scaffold/time/source shifts
alter Gs and even the prevalence of certain Gc’s, violating structural uniqueness and Gs⊥
Y (Wu et al., 2018; Hu et al., 2020).

• Social/text graphs. Domain-specific syntax/community structures change across splits;
Gs (e.g., degree/length) correlates with Y via FIIF/PIIF pathways (Gui et al., 2022).

General reasons. (i) Instance heterogeneity: real tasks often admit multiple causal explanations
within the same class (different Gc’s per instance). In molecular property prediction, distinct chemo-
types/functional groups can yield the same label (e.g., multiple acidic moieties), and scaffold splits
explicitly emphasize cross-chemotype variation; thus any single class-graphon assumption can be
violated. (ii) Y –Gs correlation (FIIF/PIIF): even when Gs is noncausal, it may correlate with Y
via Gc, making Gs⊥̸Y and breaking LECI-style independence assumptions. Recent theory shows
that environment augmentation cannot, in general, identify invariance without additional biases;
moreover, Gs and Y can have arbitrary correlation, making environment inference/labeling funda-
mentally hard (Chen et al., 2023).

OUR ASSUMPTION (MINIMAL AND ROBUST)

We assume only that each graph admits at least one causal subgraph Gc that governs Y . We
do not assume (i) Gc is unique within a class, (ii) Gc is structurally identical across environments
(no class-graphon), or (iii) Gs ⊥ Y or Gc ⊥ E. This minimal assumption tolerates instance-level
heterogeneity (different Gc’s per instance), admits FIIF/PIIF couplings, and aligns with practical
datasets where multiple mechanisms yield the same label (e.g., multiple binding motifs or syntax
patterns). Benefit: we avoid brittle structural/independence assumptions and instead learn to select
among diverse causal hypotheses at the instance level.
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Table 7: Performance of the MoE framework with 1, 4, and 8 experts. Standard deviations are
reported in parentheses.

Experts HIV ↑ Twitter ↑ Motif ↑ SST2 ↑ Avrg ↑Scaffold Size Length Basis Size Length

1 67.13 (2.2) 63.48 (0.9) 58.68 (1.7) 89.3 (2.1) 65.31 (1.2) 81.11 (1.1) 70.84
4 70.65 (1.3) 65.35 (1.3) 60.48 (0.7) 91.79 (1.5) 76.40 (2.1) 83.41 (1.2) 74.68
8 71.55 (1.4) 66.98 (1.0) 61.13 (1.1) 92.8 (1.4) 75.52 (2.9) 83.73 (1.4) 75.29

EMPIRICAL SUPPORT: SINGLE-EXPERT PERFORMANCE

Table 7 provides empirical evidence for the strength of this assumption-light design. In the single-
expert setting, the model reduces to the simplest form of causal subgraph extraction: a single extrac-
tor, regularized by ρ, feeding into a GNN trained like standard ERM. The GNN is optimized only
with the task loss, while the extractor is trained with the task loss plus the regularization term. This
design makes no additional assumptions about the underlying causal SCM beyond the sparsity prior,
representing a minimal instantiation of causal subgraph methods. Remarkably, despite its simplic-
ity, this approach outperforms all but one causal baseline (LECI) in average performance across all
datasets. This result suggests that the explicit structural assumptions encoded in prior causal meth-
ods may in fact be too restrictive or fragile, and that a more assumption-light approach can provide
stronger and more reliable generalization.

E DATASET DETAILS

We provide dataset-specific information for the four GOOD tasks used in the main paper. Each
task introduces a different type of structural or distributional shift, following the benchmark design
in Gui et al. (2022).

GOOD-HIV. This task is a molecular property prediction problem derived from the MoleculeNet
HIV dataset. Each graph corresponds to a molecule, where nodes are atoms and edges are chemical
bonds. The prediction task is binary classification: whether the molecule inhibits HIV replication.
To evaluate OOD generalization, two types of environment splits are defined. The scaffold split par-
titions molecules according to their core scaffolds, such that training and test sets contain molecules
with distinct underlying structures. The size split creates a distribution shift by separating molecules
based on the number of heavy atoms, exposing models to molecules of substantially different sizes at
test time. These shifts test whether models can generalize beyond memorized molecular backbones
and size ranges.

GOOD-Motif. This synthetic dataset is designed to provide controlled graph-level classification
tasks with interpretable shifts. Each graph is generated by attaching motifs (e.g., cycles, cliques,
houses) onto a random base graph. The label depends on the presence or type of motif. The bench-
mark defines two kinds of shifts. In the motif-basis split, the set of motifs used for training differs
from those used in evaluation, requiring extrapolation across structural primitives. In the size split,
the base graphs differ in size between environments, requiring robustness to distribution shifts in
graph order and density. This dataset isolates structural shifts in a controlled synthetic setting, mak-
ing it useful for probing whether models can truly capture causal motif information.

GOOD-Twitter. This dataset consists of ego-networks from Twitter users. Each ego-network is
represented as a graph where the central node corresponds to the ego user, and edges represent social
connections among the ego and their neighbors. The task is binary classification of user attributes.
The primary distribution shifts are domain shifts across different user communities, which result in
differences in graph sparsity, degree distributions, and local structural motifs. Since ego-networks
are sampled from diverse domains, training and test sets differ significantly in their structural prop-
erties, requiring models to generalize across heterogeneous social network subgraphs.

GOOD-SST2. This dataset is based on the Stanford Sentiment Treebank 2 (SST2). Each sentence
is parsed into a dependency tree, which serves as the input graph. The task is binary classification of
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Table 8: Effect of learned gating on Twitter and SST2. Uniform: uniform averaging of logits (no
gating). Majority: majority voting (no gating). Top 1: sparse selection of the top-1 expert predicted
by the gate. Top 2: sparse selection of the top-2 experts predicted by the gate. Gate Weight (Soft):
weighted averaging of logits using the gate weights (used in our method).

Learned Gating Twitter SST2

Uniform 59.92 82.72
Majority 58.39 82.99
Top 1 56.36 79.36
Top 2 59.11 82.13
Gate Weight (Soft) 61.13 83.73

sentence sentiment (positive vs. negative). The distribution shifts are introduced by partitioning the
data according to linguistic structures. Specifically, environments differ in the average tree depth and
branching factors, leading to structural shifts in dependency graphs. These shifts test whether graph
models can capture sentiment cues in syntactic structures when faced with substantial variation in
parse tree topology across domains.

Overall, these four datasets cover both real-world domains and synthetic graphs, and they introduce
diverse OOD challenges, including scaffold and size shifts, motif-basis changes, domain hetero-
geneity, and structural variation. This variety makes them a comprehensive testbed for evaluating
the robustness of graph OOD methods.

F ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments and discussions.

F.1 HIV DATASET

For HIV dataset, we apply class balanced sampling during batch sampling and logit adjustment
during training (Wang et al., 2023b). This follows the convention of LIRS and GALA who apply
similar techniques to mitigate the class imbalance (Yao et al., 2025; Chen et al., 2023). Without these
techniques, our performance on HIV-Scaffold and HIV-Size drops slightly from 71.55 to 70.65 and
66.98 to 65.35, respectively. In this case, our method still achieves the best average performance
and average rank across all evaluated baselines.

F.2 GATING MECHANISM

We next assess the contribution of the gating mechanism. Our framework employs a learned gate that
assigns input-dependent weights to experts, forming a weighted combination of their predictions.
Table 8 compares this design to several alternatives. On both Twitter and SST2, uniform averaging
already benefits from expert complementarity, but it falls short of the learned gate (59.92 vs. 61.13 on
Twitter, 82.72 vs. 83.73 on SST2). Majority voting performs similarly or worse (58.39 and 82.99),
suggesting that ignoring the confidence of individual experts limits robustness. Sparse selection
of only the top-1 or top-2 experts consistently underperforms (e.g., 56.36/79.36 and 59.11/82.13),
showing that over-reliance on top-k experts on all samples discards useful complementary informa-
tion. By contrast, the learned gate yields the best performance on both datasets, highlighting that
adaptive weighting is crucial for fully exploiting expert specialization. Importantly, the gate not only
aggregates predictions effectively but also mitigates expert collapse by encouraging specialization
into complementary substructures.

F.3 VISUALIZATION

We visualize the predicted subgraphs from different experts on the Motif-Basis dataset. The ground
truth causal subgraph is house. We can see that the expert that predicts the house subgraph is the
expert that is most specialized in predicting the house subgraph.
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Figure 2: Predicted subgraphs from different experts on the Motif-Basis dataset. Ground truth causal
subgraph: house.

LARGE LANGUAGE MODELS STATEMENT

Large Language Models were used exclusively for editorial purposes, such as refining language and
improving readability. All scientific contributions were developed solely by the authors.
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