DIVERSE AND SPARSE MIXTURE-OF-EXPERTS FOR CAUSAL SUBGRAPH—BASED OUT-OF-DISTRIBUTION GRAPH LEARNING

Anonymous authorsPaper under double-blind review

ABSTRACT

Current state-of-the-art methods for out-of-distribution (OOD) generalization lack the ability to effectively address datasets with heterogeneous causal structures at the instance level. Existing approaches that attempt to handle such heterogeneity either rely on data augmentation, which risks altering label semantics, or impose causal assumptions whose validity in real-world datasets is uncertain. We introduce a novel *Mixture-of-Experts (MoE)* framework that can model heterogeneous causal structures without relying on restrictive assumptions. Our key idea is to address instance-level heterogeneity by enforcing semantic *diversity* among experts, each generating a distinct causal subgraph, while a learned gate assigns *sparse* weights that adaptively focus on the most relevant experts for each input. Our theoretical analysis shows that these two properties jointly reduce OOD error. In practice, our experts are scalable and do not require environment labels. Empirically, our framework achieves strong performance on the GOOD benchmark across both synthetic and real-world structural shifts.

1 Introduction

Out-of-distribution (OOD) generalization concerns learning models that remain reliable when the test distribution differs from training (Ye et al., 2021). Despite recent progress, it remains a fundamental challenge, especially for graphs (Fan et al., 2023), whose complexity admits shifts not only in node or edge attributes but also in structural properties such as size, sparsity, or motif frequency (Wu et al., 2018). Such structural shifts can mislead models, as spurious topological correlations often dominate learning (Gui et al., 2022).

A dominant paradigm for graph OOD learning is *causal subgraph* identification: the idea that each graph contains a causal substructure responsible for the label, while the remainder reflects spurious variation (Gui et al., 2023; Sui et al., 2025; An et al., 2024; Yao et al., 2025; Chen et al., 2022). In principle, recovering the causal subgraph should yield predictions that are robust to distribution shifts. However, because causal subgraphs are unobserved, most methods rely on restrictive assumptions (e.g., the spurious complement is independent of the label, or the causal subgraph is invariant across environments) that may fail in practice (Gui et al., 2022; 2023). More critically, these approaches are challenged by *instance heterogeneity*: causal subgraphs can differ across individual samples, even within the same environment.

To account for this, some approaches simulate heterogeneity through data augmentation (Wu et al., 2024; Sui et al., 2023). Yet such perturbations cannot guarantee label validity, since altering graph structure may inadvertently change the true causal subgraph. This problem is especially acute in datasets like Motif, where labels are tied directly to specific substructures (Gui et al., 2022; Wu et al., 2018). These limitations motivate methods that directly model causal diversity at the instance level rather than approximating it through augmentation.

We address this gap by introducing a *Mixture-of-Experts (MoE)* framework specifically designed for causal subgraph—based OOD graph learning. Unlike prior MoE approaches that rely on predefined shift types or augmentation strategies, our method employs experts as causal subgraph extractors, enabling them to specialize in distinct causal mechanisms. A learned gating network adaptively selects the most relevant experts for each instance. Our theoretical analysis shows that (i) *semantic*

diversity is necessary for meaningful specialization, and (ii) instance-level sparsity naturally follows from diversity via induced loss gaps. Together, these results provide a principled justification for MoE in OOD graph learning. Importantly, our framework does not assume environment labels or causal structure, making it assumption-light. Building on this foundation, our contributions are threefold:

- 1. **Theory:** We provide a principled justification for MoE in graph OOD learning by deriving a formal risk bound, showing that *semantic diversity* among experts and *instance-level sparsity* during gating jointly reduce OOD error.
- 2. **Implementation:** We design a causal subgraph-based MoE framework that instantiates these principles through a decorrelation regularizer for diversity and a learnt gating mechanism for sparsity, without requiring environment labels or strong causal assumptions.
- 3. **Empirics:** On the GOOD benchmark (Gui et al., 2022), our framework achieves strong performance across synthetic and real-world structural shifts. Ablations verify the necessity of diversity and sparsity.

2 BACKGROUND

Graph OOD Learning. In graph learning, each input is a graph x with an associated label y. In an OOD setting, models are trained on data drawn from certain environments but are expected to perform well when evaluated on new environments that were not seen during training. We focus on *covariate shift*, where the relationship between x and y is stable but the distribution of graph inputs changes. This reflects realistic cases where the causal mechanism is preserved, yet nuisance factors such as graph size, sparsity, or motif frequency vary.

Causal subgraph paradigm. A common basis for graph OOD learning is the causal subgraph paradigm: each graph input contains a causal subgraph G_c that determines the label y, while the complement G_s captures spurious variation. Successfully identifying G_c would yield shift-invariant predictions, but since G_c is unobserved, existing methods rely on assumptions about causal structure (Gui et al., 2023; Sui et al., 2025; Chen et al., 2022; An et al., 2024; Yao et al., 2025; Wu et al., 2022; Miao et al., 2022). Examples include assuming $G_s \perp Y$ (Gui et al., 2023) or that G_c is invariant across environments or classes (Sui et al., 2025). Such assumptions are often unrealistic: G_s may correlate with Y if $Y \rightarrow G_s$ (e.g., molecular scaffolds shared by active compounds (Zhang et al., 2024)), and causal invariance overlooks instance heterogeneity, discussed next.

Instance heterogeneity. Instance heterogeneity means that the causal subgraph varies not only across environments but also across individual samples. In molecular property prediction, for example, one compound's activity may depend on a particular functional group, while another's relies on a different one (Wu et al., 2023; Inae et al., 2024; Wu et al., 2018). In such cases, assuming a single invariant G_c across environments or classes will fail. Some approaches attempt to simulate heterogeneity with data augmentation (Lu et al., 2024; Yao et al., 2024; Wu et al., 2024; Chen et al., 2023; Sui et al., 2023; Miao et al., 2022), but perturbations cannot guarantee label validity: altering graph structure may change the true causal subgraph. This problem is especially acute in datasets like Motif, where the task is to identify specific substructures (Gui et al., 2022). These limitations motivate the need for frameworks that directly model causal diversity at the instance level. We propose an alternative perspective: model heterogeneity directly through a MoE framework by allowing multiple experts to extract diverse causal subgraphs and using instance-specific gating to focus on the most relevant ones.

MoE for GNNs. MoE architectures (Jacobs et al., 1991; Shazeer et al., 2017) consist of multiple experts combined through a gating function, and in graph domains they have primarily been applied to improve scalability and efficiency (Wang et al., 2023a; Chen et al., 2025; Hu et al., 2022). To the best of our knowledge, GraphMETRO is the only OOD-oriented MoE approach to date, assigning each expert to a predefined shift type and training them as augmentation strategies invariant to those shifts (Wu et al., 2024). This approach naturally inherits the label validity risks mentioned above. In contrast, we employ MoE for *causal subgraph identification*, encouraging experts to capture diverse causal hypotheses and directly addressing instance heterogeneity. Additional related work is discussed in Appendix B.

3 Method

In this section, we derive an explicit risk bound that decomposes OOD error into *coverage* and *selection* terms, and we show how *diversity* and *sparsity* jointly serve to reduce it. All proofs are deferred to Appendix A.

3.1 Preliminaries and Notation

We consider supervised learning on graphs, where each instance is x = (V, E, X) with node set V, edge set E, and node features X, together with an associated label $y \in \mathcal{Y}$. Let \mathcal{X} denote the input space of graphs and \mathcal{D} a distribution over $(x,y) \in \mathcal{X} \times \mathcal{Y}$. We write $\mathcal{D}_{\mathcal{X}}$ for the marginal on \mathcal{X} . A predictor h maps x to logits $z_h(x) \in \mathbb{R}^C$, where $C = |\mathcal{Y}|$ is the number of classes and $c \in \{1, \ldots, C\}$ indexes a class. Predictions are evaluated with the cross-entropy loss $\ell_{\mathrm{CE}}(z,y)$ (Goodfellow et al., 2016), and the risk of h under distribution \mathcal{D} is

$$R_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell_{\mathrm{CE}}(z_h(x),y)].$$

We define OOD generalization with respect to a family of environments \mathcal{M} , where each $m \in \mathcal{M}$ corresponds to a distribution \mathcal{D}_m over $\mathcal{X} \times \mathcal{Y}$. Training occurs on a subset $\mathcal{M}_{\text{train}}$, while evaluation is on unseen test environments $\mathcal{M}_{\text{test}}$ with $\mathcal{M}_{\text{test}} \setminus \mathcal{M}_{\text{train}} \neq \emptyset$. We denote a particular unseen test environment by m', with associated distribution $\mathcal{D}_{m'}$. The objective is to control the worst-case risk

$$R_{\text{OOD}}(h) = \sup_{m \in \mathcal{M}_{\text{test}}} R_{\mathcal{D}_m}(h).$$

We focus on the case of *covariate shift*, where the marginal distribution over \mathcal{X} varies across environments while the conditional distribution $P(y \mid x)$ remains stable.

Mixture-of-Experts. Let $\{h_i\}_{i=1}^K$ denote K experts, and let $\pi(x) \in \Delta^K$ be a gating distribution (sometimes we omit the dependence on x and write simply π). Each expert h_i outputs logits $z_i(x) \in \mathbb{R}^C$. The MoE aggregates predictions via

$$z_{\text{mix}}(x) = \sum_{i=1}^{K} \pi_i(x) z_i(x), \qquad \hat{y}(x) = \arg\max_{c \in \{1, \dots, C\}} z_{\text{mix}}(x)[c].$$

For expert h_i , the cross-entropy loss is $\ell_i(x,y) = \ell_{\rm CE}(z_i(x),y)$, and the MoE risk under distribution \mathcal{D} is

$$R_{\mathcal{D}}(\text{MoE}) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell_{\text{CE}}(z_{\text{mix}}(x), y)].$$

We also define the auxiliary mixture-of-losses quantity

$$\bar{\ell}(x,y) := \sum_{i=1}^K \pi_i(x) \,\ell_i(x,y),$$

which by Jensen's inequality (Jensen, 1906) upper-bounds the mixture-of-predictions loss.

3.2 DIVERSITY BETWEEN EXPERTS (COVERAGE)

For a MoE model to be effective, experts must represent distinct hypotheses; otherwise the gate has no meaningful choice and the model collapses. We therefore encourage *semantic diversity*: experts should emphasize different subgraphs in the input, providing *coverage* over latent causal mechanisms. As we will show, such diversity not only prevents model collapse but also induces non-trivial specialization, which in turn forces sparse gating.

Definition 3.1 (Semantic diversity). Let expert i produce a mask probability vector $\mathbf{v}_i^{(x)} \in [0,1]^{|I_x|}$ on input graph x (nodes/edges indexed by I_x). Standardize

$$\tilde{\mathbf{v}}_i^{(x)} = \frac{\mathbf{v}_i^{(x)} - \mu_i^{(x)} \mathbf{1}}{\sigma_i^{(x)} + \varepsilon}, \quad \mu_i^{(x)} = \frac{1}{|I_x|} \sum_{u \in I_x} \mathbf{v}_i^{(x)}(u), \ (\sigma_i^{(x)})^2 = \frac{1}{|I_x|} \sum_{u \in I_x} \left(\mathbf{v}_i^{(x)}(u) - \mu_i^{(x)}\right)^2,$$

with a small $\varepsilon > 0$ to avoid division by zero. Let $\rho_{ij}^{(x)} = \frac{1}{|I_x|} \langle \tilde{\mathbf{v}}_i^{(x)}, \tilde{\mathbf{v}}_j^{(x)} \rangle$. We say the experts are semantically diverse if

$$\frac{1}{K(K-1)} \sum_{i \neq j} \mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}} [|\rho_{ij}^{(x)}|] \leq \tau_{corr} \quad \textit{for some } \tau_{corr} > 0.$$

By enforcing low correlation between experts' masks, semantic diversity ensures experts attend to different parts of the input graph. Under standard GNN encoders whose logits are Lipschitz in masked embeddings (Scarselli et al., 2008; Joshi et al., 2023), low mask correlation encourages encoding of distinct structural signals, discouraging collapse onto the same subgraph. This guarantees *coverage* of multiple causal hypotheses, giving the MoE leverage to identify causal subgraphs under heterogeneity.

3.3 Instance-level sparsity (selection)

If one expert predicts the causal mechanism for an input while others do not, the mixture is reliable only if the gate concentrates sufficient mass on that expert: the *selection* effect. This ensures that once distinct causal mechanisms exist among the experts (via semantic diversity), the gate can isolate the correct one. To formalize this, we introduce a metric, the *loss gap*, which measures the discrepancy between the best and next-best expert on an instance.

Definition 3.2 (Loss gap). For (x, y), let $i^*(x, y) = \arg\min_{i \in [K]} \ell_i(x, y)$ denote the best expert, where $[K] = \{1, \ldots, K\}$. The loss gap is

$$\Delta(x,y) = \min_{j \neq i^{\star}(x,y)} \left(\ell_j(x,y) - \ell_{i^{\star}}(x,y) \right) \ge 0.$$

We now show that loss gaps quantitatively constrain the gate's allocation.

Proposition 3.3 (Loss gap implies sparsity). Let $\{\ell_i(x,y)\}_{i=1}^K$ be the per-expert losses and $i^\star(x,y) \in \arg\min_{i \in [K]} \ell_i(x,y)$ be any minimizer. Define the mixture-of-losses $\bar{\ell}(x,y) = \sum_{i=1}^K \pi_i(x) \ell_i(x,y)$ and the loss gap

$$\Delta(x,y) := \begin{cases} \min_{k \neq i^{\star}(x,y)} \left(\ell_k(x,y) - \ell_{i^{\star}}(x,y) \right), & K \ge 2, \\ 0, & K = 1. \end{cases}$$

Then

$$\bar{\ell}(x,y) \geq \ell_{i^{\star}}(x,y) + (1 - \pi_{i^{\star}}(x)) \Delta(x,y).$$

Equivalently, for any $\Delta(x,y) > 0$,

$$\pi_{i^{\star}}(x) \geq 1 - \frac{\bar{\ell}(x,y) - \ell_{i^{\star}}(x,y)}{\Delta(x,y)}.$$

This bound shows that to keep the mixture loss close to the best expert, the gate must assign sufficient weight to that expert. Furthermore, *larger loss gaps make this requirement stronger*. Such loss gaps are expected to arise as a consequence of diversity, which forces experts to attend to decorrelated subgraphs. We formalize this in the following assumption:

Assumption 3.4 (Diversity induces loss gaps). Let $\Delta(x,y)$ be as in Definition 3.2. There exist $\gamma > 0$, $\rho \in [0,1)$, and a measurable set $S \subseteq \mathcal{X} \times \mathcal{Y}$ with $\mathcal{D}(S) \geq 1 - \rho$ such that

$$\Delta(x,y) \geq \gamma \quad \forall (x,y) \in \mathcal{S},$$

and on S the minimizer $i^*(x,y)$ coincides with an expert aligned with the environment's causal mechanism. Semantic diversity (Definition 3.1) promotes this condition by forcing experts to attend to decorrelated subgraphs.

This assumption formalizes the idea that, under semantic diversity, one causal expert should outperform others by a margin on most inputs. Intuitively, if one expert captures the causal subgraph, then by semantic diversity, the others focus on decorrelated (likely spurious) subgraphs, yielding non-trivial loss gaps. This is validated empirically in Section 4. Hence, with sufficient diversity, loss gaps should arise on a large fraction of inputs, and the MoE can match the best expert only by *selecting* it via sparse gating: *diversity necessitates sparsity*.

3.4 AN OOD RISK DECOMPOSITION: COVERAGE AND SELECTION

We now show how these two properties jointly control OOD risk by decomposing risk into a coverage term (controlled by diversity) and a selection term (controlled by sparsity). First, we make the following assumption:

Assumption 3.5 (Mechanism coverage). Let $\{\mathcal{D}_m: m \in \mathcal{M}\}$ denote environments and $h_{m'}^{\star} \in \arg\min_h R_{\mathcal{D}_{m'}}(h)$ the oracle predictor for environment $\mathcal{D}_{m'}$. For any OOD environment $\mathcal{D}' = \mathcal{D}_{m'}$, there exists an expert $i^{\star}(m') \in [K]$ (depending only on the environment) such that

$$R_{\mathcal{D}_{m'}}(h_{i^{\star}(m')}) \leq R_{\mathcal{D}_{m'}}(h_{m'}^{\star}) + \varepsilon_{\text{cov}}(m').$$

That is, for every unseen environment, at least one expert *covers* it by achieving risk within $\varepsilon_{cov}(m')$ of the oracle predictor. To minimize OOD risk, the MoE must then *select* this expert by allocating enough probability to it, yielding:

Theorem 3.6 (OOD risk: coverage + selection). Fix an OOD environment $\mathcal{D}' = \mathcal{D}_{m'}$. For the environment-aligned expert $i^*(m')$, define

$$\Gamma_{m'}(x,y) := \max_{j \neq i^*(m')} (\ell_j(x,y) - \ell_{i^*(m')}(x,y)).$$

Then, under Assumptions 3.5 and 3.4,

$$R_{\mathcal{D}'}(\mathrm{MoE}) \ \leq \ \underbrace{R_{\mathcal{D}'}(h_{m'}^{\star})}_{\mathit{oracle \ risk}} \ + \ \underbrace{\varepsilon_{\mathrm{cov}}(m')}_{\mathit{coverage \ via \ diversity}} \ + \ \underbrace{\mathbb{E}_{(x,y) \sim \mathcal{D}'}\big[\big(1 - \pi_{i^{\star}(m')}(x)\big) \, \Gamma_{m'}(x,y)\big]}_{\mathit{selection \ penalty \ via \ sparsity}}.$$

This decomposition expresses OOD risk as three parts. The first is the *oracle risk*, the irreducible error in the target environment. The second is the *coverage term*, kept small by semantic diversity: only when experts are sufficiently diverse can the pool cover unseen test environments by ensuring at least one aligns with the causal mechanism. The third is the *selection penalty*, kept small by sparsity: loss gaps make the aligned expert identifiable, but only a sparse gate can reliably concentrate on it. Together, these conditions show that to jointly reduce OOD error, *diversity is needed to ensure a good expert exists, and sparsity is needed to ensure that it is selected*.

Figure 1: An illustration of the proposed MoE architecture. Each expert extracts a distinct candidate causal subgraph and produces predictions, which are combined by the gating network into the final output.

3.5 IMPLEMENTATION

A detailed illustration of our implementation is shown in Figure 1. Given an input graph x=(V,E,X), we first compute node embeddings with a shared GNN encoder. For each expert $i\in [K]$, a small expert-specific MLP takes the concatenated embeddings of edge endpoints and outputs a mask logit $\ell_e^{(i)}$ for every edge $e\in E$, which is later transformed into a binary selection through the Gumbel-sigmoid straight-through estimator for differentiability (Maddison et al., 2017; Jang et al., 2017). The resulting masked graph $x^{(i)}$, representing the extracted causal subgraph by expert i, is then passed through an expert-specific GNN and classifier head to produce logits $z_i(x^{(i)})$.

Predictions are combined by a lightweight MLP gate that consumes expert-derived statistics (e.g., confidence, entropy) and outputs a weight vector $\pi(x) \in \Delta^K$ over experts. The final prediction is obtained as the weighted average of expert logits using $\pi(x)$. The entire model is trained end-to-end with a combination of task, regularization, diversity, and gating losses.

Task loss. For each expert i, the overall task loss is

$$\ell_{\mathrm{CE}}(x,y) = \sum_{i} \pi_{i}(x) \,\ell_{i}(x,y),$$

where $\ell_i(x,y)$ is the per-sample cross-entropy for expert i. By weighting the loss with the gate probabilities, experts that contribute more to the final prediction receive stronger gradients, while those assigned little weight are suppressed, promoting specialization.

Regularization Loss. To control the size of extracted subgraphs, we regularize the average fraction of edges retained by each expert. For expert i on input x, let $\rho_i^{(x)}$ denote its observed keep-rate. We then penalize deviations from a target $\rho \in [0,1]$ using

$$\ell_{\text{reg}}^{(i)} = (\rho_i^{(x)} - \rho)^2,$$

which discourages degenerate solutions where experts keep either too few or too many edges.

Diversity loss. To prevent experts from collapsing onto identical subgraphs, we compute

$$\ell_{\text{div}} = \frac{1}{K(K-1)} \sum_{i \neq j} \max\{0, |\rho_{ij}^{(x)}| - \tau_{\text{corr}}\},$$

where $\rho_{ij}^{(x)}$ denotes the correlation between the masks of experts i and j on input x and the model is penalized when this correlation exceeds threshold τ_{corr} . This directly follows from the semantic diversity condition (Definition 3.1) and drives experts to specialize on distinct subgraphs, in turn ensuring coverage.

Gating loss. We train the gate with a teacher–student objective. The teacher distribution q is defined by normalizing the negative per-expert cross-entropy losses, giving higher weight to lower-loss experts, while the student distribution is the gate output $p=\pi(x)$. This alignment teaches the gate which experts are competent on which inputs. Since the task loss is gate-weighted, non-selected experts are not heavily penalized, reinforcing specialization rather than forcing uniformity among experts. To further shape the gate, we add sparsity and balance regularizers, yielding the objective

$$\ell_{\text{gate}} = \text{KL}(p||q) + \lambda_{\text{sparse}} \, \ell_{\text{sparse}}(p) + \lambda_{\text{bal}} \, \ell_{\text{bal}}(p).$$

Here, ℓ_{sparse} penalizes high-entropy distributions to enforce instance-level *sparsity*, while ℓ_{bal} encourages even usage across the batch to avoid expert starvation, supporting *coverage*. These terms are complementary: sparsity sharpens routing for each input, while balance spreads usage globally. For stability, training begins with a short warm-up phase of uniform routing so all experts receive sufficient training signals before specialization. The gate can be fine-tuned after experts have been trained to better align with the learned specializations.

Total loss. The final training objective is

$$\mathcal{L} = \ell_{CE} + \lambda_{reg}\ell_{reg} + \lambda_{div}\ell_{div} + \lambda_{gate}\ell_{gate}.$$

This loss function implements the components of the theoretical framework while incorporating additional regularizers that prevent degenerate solutions and expert starvation.

Assumption-light design without auxiliary invariance losses. Many prior OOD graph methods learn causal subgraphs through auxiliary objectives (e.g., adversarial discriminators in LECI (Gui et al., 2023), structural alignment in UIL (Sui et al., 2025)). While effective in single-model settings, these approaches are *computationally expensive* when replicated across experts and may be *unstable* (e.g., requiring finely tuned adversarial schedules that vary across experts). More critically, they rely on *restrictive causal assumptions* (e.g., $G_s \perp Y$, invariant G_c) that rarely hold in heterogeneous real-world data (Zhang et al., 2024). By contrast, our design avoids such auxiliary losses entirely. As a result, it scales gracefully with the number of experts and requires neither environment labels nor restrictive causal assumptions. This key design choice makes our method both highly scalable and assumption-light. We provide further discussion in Appendix D.

Table 1: **Results on graph classification datasets with structural shifts from the GOOD benchmark.** Values are classification accuracy (ROC-AUC for HIV) on OOD test sets, averaged over 5 runs with standard deviation in parentheses. Table sections correspond to domain generalization, data augmentation, and causal subgraph methods. We also report average performance and rank across datasets. Best results are in **bold**. † indicates methods requiring environment labels.

Method	HIV Scaffold	√ ↑ Size	Twitter ↑ Length	Mot Basis	if↑ Size	SST2 ↑ Length	Avrg ↑	Avrg Rank↓
ERM	69.89 (1.95)	58.12 (2.5)	58.56 (1.0)	64.32 (10.4)	54.29 (5.4)	80.23 (0.8)	64.24	10.83
Coral	72.33 (2.1)	60.33 (3.5)	57.33 (0.9)	65.39 (9.6)	52.39 (2.9)	79.23 (1.8)	64.50	10.33
IRM^{\dagger}	71.11 (2.7)	60.67 (1.4)	57.79 (1.9)	62.64 (10.9)	54.14 (5.2)	80.37 (1.7)	64.45	10.33
$VREx^{\dagger}$	70.94 (3.1)	61.10 (3.0)	56.55 (0.7)	65.13 (5.0)	56.97 (6.3)	79.85 (1.6)	65.09	10.83
GDRO^\dagger	67.13 (2.3)	56.91 (3.0)	56.73 (0.9)	62.63 (8.9)	52.01 (3.6)	81.33 (0.9)	62.79	12.50
$DANN^{\dagger}$	67.69 (2.9)	62.05 (2.1)	56.09 (1.7)	52.65 (6.8)	49.33 (5.4)	80.59 (0.9)	61.40	13.00
GM	66.06 (4.0)	66.24 (2.9)	56.97 (3.1)	67.33 (5.9)	61.43 (6.5)	81.96 (0.6)	66.67	7.83
AIA	71.23 (1.4)	62.33 (4.6)	57.13 (1.8)	74.18 (5.9)	56.07 (5.3)	80.91 (1.0)	66.98	7.67
GALA	74.51 (1.8)	64.89 (1.7)	60.79 (0.7)	79.11 (3.2)	72.13 (1.4)	82.42 (0.7)	72.31	2.67
LIRS	70.70 (2.3)	64.46 (2.9)	58.76 (1.4)	74.16 (3.0)	72.61 (6.9)	81.20 (0.7)	70.32	5.83
GSAT	70.76 (1.5)	61.76 (2.1)	57.13 (0.8)	62.27 (0.8)	54.12 (5.2)	80.62 (0.5)	64.44	10.67
CIGA	71.33 (1.1)	63.09 (1.6)	58.01 (2.2)	38.01 (1.4)	55.69 (6.7)	80.56 (1.7)	61.12	9.17
DIR	68.06 (5.5)	61.22 (0.8)	57.19 (0.9)	36.10 (2.5)	43.98 (3.1)	81.13 (0.7)	57.95	12.17
$LECI^{\dagger}$	74.28 (1.7)	65.76 (1.4)	59.90 (0.2)	85.74 (3.0)	71.92 (1.4)	83.27 (0.3)	73.48	2.67
UIL^\dagger	62.51 (1.7)	64.79 (0.8)	59.66 (0.9)	61.77 (4.8)	68.47 (3.1)	82.03 (0.4)	66.54	7.83
Ours	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.80 (1.4)	75.52 (2.9)	83.73 (1.4)	75.29	1.50

4 EXPERIMENTS

We now evaluate our method empirically, guided by four research questions: **RQ1**: Does the method achieve strong performance on both synthetic and real-world datasets with structural shifts? **RQ2**: Are the key components of the framework, sparsity and diversity, necessary to obtain the reported improvements? **RQ3**: Does enforcing semantic diversity induce larger loss gaps and promote expert specialization? **RQ4**: How sensitive is performance to hyperparameters?

Datasets. We evaluate on the GOOD benchmark (Gui et al., 2022), which provides training, OOD validation, and OOD test splits. Our study covers six datasets with structural shifts: HIV-Scaffold/Size (molecular), Motif-Basis/Size (synthetic motifs), Twitter-Length (social), and SST2-Length (sentiment). These span both synthetic and real-world domains under diverse structural covariate shifts. Unless otherwise specified, results are averaged over five seeds.

Hyperparameters. All models adopt the Graph Isomorphism Network (GIN) (Xu et al., 2019), the default GOOD backbone, with standard hyperparameters. Unless otherwise noted, we use eight experts within our MoE model. We tune mask keep-rate prior ρ , batch size, and learning rate over 10 trials on the OOD validation set.

Baselines. We compare against three groups of methods. (1) General domain generalization algorithms: ERM, IRM (Arjovsky et al., 2019), Coral (Sun & Saenko, 2016), V-REx (Krueger et al., 2021), GroupDRO (GDRO for brevity) (Sagawa et al., 2020), and DANN (Ganin et al., 2016). (2) Data augmentation methods that address instance heterogeneity: GraphMETRO (GM for brevity) (Wu et al., 2024), AIA (Chen et al., 2023), and GALA (Sui et al., 2023). (3) Causal subgraph algorithms: LIRS (Yao et al., 2025), GSAT (Miao et al., 2022), CIGA (Chen et al., 2022), DIR (Wu et al., 2022), LECI (Gui et al., 2023), and UIL (Sui et al., 2025). All results are reproduced using official repositories and hyperparameter settings.

4.1 RESULTS AND DISCUSSION

RQ1: Does the method achieve strong performance on both synthetic and real-world datasets with structural shifts? On the synthetic datasets (HIV-Scaffold/Size and Motif-Basis/Size), our method achieves the best performance except on HIV-Scaffold. Notably, on Motif-Basis, a common

Table 2: Performance of the MoE framework on real-world datasets (Twitter and SST2) under ablations of sparsity and diversity. Standard deviations are reported in parentheses.

Ablation Setting	Twitter ↑	SST2↑
Neither	59.93 (0.65)	82.65 (1.77)
Just Sparsity	60.10 (0.89)	82.20 (1.26)
Just Diversity	59.30 (1.03)	82.89 (1.42)
Diversity and Sparsity	61.13 (1.11)	83.73 (1.44)

ist Diversity 59.30 (1.03) biversity and Sparsity 61.13 (1.11)

Table 4: Performance of the four-expert MoE framework compared to its individual experts on Twitter and SST2. The rows under "Individual Experts" report the performance of each expert separately, while the final row (MoE) shows the accuracy of the full mixture model.

	Twitter ↑	SST2↑
Individual Experts	54.29	80.22
-	59.26	79.18
	59.64	80.39
	59.16	81.58
MoE	60.48	83.41

Table 3: Total loss gaps per-batch under ablations of diversity on Twitter, SST2, and Motif-Basis. Standard deviations are reported in parentheses.

Diversity	Loss Gap
w/	0.19 (0.011)
w/o	0.13 (0.004)
w/	0.22 (0.12)
w/o	0.07 (0.19)
w/	0.12 (0.035)
w/o	0.076 (0.024)
	w/ w/o w/ w/o w/

Table 5: Sensitivity analysis of the edge keeprate prior ρ on Twitter, SST2, and Motif-Basis. The value in brackets indicates the tuned ρ selected via validation for each dataset, with performance shown at this setting and at perturbed values.

Twitter \uparrow (0.55)	SST2↑ (0.2)	Motif-Basis ↑ (0.55)
58.75	_	90.13
60.33	82.06	89.76
61.13	83.73	92.80
59.51	83.15	92.03
60.64	83.46	90.54
	(0.55) 58.75 60.33 61.13 59.51	(0.55) (0.2) 58.75 - 60.33 82.06 61.13 83.73 59.51 83.15

sanity test for causal subgraph methods since labels are determined by the presence of specific motifs (Gui et al., 2022; 2023), our method achieves 92.8% accuracy which is comparable to oracle-level performance (Gui et al., 2023), and an 8.2% relative improvement over the next best method. On HIV–Scaffold, the severe class imbalance (over 95% majority class) makes the task especially challenging, and our method attains 71.55 ROC-AUC, ranking fourth overall. On the real-world datasets (Twitter and SST2), our method outperforms all baselines, demonstrating robustness under noisy, real-world distribution shifts. Across all datasets, our method achieves the *highest average score* (75.29) and lowest average rank (1.5). The closest competitors are LECI (73.48 average, 2.67 rank) and GALA (72.31 average, 2.67 rank), confirming substantial improvements over existing baselines.

RQ2: Are the key components of the framework, sparsity and diversity, necessary to obtain the reported improvements? In Table 2, we ablate our method on the two real-world datasets, Twitter and SST2, to examine the impact of the two core components, *semantic diversity* and *instance-level sparsity*. Removing both components drops performance to 59.93% (Twitter) and 82.65% (SST2). Using only sparsity slightly improves Twitter (60.10%) but lowers SST2 (82.20%), while using only diversity helps SST2 (82.89%) but not Twitter (59.30%). The best results arise when both are combined, 61.13% on Twitter and 83.73% on SST2, indicating that diversity and sparsity are individually insufficient but jointly necessary to achieve the reported improvements.

RQ3: Does enforcing semantic diversity induce larger loss gaps and promote expert specialization? To evaluate Assumption 3.4 (semantic diversity induces loss gaps), we compute the total loss gap within each batch and then average it over the entire test set. We then compare models trained with and without the diversity objective. Table 3 shows that semantic diversity consistently increases the average per-batch loss gap across datasets. On Twitter, the gap rises from 0.13 to 0.19 (a 46% increase); on SST2, from 0.07 to 0.22 (over 200% increase); and on Motif-Basis, from 0.076 to 0.12 (a 58% increase). These results empirically validate our assumption that semantic diversity among experts induces larger loss gaps. As an additional empirical check, Table 4 shows that the

Table 6: Performance of the MoE framework with 1, 4, and 8 experts. Standard deviations are reported in parentheses.

Evenanta	HIV ↑		Twitter ↑	Twitter ↑ Motif ↑		SST2↑	A A
Experts	Scaffold	Size	Length	Basis	Size	Length	Avrg ↑
1	67.13 (2.2)	63.48 (0.9)	58.68 (1.7)	89.3 (2.1)	65.31 (1.2)	81.11 (1.1)	70.84
4	70.65 (1.3)	65.35 (1.3)	60.48 (0.7)	91.79 (1.5)	76.4 (2.1)	83.41 (1.2)	74.68
8	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.8 (1.4)	75.52 (2.9)	83.73 (1.4)	75.29

individual experts achieve distinct levels of performance, further indicating specialization. This also suggests that the gating mechanism effectively combines the experts' complementary strengths.

RQ4: How sensitive is performance to hyperparameters? We first evaluate the effect of the edge keep-rate prior ρ on Twitter, SST2, and Motif-Basis by perturbing it around the tuned value (shown in brackets). Table 5 shows that accuracy varies by at most 1–2% under shifts of ± 0.1 or ± 0.2 , confirming robustness to moderate deviations. For example, Twitter peaks at $\rho = 0.55$ (61.13%), SST2 at $\rho = 0.20$ (83.73%), and Motif-Basis at $\rho = 0.55$ (92.80%), with nearby settings yielding comparable results. These results demonstrate that our framework is not overly sensitive to the edge keep-rate prior ρ . Furthermore, our hyperparameters are tuned over a modest budget of only 10 trials.

We then analyze the impact of the number of experts in Table 6, which compares 1, 4, and 8 experts. In the single-expert case, the model reduces to a minimal causal subgraph pipeline: a single extractor, regularized by ρ , produces a subgraph that is passed to a predictor GNN trained purely by empirical risk minimization (cross-entropy). The extractor is optimized with both the task loss and the regularization term, relying only on minimal assumptions about the underlying causal structure (i.e., the existence of a causal subgraph). While this simple setting shows a sharp drop in performance relative to 4 and 8 experts, it still surpasses all but one causal subgraph—based baseline in Table 1 (LECI), underscoring the fragility of the stronger causal assumptions made by prior causal subgraph-based methods. Moving from 1 to 4 experts yields substantial gains across all datasets, demonstrating the importance of expert diversity and sparse gating. Increasing further to 8 experts provides smaller but generally positive improvements (except on Motif-Size). Importantly, with only 4 experts, the MoE framework achieves an average accuracy of 74.68%, outperforming all baselines in Table 1, suggesting that our method is not highly sensitive to the exact number of experts once diversity is present.

5 Conclusion

In this work, we introduce a causal subgraph–based MoE framework that explicitly addresses instance-level heterogeneity, enabling different experts to capture distinct causal explanations within the same class. Our framework demonstrates that *diversity* among experts provides coverage of heterogeneous causal mechanisms, while *sparsity* in the gating step enables effective selection, together reducing OOD error. We operationalize these principles in a scalable, assumption-light architecture that requires neither environment labels nor restrictive causal assumptions. Empirically, the method achieves strong performance on the GOOD benchmark across both synthetic and real-world shifts, with ablations and visualizations confirming that experts specialize in distinct causal mechanisms. Looking ahead, broadening causal perspectives on OOD graph learning, through richer causal structures, more flexible expert designs, and closer theory–practice integration, remains an important direction for building robust and generalizable graph learning systems. We hope this work establishes MoE as a strong foundation for causal-based OOD graph learning.

REPRODUCIBILITY STATEMENT

All mathematical proofs are provided in Appendix A. Implementation details are provided in Appendix C. The source code and reproduction instructions are available in an anonymized repository.

REFERENCES

- Weizhi An, Wenliang Zhong, Feng Jiang, Hehuan Ma, and Junzhou Huang. Causal subgraphs and information bottlenecks: Redefining ood robustness in graph neural networks. In *European Conference on Computer Vision*, pp. 473–489. Springer, 2024.
- Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.
- Xuanze Chen, Jiajun Zhou, Shanqing Yu, and Qi Xuan. Mixture of experts meets decoupled message passing: Towards general and adaptive node classification. In *Companion Proceedings of the ACM on Web Conference* 2025, pp. 907–910, 2025.
 - Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, MA Kaili, Binghui Xie, Tongliang Liu, Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution generalization on graphs. *Advances in Neural Information Processing Systems*, 35:22131–22148, 2022.
 - Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, and James Cheng. Does invariant graph learning via environment augmentation learn invariance? *Advances in Neural Information Processing Systems*, 36:71486–71519, 2023.
 - Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, and Bai Wang. Generalizing graph neural networks on out-of-distribution graphs. *IEEE transactions on pattern analysis and machine intelligence*, 46(1):322–337, 2023.
 - Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. *Journal of machine learning research*, 17(59):1–35, 2016.
 - Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.
 - Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. Good: A graph out-of-distribution benchmark. *Advances in Neural Information Processing Systems*, 35:2059–2073, 2022.
 - Shurui Gui, Meng Liu, Xiner Li, Youzhi Luo, and Shuiwang Ji. Joint learning of label and environment causal independence for graph out-of-distribution generalization. *Advances in Neural Information Processing Systems*, 36:3945–3978, 2023.
 - Fenyu Hu, Liping Wang, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. Graphdive: Graph classification by mixture of diverse experts. In Lud De Raedt (ed.), *Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22*, pp. 2080–2086. International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/ijcai.2022/289. URL https://doi.org/10.24963/ijcai.2022/289. Main Track.
 - Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in neural information processing systems*, 33:22118–22133, 2020.
 - Eric Inae, Gang Liu, and Meng Jiang. Motif-aware attribute masking for molecular graph pretraining. In *The Third Learning on Graphs Conference*, 2024.
 - Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of local experts. *Neural computation*, 3(1):79–87, 1991.
 - Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In *International Conference on Learning Representations (ICLR 2017)*. OpenReview. net, 2017.
 - Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. *Acta mathematica*, 30(1):175–193, 1906.
 - Chaitanya K Joshi, Cristian Bodnar, Simon V Mathis, Taco Cohen, and Pietro Lio. On the expressive power of geometric graph neural networks. In *International conference on machine learning*, pp. 15330–15355. PMLR, 2023.

- David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In *International conference on machine learning*, pp. 5815–5826. PMLR, 2021.
 - Bin Lu, Ze Zhao, Xiaoying Gan, Shiyu Liang, Luoyi Fu, Xinbing Wang, and Chenghu Zhou. Graph out-of-distribution generalization with controllable data augmentation. *IEEE Transactions on Knowledge and Data Engineering*, 36(11):6317–6329, 2024.
 - C Maddison, A Mnih, and Y Teh. The concrete distribution: A continuous relaxation of discrete random variables. In *Proceedings of the international conference on learning Representations*. International Conference on Learning Representations, 2017.
 - Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic attention mechanism. In *International conference on machine learning*, pp. 15524–15543. PMLR, 2022.
 - Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust neural networks. In *International Conference on Learning Representations*, 2020.
 - Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. *IEEE transactions on neural networks*, 20(1):61–80, 2008.
 - Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In *International Conference on Learning Representations*, 2017.
 - Yongduo Sui, Qitian Wu, Jiancan Wu, Qing Cui, Longfei Li, Jun Zhou, Xiang Wang, and Xiangnan He. Unleashing the power of graph data augmentation on covariate distribution shift. *Advances in Neural Information Processing Systems*, 36:18109–18131, 2023.
 - Yongduo Sui, Jie Sun, Shuyao Wang, Zemin Liu, Qing Cui, Longfei Li, and Xiang Wang. A unified invariant learning framework for graph classification. In *Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1*, pp. 1301–1312, 2025.
 - Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In *European conference on computer vision*, pp. 443–450. Springer, 2016.
 - Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kompella, Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with explicit diversity modeling. *Advances in Neural Information Processing Systems*, 36:50825–50837, 2023a.
 - Zitai Wang, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, and Qingming Huang. A unified generalization analysis of re-weighting and logit-adjustment for imbalanced learning. *Advances in Neural Information Processing Systems*, 36:48417–48430, 2023b.
 - Fang Wu, Dragomir Radev, and Stan Z Li. Molformer: Motif-based transformer on 3d heterogeneous molecular graphs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 5312–5320, 2023.
 - Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating complex graph distribution shifts via mixture of aligned experts. *Advances in Neural Information Processing Systems*, 37:9358–9387, 2024.
 - Yingxin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant rationales for graph neural networks. In *International Conference on Learning Representations*, 2022.
 - Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. *Chemical science*, 9(2):513–530, 2018.
 - Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? *International Conference on Learning Representations*, 2019.

Huaxiu Yao, Xinyu Yang, Xinyi Pan, Shengchao Liu, Pang Wei Koh, and Chelsea Finn. Improving domain generalization with domain relations. In *The Twelfth International Conference on Learning Representations*, 2024.

Tianjun Yao, Yongqiang Chen, Kai Hu, Tongliang Liu, Kun Zhang, and Zhiqiang Shen. Learning graph invariance by harnessing spuriosity. In *The Thirteenth International Conference on Learning Representations*, 2025.

Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a theoretical framework of out-of-distribution generalization. *Advances in Neural Information Processing Systems*, 34:23519–23531, 2021.

Kexin Zhang, Shuhan Liu, Song Wang, Weili Shi, Chen Chen, Pan Li, Sheng Li, Jundong Li, and Kaize Ding. A survey of deep graph learning under distribution shifts: from graph out-of-distribution generalization to adaptation. *CoRR*, 2024.

A APPENDIX: PROOFS

 This appendix collects the proofs of all formal results stated in the main body, together with some natural extensions. Our goal is not to introduce new theory but to provide full technical details and clarify intermediate steps that were omitted for brevity in the main text.

A.1 Sparsity requirement in an extreme case

We begin with a simple but instructive lemma that is not included in the main body. It captures an extreme case of expert selection, where exactly one expert achieves a positive margin and all others are non-positive (that is, only one expert is correct). While not needed for the main theoretical results, we include it here because it highlights in the clearest possible terms why sparse gating is necessary: in such scenarios, correct predictions are only guaranteed if the gating mechanism concentrates sufficient mass on the correct expert.

Lemma A.1 (Sparsity requirement in an extreme case). Let per-expert margins be

$$m_i(x) = z_i(x)[y] - \max_{c \neq y} z_i(x)[c],$$

and let the mixture logits be

$$z_{\text{mix}}(x) = \sum_{i=1}^{K} \pi_i(x) z_i(x), \qquad \pi(x) \in \Delta^K.$$

If there exists an expert i^* with $m_{i^*}(x) > 0$ and $m_j(x) \le 0$ for all $j \ne i^*$, then the mixture margin $m_{\text{mix}}(x) := z_{\text{mix}}(x)[y] - \max_{c \ne y} z_{\text{mix}}(x)[c]$

is strictly positive whenever

$$\pi_{i^*}(x) > \alpha, \qquad \alpha = \frac{-\min_{j \neq i^*} m_j(x)}{m_{i^*}(x) - \min_{j \neq i^*} m_j(x)} \in [0, 1).$$

Proof. We have

$$\begin{split} m_{\text{mix}}(x) &= \sum_{i} \pi_{i}(x) \, z_{i}(x)[y] - \max_{c \neq y} \sum_{i} \pi_{i}(x) \, z_{i}(x)[c] \\ &\geq \sum_{i} \pi_{i}(x) \, z_{i}(x)[y] - \sum_{i} \pi_{i}(x) \, \max_{c \neq y} z_{i}(x)[c] = \sum_{i} \pi_{i}(x) m_{i}(x), \end{split}$$

using $\max_c \sum_i a_{ic} \leq \sum_i \max_c a_{ic}$. With $m_{i^*}(x) > 0$ and $m_j(x) \leq 0$ for $j \neq i^*$,

$$\sum_{i} \pi_{i}(x) m_{i}(x) \geq \pi_{i^{\star}}(x) m_{i^{\star}}(x) + (1 - \pi_{i^{\star}}(x)) \min_{j \neq i^{\star}} m_{j}(x).$$

Thus $m_{\text{mix}}(x) > 0$ whenever

$$\pi_{i^*}(x) m_{i^*}(x) + (1 - \pi_{i^*}(x)) \min_{j \neq i^*} m_j(x) > 0,$$

which rearranges to $\pi_{i^*}(x) > \alpha$ as stated.

The previous lemma considered the binary-style case where only one expert is correct and all others are strictly incorrect. We now extend the analysis to the multiclass setting by allowing non-causal experts to have bounded negative margins. This produces a similar threshold condition on the gating weight, ensuring that the correct expert dominates when sufficiently favored by the gate.

Lemma A.2 (Multiclass sparse threshold under bounded negative margins). Let the one-vs-rest margin of expert i at input x be

$$m_i(x) := z_i(x)[y] - \max_{c \neq y} z_i(x)[c].$$

Suppose there exists a (causal) expert i^* and constants m>0 and $\gamma\geq 0$ such that

$$m_{i^{\star}}(x) \geq m, \qquad m_{j}(x) \geq -\gamma \text{ for all } j \neq i^{\star}.$$

Then the mixture margin satisfies

$$m_{\text{mix}}(x) \ge \sum_{i=1}^{K} \pi_i(x) m_i(x) \ge \pi_{i^*}(x) m - (1 - \pi_{i^*}(x)) \gamma,$$

and in particular $m_{\text{mix}}(x) > 0$ whenever

$$\pi_{i^{\star}}(x) > \frac{\gamma}{m+\gamma}.$$

Proof. By the max-sum inequality $\max_c \sum_i a_{ic} \leq \sum_i \max_c a_{ic}$,

$$m_{\text{mix}}(x) = z_{\text{mix}}(x)[y] - \max_{c \neq y} z_{\text{mix}}(x)[c]$$

$$= \sum_i \pi_i(x) \, z_i(x)[y] - \max_{c \neq y} \sum_i \pi_i(x) \, z_i(x)[c] \, \geq \, \sum_i \pi_i(x) \, m_i(x).$$

Using the margin bounds $m_{i^*}(x) \geq m$ and $m_j(x) \geq -\gamma$ for $j \neq i^*$,

$$\sum_{i} \pi_{i}(x) m_{i}(x) \geq \pi_{i^{\star}}(x) m + \sum_{j \neq i^{\star}} \pi_{j}(x) (-\gamma) = \pi_{i^{\star}}(x) m - (1 - \pi_{i^{\star}}(x)) \gamma.$$

Hence

$$m_{\text{mix}}(x) \geq \pi_{i^{\star}}(x) m - (1 - \pi_{i^{\star}}(x)) \gamma,$$

which is strictly positive precisely when $\pi_{i^*}(x) > \gamma/(m+\gamma)$.

A.2 LOSS GAP IMPLIES SPARSITY

The margin-based results above illustrate the role of sparsity in terms of logits and decision boundaries. We now provide a complementary perspective using losses directly. This proposition shows that a positive loss gap between the best expert and all others induces a lower bound on the gating weight assigned to the best expert. This connects the concept of expert specialization to loss-based analysis.

Proposition A.3 (Loss gap implies sparsity). Let $\{\ell_i(x,y)\}_{i=1}^K$ be the per-expert losses and $i^{\star}(x,y) \in \arg\min_{i \in [K]} \ell_i(x,y)$ be any minimizer. Define the mixture-of-losses $\bar{\ell}(x,y) = \sum_{i=1}^K \pi_i(x) \ell_i(x,y)$ and the loss gap

$$\Delta(x,y) := \begin{cases} \min_{k \neq i^{\star}(x,y)} \left(\ell_k(x,y) - \ell_{i^{\star}}(x,y) \right), & K \ge 2, \\ 0, & K = 1. \end{cases}$$

Then

$$\bar{\ell}(x,y) \geq \ell_{i^{\star}}(x,y) + (1 - \pi_{i^{\star}}(x)) \Delta(x,y).$$

Equivalently, for any $\Delta(x,y) > 0$,

$$\pi_{i^{\star}}(x) \geq 1 - \frac{\bar{\ell}(x,y) - \ell_{i^{\star}}(x,y)}{\Delta(x,y)}.$$

Proof. Since i^* is a minimizer, for all $j \neq i^*$ we have $\ell_j(x,y) - \ell_{i^*}(x,y) \geq \Delta(x,y)$. Therefore,

$$\bar{\ell}(x,y) - \ell_{i^{\star}}(x,y) = \sum_{j=1}^{K} \pi_{j}(x) \left(\ell_{j}(x,y) - \ell_{i^{\star}}(x,y) \right) = \sum_{j \neq i^{\star}} \pi_{j}(x) \left(\ell_{j}(x,y) - \ell_{i^{\star}}(x,y) \right) \geq \sum_{j \neq i^{\star}} \pi_{j}(x) \left(\ell_{j}(x,y) - \ell_{i^{\star}}(x,y) \right)$$

$$\sum_{j \neq i^{\star}} \pi_j(x) \, \Delta(x, y) = \left(1 - \pi_{i^{\star}}(x)\right) \Delta(x, y),$$

which yields the stated inequality. Rearranging gives the equivalent lower bound on $\pi_{i^*}(x)$.

A.3 OOD RISK: COVERAGE + SELECTION

Finally, we return to the main theorem on OOD risk. This result decomposes the risk of the MoE into three interpretable terms: the oracle risk (if the aligned expert were always selected), a coverage penalty (arising when no expert perfectly matches the test distribution), and a selection penalty (arising when the gating function fails to concentrate on the aligned expert). The proof makes explicit the role of Jensen's inequality and shows how the sparsity results above fit into the broader risk bound.

Theorem A.4 (OOD risk: coverage + selection). Fix an OOD environment $\mathcal{D}' = \mathcal{D}_{m'}$. For the environment-aligned expert $i^*(m')$, define

$$\Gamma_{m'}(x,y) := \max_{j \neq i^*(m')} \left(\ell_j(x,y) - \ell_{i^*(m')}(x,y) \right).$$

Then, under Assumptions 3.5 and 3.4,

$$R_{\mathcal{D}'}(\mathrm{MoE}) \ \leq \ \underbrace{R_{\mathcal{D}'}(h_{m'}^{\star})}_{\mathit{oracle risk}} \ + \ \underbrace{\varepsilon_{\mathrm{cov}}(m')}_{\mathit{coverage via diversity}} \ + \ \underbrace{\mathbb{E}_{(x,y)\sim\mathcal{D}'}\big[\big(1-\pi_{i^{\star}(m')}(x)\big)\,\Gamma_{m'}(x,y)\big]}_{\mathit{selection penalty via sparsity}}.$$

Proof. By convexity of cross-entropy in the logits,

$$R_{\mathcal{D}'}(\text{MoE}) = \mathbb{E}_{\mathcal{D}'} \big[\ell_{\text{CE}}(z_{\text{mix}}(x), y) \big] \leq \mathbb{E}_{\mathcal{D}'} \big[\bar{\ell}(x, y) \big], \qquad \bar{\ell}(x, y) := \sum_{i=1}^{K} \pi_i(x) \, \ell_i(x, y).$$

Fix (x, y) and abbreviate $i^* = i^*(m')$. Decompose

$$\bar{\ell}(x,y) = \pi_{i^\star}(x)\,\ell_{i^\star}(x,y) + \sum_{j\neq i^\star} \pi_j(x)\,\ell_j(x,y) = \ell_{i^\star}(x,y) + \sum_{j\neq i^\star} \pi_j(x)\big(\ell_j(x,y) - \ell_{i^\star}(x,y)\big).$$

By definition of $\Gamma_{m'}(x,y)$, each difference satisfies $\ell_i(x,y) - \ell_{i\star}(x,y) \leq \Gamma_{m'}(x,y)$, hence

$$\bar{\ell}(x,y) \leq \ell_{i^{\star}}(x,y) + \Big(\sum_{j \neq i^{\star}} \pi_{j}(x)\Big) \Gamma_{m'}(x,y) = \ell_{i^{\star}}(x,y) + \Big(1 - \pi_{i^{\star}}(x)\Big) \Gamma_{m'}(x,y).$$

Taking expectations under \mathcal{D}' yields

$$R_{\mathcal{D}'}(\text{MoE}) \leq \mathbb{E}_{\mathcal{D}'}[\ell_{i^{\star}}(x,y)] + \mathbb{E}_{\mathcal{D}'}[(1 - \pi_{i^{\star}}(x)) \Gamma_{m'}(x,y)] = R_{\mathcal{D}'}(h_{i^{\star}}) + \mathbb{E}_{\mathcal{D}'}[(1 - \pi_{i^{\star}}(x)) \Gamma_{m'}(x,y)].$$

Finally, by Assumption 3.5, $R_{\mathcal{D}'}(h_{i^{\star}}) \leq R_{\mathcal{D}'}(h_{m'}^{\star}) + \varepsilon_{\text{cov}}(m')$, which proves the claim.

B DETAILED RELATED WORKS

B.1 CAUSAL SUBGRAPH-BASED OOD LEARNING.

LECI enforces label—environment independence by learning edge masks such that the label is independent of the environment and the environment is independent of the causal substructure (Gui et al., 2023). UIL jointly enforces semantic and structural invariance, aligning graphs across environments using graphon distances (Sui et al., 2025). LIRS instead learns spurious features first and removes them from ERM-learned features, thereby capturing a broader set of invariant subgraphs (Yao et al.,

2025). DIR discovers label-causal subgraph rationales by intervening on the training distribution and selecting features invariant across the induced environments, filtering out spurious shortcuts (Wu et al., 2022). CIGA learns causally invariant graph representations by extracting subgraphs that maximally preserve label-relevant intra-class information (Chen et al., 2022). GSAT applies an information-bottleneck-driven stochastic attention to mask task-irrelevant nodes/edges, yielding faithful rationales (Miao et al., 2022). CSIB learns label-causal subgraphs under a causal model while jointly optimizing invariant risk with a graph information bottleneck to balance invariance versus compression for FIIF/PIIF (An et al., 2024).

B.2 Instance heterogeneity.

GSAT enforces adversarial consistency to discourage reliance on unstable features, thereby enabling more robust predictions across heterogeneous samples (Miao et al., 2022). GALA explicitly models multiple latent graph views and aggregates them to capture sample-level causal diversity (Chen et al., 2023). AIA generates new environments through adversarial augmentation while preserving stable features, simulating heterogeneity under covariate shift (Sui et al., 2023). Other approaches such as FLAG (Lu et al., 2024), StableGNN (Yao et al., 2024), and GraphMETRO (Wu et al., 2024) similarly expand training coverage via data augmentation.

GSAT enforces adversarial consistency to discourage reliance on unstable features, thereby enabling more robust predictions across heterogeneous samples (Miao et al., 2022). GALA explicitly models multiple latent graph views and aggregates them to capture sample-level causal diversity (Chen et al., 2023). AIA generates new environments through adversarial augmentation while preserving stable features, simulating heterogeneity under covariate shift (Sui et al., 2023). FLAG enforces large-scale augmentation by applying instant feature-level adversarial noise during training while preserving graph topology (Lu et al., 2024). StableGNN pools subgraphs into high-level variables and adds a causal-variable distinguishing penalty term to prioritize stable correlations under distribution shifts (Fan et al., 2023).

B.3 MIXTURE-OF-EXPERTS FOR GNNs.

MoE architectures allocate computation across experts selected by a gating function (Jacobs et al., 1991; Shazeer et al., 2017). On graphs, GMoE leverages MoE layers to scale graph transformers efficiently (Wang et al., 2023a). MixGNN employs expert routing to improve efficiency on large-scale graph tasks (Chen et al., 2025). Other variants (Hu et al., 2022) similarly focus on distributing computation or scaling to large graphs. These methods demonstrate the potential of MoE for graphs but do not target OOD generalization.

B.4 GRAPHMETRO.

In the OOD setting, GraphMETRO decomposes distributional heterogeneity and aligns referential representations across shifts by a gated mixture-of-experts with shift-specialized experts (Wu et al., 2024). However, this design requires the selection of shift types before training with no guarantee that the selected shift types are the ones that will be encountered at test time. Furthermore, these perturbations risk altering label semantics unknowingly. In contrast, our approach uses MoE not for augmentation, but for *causal subgraph identification*, encouraging experts to extract diverse causal subgraphs and thereby directly modeling instance heterogeneity.

B.5 OUR APPROACH.

Unlike prior methods, we do not rely on strong assumptions about the underlying causal structure, as in many causal approaches, nor do we risk altering the label semantics through perturbations, as in augmentation-based methods. Our framework instead learns to identify candidate causal subgraphs through expert-specific masks, with a sparse gating mechanism selecting among them on a per-instance basis. This design encourages experts to specialize in distinct causal explanations and allows the model to adaptively choose the most relevant one for each input, thereby capturing instance-level heterogeneity.

C IMPLEMENTATION DETAILS

C.1 EXPERT SUBGRAPH EXTRACTION

Given an input graph x=(V,E,X), we first compute node embeddings using a shared GNN encoder. Each expert $k\in[K]$ produces edge-level mask logits $\ell_e^{(k)}$ via a small expert-specific MLP applied to the concatenated embeddings of the edge endpoints. The logits are transformed into binary masks using a Gumbel–sigmoid straight-through estimator:

$$m_e^{(k)} = \mathbf{1} \left\{ \sigma \left(\frac{\ell_e^{(k)} + g}{\tau} \right) > 0.5 \right\},$$

where g is Gumbel noise, σ is the sigmoid, and $\tau=0.1$ is the temperature. Hard binary masks $m_e^{(k)}$ are used in the forward pass to produce the masked graph $G^{(k)}$, while gradients flow through the continuous relaxation during backpropagation. Node weights are induced from their incident edges, and isolated nodes are removed. Each expert has its own GNN encoder and classifier head. Unless otherwise specified, we adopt the Graph Isomorphism Network (GIN) following the GOOD benchmark configuration: hidden dimension 300, depth 3, dropout 0.5.

C.2 TASK LOSS

For each expert k, we compute the per-sample cross-entropy

$$\ell_{\mathrm{CE}}^{(k)}(x,y) = \mathrm{CE}(\theta_k(G^{(k)}), y).$$

The overall task loss is a gate-weighted aggregation across experts:

$$\ell_{\text{CE}}(x, y) = \sum_{k=1}^{K} \pi_k(x) \, \ell_{\text{CE}}^{(k)}(x, y),$$

ensuring that experts favored by the gate receive stronger gradients, thereby encouraging specializa-

C.3 MASK REGULARIZATION

To control the size of extracted subgraphs, we regularize the average fraction of edges retained by each expert. For expert k, the observed keep-rate on graph g is

$$\hat{\rho}_g^{(k)} = \frac{1}{|E|} \sum_{e \in E} m_e^{(k)}.$$

We penalize deviations from a target $\rho \in [0, 1]$ via

$$\ell_{\text{reg}}^{(k)} = \left(\hat{\rho}_g^{(k)} - \rho\right)^2.$$

This discourages degenerate solutions where experts keep either too few or too many edges.

C.4 DIVERSITY LOSS

To prevent collapse of experts onto identical subgraphs, we enforce the semantic diversity condition (Definition 3.1). Masks are standardized, correlations are computed, and we penalize high off-diagonal correlations:

$$\ell_{\text{div}} = \frac{1}{K(K-1)} \sum_{i \neq j} \max\{0, |C_{ij}^{(g)}| - \tau_{\text{corr}}\},$$

where $C_{ij}^{(g)}$ is the correlation between standardized masks of experts i and j on graph g. This loss directly encourages experts to specialize on different subgraphs.

C.5 GATING MECHANISM

 Gate inputs. The gate does not operate directly on the raw graph but instead consumes diagnostic, label-free features derived from each expert's outputs. For expert k and sample b, we construct a feature vector $\Phi_{b,k} \in \mathbb{R}^{10}$:

$$\Phi_{b,k} = \left[\max_{c} p_{b,k}(c), \, \operatorname{margin}_{b,k}, \, H(p_{b,k}), \, -\log \sum_{c} e^{z_{b,k}(c)}, \, -\operatorname{KL}(p_{b,k} \parallel p_{b,k}^{\operatorname{weak}}), \right]$$

$$-\frac{1}{K-1} \sum_{j \neq k} \text{KL}(p_{b,k} \parallel p_{b,j}), \ H(p_{b,k}^{\text{env}}), \ H(p_{b,k}^{\text{spur}}), \ n_b, \ m_b \Big],$$

where $p_{b,k} = \operatorname{softmax}(z_{b,k})$ are class probabilities from expert k, $\operatorname{margin}_{b,k}$ is the difference between the top-1 and top-2 probabilities, $H(\cdot)$ is Shannon entropy, and the energy term is $-\log \sum_c \exp(z_{b,k}(c))$. The KL terms capture stability under weak augmentations and pairwise disagreement between experts. $p_{b,k}^{\text{env}}$ and $p_{b,k}^{\text{spur}}$ are outputs of environment and spurious classifiers, while n_b and m_b denote the number of nodes and edges. The feature vector is passed through a two-layer MLP with hidden dimension 64 and ReLU activations. Outputs are normalized with $\operatorname{Entmax}(\alpha=1.38)$, yielding sparse gate probabilities $\pi_{b,1:K}$.

Gate loss. The gate is trained with three complementary objectives:

(i) Teacher-student alignment. A teacher distribution q_b is constructed from expert competence signals:

$$r_{b,k} = -\ell_{\text{CE}}(z_{b,k}, y_b) - w_{\text{la}} \, \ell_{\text{LA},b,k} - w_{\text{ea}} \, \ell_{\text{EA},b,k}, \quad q_b = \operatorname{softmax}\left(\frac{r_b}{\tau_{\text{oracle}}}\right).$$

The student is the gate output $p_b = \operatorname{Entmax}_{\alpha=1.38}(s_b)$, where s_b are gate scores. The alignment loss is

$$L_{\text{align}} = \text{KL}(q_b \parallel p_b).$$

(ii) Balanced usage. To avoid collapse to a single expert, we regularize the average gate distribution over a batch:

$$L_{\text{balance}} = \text{KL}(u \parallel \bar{p}), \qquad \bar{p} = \frac{1}{B} \sum_{b} p_{b},$$

where u is uniform over experts.

(iii) Per-sample sharpness. To encourage sparse routing, we penalize high-entropy gate outputs:

$$L_{\text{sharp}} = \frac{1}{B} \sum_{b=1}^{B} H(p_b), \qquad H(p_b) = -\sum_{k=1}^{K} p_{b,k} \log p_{b,k}.$$

The final gate loss is

$$L_{\text{gate}} = 0.1 \cdot \left(L_{\text{align}} + L_{\text{balance}} + L_{\text{sharp}} \right).$$

C.6 FINAL OBJECTIVE

The overall training loss is

$$\mathcal{L} = \ell_{\text{CE}} + \lambda_{\text{reg}}\ell_{\text{reg}} + \lambda_{\text{div}}\ell_{\text{div}} + \lambda_{\text{gate}}L_{\text{gate}}.$$

Here $\ell_{\text{reg}} = \frac{1}{K} \sum_{k} \ell_{\text{reg}}^{(k)}$, and $\lambda_{\text{reg}}, \lambda_{\text{div}}, \lambda_{\text{gate}}$ are loss weights. This formulation integrates the task, coverage, selection, and diversity principles while guarding against degenerate solutions and expert starvation.

C.7 Hyperparameter settings

For all experiments, we adopt a common set of fixed hyperparameters. Each expert network is implemented as a Graph Isomorphism Network (GIN) with hidden dimension 300, three layers, and a dropout rate of 0.5. The gating network is a two-layer MLP with hidden dimension 64 and ReLU activations, followed by an Entmax transformation with $\alpha=1.38$ to produce sparse routing probabilities. The loss weights are set to 1.0 for the task cross-entropy, mask regularization, and diversity losses, and 0.1 for the gate loss. Optimization is performed with Adam using a weight decay of 10^{-4} . The learning rate is reduced by a factor of two if the validation performance does not improve by at least 0.001 for 10 consecutive epochs.

In addition to these fixed settings, we tune a small number of hyperparameters. The mask keep-rate prior ρ is sampled uniformly between 0.1 and 0.9. The learning rate is selected from $\{0.001, 0.0005, 0.0001\}$, and the batch size is chosen from $\{32, 64, 128, 256, 512\}$. Hyperparameter tuning is conducted with 10 independent trials per dataset, each initialized with a different random seed. The best configuration is selected based on validation performance, retrained on the training set, and finally evaluated on the held-out test sets over five different seeds. This procedure ensures consistent model selection without any test leakage.

D ASSUMPTIONS ON CAUSAL STRUCTURE

Problem setup. Each input is a graph x = (V, E, X) with label $y \in \mathcal{Y}$. Let G_c denote causal/stable substructures and G_s denote spurious/environmental substructures. We focus on covariate shift: the marginal over graphs changes across environments, while $p(y \mid x)$ is stable, i.e., $p_{\text{train}}(x) \neq p_{\text{test}}(x)$ but $p_{\text{train}}(y \mid x) = p_{\text{test}}(y \mid x)$.

FIIF vs. PIIF. Following (Gui et al., 2023), fully/partially informative invariant features formalize how G_s interacts with G_c and environments E. Under **FIIF**, G_s is influenced by both G_c and E, creating spurious dependence $Y \leftarrow G_c \rightarrow G_s$; under **PIIF**, a collider induces $G_s \leftrightarrow Y$ through G_c (e.g., $Y \leftarrow G_c \rightarrow G \leftarrow G_s$). These regimes explain why G_s can correlate with Y even when noncausal.

WHAT PRIOR METHODS ASSUME

LECI (**Gui et al., 2023**). LECI jointly enforces (i) *label–environment causal independence*: $G_c \perp E$ and (ii) *label–spurious independence*: $G_s \perp Y$ (operationalized via adversarial objectives), aiming to recover invariant subgraphs. In FIIF/PIIF regimes, these constraints are used to filter G_s and keep G_c .

UIL (Sui et al., 2025). UIL posits a stronger *structural* invariance: the stable (causal) part of graphs within each class shares a class-specific *graphon* pattern that is invariant across all (seen/unseen) environments; semantic invariance is then layered on top. In effect, G_c is assumed *structurally invariant across environments*.

DIR and related. DIR (Wu et al., 2022) also targets invariant rationales/causal attention, typically constructing interventional/augmented environments and enforcing invariance of the predictive mechanism across them.

WHY THESE ASSUMPTIONS BREAK IN PRACTICE

Concrete examples.

- Chemistry. Multiple active chemotypes for the same endpoint; scaffold/time/source shifts alter G_s and even the prevalence of certain G_c 's, violating structural uniqueness and $G_s \perp Y$ (Wu et al., 2018; Hu et al., 2020).
- Social/text graphs. Domain-specific syntax/community structures change across splits; G_s (e.g., degree/length) correlates with Y via FIIF/PIIF pathways (Gui et al., 2022).

Table 7: Performance of the MoE framework with 1, 4, and 8 experts. Standard deviations are reported in parentheses.

Evports	HIV↑		Twitter ↑	er \ \ Motif \		SST2↑	Avrg ↑
Experts	Scaffold	Size	Length	Basis	Size	Length	Avig
1	67.13 (2.2)	63.48 (0.9)	58.68 (1.7)	89.3 (2.1)	65.31 (1.2)	81.11 (1.1)	70.84
4	70.65 (1.3)	65.35 (1.3)	60.48 (0.7)	91.79 (1.5)	76.40 (2.1)	83.41 (1.2)	74.68
8	71.55 (1.4)	66.98 (1.0)	61.13 (1.1)	92.8 (1.4)	75.52 (2.9)	83.73 (1.4)	75.29

General reasons. (i) Instance heterogeneity: real tasks often admit multiple causal explanations within the same class (different G_c 's per instance). In molecular property prediction, distinct chemotypes/functional groups can yield the same label (e.g., multiple acidic moieties), and scaffold splits explicitly emphasize cross-chemotype variation; thus any single class-graphon assumption can be violated. (ii) $Y-G_s$ correlation (FIIF/PIIF): even when G_s is noncausal, it may correlate with Y via G_c , making $G_s \not\perp Y$ and breaking LECI-style independence assumptions. Recent theory shows that environment augmentation cannot, in general, identify invariance without additional biases; moreover, G_s and Y can have arbitrary correlation, making environment inference/labeling fundamentally hard (Chen et al., 2023).

OUR ASSUMPTION (MINIMAL AND ROBUST)

We assume only that each graph admits at least one causal subgraph G_c that governs Y. We do *not* assume (i) G_c is unique within a class, (ii) G_c is structurally identical across environments (no class-graphon), or (iii) $G_s \perp Y$ or $G_c \perp E$. This minimal assumption tolerates instance-level heterogeneity (different G_c 's per instance), admits FIIF/PIIF couplings, and aligns with practical datasets where multiple mechanisms yield the same label (e.g., multiple binding motifs or syntax patterns). Benefit: we avoid brittle structural/independence assumptions and instead learn to *select* among diverse causal hypotheses at the instance level.

EMPIRICAL SUPPORT: SINGLE-EXPERT PERFORMANCE

Table 7 provides empirical evidence for the strength of this assumption-light design. In the single-expert setting, the model reduces to the simplest form of causal subgraph extraction: a single extractor, regularized by ρ , feeding into a GNN trained like standard ERM. The GNN is optimized only with the task loss, while the extractor is trained with the task loss plus the regularization term. This design makes no additional assumptions about the underlying causal structure beyond the sparsity prior, representing a minimal instantiation of causal subgraph methods. Remarkably, despite its simplicity, this approach outperforms all but one causal baseline (LECI) in average performance across all datasets. This result suggests that the explicit structural assumptions encoded in prior causal methods may in fact be too restrictive or fragile, and that a more assumption-light approach can provide stronger and more reliable generalization.

E DATASET DETAILS

We provide dataset-specific information for the four GOOD tasks used in the main paper. Each task introduces a different type of structural or distributional shift, following the benchmark design in Gui et al. (2022).

GOOD-HIV. This task is a molecular property prediction problem derived from the MoleculeNet HIV dataset. Each graph corresponds to a molecule, where nodes are atoms and edges are chemical bonds. The prediction task is binary classification: whether the molecule inhibits HIV replication. To evaluate OOD generalization, two types of environment splits are defined. The *scaffold split* partitions molecules according to their core scaffolds, such that training and test sets contain molecules with distinct underlying structures. The *size split* creates a distribution shift by separating molecules based on the number of heavy atoms, exposing models to molecules of substantially different sizes at test time. These shifts test whether models can generalize beyond memorized molecular backbones and size ranges.

GOOD-Motif. This synthetic dataset is designed to provide controlled graph-level classification tasks with interpretable shifts. Each graph is generated by attaching motifs (e.g., cycles, cliques, houses) onto a random base graph. The label depends on the presence or type of motif. The benchmark defines two kinds of shifts. In the *motif-basis split*, the set of motifs used for training differs from those used in evaluation, requiring extrapolation across structural primitives. In the *size split*, the base graphs differ in size between environments, requiring robustness to distribution shifts in graph order and density. This dataset isolates structural shifts in a controlled synthetic setting, making it useful for probing whether models can truly capture causal motif information.

GOOD-Twitter. This dataset consists of ego-networks from Twitter users. Each ego-network is represented as a graph where the central node corresponds to the ego user, and edges represent social connections among the ego and their neighbors. The task is binary classification of user attributes. The primary distribution shifts are *domain shifts* across different user communities, which result in differences in graph sparsity, degree distributions, and local structural motifs. Since ego-networks are sampled from diverse domains, training and test sets differ significantly in their structural properties, requiring models to generalize across heterogeneous social network subgraphs.

GOOD-SST2. This dataset is based on the Stanford Sentiment Treebank 2 (SST2). Each sentence is parsed into a dependency tree, which serves as the input graph. The task is binary classification of sentence sentiment (positive vs. negative). The distribution shifts are introduced by partitioning the data according to linguistic structures. Specifically, environments differ in the average tree depth and branching factors, leading to structural shifts in dependency graphs. These shifts test whether graph models can capture sentiment cues in syntactic structures when faced with substantial variation in parse tree topology across domains.

Overall, these four datasets cover both *real-world* domains and *synthetic* graphs, and they introduce diverse OOD challenges, including scaffold and size shifts, motif-basis changes, domain heterogeneity, and structural variation. This variety makes them a comprehensive testbed for evaluating the robustness of graph OOD methods.

F ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments and discussions.

F.1 HIV DATASET

For HIV dataset, we apply class balanced sampling during batch sampling and logit adjustment during training (Wang et al., 2023b). This follows the convention of LIRS and GALA who apply similar techniques to mitigate the class imbalance (Yao et al., 2025; Chen et al., 2023). Without these techniques, our performance on HIV-Scaffold and HIV-Size drops slightly from 71.55 to 70.65 and 66.98 to 65.35, respectively. In this case, our method still achieves the best average performance and average rank across all evaluated baselines.

F.2 GATING MECHANISM

We next assess the contribution of the gating mechanism. Our framework employs a learned gate that assigns input-dependent weights to experts, forming a weighted combination of their predictions. Table 8 compares this design to several alternatives. On both Twitter and SST2, uniform averaging already benefits from expert complementarity, but it falls short of the learned gate (59.92 vs. 61.13 on Twitter, 82.72 vs. 83.73 on SST2). Majority voting performs similarly or worse (58.39 and 82.99), suggesting that ignoring the confidence of individual experts limits robustness. Sparse selection of only the top-1 or top-2 experts consistently underperforms (e.g., 56.36/79.36 and 59.11/82.13), showing that over-reliance on top-k experts on all samples discards useful complementary information. By contrast, the learned gate yields the best performance on both datasets, highlighting that adaptive weighting is crucial for fully exploiting expert specialization. Importantly, the gate not only aggregates predictions effectively but also mitigates expert collapse by encouraging specialization into complementary substructures.

Table 8: Effect of learned gating on Twitter and SST2. Uniform: uniform averaging of logits (no gating). Majority: majority voting (no gating). Top 1: sparse selection of the top-1 expert predicted by the gate. Top 2: sparse selection of the top-2 experts predicted by the gate. Gate Weight (Soft): weighted averaging of logits using the gate weights (used in our method).

Learned Gating	Twitter	SST2
Uniform	59.92	82.72
Majority	58.39	82.99
Top 1	56.36	79.36
Top 2	59.11	82.13
Gate Weight (Soft)	61.13	83.73

F.3 VISUALIZATION

Figure 2: Predicted subgraphs from different experts on the Motif-Basis dataset. Ground truth causal subgraph: house.

We visualize the predicted subgraphs from different experts on the Motif-Basis dataset. The ground truth causal subgraph is house. We can see that the expert that predicts the house subgraph is the expert that is most specialized in predicting the house subgraph.

LARGE LANGUAGE MODELS STATEMENT

Large Language Models were used exclusively for editorial purposes, such as refining language and improving readability. All scientific contributions were developed solely by the authors.