
Under review as a conference paper at ICLR 2023

FACEMAE: PRIVACY-PRESERVING FACE RECOGNI-
TION VIA MASKED AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Face recognition, as one of the most successful applications in artificial intelli-
gence, has been widely used in security, administration, advertising, and health-
care. However, the privacy issues of public face datasets have attracted increasing
attention in recent years. Previous works simply mask most areas of faces or
synthesize samples using generative models to construct privacy-preserving face
datasets, which overlooks the trade-off between privacy protection and data utility.
In this paper, we propose a novel framework FaceMAE, where the face privacy
and recognition performance are considered simultaneously. Firstly, randomly
masked face images are used to train the reconstruction module in FaceMAE. We
tailor the instance relation matching (IRM) module to minimize the distribution
gap between real faces and FaceMAE reconstructed ones. During the deployment
phase, we use trained FaceMAE to reconstruct images from masked faces of un-
seen identities without extra training. The risk of privacy leakage is measured
based on face retrieval between reconstructed and original datasets. Experiments
prove that the identities of reconstructed images are difficult to be retrieved. We
also perform sufficient privacy-preserving face recognition on several public face
datasets (i.e.CASIA-WebFace and WebFace260M). Compared to previous state of
the arts, FaceMAE consistently reduces at least 50% error rate on LFW, CFP-
FP and AgeDB.

1 INTRODUCTION

In the past decade, face recognition has achieved remarkable and continuous progress in improving
recognition accuracy Deng et al. (2019); Wen et al. (2016); An et al. (2021); Zhu et al. (2021); Wang
et al. (2022); Yi et al. (2014); Sun et al. (2014) and has been widely used in daily activities such
as online payment and security for identification. Advanced face recognition algorithms Deng et al.
(2019); Wen et al. (2016); An et al. (2021); Wang et al. (2022; 2019; 2021); Zeng et al. (2020); Zhang
et al. (2019); Wang et al. (2018); He et al. (2010); Wu et al. (2018); Zhang et al. (2016); Wen et al.
(2016) and large-scale public face datasets Zhu et al. (2021); Yi et al. (2014); Liu et al. (2018) are
two key factors of these progresses. Nevertheless, collecting and releasing large-scale face datasets
raise increasingly more concerns on the privacy leakage of identity membership Hayes et al. (2019);
Wu et al. (2019) and attribute Mirjalili et al. (2020); Bortolato et al. (2020) of training samples in
recent years. Generating large-scale privacy-preserving face datasets for downstream tasks is urgent
and challenging for face recognition community Wu et al. (2019); Mirjalili et al. (2020); Qiu et al.
(2021).

This paper focuses on the membership privacy of a public face dataset instead of inferring specific
training samples or model parameters Rigaki & Garcia (2020); De Cristofaro (2020). Specifically, in
this scenario, the adversary aims to infer whether target identities are in the training set by retrieving
them with query face images when the privacy-preserving face dataset is accessible. Protecting such
membership privacy is crucial for practical applications. Our goal is to reduce the face retrieval accu-
racy, in other words, reduce the risk of membership privacy leakage, while keep the informativeness
for training deep models on the privacy-preserving face dataset.

As illustrated in Fig. 1, traditionally distortion such as blurring, noising and masking is applied to
face images for reducing the privacy Dufaux & Ebrahimi (2010); Korshunov & Ebrahimi (2013).
These naive distortion methods reduce the privacy as well as semantics in a face image, thus pro-
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Figure 1: The left part shows four training paradigms of face recognition, namely vanilla, mask-
based, GAN-based methods and our FaceMAE. The abbreviation ‘Reco.’ means ‘Reconstructed’,
and ‘DC’ means ‘Distance Consistency’. We also visualize the feature distributions of face images
in central part. It is obviously that the face images learned by FaceMAE have more similar distri-
bution with original faces. The right panel shows the performance comparisons of four methods on
LFW and CFP-FP datasets. Compared to training on original and generated faces, mask-based and
FaceMAE methods need less (25%) visible information of the whole faces. FaceMAE can capture
the original face feature distribution more accurately thus it outperforms GAN-based and mask-
based methods.

ducing unsatisfying recognition performance. The recent works try to generate privacy-preserving
face dataset by synthesizing identity-ambiguous faces Qiu et al. (2021), de-identification faces Wu
et al. (2019); Li & Lin (2019) or attribute-removed faces Mirjalili et al. (2020); Bortolato et al.
(2020) with adapted generative adversarial networks (GANs). They can generate as many synthetic
faces as required for privacy-preserving face recognition task. Although these GAN-based methods
can generate real-looking faces, the utility of these generated faces for training deep models are not
guaranteed. As shown in the central part of Fig. 1, there exists remarkable domain gap between gen-
erated and original faces, which leads to poor face recognition performance of GAN-based methods
Qiu et al. (2021). Another drawback of GAN based methods is that the generators trained on one
dataset cannot be deployed on unseen identities. In addition, all raw face images of the target dataset
are required to train the generative models, which causes extra privacy leakage risks.

For membership privacy, an intuitive sense is that a raw face contains more privacy than the masked
one. As shown in Fig. 1, the features distribution of masked faces are close to each other, which
indicates the masked faces only contains little privacy. This naturally raises a question: “Is it feasi-
ble to reconstruct informative face images from these masked faces that are good for training deep
models?” In this paper, we propose a novel framework FaceMAE, where the face privacy and recog-
nition performance are considered simultaneously. Specifically, FaceMAE consists of two stages,
named training and deployment. In the training stage, we adapt masked autoencoders (MAE) He
et al. (2021) to reconstruct a new dataset from randomly masked face dataset. Distinct from vanilla
MAE, the objective of FaceMAE is to generate the faces those are beneficial for face recognition
training. Therefore, we utilize instance relation matching module (IRM) instead of Mean Squared
Error loss (MSE-Loss) in vanilla MAE, which aims to minimize the difference between the relation
graphs of original and reconstructed faces. To the best of our knowledge, we are the first to tailor
a new optimization object rather than inherit the MSE-Loss for MAE. Once the training stage is
finished, we apply the trained FaceMAE to generate reconstructed dataset and train face recognition
backbone on reconstructed dataset. The trained FaceMAE can be easily deployed on any masked
face dataset without any extra training, which shows strong generalization of our proposed method.

In experiments, we verify that our FaceMAE outperforms the state-of-the-art synthetic face dataset
generation methods by a large margin in terms of recognition accuracy in multiple large-scale face
datasets. As shown in Fig. 1, when training on reconstructed images from 75% masked faces
of CASIA-WebFace, FaceMAE consistently reduces at least 50% error rate than the runner-up
method (SynFace) on LFW, CFP-FP, and AgeDB datasets. It means better utility of the privacy-
preserving face images generated by our method. We implement real-to-synthetic face retrieval
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experiments namely membership inference, and the results show that our FaceMAE makes mem-
bership inference significantly hard.

We summarize our contributions as:

• We propose a new paradigm for privacy-preserving face recognition, named FaceMAE,
that can be easily used on any face dataset to reduce the privacy leakage risk.

• Our FaceMAE jointly considers the privacy-persevering and recognition performance by
adopting IRM module to minimize the distribution gap of original and reconstructed faces.

• Sufficient experiments verify that our FaceMAE outperforms the state-of-the-art methods,
especially we reduce at least 50% error rate than previous best method on LFW, CFP-FP,
and AgeDB datasets. In addition, the risk of privacy leakage decreases around 20% in the
face retrieval experiment.

2 RELATED WORK

2.1 FACE DATASET AND PRIVACY

Large-scale public face datasets Parkhi et al. (2015); Guo et al. (2016); Nech & Kemelmacher-
Shlizerman (2017); Liu et al. (2018); Zhu et al. (2021) are typically collected by searching online
images based on a name list of celebrities. Instead, those tech giants may obtain much more private
face data Taigman et al. (2015); Schroff et al. (2015) for training their models. Both of them cause
many privacy concerns, as they collect and store the original high-resolution personal images.

Although differential privacy (DP) Dwork et al. (2006); Abadi et al. (2016) based methods have
theoretical guarantees of privacy leakage and have been applied to easy datasets like MNIST LeCun
et al. (1998), it is not applicable to generate large-scale high-resolution face dataset, because of
low utility of the generated samples Xie et al. (2018); Cao et al. (2021). The recent works on
generating privacy-preserving face dataset try to model the collect real faces with advanced GAN
models and then synthesize fake face images with modifications Wu et al. (2019); Li & Lin (2019);
Mirjalili et al. (2020); Bortolato et al. (2020); Qiu et al. (2021). For example, Qiu et al. (2021)
propose to synthesize identity-ambiguous faces by mixing two label vectors. Different from de-
identification methods that aim to remove the identity of face images Wu et al. (2019), we expect
the privacy-preserving dataset can be used to train downstream identification models. Besides the
utility problem, the above methods all have to access the raw face images of the target identities for
training generative models.

Encoder-decoder models are learned in You et al. (2021); Yang et al. (2022a) that can convert
private faces into privacy-preserving images and then invert them back to original ones. Although
our FaceMAE also has encoder-decoder structure, our method is different from them in three main
aspects: 1) Their protected images are hardly useful for downstream tasks, while ours can be used
for training downstream models directly. 2) Their protected images can be inverted to original ones,
while ours cannot be inverted. 3) They have to access raw face images, while our method only needs
to access desensitized face images. An orthogonal technique to relieve face privacy concerns can be
federated face recognition Meng et al. (2022); Bai et al. (2021); Aggarwal et al. (2021), while it is
still challenging to achieve comparable performance to that of centralized training.

2.2 MEMBERSHIP INFERENCE ATTACK

Membership inference Brickell & Shmatikov (2008); Li et al. (2010); Shokri et al. (2017) is a fun-
damental privacy problem in machine learning applications and the attack against membership is
extremely destructive for medical and finical applications. In the popular membership inference
attack protocol, a predictor is learned to infer the membership of specific sample in the training set
given access to the black-box model Shokri et al. (2017); Sablayrolles et al. (2019). The averaged
prediction accuracy or some other metrics can be derived based on the input and output of shadow
models Sablayrolles et al. (2019); Carlini et al. (2021); Rezaei & Liu (2021).

However, this protocol is designed for small-scale classification datasets and it is not applicable to
large-scale face datasets with millions of identities. Note that the representation model trained on
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a set of face identities will include only the embedding module and the identity classifier will be
dropped. Thus, it is not suitable to predict the existence of a training face image based on its output,
i.e. feature, in face recognition task. As aforemotioned, we propose to measure the membership
privacy leakage based on real-synthetic face image retrieval.

2.3 TRAINING SAMPLE SYNTHESIS

Training deep neural networks with synthetic samples is a promising solution when collecting real
training data is expensive or infeasible for privacy issues. As the most successful generative model,
Generative Adversarial Networks (GANs) Goodfellow et al. (2014); Brock et al. (2018) are lever-
aged or adapted to synthesize training images for downstream tasks. For example, Antoniou et al.
(2017) use GANs to augment training samples for few-shot target domain. Zhang et al. (2021); Yang
et al. (2022b) learn to synthesize pixel-level image-annotation pairs, in order to minimize the manual
annotation efforts. However, it is known that the synthetic and real data would have serious domain
gap, and thus models trained on synthetic data perform badly on real testing data Ravuri & Vinyals
(2019); Zhao & Bilen (2022). To narrow the domain gap between synthetic and real face images,
Qiu et al. (2021) propose to mixup synthetic and real faces. Zhao & Bilen (2022) learn informative
latent vectors of a pre-trained GAN model corresponding to informative synthetic training images by
explicitly matching synthetic and real data distribution in many embedding spaces. Instead, we learn
FaceMAE which can convert the largely masked faces to informative training samples for training
high-performance recognition models.

3 PROPOSED METHOD

In this section, we first overview the pipeline of FaceMAE. Then, we briefly revisit the masked
autoencoders (MAE) He et al. (2021) and formally introduce masked face reconstruction. After
that, a carefully designed instance relation matching (IRM) module is presented. Finally, we give
the measurement of the membership privacy leakage of face datasets based on face image retrieval.

3.1 OVERVIEW OF FACEMAE

An overview of the FaceMAE is illustrated in Fig. 2. FaceMAE includes two stages, named train-
ing and deployment. In training stage, we first randomly mask the original faces with (by default)
75% ratio from a public dataset. Then, the masked faces are fed into FaceMAE to obtain the re-
constructed ones. Instead of minimizing the Mean Squared Error loss (MSE-Loss) between original
and reconstructed faces in pixel space, we tailor the instance relation matching (IRM) module to
minimize distribution gap between real faces and FaceMAE reconstructed ones in feature space.
In deployment stage, we apply the trained FaceMAE to reconstruct the masked faces from another
dataset with unseen identities and assemble these reconstructed faces as a privacy-preserving dataset
for face recognition tasks. Note that FaceMAE is trained on one dataset with raw images and then
deployed to masked faces from unseen identities in order to construct the privacy-preserving dataset
for these unseen identities.

3.2 MASKED FACE RECONSTRUCTION

Revisiting Masked Autoencoders. Masked Autoencoders (MAE) He et al. (2021) is a simple but
efficient self-supervised pretraining strategy for image classification and its downstream tasks, such
as object detection, instance segmentation, and semantic segmentation. MAE utilizes an asymmetric
encoder-decoder architecture to reconstruct the unseen patches from masked image. To train MAE,
the training images are randomly masked as the input, and the MSE-Loss between the original
image and MAE reconstructed ones is minimized. With MAE pre-training, data-hungry models
like ViT-Large/-Huge Dosovitskiy et al. (2020) can be trained well with improved generalization
performance.

Thanks to MAE’s image completion ability, we adapt it to reconstruct privacy-preserving faces from
the masked ones. Specifically, given N raw face images I = {Ii}||I|i=1, we resize them to 224 ×
224 size. The resized faces are divided into non-overlapping 16 × 16 patches. Then, we randomly
select a subset (e.g. 25%) of patches and mask (i.e., remove) the rest. Each patch represents a token
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Figure 2: Illustration of the pipeline of FaceMAE. Org. and Reco. denote original and reconstructed,
respectively. In training stage, FaceMAE learns to generate reconstructed faces from masked faces.
Instance relation matching (IRM) aims to ensure reconstructed faces that have similar distance graph
with original ones in feature space. Distance consistency loss is used to optimize FaceMAE. In
deployment stage, we directly apply trained FaceMAE on unseen masked dataset to obtain recon-
structed faces for face recognition training.

embedding. Only the visible patches are fed into transformer encoder E to obtain visible tokens.
After that, a shallow decoder D is designed to reconstruct the input image from visible mask tokens.
The whole reconstruction progress can be formulated as

Î = D(E[γ(I)]), (1)

where γ(·) represents the random mask operation.

3.3 INSTANCE RELATION MATCHING

We expect the reconstructed face images are informative as the training samples for downstream
tasks rather than high visual fidelity. The vanilla MAE adopts MSE-Loss to minimizes differences
between reconstructed and original faces in pixel space for visual fidelity, which may ignore the
distribution gap between original faces and reconstructed ones. In order to make reconstructed faces
more informative as training samples, we design the instance relation matching (IRM) module to
learn FaceMAE. The IRM consists of two optimization components, named instance matching (IM)
and relation matching (RM) losses.

With the raw and corresponding reconstructed images, we extract the features using an extra pre-
trained embedding model ϕ(·). We combine the features of the raw and reconstructed image set
as two matrix F = [ϕ(I1), ..., ϕ(IN)}] and F̂ = [ϕ(Î1), ..., ϕ(ÎN )] respectively, where each row
is a feature vector. We construct two graphs in the feature space with the data points as nodes and
similarity as edges respectively. Then, the distribution consistency loss Ldc is calculated based on
the matching of both nodes and edges of the two graphs, in other words, the instance matching and
relation matching respectively. We formulate it as

Ldc = ∆(F, F̂)︸ ︷︷ ︸
Instance Matching

+ β∆(⟨F , FT⟩, ⟨F̂ , F̂T⟩)︸ ︷︷ ︸
Relation Matching

, (2)

where ∆ measures the averaged pairwise Euclidean distance, ⟨· , ·⟩ is the inner production, and β
is a trade-off coefficient between instance matching and relation matching.

3.4 PRIVACY LEAKAGE RISK

Our method is used to generate privacy-preserving face dataset. The potential attack to privacy
is that the adversary may try to infer (retrieve) his/her interested identities in the face dataset by
retrieving them with some other real faces. We measure the risk of this membership privacy leakage
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based on face image retrieval experiment. Specifically, we assume that the reconstructed set S =

{(si, yi)}||S|
i=1 is released and attacker has a set of real faces A = {(ai, zi)}||A|

i=1 of his/her interested
identities. He/she can leverage well-trained models to extract features and retrieve the set R based
on A. If the top-K retrieved faces involve the ground-truth identity, we count it as one leakage event.
Then, the averaged leakage risk R(A,S,K) can be obtained by averaging multiple attacks:

R(A,S,K) =
1

A
Σ

|A|
i=11(zi ∈ T (ai,S,K)) (3)

where T (ai,S,K) is a retrieval function that returns the label set of the K reconstructed faces
closest to the real query face ai in embedding space.

4 EXPERIMENTS

4.1 DATASETS

We first introduce the datasets used in training and deployment stages of FaceMAE and the three
datasets for face verification.

WebFace260M for FaceMAE Training. By default, we use WebFace260M Zhu et al. (2021) to
train the FaceMAE. WebFace260M is the latest million-scale face benchmark, which is constructed
for the research community. The high-quality training set of WebFace260M contains 42 millions
faces of 2 millions identities. We use 10% data for FaceMAE training.

CASIA-WebFace for FaceMAE Deployment. After training FaceMAE on WebFace260M, we
deploy the trained FaceMAE on CASIA-WebFace Yi et al. (2014). The dataset includes 494, 414
face faces of 10, 575 real identities collected from the Internet.

Face Verification Datasets. We mainly validate our face recognition model on 3 face recog-
nition benchmarks, including LFW Huang et al. (2008), CFP-FP Sengupta et al. (2016), and
AgeDB Moschoglou et al. (2017). LFW is collected from the Internet which contains 13, 233
faces with 5, 749 IDs. CFP-FP collects 7, 000 celebrities’ faces with 500 identities. Each identity
contains 10 frontal view and 4 profile views. AgeDB contains 16, 488 images of various famous
people, such as actors/actresses, writers, scientists, politicians, etc. Every image is annotated with
respect to the identity, age and gender attribute. There exist a total of 568 distinct subjects.

4.2 IMPLEMENTATION DETAILS

Our FaceMAE is implemented with Pytorch Paszke et al. (2019). Training Stage: We follow the
default hyper-parameters of original MAE. The default patch size is 16, the size of input image is 224
× 224, the batch size is 256 per GPU, and mask ratio is 75%. For masked face reconstruction, we
use eight A100 80G GPUs to train ViT-Base for 200 epochs (40 epochs for warm up). The pretrained
backbone (in Fig. 2) is ResNet-50 and its parameters is downloaded from InsightFace toolbox1. The
default β is 1, the base learning rate is 1.5e-4, and the weight decay is 0.05. Deployment Stage: We
apply FaceMAE to reconstruct faces from masked CASIA-WebFace and train these reconstructed
faces using ResNet-50 backbone from InsightFace. To make fair comparison, we set all hyper-
parameters as same as InisghtFace. More details can be found in Supplementary Material.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare FaceMAE with the state-of-the-art methods, including SynFace Qiu et al. (2021), Face-
Crowd Kou et al. (2022) and ArcFace Deng et al. (2019). To investigate the effect of our proposed
method, we also compare FaceMAE with vanilla MAE He et al. (2021). The face verification per-
formances on on LFW, CFP-FP, and AgeDB are shown in Tab. 1. These evaluation datasets contain
most of face verification cases, including the Internet faces verification, frontal and profile views
faces verification, and cross-age faces verification. ArcFace Deng et al. (2019) is a popular margin-
based loss for face recognition and we train a ResNet-50 using ArcFace loss as upper-bond results
in first row of Tab. 1. SynFace utilizes Disco-GAN Deng et al. (2020) to generate non-existing faces

1https://insightface.ai/
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Method (Backbone) Type Training Dataset Evaluation Datasets

LFW CFP-FP AgeDB

ArcFace (R50)∗ Deng et al. (2019) No Protection CASIA-WebFace 99.35 94.38 94.73
SynFace (R50)Qiu et al. (2021) GAN-Based Syn-10K-50 88.98 76.23 72.17
FaceCrowd (R18)Kou et al. (2022) Distortion Partial Area of CelebA 83.58 - -
ArcFace (R50)Deng et al. (2019) Distortion 75% Masked CASIA-WebFace 95.23 79.02 74.13
MAE + ArcFace (R50)Deng et al. (2019) MAE-Based Reconstructed CASIA-WebFace 97.62 87.14 85.68

FaceMAE + ArcFace (R18) MAE-Based Reconstructed CASIA-WebFace 98.56 89.31 89.13
FaceMAE + ArcFace (R50) MAE-Based Reconstructed CASIA-WebFace 99.23 90.80 90.25

Table 1: Comparison with state-of-the-art methods using the metric of face verification accuracy
(%). ∗ denotes the upper bond method that is reproduce by official InsighFace. Besides the upper
bond results, the best entry of the rest results is marked in bold.

using two existing face identities and train ResNet-50 on these generated faces. FaceCrowd chooses
partial areas from existing faces, such as eyes and month corners, to train face recognition using
ResNet-18. As shown in Tab. 1, FaceMAE outperforms previous state-of-the-art methods on all the
three evaluation datasets with a large margin. Specifically, the error rate is reduced at least 50%
compared to previously best method SynFace Qiu et al. (2021). On the one hand, this demonstrates
the effectiveness of our method that can reconstruct more discriminative faces for training. On the
other hand, these significant improvements also prove the proposed FaceMAE has better utility for
privacy-preserving face recognition.

4.4 ABLATION STUDIES

We perform extensive ablation studies to illustrate the effects of our method. For better evalua-
tion, we conduct experiments where we train FaceMAE on 75% masked WebFace260M dataset and
deploy it on CASIA-WebFace (unless otherwise specified).

Evaluation of MSE-Loss and distribution consistency loss Ldc. We first analyze the effect of Ldc

of FaceMAE. Note that, to better understand the effect of two components of Ldc, we separately
consider instance matching (IM) loss and relation matching (RM) loss. Experimental results are
shown in Tab. 2. As one can see, the best results are achieved when jointly using IM and RM,
which shows the compatibility of the two losses. We also investigate the effect of the MSE-Loss.
Applying either IM or RM individually also brings non-trivial improvement than using MSE-Loss.
Adding MSE-Loss with Ldc cannot further improve the face verification performance, which implies
the Ldc can provide sufficient supervision for reconstruction. We visualize the reconstructed faces
using MSE-Loss and Ldc respectively in Supplementary Material.

Exploring the mask ratio. Higher mask ratio means the less information of face is accessible,
so the privacy could be protected better. Therefore, in order to minimize the privacy concerns
and keep the verification performance simultaneously, we explore the max threshold of mask ratio
that can achieve comparable results as original faces. We first randomly mask WebFace260M with
four different mask ratios (30%, 50%, 75%, and 90%). Then, we train the FaceMAE models on
these masked datasets, respectively. Finally, we deploy these trained models to reconstruct faces
from masked CASIA-WebFace and report the verification performances on evaluation datasets. As
shown in Tab. 3, the performance degrades slightly when mask ratio increase from 30% to 75%.
However, the verification accuracy drops obviously when the mask ratio is set to 90%. It shows that
masking too many patches of faces cannot guarantee the face recognition performance. Therefore,
considering both performance and privacy, we set mask ratio as 75% by default.

Evaluating the generalization on variant datasets. By default, we train FaceMAE on Web-
Face260M and apply it to reconstruct faces from masked CASIA-WebFace. To investigate the gen-
eralization of training and applying FaceMAE on variant datasets, we exchange the usage of Web-
Face260M and CASIA-WebFace, i.e. WebFace260M as deploying dataset while CASIA-WebFace
as training dataset. Another concern is that the identities of the two datasets may overlap. To elimi-
nate the influence of overlapping identities in training and deploying, we use two different 10% sub-
sets of WebFace260M, namely W.sub1 and W.sub2, where W. is the abbreviation of WebFace260M.
We show the experimental results in Tab. 4. Several findings can be concluded in the following.
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Operation Evaluation Datasets

MSE IM RM LFW CFP-FP AgeDB

✓ 97.62 86.14 85.68
✓ 98.93 89.69 89.78

✓ 98.92 87.10 86.68
✓ ✓ 99.23 90.80 90.25

✓ ✓ ✓ 99.13 90.51 90.19

Table 2: Evaluation of MSE-
Loss, IM and RM in the pro-
posed FaceMAE. Bold entries
are best results.

Mask Ratio Evaluation Datasets

LFW CFP-FP AgeDB

30% 99.41 93.03 92.87
50% 99.33 91.98 91.56
75% 99.23 90.80 90.25
90% 67.33 57.38 54.01

Table 3: Evaluation of mask ra-
tio of input faces for FaceMAE
training. All the mask patches
are generated by random seed.

Train Deploy Evaluation Datasets

LFW CFP-FP AgeDB

W. C. 99.23 90.80 90.25
C. W. 99.37 93.87 94.14

W.sub1 W.sub2 99.65 94.00 94.36
W.sub2 W.sub1 99.47 94.12 94.51

Table 4: Evaluation of the gen-
eralization of FaceMAE. W. and
C. represent WebFace260M and
CASIA-WebFace.

Arch. Evaluation Datasets

LFW CFP-FP AgeDB

R18 98.56 89.31 89.13
R100 99.53 91.91 90.51
MBF 98.40 88.94 88.56
ViT-S 98.45 90.12 90.18

Table 5: Exploration of cross-
architecture generalization of
FaceMAE. R, MBF and ViT-S
denote ResNet, MobileFaceNet,
and Vision Transformer.

β
Evaluation Datasets

LFW CFP-FP AgeDB

0.1 98.94 88.21 87.13
0.5 99.02 89.01 88.96
1.0 99.23 90.80 90.25
10 98.97 87.65 86.96

Table 6: Exploration of differ-
ent β from 0.1 to 10. β is a
trade-off parameter between in-
stance matching loss and rela-
tion matching loss.

Mask Area Evaluation Datasets

LFW CFP-FP AgeDB

Seed 0 99.23 90.80 90.25
Seed 1 99.10 90.67 90.21

Eye 98.45 89.98 89.76
Mouth 98.77 90.14 89.93

Table 7: Exploring which facial
area is more related to the face
recognition performance. The
first and second rows use differ-
ent random seeds for masking.

First, deploying the trained FaceMAE on larger datasets can obtain better verification performances.
Second, our proposed FaceMAE has good generalization on variant datasets, no matter identity
overlap exists or not.

Evaluating the generalization of cross-architecture. Another key advantage of our method is
that the reconstructed faces can be used to train variant architectures, such as ResNet (R) He et al.
(2016), MobileFaceNet (MBF) Chen et al. (2018) and Vision Transformer (ViT-S) Dosovitskiy et al.
(2020). We train reconstructed faces using R18, R100, MBF, and ViT-S. The experimental results
can be found in Tab. 5. The reconstructed faces are not sensitive to network architectures, which
proves the good generalization of proposed FaceMAE. Using deeper network (R100) outperforms
shallower network (R18) with 0.97%, 2.6%, and 1.38% on LFW, CFP-FP, and AgeDB. Therefore,
it is feasible to utilize a light model to learn FaceMAE and apply to deeper model for boosting face
recognition performance.

Exploring β. We define β as a trade-off hyper parameter between instance matching loss and rela-
tion matching loss. In order to evaluate the sensitiveness of β, we study the verification performances
on evaluation datasets when setting β to be 0.1, 0.5, 1.0, and 10 in Tab. 6. One can find that the
performance increases monotonically when β rises from 0.1 to 1. While continually increasing β
to 10, the performance degrades significantly. It shows that over emphasizing the importance of
relation matching may lead to less discriminative face reconstruction.

Evaluating several types of mask. We apply different mask strategies to evaluate the robustness of
FaceMAE and show the results in Tab. 7. The comparable results of the first and second line show
that changing random seed has very little influence on our proposed method. Masking eye or mouth
consistently degrades the face recognition performances on three evaluation datasets, which indi-
cates these areas are more important for the performance of face recognition. Meanwhile, masking
these areas also cause difficulties for face alignment.

4.5 ANALYSIS OF PRIVACY LEAKAGE RISK

As formulated in Sec. 3.4, we measure the risk of membership privacy leakage based on the face
retrieval between original and reconstructed face images. The simulated retrieval experiments are
explored on CASIA-WebFace. We here set K=2 and show the results in Fig. 3. One can find that
the retrieval performances of ‘Org. to MAE.’ and ‘Org. to FaceMAE’ retrieval degrade largely
with the number of identity increasing, while the performance of ‘Org. to Org.’ retrieval only

8



Under review as a conference paper at ICLR 2023

2000 IDs 4000 IDs 6000 IDs 8000 IDs 10000 IDs
30

40

50

60

70

80

90

100

To
p1

 A
cc

. (
%

)

Org. to Org.
Org. to MAE

(a)
2000 IDs 4000 IDs 6000 IDs 8000 IDs 10000 IDs

30

40

50

60

70

80

90

100

To
p1

 A
cc

. (
%

)

Org. to Org.
Org. to FaceMAE

(b)
2000 IDs 4000 IDs 6000 IDs 8000 IDs 10000 IDs

30

40

50

60

70

80

90

100

To
p1

 A
cc

. (
%

)

Org. to Org.
MAE to FaceMAE

(c)

Figure 3: (a), (b), and (c) compare the retrieval performances on Original (Org.), MAE reconstructed
and FaceMAE reconstructed datasets. The green bar (‘Org. to Org.’) represents using images from
original dataset to retrieve each other. Other colors denote the retrieval experiments are completed
among different settings.

degrades slightly. The comparison verifies that the difficulty of membership inference by retrieving
the reconstructed faces in dataset with real faces is significantly increased by our method. Fig.
3(a) shows that ‘Org. to MAE’ retrieval is challenging compared to ‘Org. to Org.’ baseline. This
result verifies that applying MAE to face dataset is the key to reduce the privacy leakage. ‘Org.
to FaceMAE’ retrieval accuracy is also obviously lower than ‘Org. to Org.’ (illustrated in Fig.
3(b)), around 20% for 10,000 IDs, although it is higher than ‘Org. to MAE’. The reason is that we
trade-off the performance and privacy by introducing the instance relation matching module. Note
that our FaceMAE achieves remarkable performance improvement in face recognition over MAE.
Another possible privacy attack is that the adversary may imitate the masking process of MAE and
retrieve the FaceMAE dataset with MAE processed images. Fig. 3(c) shows that this kind of attack
is unpromising which is much more challenging than ‘Org. to FaceMAE’ retrieval.

5 CONCLUSION & DISCUSSION

This paper deals with an urgent and challenging problem of privacy-preserving face recognition.
FaceMAE is proposed to generate synthetic samples that reduce the privacy leakage and maintain
recognition performance simultaneously. Instance relation matching module instead of MSE loss
in vanilla MAE is designed to enable generated samples to train deep models effectively. The ex-
periments verify that the proposed MAE surpasses the runner-up method by reducing at least 50%
recognition error on popular face dataset. The privacy leakage risk decreases around 20% when our
FaceMAE is applied.

Discussion. As a new framework for protecting the face membership privacy, our FaceMAE still
has several limitations. First, our FaceMAE can reduce the membership privacy leakage of a face
dataset rather than completely solve this problem. More future work is needed to advance large-
scale privacy-preserving face recognition. Second, our method doesn’t defend the inversion attack
on model or training sample, which is out of the scope of this paper. Fortunately, those defence
methods can be easily applied together with our method.
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A APPENDIX

In this appendix, we first introduce more details on the deployment of FaceMAE. Then, we show
some visualization results of generated face images and more face retrieval results. After that, the
generalization ability of FaceMAE is further tested on variant masked datasets.

A.1 MORE DETAILS ON THE DEPLOYMENT OF FACEMAE

By default, we train FcaeMAE on 10% data of WebFace260M and deploy it on CASIA-WebFace.
Here, we use InsightFace2, a well-known code base for face tasks, to train the reconstructed CASIA-
WebFace dataset. Following the default settings in InsightFace, we use ArcFace as the loss function
and ResNet50 He et al. (2016) as the backbone. The embedding dimension is 512, sampling rate is
1, momentum is 0.9 and the weight decay is 5e-4. The batch size is set to 128 per GPU. We use 4
GPUs to train ResNet50. The initialized learning rate is 0.1 and it decays at 20th, 28th, and 32th
epoch, respectively. We warm up the learning rate for 1 epoch and end the training after 34th epoch.

Faces Reconstructed by FaceMAE

Faces Reconstructed by MAE

Figure 4: Visualization of faces reconstructed by FaceMAE and vanilla MAE. Please simply com-
pare the areas in blue and orange boxes.

A.2 VISUALIZATION OF RECONSTRUCTED FACES

To better understand FaceMAE, we visualize the reconstructed faces that using FaceMAE and
vanilla MAE. As shown in Fig. 4, FaceMAE can reconstruct more facial details than vanilla MAE.
Especially, around the areas of eyes and mouth, the images generated by our method show more
details that look more natural than the images generated by vanilla MAE. This explains why train-
ing models on FaceMAE generated faces can perform better than vanilla MAE generated faces.
Previous works Troje & Bülthoff (1996); Liu & Wechsler (2001) have verified that such details are
important for face recognition.

A.3 MORE FACE RETRIEVAL RESULTS

In the main paper, we evaluated the risk of membership privacy leakage based on face retrieval and
set the retrieval hyper-parameter K = 2. Here, we present more results with K = 3 and K = 4. As
shown in Fig. 5, the proposed FaceMAE can consistently reduce the retrieval performance of ‘Org.
to FaceMAE’ when compared to ‘Org. to Org.’. Although MAE has lower retrieval performance, i.e.
better privacy preserving, the experiments in main paper have proved that our FaceMAE significantly
improves the recognition performance, i.e. better utility.

2https://insightface.ai/
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Figure 5: We report the face retrieval performance with different settings. For example, ‘Org. to
MAE’ means that we retrieve the MAE generated face dataset with original images and report the
averaged Top-K retrieval accuracy. K is set to be 3 and 4 in the upper and below rows respectively.

A.4 GENERALIZATION OF FACEMAE ON VARIANT MASKED DATASETS

Training Dataset Deployment Dataset Evaluation Datasets

LFW CFP-FP AgeDB

75% Masked WebFace260M

30% Masked CASIA-WebFace 99.28% 93.92% 92.88%
50% Masked CASIA-WebFace 99.25% 92.78% 91.83%
75% Masked CASIA-WebFace 99.23% 90.80% 90.25%
85% Masked CASIA-WebFace 98.66% 83.38% 84.55%
90% Masked CASIA-WebFace 88.66% 69.20% 66.50%

Table 8: Evaluation of FaceMAE on variant ratios masked datasets.

In order to explore the generalization ability of FaceMAE on variant masked datasets, we deploy
the trained FaceMAE on 30%, 50%, 75%, 85%, and 90% masked CASIA-WebFace datasets. As
shown in Fig. 8, FaceMAE can perform better on 30% and 50% masked CASIA-WebFace datasets.
Although too large masking ratio, such as 85%, decreases the performance significantly, FaceMAE
can still perform better than GAN-based and mask-based methods with a large margin. Another
interesting finding is that training on 75% masked WebFace260M and deploying it on 90% masked
CASIA-WebFace improves around 10% performance than training FaceMAE on 90% masked Web-
Face260M (in Tab. 3 of Experiments section). These results indicate the good generalization of
proposed FaceMAE when deploying it on variant masked datasets.
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