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Abstract

Universal machine learning interatomic potentials (uMLIPs) have emerged as
powerful tools for accelerating atomistic simulations, offering scalable and ef-
ficient modeling with accuracy close to quantum calculations. However, their
reliability and effectiveness in practical, real-world applications remain an open
question. Metal-organic frameworks (MOFs) and related nanoporous materials
are highly porous crystals with critical relevance in carbon capture, energy stor-
age, and catalysis applications. Modeling nanoporous materials presents distinct
challenges for uMLIPs due to their diverse chemistry, structural complexity, in-
cluding porosity and coordination bonds, and the absence from existing training
datasets. Here, we introduce MOFSimBench, a benchmark to evaluate uMLIPs
on key materials modeling tasks for nanoporous materials. Evaluating 20 mod-
els from various architectures on a chemically and structurally diverse materi-
als set, we find that top-performing uMLIPs consistently outperform classical
force fields and fine-tuned machine learning potentials across structural optimiza-
tions, molecular dynamics simulations, and bulk modulus and heat capacity pre-
dictions. Our modular and extensible benchmarking framework is available at
https://github.com/AI4ChemS/mofsim-bench.

1 Introduction

Molecular modeling is a powerful tool for understanding the structure and interactions of molecules
and materials, and it plays a crucial role in predicting material properties to accelerate discovery
[Frenkel and Smit, 2023, Tuckerman, 2023, Noé et al., 2020]. However, computing interatomic
interactions in a molecular simulation is bound to an accuracy-efficiency trade-off: Ab initio quantum
methods offer high accuracy, but are computationally expensive and do not scale well to large
systems; in contrast, empirical potentials are computationally efficient, but often lack sufficient
accuracy for practical applicability [Musil et al., 2021, Huang et al., 2023, Xie et al., 2023]. Machine
learning interatomic potentials (MLIPs) have emerged as a promising tool to bridge this gap between
efficiency and accuracy [Behler and Parrinello, 2007, Deringer and Csányi, 2017, Batatia et al., 2023,
Lysogorskiy et al., 2021, Xie et al., 2023, Schütt et al., 2017, Batzner et al., 2022, Liao et al., 2024,
Fu et al., 2025]. To enable broad applicability across a wide range of elements, universal MLIPs
(uMLIPs) have been introduced to benefit from the scale of data and models, enabling the general
deployment of MLIPs in many domains [Chen and Ong, 2022, Deng et al., 2023, Batatia et al., 2024,
Barroso-Luque et al., 2024, Yang et al., 2024, Neumann et al., 2024, Rhodes et al., 2025, Bochkarev
et al., 2024].
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While the promise of “universal” interatomic potentials is compelling, their real-world deployment
often encounters additional challenges, such as out-of-distribution (OOD) materials and tasks, which
require rigorous testing of the models. Existing open benchmarks and evaluation frameworks, such
as Matbench Discovery [Riebesell et al., 2025], often evaluate metrics closely aligned with the
training objectives (e.g., energy, force, and stress fitting), which may not adequately reflect model
performance on domain-relevant tasks or OOD scenarios [Focassio et al., 2025]. Recent efforts
have begun incorporating downstream assessments, such as molecular dynamics (MD) stability and
prediction of materials properties [Póta et al., 2024, Loew et al., 2024, Fu et al., 2023, Chiang et al.,
2025], which may offer more reliable indicators of practical modeling performance.

This study focuses on applications of uMLIPs for metal-organic frameworks (MOFs), a class of highly
porous materials with applications in carbon capture [Lin et al., 2021, Ye et al., 2025, Boyd et al.,
2019, Chen et al., 2025] energy storage [Chen et al., 2024, Shin et al., 2023, Gittins et al., 2024], and
catalysis [Mourino et al., 2025, Yu et al., 2025, Fumanal et al., 2020], as well as related nanoporous
materials. MOFs are formed by self-assembly of metal nodes and organic linkers, resulting in
modular porous frameworks with infinite design space [Moosavi et al., 2020]. Their low symmetry
and large unit cells make ab initio quantum calculations prohibitively expensive for large-scale or
long-timescale dynamic simulations. As a result, large-scale molecular modeling of MOFs has
traditionally relied on classical force fields [Evans et al., 2016, Islamov et al., 2023, Moosavi et al.,
2018]. While specialized force fields have been developed for a few prototypical frameworks, these
force fields still fail to cover the diverse chemistries of MOFs as they retain a rigid functional form
and rely on fixed parameters for specific coordination geometries [Boyd et al., 2017].

uMLIPs provide an opportunity to address these shortcomings by offering quantum-level accuracy at
a computational cost closer to classical force fields. To assess their applicability in MOF molecular
modeling, we investigate their performance on a variety of MOFs in structural optimization, MD, and
derived properties, including elastic moduli and heat capacities. In addition, we compare them to
fine-tuned uMLIPs specifically on MOF data [Elena et al., 2025] and the Universal Force Field (UFF)
parametrized for MOFs (UFF4MOF) [Rappe et al., 1992, Coupry et al., 2016].

2 Benchmarking results

Our benchmark includes 9 state-of-the-art uMLIPs, spanning a range of architectural designs and
training datasets. The selected architectures cover equivariant graph neural networks (GNNs) (MACE
[Batatia et al., 2024, 2023], MatterSim [Yang et al., 2024], SevenNet [Park et al., 2024]), graph
transformers (GTs) (EquiformerV2 (eqV2) [Liao et al., 2024, Barroso-Luque et al., 2024], eSEN
[Fu et al., 2025]), graph network-based simulators (GNS) (orb-v2 [Neumann et al., 2024], orb-v3
[Rhodes et al., 2025]), and the graph basis function-based GRACE [Bochkarev et al., 2024]. All
models, except MatterSim [Yang et al., 2024], which was trained on a proprietary dataset, were
trained on large-scale open datasets, including MPtrj [Deng et al., 2023], Alexandria [Schmidt et al.,
2023], and/or OMat24 [Barroso-Luque et al., 2024]. While MPtrj and Alexandria primarily contain
equilibrium conformations, OMat24 includes extensive out-of-equilibrium data, enabling broader
coverage of the potential energy surface (PES). We furthermore investigate the performance of
MACE-MP-MOF0 [Elena et al., 2025], a uMLIP fine-tuned on MOF data, to study the effects of
domain-specific training, as well as UFF4MOF [Coupry et al., 2016].

Each model is evaluated on a consistent set of tasks critical for characterizing nanoporous materials:
structural optimization, molecular dynamics stability, and bulk property prediction, namely bulk
modulus and the specific heat capacity. Tasks are performed on a set of 100 nanoporous structures
curated from QMOF [Rosen et al., 2021], MOSAEC-DB [Gibaldi et al., 2025], IZA [Baerlocher
et al.], and CURATED-COF [Ongari et al., 2019]. Performance is assessed by comparing uMLIP
predictions against DFT references. Structures and DFT references for the heat capacity analysis
were obtained from Moosavi et al. [2022].

2.1 Structural optimization

Structural optimization is a foundational task in atomistic modeling used to identify minimum-
energy configurations, assess local stability, and reduce artifacts introduced by experimentally
determined or hypothetical initial structures. We investigate the number of steps required to reach
a force convergence criterion of 10−3 eV/Å or at most 5 000 optimization steps, as well as the
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Figure 1: a) Structural minimization convergence grouped by number of optimization steps required to
reach a force convergence criterion of 10−3 eV/Å. Numbers at the top indicate the percentage of N/A
results and unconverged structural optimizations. b) Relative difference between uMLIP-optimized
and DFT-optimized cell volumes. Numbers below violin plots denote the percentage of successfully
computed structures with volume deviations of less than 10% to the DFT reference and the number
of successfully computed structures.

relative volume difference to DFT-optimized structures in Figure 2. UFF4MOF struggles with slow
convergence and inaccurate volumes. The fine-tuned MACE-MP-MOF0 is unable to compute 28 % of
structures due to unsupported atom types, but captures volumes on the remaining structures accurately.
Two non-conservative models, orb-d3-v2 and eqV2-M-OMsA, show large fractions of unconverged
optimizations due to direct predictions of forces as an output head. This results in small oscillations
in the forces that prevent stable convergence. In comparison, all other models compute forces as
energy derivatives, resulting in fast and stable convergence. eSEN-OAM and orb-v3-con-inf show
the best convergence and volumes closest to DFT. While most models exhibit outliers, no structure
fails for all models, and no element is predominantly present in these structures (see Figure S3).

2.2 Molecular dynamics stability

Evaluating machine learning potentials solely on static samples at 0 K for energy and force prediction
is insufficient to establish their usability in molecular dynamics simulations (MD) [Fu et al., 2023].
These simulations offer insight into the thermodynamics-dependent behavior of materials, and it is
crucial that uMLIPs can perform them robustly. Each uMLIP simulates the structures over 50 ps in
the NpT ensemble at 300 K and 1 bar. Comparing initial and final simulation volume, we find that
simulation stability is closely related to optimization stability (see Figure S4), with a few structures
showing significant volume deviations, but a majority completing the simulation with deviations of
less than ±10%. However, overall stability is slightly higher. In simulations, the energy gradient
is not as strictly followed as in structural optimizations, allowing potentials to recover to stable
configurations more easily.
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Figure 2: a) Evolution of heat capacity CV mean absolute error between January 2024 and June 2025,
showing a substantial decline in errors. The size of the points indicates the inference time of a single
structural optimization step on MOF-5 (424 atoms) with the FIRE optimizer. b) Bulk modulus K and
heat capacity CV prediction mean absolute errors for different architectures with different largest
datasets used (MPtrj < Alexandria < OMat24). All model architectures exhibit decreased errors with
larger, more diverse training data.

2.3 Model performance evolution

The development of new MLIP architectures and datasets has led to rapid iterations of models and
substantial performance improvements over a short period of time. To investigate this progress, we
shift the focus to bulk property predictions, which complement the prior structural and dynamic
analysis. Figure 2a displays the decrease in errors for heat capacity CV predictions over 18 months.
A strong linear trend shows errors decreasing over 75 % over this period, with a significant drop
occurring in January 2025, two months after the release of the OMat24 dataset [Barroso-Luque et al.,
2024]. The adoption of this large-scale dataset featuring non-equilibrium structures showcases the
importance of diverse training data to mitigate issues such as PES softening [Deng et al., 2025] and
its impact on improved accuracy. We further show this dataset-driven performance improvement
in Figure 2b by comparing bulk modulus K and heat capacity CV with different largest training
datasets on the same architectures. For both properties, every architecture benefits from OMat24
training data, decreasing the error to the DFT references, and in two cases surpassing the fine-tuned
MACE-MP-MOF0. This marks a significant milestone and further emphasizes the importance of
carefully designed training data.

3 Discussion

We introduced MOFSimBench, an open and modular benchmarking framework for uMLIPs in
nanoporous materials modeling. Our benchmark shows that recent uMLIPs show strong performance
across the investigated tasks and surpass fine-tuned baselines as well as UFF/UFF4MOF, indicating
their readiness for deployment. Non-conservative architectures trail conservative models in perfor-
mance and show insufficient stability in structural optimization and MD simulations, highlighting
the importance of exact gradient-based forces. Other architectural design decisions impact model
performance and data efficiency. However, the size and diversity of the training dataset have the

4



largest impact on model performance, as out-of-equilibrium samples increase the stability of uMLIPs
in advanced tasks. While uMLIPs show promising advances, limitations in the underlying DFT
references must be acknowledged, and developing models beyond the PBE level of theory will be an
important future step. Overall, the rapid advances in uMLIPs make them a crucial and accurate tool
in MOF molecular modeling.
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A Supplementary Information

A.1 Computational details

All computations use the Atomic Simulation Environment (ASE) [Hjorth Larsen et al., 2017], which
enables a reproducible pipeline for all uMLIPs. All model tasks are evaluated on Nvidia V100 32GB
SXM, A100 80GB SXM, or H100 94GB SXM GPUs. Speed benchmarking is performed using a
single H100 94GB SXM GPU.

A.1.1 Structure Curation

Our analysis focuses on MOFs but additionally includes COFs and zeolite structures, which have
also been investigated for CO2 capture applications. We curate structures from several sources. Our
curated set is divided into two subsets:

1. Main structure set: Four MOF structures ubiquitous in the literature: IRMOF-1, IRMOF-10,
UiO-66, and HKUST-1. In addition, we curated a set of 96 structures comprising 50 MOFs
from MOSAEC-DB [Gibaldi et al., 2025], 23 MOFs from QMOF [Rosen et al., 2021], 10
zeolites, and 7 COFs from the CURATED-COF dataset [Ongari et al., 2019]. Structures
from MOSAEC and QMOF were selected using stratified sampling across the largest pore
diameter, computed with Poreblazer [Sarkisov et al., 2020], to feature diverse chemistries
and metal variance. Zeolites and COFs were selected based on overlap with Ref. [Moosavi
et al., 2022] . In addition, six well-known structures are included in this set: AlPMOF,
AlPyrMOF, CALF-20, Co-MOF-74, Mg-MOF-74, and ZIF-8.

2. Heat capacity set: 231 MOF, COF, and zeolite structures from Ref. [Moosavi et al., 2022]
with available DFT heat capacity. The heat capacity values were recomputed using the
available phonopy files with settings matching this study.

To ensure high quality of the structures, we performed error checks with MOFChecker 2.0 [Jin et al.,
2025] and only selected structures with no irregularities. Several structures were reduced to primitive
unit cells to reduce the computational complexity of the reference DFT calculations.

Figures S1 and S2 show details on the distribution of element species, number of atoms, and total
molecular weights.
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Fig. S1: Frequency of element species present in the main structure set of this study, encompassing
100 MOF, COF, and zeolite structures.
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Fig. S2: a) Distribution of atom counts of structures in the main structure set. b) Distribution of total
molecular weights of the structures in the main structure set.

A.1.2 Machine Learning Interatomic Potentials

We evaluate 19 uMLIPs and MACE-MP-MOF0:

1. MACE-MP-MOF0 [Elena et al., 2025]: A fine-tuned MACE-MP-0b (medium) [Batatia
et al., 2024] model on a dataset of 127 MOFs and 4764 DFT calculations. In contrast to the
original MACE-MP-0b model, it supports fewer elements and cannot compute all structures
from our selection.

2. MACE-MP-0a∗ [Batatia et al., 2024]: The first universal MACE [Batatia et al., 2023] model
trained on MPtrj [Deng et al., 2023].

3. MACE-MP-0b3 (medium)∗ [Batatia et al., 2024]: A MACE [Batatia et al., 2023] model
with improved pair repulsion, correct isolated atoms, and better stability at high pressures.
Trained only on MPtrj [Deng et al., 2023].

4. MACE-MPA-0 [Batatia et al., 2024]: A MACE [Batatia et al., 2023] model trained on the
MPtrj [Deng et al., 2023] and sAlex [Schmidt et al., 2023, Barroso-Luque et al., 2024]
dataset.

5. MACE-OMAT-0 [Batatia et al., 2024]: A MACE [Batatia et al., 2023] model trained on the
OMat24 [Barroso-Luque et al., 2024] dataset.

6. MatterSim-v1 (5M) [Yang et al., 2024]: Based on the M3GNet architecture [Chen and
Ong, 2022] that models three-body interactions using a graph-neural network approach.
Its training uses an uncertainty-aware active-learning pipeline using model ensembles for
uncertainty estimation.

7. orb-d3-v2 [Neumann et al., 2024]: A Graph Network-based Simulator (GNS) architecture
[Sanchez-Gonzalez et al., 2020] trained on the MPtrj [Deng et al., 2023] and Alexandria
[Schmidt et al., 2023] datasets. Notably, the training was performed on D3-corrected
energies and forces, eliminating the need to compute dispersion corrections at inference
time.

8. orb-mptraj-only-v2∗: A GNS trained only on MPtrj [Deng et al., 2023]. In contrast to
orb-d3-v2, this model does not predict D3-corrected outputs.

9. orb-v3-con-inf-omat [Rhodes et al., 2025]: The third-generation orb model with uncapped
neighbor limit and conservative forces, trained on the OMat24 [Barroso-Luque et al., 2024]
dataset.

10. orb-v3-con-inf-mpa [Rhodes et al., 2025]: The third-generation orb model with uncapped
neighbor limit and conservative forces, trained on the MPTraj [Deng et al., 2023] and
Alexandria [Schmidt et al., 2023] datasets.

11. eqV2-M OMat MPtrj-sAlex [Barroso-Luque et al., 2024]: A model based on the
EquiformerV2 architecture [Liao et al., 2024], trained on the OMat24 dataset [Barroso-Luque
et al., 2024], and fine-tuned on the MPtrj [Deng et al., 2023] and sAlex [Barroso-Luque
et al., 2024, Schmidt et al., 2023] datasets.
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12. eqV2-M-DeNS∗ [Barroso-Luque et al., 2024]: An EquiformerV2 [Liao et al., 2024] model
that only uses the MPtrj training data.

13. eSEN-30M-OAM [Fu et al., 2025]: Based on the eSEN architecture which ensures smooth
and expressive potential energy surfaces, trained on OMat24 [Barroso-Luque et al., 2024],
MPtrj [Deng et al., 2023], and sAlex [Barroso-Luque et al., 2024, Schmidt et al., 2023].

14. eSEN-30M-MP∗ [Fu et al., 2025]: An eSEN model only trained on MPtrj [Deng et al.,
2023].

15. GRACE-2L-MP (r6)∗ [Bochkarev et al., 2024]: The GRACE model extends the Atomic
Cluster Expansion (ACE) [Drautz, 2019] to incorporate graph basis functions. This model
was only trained on MPtrj[Deng et al., 2023].

16. GRACE-2L-OMAT [Bochkarev et al., 2024]: This GRACE model was only trained on
OMat24 [Barroso-Luque et al., 2024].

17. GRACE-2L-OAM (r6) [Bochkarev et al., 2024]: This GRACE model was pre-fitted on
OMat24 [Barroso-Luque et al., 2024] and fine-tuned on the sAlex [Barroso-Luque et al.,
2024, Schmidt et al., 2023] and MPTraj[Deng et al., 2023] datasets.

18. SevenNet-0∗ [Park et al., 2024]: A model based on the NequIP architecture [Batzner et al.,
2022] trained on MPtrj [Deng et al., 2023].

19. SevenNet-l3i5∗ [Park et al., 2024]: A SevenNet model with increased complexity trained on
MPtrj [Deng et al., 2023].

20. SevenNet-ompa [Park et al., 2024]: A SevenNet trained on OMat24 [Barroso-Luque et al.,
2024], sAlex [Barroso-Luque et al., 2024, Schmidt et al., 2023], and MPtrj [Deng et al.,
2023], the selected output modal was mpa which resulted in better performance than omat
except for heat capacity.

Matbench Discovery-compliant models are marked with an asterisk (∗). While their performance is
expected to lag behind models with broader training data, their inclusion enables direct architectural
comparisons. Extended results using all model checkpoints are reported in the SI.

To the best of our knowledge, the training data sets that were used in the construction of these
MLIPs do not contain MOFs structures, challenging them to make zero-shot predictions for this
class of materials. The MACE-MP-MOF0 model is the only model that explicitly includes a training
procedure on MOFs.

Dispersion Correction Dispersion corrections are critical for accurate modeling of MOFs [For-
malik et al., 2018]. Therefore, all models either predict D3-corrected outputs (orb-d3-v2 and
MACE-MP-MOF0) or the D3 correction is computed at inference time using the torch-dftd [Takamoto
et al., 2021] package with dispersion_xc=pbe, dispersion_cutoff=40Bohr, damping=bj.

A.1.3 Structural minimization

Our energy minimization optimizes atom positions and cell parameters simultaneously and is per-
formed using the FrechetCellFilter and the LBFGS optimizer. All structures are relaxed until
a force convergence criterion of 10−3 eV/Å or a maximum of 5,000 optimizer steps is reached.
UFF/UFF4MOF simulations were performed using the LAMMPS package [Thompson et al., 2022].
Force field parameters were applied by running lammps-interface [Boyd et al., 2017] without
--fix-metal and with --fix-metal. The minimizer style in LAMMPS was set to cg, all other
parameters and convergence settings were kept the same as those in the ASE [Hjorth Larsen et al.,
2017] calculations.

A.1.4 Molecular Dynamics Simulations

All simulations use a time step of 1 fs and are performed with the ase IsotropicMKTNPT driver
[Hjorth Larsen et al., 2017].

Simulations start with atom position minimization using the LBFGS optimizer until a force conver-
gence criterion of 10−3 eV/Å or 1,000 optimizer steps is reached. Velocities are then initialized from
a Maxwell-Boltzmann distribution at 300 K, and adjusted for zero center-of-mass momentum and
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zero total angular momentum. The structures are equilibrated in an NVT ensemble with Langevin
dynamics at 300 K using a friction coefficient of 0.01 fs−1 for 1 ps. Subsequent NpT simulations use
tdamp = 100 fs, pdamp = 1000 fs, and an external stress of 1 bar.

In our stability simulations, the NVT-equilibrated structures are simulated in an NpT ensemble at
300 K for 50 ps.

A.1.5 Bulk Modulus

All structures were optimized with atom position and cell minimization using the LBFGS optimizer
until a force convergence criterion of 10−3 eV/Å or 1,000 optimizer steps was reached. We apply
a volumetric strain of ±4% in 11 evenly spaced steps. The resulting structures were optimized
using the FIRE optimizer until a force convergence criterion of 10−3 eV/Å or 1,000 optimizer steps
was reached. The bulk modulus was computed from a fitted Birch-Murnaghan equation of state.
Structures for which the EOS volume minimum deviates more than 1% from the volume minimum of
the initial optimization procedure are considered failed and excluded. The EOS fits of these structures
were unstable in our experiments, leading to wrongly predicted bulk moduli, often as extreme outliers.
Such filtering does not rely on ground-truth data and can be applied to reduce uncertainty in the
predictions.

The DFT bulk moduli were calculated using the CP2K ver.9.1 package [Kühne et al., 2020]. Structures
were fully optimized with respect to atomic positions and cells. Given the high computational cost of
the DFT calculations, a volumetric strain of ±4% was applied in 5 evenly spaced steps. Structures
with strains were optimized with respect to atomic positions. All calculations were performed through
the Automated Interactive Infrastructure and Database for Computational Science, AiiDA [Pizzi et al.,
2016], employing the Cp2KMultistageWorkChain workflow from the aiida-lsmo plugin.

The Quickstep code [VandeVondele et al., 2005] was used in the CP2K calculation. The Perdew-
Burke-Enzerhof (PBE) exchange-correlation functional [Perdew et al., 1996] was employed
along with DFT-D3(BJ) dispersion corrections [Grimme et al., 2010]. The GTH pseudopoten-
tials[Goedecker et al., 1996], DZVP-MOLOPT-SR basis sets, and Gaussian plane wave were used.
The cutoff energy of plane waves was set to 800 Ry. The energy and force convergences in the self-
consistent filed were 1E−8Ry and 0.00015 bohr−1 × hartree, respectively. All other settings were
set to the default defined in the Cp2KMultistageWorkChain. These settings have been demonstrated
to be robust enough to find energetically stable configurations by comparing with QMOF relaxed
structures.

A.1.6 Heat Capacity

All structures were first optimized with atom position and cell minimization using the LBFGS optimizer
until a force convergence criterion of 10−3 eV/Å or 1,000 optimizer steps was reached. The heat
capacity of the obtained structure was computed using Phonopy [Togo et al., 2023, Togo, 2023].
Force constants are computed using no supercells and the finite difference method with a distance of
0.01Å. The mesh sampling phonon calculation is performed with mesh = 100. The heat capacity is
extracted for T = 300K.

A.2 Additional figures
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Fig. S3: Histogram of elements present in outlier structures. Number of elements present in
structures with significant volume changes during structure minimization, shown with the total
number of elements present in all structures.
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