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Abstract

Many of the recent capabilities demonstrated001
by Large Language Models (LLMs) arise pri-002
marily from their ability to exploit contextual003
information. In this paper, we explore ways004
to improve reasoning capabilities of LLMs005
through (1) exploration of different chains of006
thought and (2) validation of the individual007
steps of the reasoning process. We propose008
three general principles that a model should009
adhere to while reasoning: (i) Relevance, (ii)010
Mathematical Accuracy, and (iii) Logical Con-011
sistency. We apply these constraints to the012
reasoning steps generated by the LLM to im-013
prove the accuracy of the final generation. The014
constraints are applied in the form of verifiers:015
the model itself is asked to verify if the gener-016
ated steps satisfy each constraint. To further017
steer the generations towards high-quality so-018
lutions, we use the perplexity of the reasoning019
steps as an additional verifier. We evaluate our020
method on 4 distinct types of reasoning tasks,021
spanning a total of 9 different datasets. Exper-022
iments show that our method is always better023
than vanilla generation, and, in 6 out of the 9024
datasets, it is better than best-of N sampling025
which samples N reasoning chains and picks026
the lowest perplexity generation.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated impressive capabilities of performing a di-030

verse range of tasks by framing them as text gener-031

ation (Brown et al., 2020; Chowdhery et al., 2022;032

Touvron et al., 2023; OpenAI, 2023; Bubeck et al.,033

2023, inter alia). Chain-of-Thought prompting034

(Nye et al., 2021; Wei et al., 2022; Chowdhery035

et al., 2022) further improved their performance036

on challenging reasoning tasks using a simple trick037

of generating intermediate steps before giving the038

final answer allowing the LLM to spread computa-039

tion over more tokens (Goyal et al., 2023). How-040

ever, this approach lacks a mechanism to rectify041

errors in reasoning. While LLMs may eventually 042

reach the correct answer, they might do so via incor- 043

rect intermediate reasoning steps, or worse, never 044

reach the correct answer due to earlier mistakes 045

(Turpin et al., 2023). To illustrate this, we provide 046

a concrete example in Figure 1, where the final 047

answer is correct, but the intermediate steps are 048

(i) irrelevant (Shi et al., 2023), (ii) contradicting 049

previous steps (Mündler et al., 2023), and (iii) with 050

mathematical errors (Patel et al., 2021). Recent 051

work (Yao et al., 2023; Xie et al., 2023; Pan et al., 052

2023) has attempted to alleviate these problems by 053

employing a search mechanism or a self-correction 054

mechanism in the spirit of "System 2" thinking. 055

Other directions include training a dataset-specific 056

verifier to improve the performance when aggre- 057

gating multiple reasoning chains (Li et al., 2023). 058

However, all these approaches have dataset-specific 059

adaptations and don’t generalize out-of-the-box. 060

In this work, we explore if catching early mis- 061

takes in reasoning chains through problem-agnostic 062

verification can improve reasoning in LLMs. We 063

propose three general principles that a model 064

should adhere to while reasoning: (i) Relevance, 065

(ii) Mathematical Accuracy, and (iii) Logical Con- 066

sistency and use models, called verifiers, to test 067

for each principle. Each verifier operates on a step 068

(Uesato et al., 2022) generated from the step-by- 069

step manner of Chain-of-Thought prompting and 070

assigns a score to that step. We design the verifiers 071

to operate at this granularity so they can detect in- 072

termediate mistakes and discourage the LLM from 073

committing to an erroneous reasoning chain. To 074

further steer the generation towards better steps, 075

we use the perplexity of the reasoning step as an 076

additional verifier. We then explore various ways, 077

including Self-Consistency (Wang et al., 2022), to 078

aggregate verifier scores and report their down- 079

stream task performance. 080

We make the following contributions: (i) we pro- 081

pose a general framework for guiding reasoning in 082
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Figure 1: An illustrative example highlighting how the final
answer can ultimately be correct (i.e. 12 ∗ $40 − (12 − 10) ∗
$40 ∗ 0.05 = $476), but it is reached through steps that are (i)
irrelevant (Step 1), (ii) contradicting previous steps (Step 4
contradicts Step 3), or (iii) with mathematical errors (Step 5).

LLMs using verifiers which offers the flexibility083

to use a problem-agnostic implementation across084

any reasoning task but also offers the adaptability085

to use task- and dataset-specific implementations,086

and (ii) we show how using our proposed verifiers087

can improve reasoning outcomes in LLMs and can088

also improve existing ensembling techniques like089

Self-Consistency. Importantly, our work is not in-090

tended to be an exploration on the best way to use091

a computational budget to achieve a desired per-092

formance, but an exploration of whether the LLM093

are capable (even if inefficiently) of detecting their094

own mistakes together with a simple recovering095

mechanism.096

2 Related Work097

We focus here only on LLM-based approaches, and098

divide previous related work according to (i) the099

generalizability of the prompts used, and (ii) how100

the final answer is generated.101

Types of Prompts In prior work, the prompts102

used can be categorized based on their level of gen-103

erality. Some approaches utilize a singular prompt,104

applying it uniformly across a wide spectrum of105

datasets and tasks. Wei et al. (2022) proposed106

chain-of-thought prompting with in-context exam-107

ples. Kojima et al. (2022) then explored zero-shot108

prompts capable of exhibiting similar behaviors.109

Other recent works explore using LLMs to self-110

evaluate (Yin et al., 2023) and potentially improve111

upon their generation with the resulting feedback112

(Saunders et al., 2022; Chen et al., 2023; Pan et al.,113

2023; Shinn et al., 2023). Bai et al. (2022) use114

an LLM with in-context examples to detect and 115

edit the responses of a chat model that are harmful 116

or toxic. Madaan et al. (2023) proposes a frame- 117

work to iteratively self-improve the generations of 118

a LLM. Yao et al. (2023) tightly integrates an LLM 119

with custom dataset-specific prompts to act as a 120

guiding mechanism in the underlying search space. 121

Hao et al. (2023) expands on this by using a Monte 122

Carlo tree search strategy. Other recent work ques- 123

tioned the extent to which using an LLM to evaluate 124

and improve its own generations is viable (Huang 125

et al., 2023), a conclusion which we observed as 126

well in our preliminary work and sidestepped by 127

re-sampling instead of asking the LLM to refine. 128

Importantly, previous work explored self- 129

evaluation through the lens of task-specific eval- 130

uation and prompts, a direction that inherently con- 131

strains the broader utility of Large Language Mod- 132

els (LLMs) as general-purpose reasoners. On the 133

other hand, our approach follows a distinct trajec- 134

tory: we deliberately eschew the use of prompts 135

tailored to individual datasets or tasks. 136

How the Final Answer is Generated A second 137

dimension is that of how the model arrives at the 138

final solution, where we distinguish between meth- 139

ods that take a linear approach (Wei et al., 2022; 140

Kojima et al., 2022; Goyal et al., 2023) from the 141

methods that do not (Yao et al., 2022; Wang et al., 142

2023; Long, 2023). By linear approaches, we refer 143

to those methods where the final answer is gener- 144

ated token-by-token in one go. On the other hand, 145

non-linear approaches typically include a search 146

mechanism (Xie et al., 2023; Yao et al., 2023; Besta 147

et al., 2023) or a self-reflection process (Madaan 148

et al., 2023; Pan et al., 2023). 149

For example, recent work explored tightly inte- 150

grating the LLM to act as a guiding mechanism in 151

the underlying search space (Xie et al., 2023; Yao 152

et al., 2023). This involves one LLM generating 153

candidate steps while another LLM assigns single 154

float value as a value score. This value score is de- 155

rived from an LLM with a dataset-specific prompt 156

and in-context examples. 157

Within this dimension, our approach aligns with 158

the non-linear paradigm. We leverage verifiers to 159

evaluate each step in the solution-generation pro- 160

cess, with the overarching aim of guiding the gener- 161

ation towards solutions that receive high scores, as 162

determined by the verifiers. Differently from previ- 163

ous work on self-evaluation, we explore a setting 164

of self-evaluation that is problem-agnostic. 165
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3 Proposed Method166

We propose a novel approach that seamlessly in-167

tegrates with any given Large Language Model’s168

(LLM) solution generation process, at both step169

generation and step evaluation (Wei et al., 2022;170

Wang et al., 2022; Kojima et al., 2022). Our ap-171

proach consists of two components: a solution gen-172

erator G and a set of verifiers V , where each verifier173

specializes in a particular qualitative aspect of rea-174

soning. The solution generator G is responsible for175

generating candidate steps, and each verifier v ∈ V176

is responsible for checking whether the candidate177

step is in compliance with the specific reasoning178

property. We explore properties that are generally179

applicable to a wide range of reasoning tasks. We180

provide an illustrative example in Figure 2.181

This section is further organized as follows. We182

describe the notations and abstractions used in Sec-183

tion 3.1, the solution generation component in Sec-184

tion 3.2, the proposed verifiers in Section 3.3, the185

procedure to obtain fine-grained scores for reason-186

ing chains in Section 3.4 and how we use verifiers187

in aggregate in Section 3.5.188

3.1 Notation189

In the following, we define the notation we adopt190

throughout the paper.191

A token as t ∈ Vocab where Vocab represents the192

set of possible tokens defined by a given vocabulary.193

We use [t1, . . . , tn] ∈ T to represent a given text,194

with T denoting the set of all potential texts of195

varying lengths. Under this notation, we represent196

a problem as q ∈ T and a reasoning step as r ∈197

T , both presented in free-text form. A solution198

generator G in the form of a function that takes text199

as input and returns text as output: G ∶ T → T . We200

interpret the output text as a sequence of reasoning201

steps Rq = [rq1, . . . , r
q
n]. For simplicity, we define202

a reasoning step as the sequence of tokens until a203

new line, similar to Uesato et al. (2022). A verifier204

v ∈ V implemented a function that takes text as205

input and returns an indicator: v ∶ T → {0, 1}. The206

returned value represents whether the reasoning207

step satisfies the verifier constraint (1) or not (0).208

We will next describe the Solution Generator209

and Step Verification components.210

3.2 Solution Generation211

The solution generator (typically an LLM) oper-212

ates over a prompt q and generates a sequence of213

tokens as output: G ∶ T → T . For our purpose,214

we concentrate on the correctness at the level of a 215

reasoning step, instead of individual tokens. A rea- 216

soning step, as defined in this work, represents the 217

sequence of tokens up to the occurrence of a new 218

line (Uesato et al., 2022). The next reasoning step 219

can then be generated by conditioning the genera- 220

tor G on both the question q and on the sequence of 221

previously generated reasoning steps R1∶i, which is 222

initially empty. This conditioning can be expressed 223

as follows: P (rqi+1∣q,R
q
1∶i). 224

For the solution generation process, we adopt 225

the zero-shot prompt used in Kojima et al. (2022) 226

which simply appends "Let’s think step by step" to 227

the problem question to elicit a chain-of-thought 228

like behavior in the model’s response without any 229

annotated exemplars (Wei et al., 2022). Neverthe- 230

less, our proposed method is agnostic to the specific 231

implementation of the solution generator. 232

3.3 Step Verification 233

Our research aims to investigate whether specifying 234

a subset of conditions that an ideal reasoning chain 235

should satisfy and then employing these conditions 236

to score the corresponding reasoning chain can 237

result in improved performance on downstream 238

reasoning tasks. 239

To this end, we explore three general and neces- 240

sary (but not sufficient) conditions that a given step 241

should satisfy in order for the resulting solution to 242

be sound from a reasoning perspective: (i) Rele- 243

vance, (ii) Mathematical Accuracy (if applicable), 244

and (iii) Logical Coherence. In this work, we use 245

for our verifiers a set of LLMs provided with a de- 246

tailed instruction of the task and constraints.1 We 247

then map the output of the LLM to {0,1} based on 248

its content. If the relevance verifier generates “not 249

relevant”, for example, we interpret this as a score 250

of 0. Importantly, to verify the generalizability 251

of our proposed methodology, we keep the imple- 252

mentation of our verifiers fixed for all reasoning 253

tasks and for all datasets. We provide an illustrative 254

example of the verifiers we use in Figure 2. We 255

provide in-context exemplars for the Mathematical 256

Accuracy verifier due to challenges in the LLM’s 257

ability to generate a valid intermediate structured 258

output, a requirement of this verifier’s setup.2 In ad- 259

dition to the scores from the aforementioned three 260

verifiers, we use the perplexity score of a reasoning 261

step as an additional verifier, in order to encourage 262

1Prompts available in Appendix C
2Same exemplars were used for all Math datasets.
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Figure 2: An example of each of our proposed verifiers applied to a given question and previous steps.

the final solution towards text deemed more likely263

by the LLM. We explain each verifier in greater264

detail below.265

3.3.1 Relevance266

The first verifier in our proposed framework is the267

Relevance verifier, where the goal is to constrain268

a reasoning step to contribute to the construction269

of a meaningful solution narrative. We provide270

a relevant and an irrelevant example in Figure 2.271

We begin with a question, a sequence of previous272

steps, and a candidate step. The Relevance veri-273

fier assesses the candidate reasoning steps for their274

relevance to the problem at hand. In the example275

provided, calculating how much Mr. Doe spent is276

irrelevant because the problem asks for how much277

Mr. Benson spent and there is no connection be-278

tween them.279

We acknowledge the inherent subjectivity and280

nuance associated with determining the relevance281

of a given reasoning step. However, there are in-282

stances where it becomes clear that a reasoning step283

is distinctly irrelevant, deviating from the coherent284

solution narrative. For instance, some reasoning285

steps may veer into speculative or unrelated con-286

tent, which our Relevance verifier aims to identify.287

3.3.2 Mathematical Accuracy288

The Mathematical Accuracy constraint enforces289

the need for each reasoning step to contain correct290

mathematical calculations. We implement this in a291

similar manner to Tool-based approaches (Schick292

et al., 2023), working as follows. First, we extract293

the mathematical formulas (if present) from a sen- 294

tence as structured output, as depicted in the Ver- 295

ifier’s intermediate output field corresponding to 296

the Mathematical Accuracy constraint in Figure 2. 297

For each mathematical calculation present, we ex- 298

tract the left-hand side (lhs), the right-hand side 299

(rhs), and the operator (op). Then, we programmat- 300

ically execute the extracted formulas (if any) and 301

compare them using the extracted operator. 302

3.3.3 Logical Consistency 303

A third condition for a logically sound argument 304

we use is for the reasoning steps to not contradict 305

each other (M. and Mckeon, 1941). To this end, 306

we introduce Logical Consistency as our third veri- 307

fier. This verifier operates over the previous steps 308

and the current candidate step. For example, in 309

Figure 2, the candidate step - Mr. Benson received 310

a discount of $3. contradicts one of the previous 311

steps, as one of the previous steps already estab- 312

lished that Mr. Benson received a discount of $4. 313

3.3.4 Step-wise Perplexity 314

In addition to the scores resulting from our previ- 315

ously introduced constraint verifiers, we leverage 316

step-wise perplexity as another source of signal, 317

with the goal of favoring lower-perplexity solutions. 318

For each reasoning step ri = [t1, . . . , tn], we com- 319

pute the perplexity over its token constituents. We 320

hypothesize that lower-perplexity reasoning steps 321

are more desirable, as a lower perplexity prompt is 322

correlated with a higher final performance (Gonen 323

et al., 2022). We can interpret a partial reasoning 324
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chain R1∶i = [r1, . . . , ri] as (part of) a prompt that325

will be used to generate ri+1, making the findings326

in Gonen et al. (2022) applicable for our purposes.327

3.4 Constraint Satisfaction Score328

Except for the Perplexity verifier, all our pro-329

posed verifiers output a binary value, representing330

whether a given reasoning step satisfies the given331

constraint or not. For example, if the Relevance332

verifier gives a score of 1 for a given reasoning step333

r, this means that the given step is deemed as rele-334

vant. Since the underlying implementation In order335

to reduce the variance and get a more fine-grained336

score s, we use the expected value: s = E(1v(r)),337

which we approximate using sampling. Since each338

verifier is implemented with an LLM, we can sam-339

ple multiple generations, map each one to a binary340

value {0,1}, and then average.341

3.5 Using Verifiers in Aggregate342

3.5.1 Scoring a Reasoning Chain R343

Given a verifier v ∈ V , we extend the concept
of a score for a given reasoning step r to the
score for a given (partial or not) reasoning chain
R by aggregating the scores over each of its con-
stituent reasoning steps. Formally, we extend
the verifier’s scores to that of a reasoning chain
R = [r1, . . . , ri], where we first obtain a score
for each ri, resulting in the following score vec-
tor: [E(1v(r1)), . . . ,E(1v(ri))], and then aggre-
gate. A low-scoring reasoning step does not nec-
essarily render the entire reasoning chain wrong,
but it does increase the likelihood of inaccura-
cies. To combine these scores, we employ the
geometric mean as a milder alternative to the
min operator in our aggregation process: v(R) =
GM([E(1v(r1)), . . . ,E(1v(ri))]) We obtain a
single score for a given reasoning chain R and a
set of verifiers V by aggregating over the scores of
each verifier v ∈ V on R. Our proposed framework
allows for the customization of each verifier’s con-
tribution during aggregation. We use a weighted
arithmetic mean, as defined below.

V(R) = ∑
∣V∣

i=1wi × vi(R)
∑∣V∣i=1wi

We set w = 2 for perplexity and w = 1 for all the344

others. We selected w = 2 for perplexity based on345

preliminary experiments on the train partition of346

GSM8k and CSQA 2.0. Importantly, we use the347

same weights for all our experiments.348

3.5.2 Ensembling Methods using the Verifiers 349

Ensembling techniques work by aggregating the 350

solution of multiple reasoning chains to obtain a fi- 351

nal solution. For example, Self-Consistency (Wang 352

et al., 2022) randomly samples a given number 353

of reasoning chains, and then performs a majority 354

vote on the final answer. Instead of resorting to 355

a majority voting mechanism over randomly sam- 356

pled reasoning chains, we propose to leverage the 357

scores obtained from our proposed verifiers to do 358

the selection and the weighting. 359

4 Experiments 360

4.1 Experimental Setting 361

Models We use Falcon3 (Almazrouei et al., 2023) 362

as our base LLM, as it was one of the largest 363

and most capable open-source model family freely 364

available at the time of the experiments.4 We use 365

the same model for both solution generation and 366

solution verification. For solution generation, we 367

use the zero-shot prompt from Kojima et al. (2022). 368

For verification, we use different prompts for each 369

verifier, available in Appendix C. 370

Datasets We perform experiments spanning 4 371

reasoning tasks: Math, Commonsense, Symbolic, 372

and Other, and 9 datasets: BigBench Date Un- 373

derstanding (bench authors, 2023) (Other), Com- 374

monsenseQA (Talmor et al., 2019), Common- 375

senseQA 2.0 (Talmor et al., 2021) and Strategy 376

(Geva et al., 2021) (Commonsense), Coinflip and 377

Last Letter Concatenation (Wei et al., 2022) (Sym- 378

bolic), GSM8k (Cobbe et al., 2021), SVAMP (Pa- 379

tel et al., 2021), and AddSub (Kojima et al., 2022) 380

(Math). We show an example from each dataset in 381

Appendix B.1.5 382

We use the standard evaluation metrics as pre- 383

vious work, which is Accuracy score computed 384

between the gold answer and the predicted answer. 385

Proposed Method Setting All our proposed ver- 386

ifiers are dataset-agnostic and we use the same 387

prompts for all our experiments. Due to compu- 388

tational constraints, we use the mathematical ac- 389

curacy verifier only for the math datasets. In an 390

attempt to minimize the impact of the underlying 391

search strategy for the step-by-step solution, we 392

adopt the following approach: we first sample 40 393

3Specifically, we use Falcon-40B-Instruct
4Open source according to https://opensource.org/
5For Last Letter Concatenation, we use only 2 words in-

stead of 4.
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Other Commonsense Symbolic Math

BigBench Date CSQA CSQA 2.0 Strategy Coinflip Last Letter (2) GSM8k SVAMP AddSub

Random Chain 55.77±3.06 47.91±1.22 58.75±1.68 56.03±0.99 58.67±2.04 15.68±1.51 29.23±1.58 38.78±1.26 41.04±1.79
Low PPL Chain 63.69±0.00 48.81±0.00 59.10±0.00 60.90±0.00 72.80±0.00 45.00±0.00 40.50±0.00 53.50±0.00 58.48±0.00

Top Chain wrt Verifiers 69.12±0.21 56.79±0.12 62.16±0.22 57.21±0.17 64.02±0.21 41.64±0.44 45.94±0.30 56.36±0.23 62.34±0.25

Table 1: Comparison between two baselines: (1) Random Chains, and (2) Low PPL Chain, and our proposed method, (3) Top
Chain wrt Verifiers. In this setting, we record the performance when selecting one reasoning chain, according to each method’s
selection criteria. We report Accuracy (↑).

reasoning chains for each problem and for each394

dataset, then use the scores resulting from our pro-395

posed verifiers to guide our selection process.396

Baselines We analyze the verifiers’ contributions397

by comparing the performance of the proposed398

method against the following baselines: (i) Ran-399

dom Chains, where we use the LLM to sample a400

solution, using the same prompt as Kojima et al.401

(2022), and (ii) best-of N sampling (Adiwardana402

et al., 2020; Wang et al., 2022), where we sam-403

ple a total of 40 reasoning chains and select the404

one with the lowest perplexity. Our motivation for405

using these two baselines is two-fold. First, we406

want to allow both the baselines and our proposed407

method to operate over the same candidate reason-408

ing chains. Secondly, it has been observed in Wang409

et al. (2022) that Best-of N sampling performs bet-410

ter than greedy decoding, especially for large N.411

Experiments We conduct the following exper-412

iments: (i) Single chain analysis, where we use413

the resulting scores of each reasoning chain to se-414

lect a single reasoning chain, (ii) Self-Consistency,415

where we aggregate multiple reasoning chains, and416

(iii) Single chain analysis with incomplete chain417

scoring, where we only score the reasoning chains418

based on the an initial % (or number) of the reason-419

ing steps.420

4.2 Single Chain421

In this experiment, we assess how the scores gener-422

ated by our proposed verifiers are correlated with423

the likelihood of a reasoning chain reaching the424

correct final answer. For this purpose, we conduct425

the following experiment: from the 40 sampled rea-426

soning chains, we select the highest-scoring chain427

based on our proposed verifiers’ scores. We present428

our results in Table 1, comparing with two base-429

lines: Random Chains and best-of N sampling. We430

make the following remarks.431

First, over all datasets, our proposed method432

performs better than selecting a reasoning chain433

at random, with improvements ranging from 1.18434

points (Strategy) to 25.68 points (Last Letter), with435

an average improvement of 12.63. 436

Second, we remark that our proposed method 437

outperforms the best reasoning chain according to 438

perplexity (Low PPL Chains) in over 65% of the 439

cases (6 out of 9 datasets). This means that our 440

proposed verification procedure provides valuable 441

information beyond what is captured by simply se- 442

lecting the lowest perplexity chains. We note that 443

this trend does not hold true for Symbolic Reason- 444

ing, where for both datasets investigated (Coinflip 445

and Last Letter) the Low PPL Chain is better than 446

the one selected according to our proposed verifier. 447

An exploration over Coinflip revealed that steps 448

where the coin has not been flipped received, on 449

average, a lower relevance score, although this in- 450

formation is relevant. We leave the exploration of 451

better verifiers for Symbolic Reasoning to future 452

work. All in all, the average improvement of our 453

proposed method over the reasoning chain with the 454

lowest perplexity is 1.43 points. 455

4.3 Self-Consistency 456

In this experiment, we explore how well our pro- 457

posed method leverages ensemble techniques, par- 458

ticularly Self-Consistency (Wang et al., 2022). We 459

start with the same set of 40 reasoning paths and 460

employ different selection strategies to evaluate 461

their effectiveness: (i) we randomly sample from 462

these paths (Random Chains), (ii) we select chains 463

with the lowest perplexity from this set (Low PPL 464

Chains), and (iii) we choose the reasoning chains 465

with high scores, as determined by the verifiers, 466

from these 40 paths (Proposed (weighted)). Unlike 467

the original majority vote approach, we empiri- 468

cally found that weighting each reasoning chain 469

by their verifier scores yields slightly better results. 470

However, it is worth noting that this improvement 471

does not hold when using only perplexity, as shown 472

in (Wang et al., 2022). We show in Figure 3 the 473

behavior of our proposed method. We make two 474

observations: First, our proposed method is able 475

to leverage ensembling techniques, showing con- 476

sistent performance gains as the number of reason- 477

ing chains increases. Second, we remark that our 478
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(a) GSM8k (b) CSQA (c) BigBench Date Understanding
Figure 3: Comparison between our proposed method and two baselines, when using Self-Consistency and between 1-10
reasoning chains. We report Accuracy (↑).

proposed method scales better, consistently outper-479

forming the baselines.480

We further investigate the performance impact of481

weighted voting, utilizing scores from our proposed482

verifiers, against the standard majority-voting ap-483

proach. Specifically, we apply both voting methods484

to the identical set of reasoning chains, initially485

selected at random. We found that using the scores486

of our proposed verifiers to do a weighted voting487

improves over the majority voting in over 96% of488

the cases.6 Due to space constraints, we include489

the resulting plots in Appendix E.490

4.4 Verifying Incomplete Reasoning Chains491

In our prior experiments, our proposed verifiers492

evaluated complete reasoning chains. Now, we ex-493

plore their effectiveness when applied exclusively494

to the initial reasoning steps. This experiment pro-495

vides insights into the potential utility of our pro-496

posed method in an “online” setting, where the rea-497

soning step-level evaluation is employed to guide498

the search for good reasoning chains without fully499

generating multiple candidate solutions.500

We assess the impact of using the verifiers for501

varying percentages of reasoning steps, denoted as502

X% along the X-axis of our line plot in Figure 4.503

We remark that the final performance increases504

with the % of steps verified and that verifying only505

the first 20% of the steps is sufficient to increase the506

final performance beyond that of random chains.507

Since knowing beforehand the total number of508

reasoning steps is unrealistic, we also experiment509

with only verifying a given number of the initial510

reasoning steps. Due to space limitations we in-511

clude these results in Appendix G. Additionally,512

we include in Table 5 the resulting performance513

when verifying between 0 and All reasoning steps514

678/81

Verifiers Math

P R M C AddSub GSM8k SVAMP

✗ ✗ ✗ ✗ 41.04±1.79 29.23±1.58 38.78±1.26
✗ ✗ ✗ ✓ 48.84±0.85 33.51±0.69 45.41±0.56
✗ ✗ ✓ ✗ 45.76±1.99 35.59±1.60 41.68±1.65
✗ ✓ ✗ ✗ 49.04±0.44 33.38±0.52 46.98±0.42
✓ ✗ ✗ ✗ 59.09±0.59 41.53±0.49 53.85±0.45
✓ ✓ ✓ ✓ 62.34±0.25 45.94±0.30 56.36±0.23

(a) Ablation over Math datasets.

Verifiers Other Commonsense Symbolic

P R C BigBench Date CSQA2.0 CSQA Strategy Coinflip Last Letter

✗ ✗ ✗ 55.77±3.06 58.75±1.68 47.91±1.22 56.03±0.99 58.67±2.04 15.68±1.51
✗ ✗ ✓ 62.70±0.68 56.77±0.55 53.00±0.59 54.31±0.70 49.17±0.76 20.63±0.78
✗ ✓ ✗ 62.57±0.45 61.03±0.21 52.62±0.29 57.31±0.26 53.63±0.51 15.79±0.30
✓ ✗ ✗ 64.06±0.60 60.27±0.25 51.35±0.36 60.03±0.30 73.36±0.42 41.73±0.48
✓ ✓ ✓ 69.12±0.21 62.16±0.22 56.79±0.12 57.21±0.17 64.02±0.21 41.64±0.44

(b) Ablation over Non-Math datasets.

Table 2: Ablation study on the effect of each verifier on the
downstream tasks when selecting a single reasoning chain.
We differentiate between math and non-math datasets.

over all datasets. In 7/9 cases, the performance 515

increases even when verifying only the first step. 516

When verifying the first two steps, the final perfor- 517

mance increases in all the cases. 518

4.5 Contributions of each Verifier 519

In this experiment, we assess the contribution to the 520

final performance of each of our verifiers: (1) Low 521

Step Perplexity, (2) Relevance, (3) Mathematical 522

Accuracy (if applicable), (4) Logical Consistency. 523

First, we observe that each individual verifier is 524

meaningfully contributing towards the final solu- 525

tion. For example, for the math datasets (Table 2a), 526

employing any verifier improves the final perfor- 527

mance, with improvements ranging from 2.90% to 528

21.30%. All in all, using as little as a single ver- 529

ifier improves the final performance in over 89% 530

of the cases.7 Secondly, we remark that combin- 531

ing all the verifiers gives further improvements, 532

beyond those obtained by using a single verifier, 533

735/39
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(a) GSM8k (b) CSQA (c) BigBench Date Understanding
Figure 4: Verifying only the first X% steps of a given reasoning chain. (↑).

suggesting that each verifier is adding meaningful534

and non-overlapping information. We note that535

there is a notable exception to this trend, where for536

the Symbolic Reasoning tasks (and for the Strat-537

egy dataset), a distinct combination of verifiers (i.e.538

only Perplexity) attains a better score than using all539

the verifiers. We provide results covering a wider540

range of verifier combinations in Appendix F.541

4.6 Human Evaluation542

While the proposed verifiers meaningfully con-543

tribute to the final performance on the reasoning544

downstream tasks, we perform a human evaluation545

study to assess: (1) how well they correlate with546

human judgment and (2) how reliably concepts547

such as logical consistency or relevance can be548

evaluated by humans. We include instructions and549

inter-annotator agreement scores in Appendix H.550

We compute pearson correlation scores (in551

range [−1,1]) between human assessments and552

the scores proposed by our verifiers and, addition-553

ally, also between GPT-4o and humans to evaluate554

how the proposed method scales with a stronger555

underlying model. We plot average correlations up556

to step K in Figure 5. We note the following.557

First, we note that each verifier exhibits an over-558

all significant (p-value < 0.0001) and positive cor-559

relation between human judgement and perfor-560

mance. When the correlation is negative, it is better561

to not use it (e.g., Coinflip has scores 69 (without)562

vs 64 (with) the negatively correlated logical consis-563

tency verifier, see 4b). We also show in Appendix I564

how even small positive correlations statistically565

differentiate better outcomes on average. Second,566

we observe (and show in Appendix H) a large vari-567

ance in the inter-annotator agreement score, which568

we hypothesize comes from different reasoning569

styles between humans and noise from a weak un-570

derlying model (Falcon). We also explore different571

agreement metrics, aiming to capture some of the572

Cohen’s Kappa Limitations (e.g., Cohen’s Kappa 573

Paradox (Zec et al., 2017)). Lastly, we found that 574

less than 2% of the errors marked by the annotators 575

are not captured by one of the principles explored. 576

Figure 5: Correlation across datasets and steps

5 Conclusion 577

We explore a general-purpose verification proce- 578

dure consisting of task- and dataset-agnostic veri- 579

fiers at the reasoning step-level inspired by funda- 580

mental principles of sound reasoning: Relevance, 581

Mathematical Accuracy and Logical consistency. 582

On top of these reasoning principles, we leverage 583

the perplexity of the reasoning step to steer the 584

LLM towards high-quality solutions. 585

Across four distinct reasoning tasks, spanning 586

nine datasets, we show that using the proposed 587

verifiers to score the reasoning chains leads to no- 588

table performance improvements when compared 589

to randomly sampled reasoning chains. Most no- 590

tably, our proposed approach outperforms the low- 591

est perplexity reasoning chain in over 6 out of the 9 592

datasets we tested. This indicates that the proposed 593

verifiers provide additional valuable information 594

beyond what is captured by the perplexity measure 595

of the reasoning chain. We leave the exploration of 596

better and more efficient verifiers to future work. 597
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Limitations598

While our proposed framework is flexible and ad-599

mits different implementations for the verifiers, in600

this work we implemented each verifier with a601

prompt-based LLM approach. This type of im-602

plementation can increase the energy consumption603

of the deployed system, leading to a performance–604

energy-consumption trade-off. Secondly, employ-605

ing step-by-step verifiers increases the computa-606

tional time needed by the system to produce an out-607

put. This trade-off must be analyzed on a case-by-608

case basis and compared to other alternatives, such609

as self-consistency. Different from self-consistency,610

our proposed approach aims to improve the correct-611

ness of each step in a step-by-step solution.612

While our evaluation spanned multiple reason-613

ing tasks and datasets, it was limited to tasks in the614

English language only. We leave the evaluation on615

more challenging datasets (e.g., MATH (Hendrycks616

et al., 2021)) or datasets with contradictory infor-617

mation (Chen et al., 2022; Kazemi et al., 2023) to618

future work.619

During our human evaluation study, we observed620

low, yet significant, positive correlations. To vali-621

date the observed performance improvements on622

downstream tasks, we conducted additional experi-623

ments on synthetic data, which confirmed that these624

improvements are indeed expected.625

Lastly, we only used Falcon-40B-Instruct in our626

experiments, as it was one of the largest and most627

capable open-source8 model at the time of the ex-628

periments. We utilized GPT-4o and human corre-629

lations to provide a glimpse into how verifiers im-630

plemented with a more powerful underlying model631

might perform in comparison. We leave the explo-632

ration of other models to future work.633

Ethics Statement634

Our proposed approach utilizes large language635

models, which are known to be biased and to hallu-636

cinate. In this work, we do not pre-train nor fine-637

tune any large-scale models. Instead, we use al-638

ready pre-trained open-source models and prompt-639

ing.640
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A Frequently Asked Questions909

A.1 What performance improvements are910

expected given certain correlation levels?911

We argue that the low correlations are not prob-912

lematic and that a correlation of 1.0 is (currently)913

unrealistic, as it would imply a verifier as good as914

humans. To further support this assertion and to915

add details on the level of improvements that can be916

expected from correlations like 0.1, we ran exper-917

iments on artificially generated data ans show the918

results in Table 10. This experiment further demon-919

strates that the improvements we have seen with920

correlation scores of 0.1 are normal. Intuitively, if921

the scores of the verifiers are not correlated with922

humans for a given question, the worst it can do is923

to select a random chain. However, if the verifiers924

are correlated with humans for a given reasoning925

chain, then they will select those reasoning chains926

that humans agree are better.927

We supplement the correlation values of Falcon928

with that of GPT-4o, a more powerful model, to929

highlight how the proposed method scales with a930

stronger underlying model. Overall, GPT-4o ob-931

tains better correlation scores with human judg-932

ments.933

A.2 The variance in Annotator’s agreement934

scores935

We hypothesize that the large variance in the inter-936

annotator agreement score comes from different937

reasoning styles between different humans. Never-938

theless, the overall agreements presented in Table 6939

highlight between Moderate Agreement and Sub-940

stantial Agreement. We show all the inter-annotator941

agreements over each of the four attributes in Ap-942

pendix H. We also elaborate on how Cohen’s Kappa943

might be too harsh, a phenomenon known as Co-944

hen’s Kappa Paradox (Zec et al., 2017). For ex-945

ample, the Cohen’s Kappa scores between the946

following two annotations a1 = [1,1,1,1,1,1],947

a2 = [1,1,1,1,1,0] is 0, even though they only948

disagree on one instance.949

To this end, we included additional agreement950

scores: Gwet’s AC1 (Gwet, 2014) and naive agree-951

ment. Both showed that the annotators agree more952

than initially revealed by Cohen’s Kappa.953

A.3 Costs of the proposed method954

Our focus in this work has been to explore the ex-955

tent to which LLMs are capable of error detection956

and error correction. Especially since there is a957

divergence in findings across prior work regarding 958

the LLMs ability to detect and correct its errors 959

(Tyen et al., 2023; Huang et al., 2023; Madaan 960

et al., 2023, inter alia) even if it meant temporarily 961

sacrificing efficiency. We leave the exploration of 962

more efficient methods to future work. 963

A.4 Subjectivity of the verifiers 964

The relevance and logical consistency verifiers may 965

appear subjective, evidenced by the varying re- 966

sponses from human annotators. However, our fo- 967

cus has not been on addressing nuanced scenarios 968

where human judgment itself might differ. Instead, 969

our intention has been to capture and rectify the 970

more straightforward errors, those instances where 971

even human annotators unanimously agree. 972

B Experimental Settings 973

B.1 Datasets 974

We include in Table 3 an input/output example for 975

each dataset used. We also experimented with the 976

Object Tracking problem from BigBench, but we 977

removed it because for all experimental settings, 978

encompassing both baseline and proposed methods, 979

the performance consistently fell below the chance- 980

level threshold. For Last Letter Concatenation, we 981

use only 2 words instead of 4, as we empirically 982

observed that Falcon-40B is not able to tackle the 983

problem when there are four words. We use a 984

temperature of 0.7 for all our experiments. 985

B.2 Hardware 986

We ran the experiments on machines with 8 987

A10G 24GB GPUs (AWS g5.48xlarge). In to- 988

tal, we used approximately 10 weeks worth of 989

g5.48xlarge time. 990

C Verifiers 991

We include the prompts we used for each verifier. 992

C.1 Relevance Prompt 993

You are a helpful assistant that is good at 994

evaluating reasoning chains in order to 995

solve logic problems. 996

You are given a logic problem and a draft 997

solution with numbered steps that we 998

need to complete. Evaluate the draft so- 999

lution by determining whether it adds 1000

relevant information that helps to solve 1001

the problem. If it is relevant answer by 1002

’yes, the solution is relevant’, otherwise 1003

12



Reasoning Task Dataset Name Input Expected
Output

Other BigBench Date
Understanding

Yesterday was April 30, 2021. What is the date today
in MM/DD/YYYY? Choices: (A) 05/01/2021, (B)
02/23/2021, (C) 03/11/2021, (D) 05/09/2021, (E)
06/12/2021, (F) 04/29/2021

(A)

Commonsense
CSQA 2.0 a pupil can be either a student or part of an eye yes
Strategy Is it common to see frost during some college com-

mencements?
yes

Symbolic
Coinflip A coin is heads up. Whitney flips the coin. Erika does

not flip the coin. Tj does not flip the coin. Benito
flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse"

yes

Last Letter (2) Take the last letters of each words in "Whitney Ben-
ito" and concatenate them.

yo

Math
GSM8k Natalia sold clips to 48 of her friends in April, and

then she sold half as many clips in May. How many
clips did Natalia sell altogether in April and May?

72

SVAMP Bryan took a look at his books as well. If he has
34 books distributed equally in 2 bookshelves. How
many books are there in each bookshelf?

17

AddSub Joan found 70 seashells on the beach. she gave Sam
some of her seashells. She has 27 seashell. How
many seashells did she give to Sam ?

43

Table 3: An example of input and expected output for each of the datasets we experiment with.
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say ’no’ and explain which steps failed.1004

### Problem: {problem statement}1005

### Draft solution: {previous steps}1006

### Draft step: {current step}1007

### Your evaluation of the draft step:1008

C.2 Mathematical Accuracy Prompt1009

For brevity, we have included a single example1010

from the set of 20 in-context examples. The in-1011

context examples are a mix of inputs with math-1012

ematical calculations and without. Furthermore,1013

within the set of examples involving mathematical1014

calculations, both incorrect and correct calculations1015

are included for comprehensive coverage.1016

Instruction:1017

The task is to extract the mathematical1018

calculations appearing below and return1019

the result in JSON format. Please do1020

not perform any additional calculations1021

and do not introduce any number or1022

numerical expression that does not1023

appear in the original input text. If there1024

is no explicit calculation performed, do1025

not return anything.1026

1027

Input:1028

Therefore, he has $87-$32=«87-1029

32=40»$40 left1030

1031

Output:1032

“‘json1033

{[{"lhs": "87-32", "op": "=", "rhs":1034

"40"}]}1035

“‘1036

<..> Input:1037

{input}1038

1039

Output:1040

“‘json1041

1042

C.3 Logical Consistency Prompt1043

"""You are a smart, critical, and logical1044

teacher assistant. You are critically1045

reading a student’s answer line by1046

line and verifying each line for any1047

contradictions in the student’s argument.1048

More information below.1049

1050

Previous Steps:1051

{previous steps}1052

1053

Last Step: 1054

{current step} 1055

1056

Instruction: 1057

Given the information present in the 1058

Last Step and in the Previous Steps, 1059

please check if the conclusion present 1060

in the Last Step is contradicting any 1061

information from the Previous Steps. 1062

1063

Feedback: 1064

Based on the Last Step, which is 1065

"{current step}", and on the Previous 1066

Steps, we can conclude that the Last 1067

Step is""" 1068

D Self-Consistency 1069

We include here the plots for all the datasets for 1070

the Self-Consistency experiment performed in Sec- 1071

tion 4.3 1072

E Self-Consistency: Weighted Voting vs 1073

Majority Voting 1074

We include in Figure 7 the results over all datasets 1075

for the (1) Weighted Voting and (2) Majority Voting 1076

over the same reasoning chains. 1077

F Ablation 1078

We include a more comprehensive ablation in Ta- 1079

ble 4, where we ablate over more combinations of 1080

the verifiers. 1081

G Verifying Incomplete Reasoning 1082

Chains 1083

To complement Figure 4, where we verified a per- 1084

centage of the total number of reasoning steps for 1085

a given reasoning chain, we also include Figure 8, 1086

where we verify a fixed number of reasoning steps. 1087

The motivation behind this experiment is that the 1088

number of reasoning steps might not be known 1089

beforehand. 1090

To supplement the analysis performed in Sec- 1091

tion 4.4, we include in Table 5 the performance 1092

obtained by our proposed method when verifying a 1093

varying number of steps, from 0 (no verification) 1094

to All (verify all reasoning steps). 1095

14



(a) BigBench Date Understanding (b) CSQA (c) CSQA 2.0

(d) Strategy (e) Coinflip (f) Last Letter (2)

(g) GSM8k (h) SVAMP (i) AddSub

Figure 6: Self-consistency, sampling between 1-10 reasoning paths (↑)

H Human Evaluation1096

H.1 Inter-Annotator Agreement1097

We include the inter-annotator agreement across all1098

4 measured attributes in Figures 9, 10, 11, 12. We1099

remark the large variance in the agreement, even1100

for principles that are less subjective (e.g. Mathe-1101

matical Accuracy)1102

We also include in Table 6 the overall agreement1103

by attribute.1104

H.2 Other Agreement Scores1105

We further investigated the human annotation1106

data and found many instances where the agree-1107

ment score, as given by Cohen’s Kappa, was1108

too harsh. For example, the Cohen’s Kappa1109

scores between the following two annotations a1 =1110

[1,1,1,1,1,1] and a2 = [1,1,1,1,1,1] is nan.1111

Between a3 = [1,1,1,1,1,1], a4 = [1,1,1,1,1,0]1112

is 0, even though they only disagree on one in-1113

stance. Lastly, for a5 = [1,1,1,0,1,1,1,1,0,1]1114

and a6 = [1,1,1,1,1,0,1,1,1,1] the Cohen’s1115

Kappa score is −0.154. We remark that in all three1116

cases above, judging only from the annotations, the1117

annotators tend to agree, but this is not reflected 1118

in the Cohen’s Kappa score, a phenomenon called 1119

Cohen’s Kappa Paradox (Zec et al., 2017). We 1120

note that Krippendorff’s alpha only fixes the first 1121

example. 1122

Therefore, we include in Table 7 the agree- 1123

ment score, as calculated using Gwet’s AC1 (Gwet, 1124

2014). We remark that the agreement scores are 1125

higher than initially revealed by Cohen’s Kappa 1126

scores. 1127

Lastly, we include in Table 8 the agreement com- 1128

puted as the percentage of time the annotators give 1129

the same label, without accounting for agreement 1130

by chance. 1131

H.3 Correlations 1132

We include the Pearson correlations between each 1133

of the 4 measured attributes (Relevance, Logical 1134

Consistency, Mathematical Accuracy, and Overall 1135

Correctness) in Figure 13. We remark that there is 1136

a large variance in the correlation scores. 1137

We also include in Figure 14 the correlations 1138

between the verifiers and the human assessments. 1139

Additionally, we include the correlations between 1140
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(a) BigBench Date Understanding (b) CSQA (c) CSQA 2.0

(d) Strategy (e) Coinflip (f) Last Letter (2)

(g) GSM8k (h) SVAMP (i) AddSub

Figure 7: Self-consistency on the same reasoning chains, comparing between weighting the final answer using
the scores from our proposed verifiers or taking the majority voting (↑). Overall, using the scores of our proposed
verifiers to perform weighted voting consistently improves the final performance.

(a) GSM8k (b) CSQA (c) BigBench Date Understanding

Figure 8: Verifying only the first X steps of a chain.

the human assessment of the overall correctness of1141

a given reasoning step and the aggregated score,1142

with and without perplexity.1143

H.4 Human Annotator Instructions1144

We provide an overview of the instructions given1145

to the human annotators.1146

(1) Overall Correctness: If there is any rea-1147

soning issue with this step, answer n. If you can-1148

not evaluate the step because you lack expertise or 1149

there are some other issues with the step, answer a. 1150

Please let us know about the reason in the notes col- 1151

umn. If there is nothing wrong with the reasoning 1152

step, answer y. 1153

(2) Mathematical Accuracy: Are all arith- 1154

metic calculations in this reasoning step correct? 1155

This question is strictly about arithmetic calcula- 1156

tions and not about how the calculation is used to 1157
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Verifiers Math

Perplexity Relevance Math Accuracy Consistency AddSub GSM8k SVAMP

✗ ✗ ✗ ✗ 41.04±1.79 29.23±1.58 38.78±1.26
✗ ✗ ✗ ✓ 48.84±0.85 33.51±0.69 45.41±0.56
✗ ✗ ✓ ✗ 45.76±1.99 35.59±1.60 41.68±1.65
✗ ✓ ✗ ✗ 49.04±0.44 33.38±0.52 46.98±0.42
✗ ✓ ✓ ✓ 53.21±0.40 43.37±0.25 49.83±0.18
✓ ✗ ✗ ✗ 59.09±0.59 41.53±0.49 53.85±0.45
✓ ✗ ✓ ✗ 60.58±0.47 45.66±0.31 55.80±0.37
✓ ✗ ✓ ✓ 59.57±0.21 48.02±0.24 55.35±0.24
✓ ✓ ✗ ✗ 57.47±0.33 41.87±0.29 54.83±0.15
✓ ✓ ✓ ✗ 59.82±0.22 44.47±0.22 56.44±0.24
✓ ✓ ✓ ✓ 62.34±0.25 45.94±0.30 56.36±0.23

(a) Ablation Single Chain math results, Accuracy, Higher is better ↑

Verifiers Other Commonsense Symbolic

Perplexity Relevance Consistency BigBench Date CSQA 2.0 CSQA Strategy Coinflip Last Letter (2)

✗ ✗ ✗ 55.77±3.06 58.75±1.68 47.91±1.22 56.03±0.99 58.67±2.04 15.68±1.51
✗ ✗ ✓ 62.70±0.68 56.77±0.55 53.00±0.59 54.31±0.70 49.17±0.76 20.63±0.78
✗ ✓ ✗ 62.57±0.45 61.03±0.21 52.62±0.29 57.31±0.26 53.63±0.51 15.79±0.30
✗ ✓ ✓ 63.50±0.26 60.47±0.12 54.74±0.25 55.98±0.24 52.68±0.37 16.50±0.24
✓ ✗ ✗ 64.06±0.60 60.27±0.25 51.35±0.36 60.03±0.30 73.36±0.42 41.73±0.48
✓ ✗ ✓ 64.72±0.31 58.74±0.12 52.99±0.24 58.54±0.13 64.89±0.38 46.03±0.34
✓ ✓ ✗ 71.04±0.22 62.21±0.19 54.28±0.14 58.98±0.14 69.81±0.20 39.53±0.21
✓ ✓ ✓ 69.12±0.21 62.16±0.22 56.79±0.12 57.21±0.17 64.02±0.21 41.64±0.44

(b) Ablation Single Chain non math results, Accuracy, Higher is better ↑

Table 4: Ablation over the types of verifiers used. Overall, all verifiers are meaningfully contributing towards the
final solution.

progress toward the solution.1158

(3) Logical Consistency: Is this reasoning step1159

logically consistent, in itself, and with previous1160

steps? Answer y if the step is logically consistent1161

within itself, and with all previous steps, including1162

the prompt (problem statement). A step is logically1163

consistent when it uses available information in a1164

way that is logically correct. In most cases this1165

means that the conclusions that are reached in this1166

step follow logically from assumptions made. It1167

can also mean that the step does not contradict1168

information provided in previous steps (or the same1169

step).1170

(4) Relevance: Does this reasoning step add in-1171

formation that is relevant for solving the problem?1172

Information is relevant when it is useful for solv-1173

ing the problem (e.g. it states helping assumptions,1174

or it reaches a conclusion that answers the prob-1175

lem or get you closer to an answer). Information1176

can be added by re-stating information from the1177

prompt, by reaching a conclusion, or by introduc-1178

ing completely new information – any of these can1179

be relevant or irrelevant. 1180

H.5 Ratios of Steps Annotated as Incorrect 1181

We show in Table 9 the ratio of steps each annotator 1182

deemed as incorrect. 1183

I Expected Performance Given 1184

Correlation Levels 1185

We showed in Sections 4.2 and 4.3 that employ- 1186

ing the proposed verifiers leads to performance 1187

improvements. Then, we analyzed in Section 4.6 1188

the correlations between the proposed verifiers and 1189

human judgments, observing significantly positive 1190

(but low) correlations. In this section, we further an- 1191

alyze what improvements can we expect for a given 1192

level of correlations. To this end, we conducted ad- 1193

ditional experiments using artificially generated 1194

data, allowing us precise control over the correla- 1195

tion values between the verifiers and human judg- 1196

ments. By randomly sampling scores to simulate 1197

the verifiers’ and human annotators’ judgments, we 1198

manipulated the data to induce positive correlations 1199
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Other Commonsense Symbolic Math

# of Steps Verified BigBench Date CSQA 2.0 CSQA Strategy Coinflip Last Letter (2) GSM8k SVAMP AddSub

0 55.77±3.06 58.75±1.68 47.91 ± 1.22 56.03±0.99 58.67±2.04 15.68±1.51 29.23±1.58 38.78±1.26 41.04±1.79
1 52.77±0.66 59.73±0.26 48.04 ± 0.26 58.65±0.23 62.03±0.61 40.22±0.64 30.80±0.53 38.12±0.59 46.29±0.71
2 59.77±0.35 61.05±0.21 49.45 ± 0.16 58.22±0.14 67.82±0.31 51.25±0.39 32.90±0.24 41.31±0.26 50.64±0.38
3 61.40±0.22 61.55±0.14 51.33 ± 0.17 58.04±0.14 70.60±0.31 46.89±0.26 39.38±0.29 46.27±0.22 51.14±0.25
4 65.75±0.18 63.40±0.19 54.58 ± 0.14 58.28±0.16 68.26±0.36 41.49±0.23 42.42±0.16 49.61±0.20 58.02±0.25
5 68.15±0.25 62.35±0.19 55.66 ± 0.10 56.96±0.17 66.72±0.24 33.13±0.35 45.49±0.26 53.38±0.23 60.67±0.29

All 69.12±0.21 62.16±0.22 56.79 ± 0.12 57.21±0.17 64.02±0.21 41.64±0.44 45.94±0.30 56.36±0.23 62.34±0.25

Table 5: Single Chain results, Accuracy, Higher is better ↑

Figure 9: Annotator Agreement over the Relevance of a given reasoning step

Attribute Overall Agreement

Relevance 0.55
Math Accuracy 0.81
Logical Consistency 0.53
Overall Correctness 0.66

Table 6: Overall Agreement by Attribute

and recorded the resulting final scores.91200

We summarize our results in Table 10. We re-1201

mark that even for modest correlations, the perfor-1202

mance increase is over 20% relative, in line with1203

what we observed empirically with real data.1204

J Examples1205

We provide two qualitative examples in Figures 15,1206

??, and 17, comparing the solutions chosen by1207

9The correctness of reasoning chains in the artificially
generated data is determined based on the sampled scores rep-
resenting human judgments. A reasoning chain is considered
correct if it consists of more than 75% correct reasoning steps.

Attribute Overall Agreement

Relevance 0.71
Math Accuracy 0.84
Logical Consistency 0.75
Overall Correctness 0.81

Table 7: Overall Agreement by Attribute computed us-
ing Gwet’s AC1

the lowest perplexity method and by our proposed 1208

method, that of using the verifier scores. 1209
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Figure 10: Annotator Agreement over the Mathematical Accuracy of a given reasoning step

Attribute Overall Agreement

Relevance 0.83
Math Accuracy 0.89
Logical Consistency 0.86
Overall Correctness 0.89

Table 8: Overall Agreement by Attribute computed us-
ing the Naive approach
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Figure 11: Annotator Agreement over the Logical Consistency of a given reasoning step

Metric/Annotator A0 A1 A2 A3 A4 A5 A6 A7

Ratio of steps annotated as Irrelevant 0.41 0.37 0.24 0.33 0.17 0.22 0.36 0.35
Ratio of steps annotated as Mathematically incorrect 0.06 0.05 0.03 0.03 0.07 0.06 0.11 0.03
Ratio of steps annotated as Logically Inconsistent 0.4 0.35 0.25 0.31 0.28 0.23 0.28 0.34
Ratio of steps annotated as Overall Incorrect 0.43 0.38 0.31 0.37 0.31 0.24 0.34 0.36

Table 9: The ratio of steps each annotator annotated as Irrelevant, Mathematically incorrect, Logically Inconsistent,
and Overall Incorrect.

Figure 12: Annotator Agreement over the Overall Correctness of a given reasoning step
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(a) Correlation score between our overall score (excluding the
perplexity verifier) and the annotators assessment.

(b) Correlation score between our overall score (including the
perplexity verifier) and the annotators assessment.

(c) Correlation score between our Logical Consistency Verifier
and the annotators assessment.

(d) Correlation score between our Mathematical Accuracy
Verifier and the annotators assessment.

(e) Correlation score between our Relevance Verifier and the
annotators assessment.

Figure 13: Correlations between the scores of the verifiers and the human annotators’ assessment. Additionally, we
consider two scores for the Overall Assessment attribute. One was computed only with the three verifiers and the
second one was computed with the three verifiers, together with the perplexity verifier.

Method Score

Model with no verifier 0.19
Model with verifier with correlation = 0.075 0.22
Model with verifier with correlation = 0.1 0.23
Model with verifier with correlation = 0.15 0.26
Model with verifier with correlation = 0.25 0.31
Model with verifier with correlation = 0.5 0.48
Model with verifier with correlation = 0.75 0.72
Model with verifier with correlation = 1.0 0.98

Table 10: Scores of the proposed method given various level of correlations. Even for modest correlations, the
performance increase is over 20% relative.
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Figure 14: Correlation between the scores of our pro-
posed verifiers and the human assessments. Addition-
ally, we include the correlations between the human
assessment of the overall correctness of a given reason-
ing step and the aggregated score (with and without
perplexity).
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Problem Statement
Antoine’s french onion soup recipe calls for 2 pounds of onions. He likes to double that amount.
His soup serves 6 people. The onions are currently on sale for $2.00 a pound. He also needs 2
boxes of beef stock, that are also on sale for $2.00 a box. What is the cost per serving? (Round to
the nearest integer.)

Gold Answer
$2

Lowest perplexity solution
- The recipe calls for 2 pounds of onions, so that’s $4.00 for the onions.
- Antoine doubles the amount of onions, so he uses 4 pounds for his recipe.
- That means he needs to buy 2 boxes of beef stock, which are on sale for $2.00 each.
- The total cost for onions and beef stock is $8.00.
- Therefore, the cost per serving is $1.33 (rounded to the nearest integer).

Solution according to verifiers
- Antoine likes to double the amount of onions, so he uses 4 pounds of onions.
- Each onion costs $2.00, so 4 pounds of onions cost 4 * $2.00 = $«4*2=8»8.00.
- He also needs 2 boxes of beef stock, which cost 2 * $2.00 = $«2*2=4»4.00.
- Therefore, the total cost for all ingredients is $8.00 + $4.00 = $«8+4=12»12.00.
- Since the soup serves 6 people, each person will eat $12.00 / 6 = $«12/6=2»2 worth of soup.
- Therefore, the cost per serving is $2.00.

Figure 15: Qualitative example of the types of solutions preferred by our proposed method.
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Problem Statement
Pam and Fred went to a carnival. Pam rode the roller coaster 2 times while Fred rode it 4 times.
After that, each of them decided to ride the luge 2 times. If each ride cost 6 tickets, how many
tickets did they use that day?

Gold Answer
60

Lowest perplexity solution
- Pam rode the roller coaster 2 times, so that’s 2 * 6 = 12 tickets.
- Fred rode the roller coaster 4 times, so that’s 4 * 6 = 24 tickets.
- After that, they each rode the luge 2 times, so that’s 2 * 2 * 6 = 24 tickets.
- Finally, Pam rode the roller coaster 2 times, so that’s 2 * 6 = 12 tickets.
- Fred rode the roller coaster 4 times, so that’s 4 * 6 = 24 tickets.
- After that, they each rode the luge 2 times, so that’s 2 * 2 * 6 = 24 tickets.
- Finally, Pam rode the roller coaster 2 times,

Solution according to verifiers
- Pam rode the roller coaster 2 times, which means she used 2 * 6 = 12 tickets.
- Fred rode the roller coaster 4 times, which means he used 4 * 6 = 24 tickets.
- After riding the roller coaster, Pam and Fred rode the luge 2 times each, which means they used 2
* 2 * 6 = 24 tickets in total.
- So, they used a total of 12 + 24 + 24 = 60 tickets that day.

Figure 16: Qualitative example of the types of solutions preferred by our proposed method.
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Problem Statement
Eliza’s rate per hour for the first 40 hours she works each week is $10. She also receives an
overtime pay of 1.2 times her regular hourly rate. If Eliza worked for 45 hours this week, how
much are her earnings for this week?

Gold Answer
$460

Lowest perplexity solution
- Eliza works for 40 hours at a rate of $10 per hour, so her earnings for the first 40 hours are $400.
- Since she worked 5 more hours than the 40 hours at her regular rate, she will receive 1.2 times
her regular hourly rate for those 5 hours. (1.2 times 10 is 12)
- Therefore, Eliza’s earnings for the 45 hours she worked this week are $420. ($400 + $20)
- So, Eliza’s earnings for this week are $420.

Solution according to verifiers
- Eliza’s regular hourly rate for the first 40 hours is $10.
- Her overtime rate is 1.2 times the regular rate, which is $12.
- She worked for 45 hours this week.
- So, for the first 40 hours, her earnings are $400 ($10/hour x 40 hours), and for the 5 overtime
hours, her earnings are $60 ($12/hour x 5 hours).
- Adding these two amounts, Eliza’s total earnings for this week are $460 ($400 + $60).

Figure 17: Qualitative example of the types of solutions preferred by our proposed method.
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