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Abstract

The growing popularity of video-sharing platforms has intensified the need to
harmonize video content with appropriate music. For creators, this pairing often
demands considerable manual effort and repeated experimentation. This paper
presents an automated solution that streamlines music selection by analyzing the
raw content of both video and audio. Our approach evaluates a video’s visual
dynamics by measuring movement distribution over time via optical flow. Concur-
rently, for candidate music tracks, the system extracts the onset envelope to analyze
rhythmic tempo evolution. We introduce novel similarity metrics, informed by
these signals, to assess the suitability of a music-video pair. This method requires
only raw sources, eschewing the need for supplemental metadata and distinguishing
it from complex deep multi-modal fusion strategies. Experimental results, utilizing
both continuous cross-correlation and discrete beat-distance metrics, demonstrate
our model’s efficacy across diverse video and music genres. Evaluations show a
heightened accuracy in identifying the original video-music alignment compared
to alternative pairings.

1 Introduction

The rise of video-sharing platforms like YouTube, TikTok, and Instagram has created an immense
demand for engaging short-form content. A key element of a successful video is the synergistic
pairing of visuals with a fitting soundtrack, a task that often requires professional editing skills and
can be daunting for the average creator. Computational video editing offers a promising solution to
automate this process and assist non-professionals.

A central challenge in this automation is developing a method to measure the compatibility between
a video and audio clip. Many existing approaches rely on supervised learning with ground-truth
datasets [1, 2, 3], which are difficult to scale and can introduce subjective biases from labelers. Other
methods, such as emotion-based classification [4] or deriving associations from film music [5], are
often computationally intensive, musically restrictive, and depend on highly subjective attributes.
While unsupervised techniques like visual beat extraction [6] avoid these issues, they are typically
suited only for very short clips.

In this study, we propose an unsupervised approach that uses digital signal processing (DSP) to define
a similarity metric between video and audio based on their rhythmic structures. Our core hypothesis
is that a video is more appealing to viewers when the on-screen motion is synchronized with the
musical beats. This method is computationally efficient, avoids the pitfalls of dataset bias, and is
designed for the popular short-video format.

We extract rhythmic information, specifically tempo, from both modalities and compute a distance
metric between them. Soundtrack recommendations are then ranked by this distance, favoring
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audio clips with a tempo that aligns with the video’s visual rhythm. We demonstrate that our
model outperforms existing music recommendation models across various video domains, effectively
identifying compelling pairings while filtering out inappropriate combinations that clash in genre
or mood. Our objective is to validate that rhythmic alignment is a strong, measurable indicator of
perceived music-video quality.

2 Related Work

Audio recommender systems for video are closely linked to Computational Video Editing (CVE),
as both require robust feature extraction and alignment of audio-visual signals. Research in CVE
has focused on enhancing video quality, generating meaningful frame sequences [7], and applying
user-specified editing idioms [8].

A core challenge is synchronizing audio and video. Early work aligned visual and audio beats
using optical flow and spectrogram analysis [6], suitable for short, rhythmically simple videos.
The AlignNet model later improved resilience to non-uniform misalignments using attention and
pyramidal processing, excelling in dance and speech alignment [9].

Feature extraction methods vary widely. Some approaches use low-level features (e.g., MFCCs, CNN
outputs [4]), while others employ high-level semantic concepts like emotion [5, 10]. Techniques
also differ in their processing: some studies use fixed-length segments and neural networks to learn
audio-visual mappings [4], while others leverage music theory [5] or multi-task learning for beat and
tempo estimation [11].

Despite progress, comparing audio and video features directly remains underexplored [12]. Our
work introduces unsupervised rhythmic similarity metrics to recommend soundtracks for any musical
video.

3 Model Description

Given audio samples A⃗ and video frames V⃗ , our goal is to construct scalar similarity metrics. We
process them to generate 1-D onset signals: the onset envelope Onseta(n) for audio and the visible
impact Onsetv(n) for video. From these, we define a continuous similarity metric CM(A⃗, V⃗ ) as
their cross-correlation. For a discrete similarity metric DM(A⃗, V⃗ ), we first extract beat sequences
Ba and Bv from the onset signals using a dynamic programming approach [13]:

Ba = DP (Onseta(n)), Bv = DP (Onsetv(n)) (1)

3.1 Extracting Information from Audio

Using the Python library librosa,1 we derive a spectrogram SP (n, k) via FFT. We then calculate
spectral flux SF (n, k) and aggregate positive values to get the onset strength signal:

SF (n, k) = |SP (n, k)| − |SP (n− 1, k)| (2)

Onseta(n) =

K∑
k=0

SF (n, k) + |SF (n, k)|
2

(3)

3.2 Extracting Information from Video

We apply the Farneback optical flow algorithm to get velocity amplitude ⃗Amp and angles A⃗ng. We
construct a directional distribution matrix D(n, θ) and compute a visible impact signal:

D(n, θ) =
∑
x,y

|Ampn(x, y)|1θ(Angn(x, y)) (4)

DF (n, θ) = |D(n, θ)| − |D(n− 1, θ)|, Onsetv(n) =

K∑
k=0

DF (n, k) + |DF (n, k)|
2

(5)

1https://librosa.github.io/librosa/
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where 1θ(ϕ) is the indicator function for angle bin θ.

3.3 Continuous Video-Soundtrack Similarity

We compute the cross-correlation of the powered and normalized onset signals:

CM(A⃗, V⃗ ) = max(G(Onset5a(n), Onset5v(n))) (6)

Raising to the 5th power was found experimentally to maximize the difference between original and
non-original pairs (Table 1).

Table 1: Difference in correlation coefficients for original and non-original pairs of onset signals.
Power of signals Difference in %

1 -3
2 16
3 65
4 106
5 161
6 147

3.4 Discrete Video-Soundtrack Similarity

After extracting beats Ba and Bv, we calculate the sum of absolute differences to the nearest beat.
The inverse of this sum gives the discrete similarity:

DM(A⃗, V⃗ ) =
1

Bdistance(Ba, Bv) + ϵ
(7)

To account for alignment, we test multiple starting point delays.

4 Experiments and Results

We tested our metrics on a custom dataset of 20 dance videos and 30 music tracks. For each video,
we calculated similarity scores with all audios. Accuracy was measured by how often the original
soundtrack received the highest score.

4.1 Discrete Video-Soundtrack Distance

This metric achieved 73% accuracy. Figure 1 shows an example of extracted beats, where alignment
is strong for simple movements but degrades with complexity. The metric favors soundtracks with
tempos similar to the original.

Figure 1: Audio (green dots) and video (blue dots) beat visualization over time. Top band shows
strong correspondence for simple movements; complexity increases in second and third bands.

4.2 Continuous Video-Soundtrack Similarity

This metric achieved 87% accuracy, outperforming the discrete method. Figure 2 shows the alignment
of onset signals, their cross-correlation, and how raising the signals to a power makes peaks more
distinguishable. The highest correlation was for the original video-soundtrack pair, with a bias toward
similar tempos.
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(a) Onsets of video (blue) and audio (green) over
time, showing rhythmic alignment with a slight lag.

(b) Cross-correlation of visible impacts (video) and
onset envelope (audio) signals.

(c) Cross-correlation of signals raised to the 5th
power, reducing noise and emphasizing peaks.

(d) Correlation between a fixed video’s visible im-
pacts and various audio onset envelopes.

Figure 2: Continuous video-soundtrack similarity metrics: (a) onset alignment, (b) cross-correlation
analysis, (c) power-enhanced correlation, and (d) correlation comparison across different soundtracks.

5 Discussion and Comparison

The continuous similarity metric outperformed the discrete one, offering more flexibility through
parameters like the signal power. On videos algorithmically aligned using [6]’s pipeline, our accuracy
reached 93%, exceeding that for human-generated content. This suggests our metric could serve
as a powerful objective function for automated video editing systems. Our method significantly
outperformed the approach in [4], which reported 58% accuracy. The higher performance of our unsu-
pervised, rhythm-based approach highlights the significance of temporal alignment as a primary factor
for perceived quality, potentially surpassing more subjective measures like emotion. Furthermore, its
computational efficiency makes it suitable for real-time application on popular platforms.

6 Conclusion

We introduced unsupervised similarity metrics for video-soundtrack recommendations based on
rhythmic alignment. Our analysis confirmed a stronger rhythmic harmony in human-generated clips
than in random pairs, validating our core hypothesis. The high performance achieved demonstrates
that rhythmic coherence is a powerful and effective signal for measuring audio-visual compatibility.
Future work involves developing a music indexing system using rhythm and tempo features for
efficient search across large libraries. We also would like to examine benefits from feature extraction
with depth-aware models like [14, 15, 16].
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