
SOK: A GENERALIZED MULTI-LEADER STATE MACHINE REPLICATION TUTORIAL

Michael Whittaker
UC Berkeley

Neil Giridharan
UC Berkeley

Adriana Szekeres
University of Washington

Joseph M. Hellerstein
UC Berkeley

Ion Stoica
UC Berkeley

Abstract
MultiPaxos and Raft are the two most popular and widely
deployed state machine replication protocols. There is a more
sophisticated family of generalized multi-leader state machine
replication protocols like EPaxos, Caesar, and Atlas that have
better performance, but they are extremely complicated and
hard to understand. Due to their complexity, they have seen
little to no industry adoption, and academically there has been
a lack of clarity in analyzing, comparing, and extending the
protocols. This paper is a tutorial on generalized multi-leader
protocols. We explain why the protocols work the way they
do, what they have in common, where they differ, which parts
of the protocols are straightforward, which are more subtle
than they appear, and so on. In doing so, we present four new
generalized multi-leader protocols, identify key insights into
existing protocols, and taxonomize the space.

1 Introduction

State machine replication protocols are a critical component
of many fault tolerant distributed systems [4, 5, 8, 27, 29].
Given an arbitrary deterministic state machine, like a key-
value store or a relational database, a state machine replication
protocol can be used to deploy multiple copies, or replicas,
of the state machine while guaranteeing that the states of the
replicas stay in sync and do not diverge.

The most popular and widely deployed state machine repli-
cation protocols are Paxos [5, 8, 13] and Raft [1, 2, 23, 27].
These protocols have two distinguishing characteristics. First,
they are leader based. All communication is funneled through
a single leader. Second, these protocols totally order state
machine commands into a log and have state machine replicas
execute the commands in log order. Every replica executes
the exact same commands in the exact same order.

There is another family of generalized multi-leader state
machine replication protocols—including EPaxos [22], Cae-
sar [3], and Atlas [10]—that improve the performance of
protocols like MultiPaxos and Raft along these two dimen-
sions. These protocols are multi-leader and avoid being
throughput bottlenecked by a single leader. They are also gen-
eralized [14, 19]. This means that the protocols are based on
dependency graphs. Every replica executes non-commuting
commands in the exact same order, but the replicas are free
to execute commuting commands in any order. As a result,
commuting commands do not interfere with one another.

Unfortunately, these generalized multi-leader protocols are
extremely complicated. Paxos has a well known reputation for
being complex [16,23,30], and these generalized multi-leader
protocols are significantly more complex than that. They
require a strong understanding of more sophisticated Paxos
variants like Fast Paxos [15] and are overall less intuitive and
more nuanced. It’s hard to measure this complexity precisely,
but there are indications that the protocols are complicated.
EPaxos, for example, had several bugs go undiscovered for
years despite the popularity of the protocol [26]. Through
personal conversations, we have also found that even domain
experts find these protocols challenging to fully understand.

This complexity has negative consequences in industry
and academia. The performance advantages of generalized
multi-leader protocols make them an attractive option for
industry practitioners. Despite this, generalized multi-leader
protocols have little to no industry adoption. We postulate
that this is largely due to their complexity. The engineers
in [6] explain that implementing a state machine replication
protocol requires making many small changes to the protocol
to match the environment in which it is deployed. Making
these changes without a strong understanding of the protocol
is infeasible. Academically, it is challenging to compare and
contrast the various protocols. They all seem very similar,
yet vaguely distinct. This also makes it difficult to extend the
protocols with further innovations. There are dozens of state
machine replication protocols in the literature, yet relatively
few generalized multi-leader variants.

This paper is a tutorial on generalized multi-leader state
machine replication protocols. Our goal is to answer ques-
tions such as: What problem do these protocols address? How
can I choose between the various protocols? Why do these
protocols work the way they do? What do they have in com-
mon? Where do they differ? Which parts of the protocols are
straightforward? Which are more subtle than they appear?
Are there simpler variants out there? What trade-offs do the
protocols make, and which points in the design space are still
unexplored?

The tutorial has four parts, and in each part, we introduce a
new protocol. First, we present the simplest possible general-
ized multi-leader protocol, which we called Simple BPaxos
(Section 4). Simple BPaxos sacrifices performance for sim-
plicity and is designed with the sole goal of being easy to
understand. Simple BPaxos is the kernel from which all other
generalized multi-leader protocols can be constructed. It en-

Journal of Systems Research (JSys) 2021

capsulates all the mechanisms and invariants that are common
to the other protocols.

Second, we introduce a purely pedagogical protocol called
Fast BPaxos (Section 6). Fast BPaxos achieves higher per-
formance than Simple BPaxos, but it is unsafe. The protocol
does not properly implement state machine replication. Why
study a broken protocol? Because understanding why Fast
BPaxos does not work leads to a fundamental insight on why
other protocols do. Specifically, we discover that generalized
multi-leader protocols encounter a fundamental tension be-
tween agreeing on commands and ordering commands. The
way in which a protocol handles this tension is its key distin-
guishing feature. We taxonomize the protocols into those that
avoid the tension and those that resolve the tension.

Third, we introduce Unanimous BPaxos, a simple ten-
sion avoiding protocol (Section 7). We describe how tension
avoiding protocols carefully enlarge quorum sizes to sidestep
the tension. We also explain how Basic EPaxos [22] and At-
las [10] can be expressed as optimized variants of Unanimous
BPaxos.

Fourth, we introduce Majority Commit BPaxos, a tension
resolving protocol (Section 8). We describe how tension
resolving protocols perform detective work to resolve the
tension without enlarging quorum sizes. We also discuss
the relationship between Majority Commit BPaxos and other
tension resolving protocols like EPaxos [21] and Caesar [3].

In summary, we make the following contributions.

• We explain generalized multi-leader protocols carefully
and thoroughly, bringing clarity to an otherwise dense
area of popular research.

• We present four new generalized multi-leader state
machine replication protocols: Simple BPaxos, Fast
BPaxos, Unanimous BPaxos, and Majority Commit
BPaxos.

• We identify a fundamental tension between agreeing on
commands and ordering commands and use this insight
to taxonomize generalized multi-leader protocols into
those that avoid the tension and those that resolve it.

2 A Primer on State Machine Replication

Throughout the paper, we assume a system model in which
messages can be arbitrarily dropped, delayed, and reordered.
We assume machines can fail by crashing but do not act ma-
liciously; i.e., we do not consider Byzantine failures. We
assume that machines operate at arbitrary speeds, and we
do not assume clock synchronization. Every protocol dis-
cussed in this paper assumes that at most f machines will fail
for some configurable f . If more than f machines fail, the
protocols remain safe, but won’t be live.

2.1 State Machine Replication
State machine replication is the act of choosing a sequence
(a.k.a. log) of values. A state machine replication protocol
manages a number of copies, or replicas, of a deterministic
state machine. Over time, the protocol constructs a growing
log of state machine commands, and replicas execute the
commands in log order. By beginning in the same initial state,
and by executing the exact same commands in the exact same
order, all of the state machine replicas are kept in sync. This
is illustrated in Figure 1.

0 1 2

(a) t = 0

x
0 1 2

(b) t = 1

x
0 1

z
2

(c) t = 2

x
0

y
1

z
2

(d) t = 3

Figure 1: At time t = 0, no state machine commands are
chosen. At time t = 1 command x is chosen in slot 0. At
times t = 2 and t = 3, commands z and y are chosen in slots
2 and 1. Executed commands are shaded green. Note that all
state machines execute the commands x, y, z in log order.

State machine replication builds on the simpler problem of
consensus. Rather than choosing a sequence of values, con-
sensus involves choosing a single value. State machine repli-
cation protocols like MultiPaxos implement state machine
replication using one instance of consensus for every log en-
try, so to understand state machine replication, we must first
understand consensus. We review Paxos, the most popular
consensus algorithm, and then extend Paxos to MultiPaxos.

2.2 Paxos
A Paxos [13] deployment that tolerates f faults consists of an
arbitrary number of clients, f +1 nodes called proposers, and
2 f +1 nodes called acceptors, as illustrated in Figure 2. To
reach consensus on a value, an execution of Paxos is divided
into a number of integer valued rounds (also known as ballots,
epochs, terms, views, etc. [12]). Every round has two phases,
Phase 1 and Phase 2, and every round is orchestrated by a
single pre-determined proposer. If a proposer is responsible
for executing a round, we sometimes say the proposer is the
leader of the round.

When a proposer executes a round, say round i, it attempts
to get some value v “chosen” in that round. We’ll define
formally what it means for a value to be chosen momentarily.
Paxos is a consensus protocol, so it must only choose a single
value. Thus, Paxos must ensure that if a value v is chosen in
round i, then no other value besides v can ever be chosen in
any round less than i. This is the purpose of Paxos’ two phases.
In Phase 1 of round i, the proposer contacts the acceptors to
(a) learn of any value that may have already been chosen in
any round less than i and (b) prevent any new values from
being chosen in any round less than i. In Phase 2, the proposer

2

Journal of Systems Research (JSys) 2021

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f +1

Proposers
2 f +1

Acceptors

1 2
2
3

3

1 v

2 PHASE1A〈i〉
3 PHASE1B〈i,vr,vv〉

(a) Phase 1

c1

c2

c3

p1

p2

a1

a2

a3

Clients
f +1

Proposers
2 f +1

Acceptors

4
4
5

5

6

4 PHASE2A〈i,v〉
5 PHASE2B〈i〉

6 v chosen

(b) Phase 2

Figure 2: An example execution of Paxos (f = 1).

proposes a value to the acceptors, and the acceptors vote on
whether or not to choose it. In Phase 2, the proposer is careful
to only propose a value v if it learned through Phase 1 that no
other value has been or will be chosen in a previous round.

More concretely, Paxos executes as follows. When a client
wants to propose a value v, it sends v to a proposer p. Upon
receiving v, p begins executing one round of Paxos, say round
i. First, it executes Phase 1. It sends PHASE1A〈i〉messages to
the acceptors. An acceptor ignores a PHASE1A〈i〉 message if
it has already received a message in a larger round. Otherwise,
it replies with a PHASE1B〈i,vr,vv〉 message containing the
largest round vr in which the acceptor voted and the value
it voted for, vv. If the acceptor hasn’t voted yet, then vr =
−1 and vv = null. When the proposer receives PHASE1B
messages from a majority of the acceptors, Phase 1 ends and
Phase 2 begins.

At the start of Phase 2, the proposer uses the PHASE1B
messages that it received in Phase 1 to select a value v such
that no value other than v has been or will be chosen in any
round less than i. Specifically v is the vote value associated
with the largest received vote round, or any value if no ac-
ceptor had voted (see [16] for details). Then, the proposer
sends PHASE2A〈i,v〉 messages to the acceptors. An acceptor
ignores a PHASE2A〈i,v〉 message if it has already received a
message in a larger round. Otherwise, it votes for v and sends
back a PHASE2B〈i〉 message to the proposer. If a majority
of acceptors vote for the value (i.e. if the proposer receives
PHASE2B〈i〉messages from a majority of the acceptors), then
the value is chosen—this is the formal definition of when a
value is chosen—and the proposer informs the client. This
execution is illustrated in Figure 2. If the proposer does not
receive sufficiently many PHASE1B or PHASE2B responses
from the acceptors (e.g., because of network partitions or
dueling proposers), then the proposer restarts the protocol in
a larger round.

Note that it is safe for the leader of round 0 (the smallest
round) to skip Phase 1 and proceed directly to Phase 2. Recall
that the leader of round i executes Phase 1 to learn of any
value that may have already been chosen in any round less
than i and to prevent any new values from being chosen in any
round less than i. There are no rounds less than 0, so these
properties are satisfied vacuously.

2.3 MultiPaxos

As mentioned earlier, MultiPaxos uses one instance of Paxos
for every log entry, choosing the command in the ith log entry
using the ith instance of Paxos. A MultiPaxos deployment that
tolerates f faults consists of an arbitrary number of clients, at
least f +1 proposers, and 2 f +1 acceptors (like Paxos), as
well as at least f +1 replicas, as illustrated in Figure 3.

c1

c2

c3

p1

p2

a1

a2

a3

r1

r2

Clients
f +1

Proposers
2 f +1

Acceptors
f +1

Replicas

1 2
2
3

3
4

4

5

Figure 3: An example execution of MultiPaxos (f = 1). The
leader is adorned with a crown.

Initially, one of the proposers is elected leader and runs
Phase 1 of Paxos for every log entry. Though there are an
infinite number of log entries, all but a finite prefix of the log
entries are empty, so the leader can run Phase 1 for all log
entries with only a small number of messages. When a client
wants to propose a state machine command x, it sends the
command to the leader (1). The leader assigns the command
a log entry i and then runs Phase 2 of the ith Paxos instance
to get the value x chosen in entry i. That is, the leader sends
PHASE2A messages to the acceptors to vote for value x in
slot i (2). In the normal case, the acceptors all vote for x in
slot i and respond with PHASE2B messages (3). Once the
leader learns that a command has been chosen in a given log
entry, it informs the replicas (4). Replicas insert commands
into their logs and execute the logs in prefix order.

Note that every command is sent to the leader, and the
leader performs disproportionally more work per command
compared to the other nodes in the protocol. For example,
in Figure 3, the leader must send and receive a total of 7
messages per command while the acceptors and replicas send
and receive at most 2. This is why the MultiPaxos leader is a
well known throughput bottleneck [20, 22].

3

Journal of Systems Research (JSys) 2021

3 Conflict Graphs

3.1 Defining Conflict Graphs
By totally ordering state machine commands into a log, state
machine replication protocols like MultiPaxos ensure that
every replica executes every command in exactly the same
order. This is a simple way to ensure that replicas are always
in sync, but it is sometimes unnecessary [14]. For example,
consider the log shown at the top of Figure 4. The command
a=2 (i.e. set the value of variable a to 2) is chosen in log
entry 1, and the command b=1 is chosen in log entry 2. With
MultiPaxos, every replica would execute these two commands
in exactly the same order, but this is not necessary because the
commands commute. It is safe for some replicas to execute
a=2 before b=1 while other replicas execute b=1 before a=2.
The execution order of the two commands has no effect on
the final state of the state machine, so they can be safely
reordered, as shown in Figure 4.

x

0

a=2

1

b=1

2

y

3

b=1

2

z

4

· · ·

x

0

b=1

1

a=2

2

y

3

a=2

2

z

4

· · ·

Figure 4: If two commands commute, replicas can safely
execute them in either order.

More formally, we say two commands x and y conflict
if there exists a state in which executing x and then y does
not produce the same responses or final state as executing y
and then x. We say two commands commute if they do not
conflict. If two commands conflict (e.g., a=1 and a=2), then
they need to be executed by every state machine replica in
the same order. But, if two commands commute (e.g., a=2
and b=1), then they do not need to be totally ordered. State
machine replicas can execute them in either order.

Generalized Multi-leader state machine replication proto-
cols like EPaxos, Caesar, Atlas, and all the BPaxos variants
presented in this paper take advantage of command commuta-
tivity. Rather than totally ordering commands into a log, these
protocols partially order commands into a directed graph such
that every pair of conflicting commands has an edge between
them. We call these graphs conflict graphs. An example log
and corresponding conflict graph is illustrated in Figure 5. A
log consists of a number log entries, and every log entry has
a unique log index (e.g., 4). A conflict graph consists of a
number of vertices, and every vertex has a unique vertex id
(e.g., v4). Because every vertex is assigned a globally unique
vertex id, we often refer to the vertex with vertex id v as v.
Also note that a command may appear in multiple vertices, in

a=b

0

a=2

1

b=1

2

b=a

3

a=3

4

(a)

a=b
v0

a=2
v1

b=1
v2

b=a
v3

a=3
v4

(b)

Figure 5: A log and corresponding conflict graph.

much the same way a command may appear multiple times
in a log.

Moreover, a vertex v can have directed edges to other
vertices. These are called the dependencies of v, denoted
deps(v). For example, if vertex vi depends on vertex v j, then
there is an edge from vi to v j. Note that if a pair of commands
conflict, then they must have an edge between them. This
ensures that every replica executes the two commands in the
same order. For example in Figure 5, the commands a=b (v0)
and a=2 (v1) conflict, so they have an edge between them.
If two commands commute, then they do not have an edge
between them. This allows replicas to execute the commands
in either oder. For example, the commands a=2 (v1) and b=1
(v2) commute, so there is no edge between them. Finally
note that some conflicting commands (e.g., b=a (v3) and a=3
(v4)) have edges in both directions, forming a cycle. Ideally,
conflict graphs would be acyclic, but cycles are sometimes
unavoidable. The reason for this will become clear soon.

3.2 Executing Conflict Graphs

We now explain how to execute a static conflict graph. In the
next subsection, we explain how to execute a dynamic conflict
graph that grows over time. Replicas execute logs in prefix
order. Replicas execute conflict graphs in reverse topological
order, one strongly connected component at a time. The
order of executing commands within a strongly connected
component is not important, but every replica must choose
the same order. For example, replicas can execute commands
within a component sorted by their vertex id. The conflict
graph in Figure 5 has four strongly connected components,
each shaded a different color. Vertices v0, v1, and v2 are each
in their own components, and commands v3 and v4 are in
their own component. Replicas execute these four strongly
connected components in reverse topological order as follows:

• First, replicas execute a=b (v0).

• Next, replicas either execute a=2 (v1) then b=1 (v2) or
b=1 (v2) then a=2 (v1). There are no edges between
vertex v1 and vertex v2, so every replica can execute the
two vertices in either order.

4

Journal of Systems Research (JSys) 2021

Table 1: The differences between protocols like MultiPaxos
and Raft that organize commands in logs and protocols like
EPaxos, Caesar, and Atlas that organize commands in graphs.

Logs Graphs

data structure log conflict graph
log entry vertex
log index (e.g., 4) vertex id (e.g., v4)
total order partial order

execution order log order reverse topological order
what’s chosen? commands commands & dependencies

• Finally, replicas execute b=a (v3) and a=3 (v4) in some
arbitrary but fixed order. For example, if replicas execute
commands sorted by their vertex ids, then the replicas
would all execute v3 and then v4.

Executing commands in this way, state machine replicas are
guaranteed to remain in sync. Every replica executes con-
flicting commands in the same order, but are free to execute
commuting commands in any order.

3.3 Constructing Conflict Graphs
In the previous subsection, we explained how to execute a
static conflict graph. In reality, graphs are dynamic and grow
over time. MultiPaxos constructs one log entry at a time. It
uses one instance of consensus for every log entry i to choose
which command should be placed in log entry i. Analogously,
generalized multi-leader protocols construct a conflict graph
one vertex at a time. They use one instance of consensus for
every vertex v to choose which command should be placed in
vertex v and what dependencies, or outbound edges, v should
have.

In Figure 6, we illustrate an example execution of how the
conflict graph from Figure 5 could be constructed over time.
Figure 6 also shows an analogous execution in which a log
is constructed over time. Note that a vertex v can be chosen
with dependencies deps(v) before every vertex in deps(v) has
itself been chosen. For example in Figure 6c, v3 is chosen
with deps(v3) = {v0,v1,v2,v4} before vertices v2 and v4 are
chosen. This is analogous to how a command is chosen in log
entry 3 in Figure 6h before a command is chosen in entry 2.

A summary of the differences between logs and graphs is
given in Table 1.

3.4 Two Key Invariants
Protocols like EPaxos, Caesar, Atlas, and the BPaxos pro-
tocols in this paper all differ in how they assign commands
to vertices, how they compute dependencies, how they im-
plement consensus, and so on. Despite the differences, all
the protocols construct conflict graphs one vertex at a time,
choosing a command and a set of dependencies (x,deps(v))

for every vertex v. The protocols all rely on the following
two key invariants for correctness. We call these the consen-
sus invariant (Invariant 1) and the dependency invariant
(Invariant 2).

Invariant 1 (Consensus Invariant). Consensus is imple-
mented for every vertex v. That is, at most one value
(x,deps(v)) is chosen for every vertex v.

Invariant 2 (Dependency Invariant). If (x,deps(vx)) is cho-
sen in vertex vx and (y,deps(vy)) is chosen in instance vy, and
if x and y conflict, then either vx ∈ deps(vy) or vy ∈ deps(vx)
or both. That is, if two chosen commands conflict, there is an
edge between them.

The consensus invariant ensures that replicas always agree
on the state of the conflict graph. It makes it impossible, for
example, for two replicas to disagree on which command is in
a vertex or disagree on what dependencies a vertex has. The
dependency invariant ensures that replicas execute conflicting
commands in the same order but does not require that replicas
execute commuting commands in the same order. These
two invariants are sufficient to ensure linearizable execution.
Intuitively, the history of command execution is equivalent
to a serial history following any reverse topological ordering
of the conflict graph. In fact, replicas literally do execute
commands serially according to one of the reverse topological
orderings. For a more formal proof, refer to [14] and [21].

4 Simple BPaxos

In this section, we introduce Simple BPaxos, an inefficient
protocol that is designed to be easy to understand. By un-
derstanding Simple BPaxos, we will understand of the core
mechanisms and invariants that are common to all generalized
multi-leader protocols.

4.1 Overview
As illustrated in Figure 7, a Simple BPaxos deployment con-
sists of a number of clients, a set of at least f + 1 Paxos
proposers, a set of 2 f +1 dependency service nodes, a set
of 2 f +1 Paxos acceptors, and a set of at least f +1 replicas.
These nodes have the following responsibilities.

• The dependency service nodes, collectively called the
dependency service, compute dependencies and main-
tain the dependency invariant (Invariant 2).

• The proposers and acceptors implement one instance
of Paxos for every vertex and maintain the consensus
invariant (Invariant 1).

• The replicas construct and execute conflict graphs and
send the results of executing commands back to the
clients.

5

Journal of Systems Research (JSys) 2021

a=b
v0

(a)

a=b
v0

a=2
v1

(b)

a=b
v0

a=2
v1

v2

b=a
v3 v4

(c)

a=b
v0

a=2
v1

b=1
v2

b=a
v3 v4

(d)

a=b
v0

a=2
v1

b=1
v2

b=a
v3

a=3
v4

(e)

a=b

0

(f)

a=b

0

a=2

1

(g)

a=b

0

a=2

1 2

b=a

3

(h)

a=b

0

a=2

1

b=1

2

b=a

3

b=1

2

(i)

a=b

0

a=2

1

b=1

2

b=a

3

a=3

4

(j)

Figure 6: In subfigures (a) - (e), we see a conflict graph constructed over time. The most recently chosen vertex is drawn in
red. The executed commands are shaded green. (a) The command a=b is chosen in vertex v0 without any dependencies. The
command is executed immediately. (b) The command a=2 is chosen in vertex v1 with a dependency on v0. The command is
executed immediately. (c) The command b=a is chosen in vertex v3 with dependencies on v0, v1, v2, and v4. No commands have
been chosen in v2 and v4 yet, so v3 cannot be executed. (d) The command b=1 is chosen in vertex v2 with a dependency on v0.
The command is executed immediately. (e) The command a=3 is chosen in vertex v4 with dependencies on v0, v1, and v3. Now
v3 and v4 are executed. In subfigures (f) - (j), we see an analogous execution for a log.

c1

c2

p1 p2

d1 d2 d3 a1 a2 a3

r1 r2

Clients

f +1
Proposers

2 f +1
Dependency Service

Nodes
2 f +1

Acceptors

f +1
Replicas

1
2 2 23 3 3 4 4 45 5 5

6 6
7

Figure 7: An example execution of Simple BPaxos (f = 1).

More concretely, Simple BPaxos executes as follows. The
numbers here correspond to the numbered arrows in Figure 7.

• (1) When a client wants to propose a state machine com-
mand x, it sends x to any of the proposers. Note that with
MultiPaxos, only one proposer is elected leader, but in
Simple BPaxos, every proposer is a leader.

• (2) and (3) When a proposer pi receives a command x,
from a client, it places x in a vertex with globally unique
vertex id vx = (pi,m) where m is a monotonically in-
creasing integer local to pi. For example, proposer pi
places the first command that it receives in vertex (pi,0),
the next command in vertex (pi,1), the next in (pi,2),
and so on. The proposer then performs a round trip of

communication with the dependency service. It sends
vx and x to the dependency service, and the dependency
service replies with the dependencies deps(vx). For now,
we leave this process abstract. We’ll explain how the de-
pendency service computes dependencies in Section 4.2.

• (4) and (5) The proposer pi then executes Phase 2
of Paxos with the acceptors, proposing that the value
(x,deps(vx)) be chosen in the instance of Paxos asso-
ciated with vertex vx = (pi,m). This is analogous to a
MultiPaxos leader running Phase 2, proposing the com-
mand x be chosen in the instance of Paxos associated
with log entry m.

Recall from Section 2 that the Paxos proposer executing
round 0 can safely bypass Phase 1. By design, we prede-
termine that the proposer pi leads round 0 for vertices of
the form (pi,m). This is why pi can safely bypass Phase
1 and immediately execute Phase 2.

In the normal case, pi gets the value (x,deps(vx)) chosen
in vertex vx. It is also possible that some other proposer
erroneously concluded that pi had failed and proposed
some other value in vertex vx, but we discuss this sce-
nario later.

• (6) The proposer pi broadcasts vx, x, and deps(vx) to
all of the replicas. The replicas add vertex vx to their
conflict graph with command x and with edges to the
vertices in deps(vx). The replicas execute their conflict
graphs as described in Section 3.

• (7) Once a replica executes command x, it sends the
result of executing command x back to the client.

6

Journal of Systems Research (JSys) 2021

4.2 Dependency Service
The dependency service consists of 2 f +1 dependency ser-
vice nodes d1, . . . ,d2 f+1. Every dependency service node
maintains an acyclic conflict graph. These conflict graphs are
similar but not equal to the conflict graph that Simple BPaxos
ultimately executes.

When a proposer sends a vertex vx with command x to the
dependency service, it sends vx and x to every dependency
service node. When a dependency service node di receives vx
and x, it performs one of the following two actions depending
on whether di’s graph already contains vertex vx.

• If di’s conflict graph does not contain vertex vx, then di
adds vertex vx to its graph with command x. di adds an
edge from vx to every other vertex vy with command y
if x and y conflict. Letting out(vx) be the set of vertices
to which vx has an edge, di then returns out(vx) to the
proposer.

• Otherwise, if di’s conflict graph already contains ver-
tex vx, then di does not modify its conflict graph. It
immediately returns out(vx) to the proposer.

An example execution of a dependency service node is given
in Figure 8.

When a proposer receives replies from f +1 dependency
service nodes, it takes the union of these responses as the
value of deps(vx). For example, imagine f = 1 and a pro-
poser receives dependencies {vw,vy} from d1 and dependen-
cies {vw,vz} from d2. The proposer computes deps(vx) =
{vw,vy,vz}. The dependency service maintains Invariant 3.

Invariant 3. If two conflicting commands x and y in vertices
vx and vy yield dependencies deps(vx) and deps(vy) from the
dependency service, then either vx ∈ deps(vy) or vy ∈ deps(vx)
or both.

Proof. Consider conflicting commands x and y in vertices vx
and vy with dependencies deps(vx) and deps(vy) computed by
the dependency service. deps(vx) is the union of dependencies
computed by f +1 dependency service nodes Dx. Similarly,
deps(vy) is the union of dependencies computed by f + 1
dependency service nodes Dy. Because f +1 is a majority of
2 f +1, Dx and Dy necessarily intersect. That is, there is some
dependency service node di that is in Dx and Dy. di either
received vx or vy first. If it received vx first, then it returns vx
as a dependency of vy, so vx ∈ deps(vy). If it received vy first,
then it returns vy as a dependency of vx, so vy ∈ deps(vx).

4.3 An Example
An example execution of Simple BPaxos with f = 1 is illus-
trated in Figure 9.

• In Figure 9a, proposer p1 receives command x from a
client, while proposer p2 receives command y from a

client. The commands are placed in vertices vx and vy
respectively.

• In Figure 9b, p1 sends x in vx to the dependency service,
while p2 concurrently sends y in vy. Dependency service
nodes d1 and d2 receive x and then y, so they compute
deps(vx) = /0 and deps(vy) = {vx}. d3, on the other hand,
receives y and then x and computes deps(vx) = {vy} and
deps(vy) = /0

p1 receives /0 from d2 and {vy} from d3. Two de-
pendency service nodes form a majority, so p1 com-
putes deps(vx) = {vy} ∪ /0 = {vy}. Similarly, p2 re-
ceives {vx} from d2 and /0 from d3, so p2 computes
deps(vy) = {vx}∪ /0 = {vx}. Note that p1 and p2 also
receive responses from d1, but proposers form dependen-
cies from the first set of f +1 dependency service nodes
they hear from.

• In Figure 9c, p1 executes Phase 2 of Paxos to get the
value (x,{vy}) chosen in vertex vx. p2 likewise gets the
value (y,{vx}) chosen in vertex vy.

• In Figure 9d, the proposers broadcast their commands
to the replicas. The replicas add vx and vy to their con-
flict graphs and execute the commands once they have
received both. One or more of the replicas also sends
the results of executing x and y back to the clients.

Note that the replicas’ conflict graphs contain a cycle. This
is because the dependency service nodes do not receive every
command in the same order. In Figure 9, dependency service
nodes d2 and d3 receive x and y in opposite orders, leading to
the two commands depending on each other. It is tempting
to enforce that every dependency service node receive every
command in exactly the same order, but unfortunately, this
would be tantamount to solving consensus [6].

4.4 Recovery

Imagine a proposer receives a command x from a client, places
the command x in vertex vx, sends vx and x to the dependency
service, and then crashes. Because a command and a set
of dependencies have not been chosen in vertex vx yet, we
call vx unchosen. It is possible that a command y chosen
in vertex vy depends on an unchosen vertex vx. If vertex vx
remains forever unchosen, then the command y will never
be executed. To avoid this liveness violation, if any replica
notices that vertex vx has been unchosen for some time, it
notifies a proposer. The proposer then executes Phase 1 and
Phase 2 of Paxos with the acceptors to get a noop chosen in
vertex vx without any dependencies. noop is a distinguished
command that does not affect the state machine and does
not conflict with any other command. An example of this
execution is given in Figure 10.

7

Journal of Systems Research (JSys) 2021

wvw

(a) wvw

x
vx

(b)

wvw

x
vx

y
vy

(c)

wvw

x
vx

y
vy

z vz

(d)

wvw

x
vx

y
vy

z vz

(e)

Figure 8: In subfigures (a) – (e), we see the execution of a dependency service node di. (a) di receives command w in vertex vw.
di adds this vertex to its conflict graph and because there are no other vertices, it returns the dependencies deps(vw) = /0. (b) di
receives command x in vertex vx. di adds this vertex to its conflict graph. x conflicts with w, so di adds an edge from vx to vw and
returns the dependencies deps(vx) = {vw}. (c) di receives command y in vertex vy. di adds this vertex to its conflict graph. y
conflicts with w and x, so di adds an edge from vy to vw and from vy to vx. It returns the dependencies deps(vy) = {vw,vx}. (d) di
receives command z in vertex vz. di adds this vertex to its conflict graph. z conflicts with w and x, so di adds an edge from vz to
vw and from vz to vx. It returns the dependencies deps(vz) = {vw,vx}. (e) di receives command x in vertex vx. di’s graph already
contains vertex vx, so di returns the dependencies deps(vx) = {vw} and does not modify its graph.

• In Figure 10a, proposer p1 receives command x from a
client. It places x in vertex vx and sends vx and x to the
dependency service. Shortly after, it fails.

• In Figure 10b, proposer p2 receives command y from
a client. It places y in vy and contacts the dependency
service. The dependency service nodes have already
received x in vx, so they compute deps(vy) = {vx}. p2
then gets y chosen in vertex vy with a dependency on vx
and broadcasts it to the replicas.

• In Figure 10c, the replicas cannot execute vertex vy be-
cause it depends on the unchosen vertex vx. After a
timeout expires, replica r1 notifies p2 that the vertex has
been unchosen for some time.

• In Figure 10d, p2 executes Phase 1 and Phase 2 of Paxos
in some round r > 0 with the acceptors to get the com-
mand noop chosen in vertex vx without any dependen-
cies. p2 notifies the replicas, and the replicas place the
noop in vertex vx. The replicas execute their conflict
graphs in reverse topological order. They execute the
noop first (which has no effect) and then execute y.

Note that p2 must execute both phases of Paxos because
it is not in round 0. This is necessary to ensure that no
other value could have been chosen in vx.

Note that a Simple BPaxos proposer recovers a command
and proposes a noop by executing Paxos as normal. Sim-
ple BPaxos does not require an additional recovery protocol.
Rather, commands and noops are proposed in the exact same
way. This simplifies the protocol.

Also note that if a client does not receive a response for
its pending request for a sufficiently long period of time, it
resends its request. This means that if a client’s command is
replaced by a noop, the client will eventually re-propose the
command.

4.5 Safety

To ensure that Simple BPaxos is safe, we must ensure that
it maintains the consensus invariant and the dependency in-
variant. Simple BPaxos maintains the consensus invariant
because it implements Paxos. The dependency invariant fol-
lows immediately from Invariant 3 and the fact that noops
don’t conflict with any other command.

5 Fast Paxos

Simple BPaxos is designed to be easy to understand, but as
shown in Figure 9, it takes seven network delays (in the best
case) between when a client proposes a command x and when
a client receives the result of executing x. Call this duration
of time the commit time. Generalized multi-leader protocols
like EPaxos, Caesar, and Atlas all achieve a commit time of
only four network delays in the best case. They do so by
leveraging Fast Paxos [15].

Fast Paxos is a Paxos variant that allows clients to propose
values directly to the acceptors without having to initially
contact a proposer. Fast Paxos is an optimistic protocol. If all
of the acceptors happen to receive the same command from
the clients, then Fast Paxos has a commit time of only three
network delays. This is called the fast path. However, if mul-
tiple clients concurrently propose different commands, and
not all of the acceptors receive the same command, then the
protocol reverts to a slow path and introduces two additional
network delays to the commit time. In this section, we review
a slightly simplified version of Fast Paxos.

5.1 Overview

Like Paxos, a Fast Paxos deployment consists of some number
of clients, f + 1 proposers, and 2 f + 1 acceptors. We also

8

Journal of Systems Research (JSys) 2021

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
y

(a) p1 receives command x; p2 receives command y.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(b) The proposers contact the dependency service.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(c) The proposers contact the acceptors.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

(d) The proposers notify the replicas.

Figure 9: An example execution of Simple BPaxos (f = 1).

include a set of f +1 learners. These nodes are notified of
the value chosen by Fast Paxos. Note that we use the term
learner rather than replica because Fast Paxos is a consensus
protocol and not a state machine replication protocol, so there
are no state machine replicas. A Fast Paxos deployment is
illustrated in Figure 11. Proposer and acceptor pseudocode
are given in Algorithm 1 and Algorithm 2.

Like Paxos, Fast Paxos is divided into a number of integer
valued rounds. The key difference is that round 0 of Fast
Paxos is a special “fast round.” A client can propose a value
directly to an acceptor in round 0 without having to contact
a proposer first. The normal case execution of Fast Paxos is
illustrated in Figure 11a. The execution proceeds as follows:

• (1) When a client wants to propose a value v, it sends v
to all of the acceptors.

• (2) When an acceptor receives a value v from a client,
the acceptor ignores v if it has already received a mes-
sage in some round i ≥ 0. Otherwise, it votes for v by
updating its state and sending a PHASE2B〈0,v〉message
to the proposer that leads round 0. This is shown in
Algorithm 2 line 1 – line 4.

• (3) Let maj(n) = d n+1
2 e be a majority of n. If the pro-

poser that leads round 0 receives PHASE2B〈0,v′〉 mes-
sages from f +maj(f +1) acceptors for the same value
v′, then v′ is chosen, and the proposer notifies the learn-
ers. This is shown in Algorithm 1 line 1 – line 3. We
consider what happens when not every value is the same
in Section 5.2.

9

Journal of Systems Research (JSys) 2021

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x

x
vx

x
vx

x
vx

(a) p1 receives x, talks to the dependency service, and fails.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

vx

y
vy

vx

y
vy

y

(b) p2 receives y, gets it chosen with a dependency on vx.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

vx

y
vy

vx

y
vy

(c) A replica notifies p2 that vx is unchosen.

d1 d2 d3

p1

p2

a1

a2

a3

r1 r2

x
vx

y
vy

x
vx

y
vy

x
vx

y
vy

noop
vx

y
vy

noop
vx

y
vy

(d) p2 gets a noop chosen in vx.

Figure 10: An example execution of Simple BPaxos recovery (f = 1).

5.2 Recovery

Note that in Paxos, a value is chosen when f +1 acceptors
vote for it in some round i. In round 0 of Fast Paxos, a value is
chosen when f +maj(f +1) acceptors vote for it. The larger
number of required votes is needed to ensure the safety of
recovery, which we now describe.

Let p be the proposer leading round 0. Recovery is the
process by which a proposer other than p gets a value chosen.
For example, if p fails, some other proposer must take over
and get a value chosen. Recovery is illustrated in Figure 11b.

• (1) and (2) A recovering proposer performs Phase 1
of Paxos with at least f + 1 acceptors in some round
i > 0. This is shown in Algorithm 1 line 7 – line 9 and
Algorithm 2 line 5 – line 7.

• (3) and (4) The recovering proposer receives
PHASE1B〈i,vr,vv〉 messages from f + 1 accep-
tors. Call this quorum of acceptors A. The proposer
computes k as the largest received vr (line 11). This is
the largest round in which any acceptor in A has voted.
If k = −1 (line 12), then none of the acceptors have
voted in any round less than i, so the proposer is free to
propose an arbitrary value. This is the same as in Paxos.
If k > 0 (line 14), then the proposer must propose the
value vv proposed in round k. Again, this is the same
as in Paxos. vv may have been chosen in round k, so
the proposer is forced to propose it as well. If k = 0
(line 16), then there are two cases to consider.

First, if maj(f +1) of the acceptors in A have all voted
for some value v′ in round 0, then it’s possible that v′

10

Journal of Systems Research (JSys) 2021

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f +1
Proposers

2 f +1
Acceptors

f +1
Learners

1

1

1

1

2
2
2
2

3

3

3

(a) Normal case execution.

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f +1
Proposers

2 f +1
Acceptors

f +1
Learners

1
1

1

2
2

2
3

3
3

4

4
4

5
5

5

(b) Recovery.

p1

p2

p3

a1

a2

a3

a4

a5

l1

l2

l3

f +1
Proposers

2 f +1
Acceptors

f +1
Learners

1

1

1

1

2
2
2

2
3

3
3

4

4
4

5
5

5

(c) Coordinated recovery.

Figure 11: Example executions of Fast Paxos (f = 2). The leader of round 0 is adorned with a crown. Client requests are drawn
in red. Phase 1 messages are drawn in blue. Phase 2 messages are drawn in green.

was chosen in round 0 (line 17). Specifically, if all f of
the acceptors not in A voted for v′ in round 0, then along
with the maj(f + 1) of acceptors in A who also voted
for v′ in round 0, there is a quorum of f +maj(f + 1)
acceptors who voted for v′ in round 0. In this case, the
proposer must propose v′ as well since it might have
been chosen. Second, if there does not exist maj(f +1)
votes for any value v′, then the proposer concludes that
no value was chosen or every will be chosen in round
0, so it is free to propose an arbitrary value (line 19).
Once the recovering proposer determines which value
to propose, it gets the value chosen with the acceptors
using the normal Phase 2 of Paxos.

Note that a value must receive at least f +maj(f + 1)
votes in round 0 to be chosen. If this number were any
smaller, it would be possible for a recovering proposer
to find two distinct values v′ and v′′ that both could have
been chosen in round 0. In this case, the proposer cannot
make progress. It cannot propose v′ because v′′ might
have been chosen, and it cannot propose v′′ because v′

might have been chosen

More concretely, imagine an Fast Paxos deployment
with f = 2 and five acceptors a1, a2, . . ., a5. Further
imagine that a value is considered chosen after receiving
votes from only 3 (i.e. f +1) acceptors rather than the
correct number of 4 (i.e. f +maj(f + 1)). Consider a
proposer executing Phase 1 in round 1. It contacts a3,
a4, and a5. a3 voted for value x in round 0; a4 voted
for value y in round 0; and a5 didn’t vote in round 0.
What value should the proposer propose in Phase 2?
Well, x was maybe chosen in round 0 (if a1 and a2 both
voted for x in round 0), so the proposer has to propose
x. However, y was also maybe chosen in round 0 (if
a1 and a2 both voted for y in round 0), so the proposer

also has to propose y. The proposer can only propose
one value, so the protocol gets stuck. By requiring f +
maj(f +1) votes rather than f +1 votes, we eliminate
these situations. It’s not possible for two values to both
potentially have received f +maj(f + 1) votes. There
isn’t enough acceptors for this to be possible.

• (5) The proposer notifies the learners of the chosen value.

5.3 Coordinated Recovery
Finally, we consider what happens when the proposer of

round 0 receives f +maj(f + 1) PHASE1B messages from
the acceptors, but without all of them containing the same
value v′. Naively, the proposer could simply perform a re-
covery, executing both phases of Paxos is some round r > 0.
However, if we assign rounds to proposers in such a way that
the proposer of round 0 is also the proposer of round 1, then
we can take advantage of an optimization called coordinated
recovery. This is illustrated in Figure 11c and proceeds as
follows:
• (1) Multiple clients send distinct commands directly to

the acceptors.

• (2) The acceptors receive and vote for the commands
and send PHASE2B messages to the leader of round 0.
However, not every acceptor receives the same value
first, so not all the acceptors vote for the same value.

• (3) and (4) The proposer receives PHASE2B messages
from f +maj(f + 1) acceptors, but the acceptors have
not all voted for the same value. At this point, the pro-
poser could naively perform a recovery in round 1 by ex-
ecuting Phase 1 and then Phase 2 of Paxos. But, execut-
ing Phase 1 in round 1 is redundant, since the PHASE2B

11

Journal of Systems Research (JSys) 2021

Algorithm 1 Fast Paxos Proposer

State: a value v, initially null
State: a round i, initially −1

1: upon receiving PHASE2B〈0,v′〉 from f +maj(f +1)
acceptors as the proposer of round 0 with i = 0 do

2: if every value of v′ is the same then
3: v′ is chosen, notify the learners
4: else
5: i← 1
6: proceed to line 11 viewing every PHASE2B〈0,v′〉

as a PHASE1B〈1,0,v′〉
7: upon recovery do
8: i← next largest round owned by this proposer
9: send PHASE1A〈i〉 to the acceptors

10: upon receiving PHASE1B〈i,vr,vv〉 from f +1 acceptors
do

11: k← the largest vr in any PHASE1B〈i,vr,vv〉
12: if k =−1 then
13: v← an arbitrary value
14: else if k > 0 then
15: v← the corresponding vv in round k
16: else if k = 0 then
17: if there are maj(f +1) PHASE1B〈i,0,v′〉

messages for some value v′ then
18: v← v′

19: else
20: v← an arbitrary value
21: send PHASE2A〈i,v〉 to the acceptors
22: upon receiving PHASE2B〈i〉 from f +1 acceptors do
23: v is chosen, notify the learners

messages in round 0 contain exactly the same informa-
tion as the PHASE1B messages in round 1. Specifically,
the proposer can view every PHASE2B〈0,v′〉 message
as a proxy for a PHASE1B〈1,0,v′〉 message. Thus, the
proposer instead jumps immediately to Phase 2 in round
1 to get a value chosen (line 4 – line 6).

• (5) Finally, the proposer notifies the learners of the cho-
sen value.

6 Fast BPaxos

In this section, we present a purely pedagogical protocol
called Fast BPaxos. Fast BPaxos achieves a commit time of
four network delays (compared to Simple BPaxos’ seven),
but Fast BPaxos is unsafe. It does not properly implement
state machine replication. To understand why more complex
protocols like EPaxos, Caesar, and Atlas work the way they
do, it helps to understand why simpler protocols like Fast
BPaxos don’t work in the first place. Understanding why
Fast BPaxos is unsafe leads to fundamental insights into these

Algorithm 2 Fast Paxos Acceptor

State: the largest seen round r, initially −1
State: the largest round vr voted in, initially −1
State: the value vv voted for in round vr, initially null

1: upon receiving value v from client do
2: if r =−1 then
3: r,vr,vv← 0,0,v
4: send PHASE2B〈0,v〉 to proposer of round 0
5: upon receiving PHASE1A〈i〉 from p with i > r do
6: r← i
7: send PHASE1B〈i,vr,vv〉 to p
8: upon receiving PHASE2A〈i,v〉 from p with i≥ r do
9: r,vr,vv← i, i,v

10: send PHASE2B〈i〉 to p

other protocols.

6.1 The Protocol

c1

c2

d1 d2 d3

a1 a2 a3

p1 p2 p3

r1 r2 r3

Clients

2 f +1 Dependency
Service Nodes

2 f +1 Acceptors

2 f +1 Proposers

2 f +1 Replicas

Server 1 Server 2 Server 3

1

2 2
2

3 3 3

4 4 4

5 5 5
6

Figure 12: An example execution of Fast BPaxos (f = 1).
The four network delays are drawn in red.

Fast BPaxos is largely identical to Simple BPaxos with
one key observation. Rather than implementing Paxos, Fast
BPaxos implements Fast Paxos. This allows the protocol
to reduce the commit time by overlapping communication
with the dependency service (to compute dependencies) and
communication with the acceptors (to implement consensus).

As shown in Figure 12, a Fast BPaxos deployment consists
of 2 f +1 dependency service nodes, 2 f +1 Fast Paxos accep-
tors, 2 f +1 Fast Paxos proposers, and 2 f +1 replicas. These
logical nodes are co-located on a set of 2 f +1 servers, where
every physical server executes one dependency service node,
one acceptor, one proposer, and one replica. For example, in
Figure 12, server 2 executes d2, a2, p2, and r2. As illustrated
in Figure 12, the protocol executes as follows:

• (1) When a client wants to propose a state machine com-

12

Journal of Systems Research (JSys) 2021

mand x, it sends x to any of the proposers.

• (2) When a proposer pi receives a command x, from a
client, it places x in a vertex with globally unique vertex
id vx = (pi,m) where m is a monotonically increasing
integer local to pi. pi then sends vx and x to all of the
dependency service nodes. Note that we predetermine
that proposer pi is the leader of round 0 and 1 of the Fast
Paxos instance associated with vertex vx = (pi,m).

• (3) When a dependency service node d j receives a com-
mand x in vertex vx, it computes a set of dependencies
deps(vx) in the exact same way as in Simple BPaxos
(i.e. d j maintains an acyclic conflict graph). Unlike Sim-
ple BPaxos however, d j does not send deps(vx) back to
the proposer. Instead, it proposes to the co-located Fast
Paxos acceptor a j that the value (x,deps(vx)) be chosen
in the instance of Fast Paxos associated with vertex vx in
round 0.

• (4) Fast BPaxos acceptors are unmodified Fast Paxos
acceptors. In the normal case, when an acceptor a j re-
ceives value (x,deps(vx)) in vertex vx = (pi,m), it votes
for the value and sends the vote to pi.

• (5) Fast BPaxos proposers are unmodified Fast Paxos
proposers. In the normal case, pi receives f +maj(f +1)
votes for value (x,deps(vx)) in vertex vx, so (x,deps(vx))
is chosen. The proposer broadcasts the command and
dependencies to the replicas. If pi receives f +maj(f +
1) votes, but they are not all for the same value, the
proposer executes coordinate recovery (see Algorithm 1
line 4 – line 6).

• (6) Fast BPaxos replicas are identical to Simple BPaxos
replicas. Replicas maintain and execute conflict graphs,
returning the results of executing commands to the
clients.

Note that Figure 12 illustrates six steps of execution, but
the commit time is only four network delays (drawn in red).
Communication between co-located components (e.g., be-
tween d1 and a1 and between p1 and r1) does not involve the
network and therefore does not contribute to the commit time.

6.2 Recovery

As with Simple BPaxos, it is possible that a command y
chosen in vertex vy depends on an unchosen vertex vx that
must be recovered for execution to proceed. Fast BPaxos
performs recovery in the same way as Simple BPaxos. If a
replica detects that a vertex vx has been unchosen for some
time, it notifies a proposer. The proposer then executes a
Fast Paxos recovery to get a noop chosen in vertex vx with no
dependencies.

6.3 Lack of Safety
We now demonstrate why Fast BPaxos is unsafe. Consider
the execution of Fast BPaxos (f = 2) illustrated in Figure 13.

• In Figure 13a, proposer p1 receives command x from a
client. It places x in vertex vx and sends vx and x to the de-
pendency service. d1 and d2 receive the message. They
place x in their conflict graphs without any dependencies,
and send the value (x, /0) to their co-located acceptors. a1
and a2 vote for (x, /0) in vertex vx, but p1 crashes before
it receives any of these votes. The messages sent to d3,
d4, and d5 are dropped by the network.

• Similarly in Figure 13a, proposer p5 receives a conflict-
ing command y, p5 sends vy and y to d4 and d5, d4 and
d5 propose (y, /0) to a4 and a5, a4 and a5 vote for the
proposed values, and p5 fails.

• In Figure 13b, p2 recovers vertex vx. To recover vx, p2
executes Phase 1 of Fast Paxos with acceptors a1, a2,
and a3. p2 observes that a1 and a2 both voted for the
value (x, /0) in round 0. Therefore, p2 concludes that
(x, /0) may have been chosen in round 0, so it proceeds
to Phase 2 and gets the value (x, /0) chosen in vertex
vx (Algorithm 1 line 17). p2 cannot propose any other
value (e.g., a noop) because (x, /0) may have already
been chosen. This is a core invariant of Paxos. From our
omniscient view of the execution, we know that (x, /0)
was never chosen, but from p2’s myopic view, it cannot
make this determination and so is forced to propose
(x, /0). This is a critical point in the execution, which
we will discuss further in a moment.

• In Figure 13b, proposer p4 recovers vertex vy in much
the same way as p2 recovers vx. p4 observes that a4 and
a5 voted for (y, /0) in round 0, so it is forced to get the
value (y, /0) chosen.

• Finally in Figure 13b, proposers p2 and p4 broadcast
(x, /0) and (y, /0) to all of the replicas. The replicas place
x and y in their conflict graphs without edges between
them. This violates the dependency invariant. x and y
conflict, so there must be an edge between them. Without
an edge, the replicas can execute x and y in different
orders, causing their states to diverge.

What went wrong? When p2 was recovering vx, Fast
Paxos forced it to choose (x, /0). However, the dependen-
cies deps(vx) = /0 were not computed by a majority of the
dependency service nodes. They were computed only by d1
and d2. This is what allowed conflicting commands x and y
to be chosen without a dependency on each other.

This example illustrates a fundamental tension between
preserving the consensus invariant (Invariant 1) and preserv-
ing the dependency invariant (Invariant 2). Maintaining the
consensus invariant in isolation is easy (e.g., use Paxos), and

13

Journal of Systems Research (JSys) 2021

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

r1 r2 r3 r4 r5

x y

x
vx

x
vx

y
vy

y
vy

(a) p1 receives x, talks to the dependency service, and fails. p2
receives y, talks to the dependency service, and fails.

d1 d2 d3 d4 d5

a1 a2 a3 a4 a5

p1 p2 p3 p4 p5

r1 r2 r3 r4 r5

x
vx

x
vx

y
vy

y
vy

x
vx

y
vy x

vx

y
vy x

vx

y
vy x

vx

y
vy x

vx

y
vy

(b) p2 recovers vx with command x and no dependencies. p4
recovers vy with command y and no dependencies.

Figure 13: A Fast BPaxos bug (f = 2). Conflicting commands x and y are executed in different orders by different replicas.

maintaining the dependency invariant in isolation is also easy
(e.g., use the dependency service). But, maintaining both
invariants simultaneously is tricky.

When performing a recovery, like the one in our example
above, a proposer is sometimes forced to propose a particular
value (e.g., (x, /0)) in order to properly implement consen-
sus and simultaneously forced not to propose the value in
order to correctly compute dependencies. Resolving the ten-
sion between the consensus and dependency invariants during
recovery is the single most important and the single most
challenging aspect of generalized multi-leader protocols like
EPaxos, Caesar, and Atlas. All of these protocols have a
similar structure and execution on the normal path. They all
compute dependencies from a majority of servers, and they all
execute Fast Paxos variants to get these dependencies chosen.
If you understand the normal case execution of one of these
protocols, it is not difficult to understand the others. The key
feature that distinguishes the protocols is how they resolve
the fundamental tension between implementing consensus
and computing dependencies.

These protocols all take different approaches to resolving
the tension. In the next two sections, we broadly categorize
the approaches into two main techniques: tension avoidance
and tension resolution. Tension avoidance involves cleverly
manipulating quorum sizes to avoid the tension entirely. This
approach is used by Basic EPaxos [21] and Atlas [10]. The
second technique, tension resolution, is significantly more
complicated and involves detecting and resolving the tension
through various means.

7 Tension Avoidance

In this section, we explain how to implement a generalized
multi-leader state machine replication protocol using tension
avoidance. The key idea behind tension avoidance is to avoid
the tension between the consensus and dependency invariants

entirely. By manipulating quorum sizes in clever ways, we
can ensure that whenever a proposer is forced to propose
a set of dependencies deps(vx), this set of dependencies is
guaranteed to satisfy the dependency invariant.

We first introduce Unanimous BPaxos, a simple protocol
that implements tension avoidance. We then explain how
Basic EPaxos and Atlas can be expressed as two optimized
variants of Unanimous BPaxos.

7.1 Unanimous BPaxos
A Fast BPaxos deployment consists of 2 f +1 servers. A pro-
poser communicates with f +1 acceptors in Phase 1 called
a Phase 1 quorum, f +maj(f +1) acceptors in Phase 2 of
round 0 called a fast Phase 2 quorum, and f +1 acceptors
in Phase 2 of rounds greater than 0 called a classic Phase 2
quorum. If we adjust the sizes of these quorums, we can
avoid the tension between implementing consensus and com-
puting dependencies. In [11], Howard et. al prove that Fast
Paxos is safe so long as the following two conditions are met.

1. Every Phase 1 quorum and every classic Phase 2 quorum
intersect. That is, for every Phase 1 quorum Q and for
every classic Phase 2 quorum Q′, Q∩Q′ 6= /0.

2. Every Phase 1 quorum and every pair of fast Phase 2
quorums intersect. That is, for every Phase 1 quorum Q
and for every pair of fast Phase 2 quorum Q′,Q′′, Q∩
Q′∩Q′′ 6= /0.

Unanimous BPaxos takes advantage of this result and in-
creases the size of fast Phase 2 quorums. Specifically, Unan-
imous BPaxos is identical to Fast BPaxos except with fast
Phase 2 quorums of size 2 f +1. Unanimous BPaxos proposer
pseudocode is given in Algorithm 3. It is identical to the pseu-
docode of a Fast Paxos proposer (Algorithm 1) except for a
couple small changes highlighted in red.

14

Journal of Systems Research (JSys) 2021

Algorithm 3 Unanimous BPaxos Proposer. Changes to Algo-
rithm 1 are highlighted in red.

State: a value v, initially null
State: a round i, initially −1

1: upon receiving PHASE2B〈0,v′〉 from all 2 f +1
acceptors as the proposer of round 0 with i = 0 do

2: if every value of v′ is the same then
3: v′ is chosen, notify the learners
4: else
5: i← 1
6: v← an arbitrary value satisfying the dependency

invariant
7: send PHASE2A〈i,v〉 to the acceptors
8: upon recovery do
9: i← next largest round owned by this proposer

10: send PHASE1A〈i〉 to the acceptors
11: upon receiving PHASE1B〈i,vr,vv〉 from f +1 acceptors

do
12: k← the largest vr in any PHASE1B〈i,vr,vv〉
13: if k =−1 then
14: v← an arbitrary value satisfying the dependency

invariant
15: else if k > 0 then
16: v← the corresponding vv in round k
17: else if k = 0 then
18: if all f +1 messages are of the form

PHASE1B〈i,0,v′〉 for some value v′ then
19: v← v′

20: else
21: v← an arbitrary value satisfying the

dependency invariant
22: send PHASE2A〈i,v〉 to the acceptors
23: upon receiving PHASE2B〈i〉 from f +1 acceptors do
24: v is chosen, notify the learners

Unlike Fast BPaxos, Unanimous BPaxos is safe. The criti-
cal change is on line 18. With fast Phase 2 quorums of size
2 f +1 (line 1), a recovering proposer knows that a value v′

may have been chosen in round 0 only if all f +1 acceptors
that it communicates with in Phase 1 voted for v′ in round 0.
If even a single acceptor did not vote for v′ in round 0, then v′

could not have received a unanimous vote and therefore was
not chosen in round 0.

With Fast BPaxos, a proposer executing line 17 of Algo-
rithm 1 is forced to propose a value (x,deps(vx)) if maj(f +1)
acceptors voted for it in round 0, but the dependencies
deps(vx) may have only been computed by maj(f +1) depen-
dency service nodes, violating the dependency invariant. This
is exactly what happened in Figure 13. Unanimous BPaxos
avoids the tension entirely because a proposer is only forced to
propose a value (x,deps(vx)) if f +1 acceptors voted for it in
round 0. Now, we are guaranteed that deps(vx) was computed

by a majority (i.e. f + 1) of the dependency service nodes.
Thus, Unanimous BPaxos safely maintains the consensus and
dependency service invariants.

The obvious disadvantage of Unanimous BPaxos is the pro-
tocol’s large quorum sizes. In order to get a command chosen,
a proposer has to perform a round trip of communication with
every acceptor. This not only slows down the protocol in the
normal case, it also decreases the protocol’s ability to remain
live in the face of faults. If even a single acceptor fails, the
protocol grinds to a halt. This problem can be partially fixed
by using more flexible quorums (like what Atlas [10] does)
or by using a tension resolving protocol (see Section 7).

We now present two independent optimizations that im-
prove the performance of Unanimous BPaxos. These opti-
mizations were introduced in EPaxos [22] and Atlas [10].

7.2 Basic EPaxos Optimization

Unanimous BPaxos has a lower commit time than Simple
BPaxos (4 network delays instead of 7), but has larger fast
Phase 2 quorums (2 f +1 acceptors instead of f +1). We now
discuss an optimization, used by Basic EPaxos [22], to reduce
the fast Phase 2 quorum size to 2 f .

d1

a1

p1

r1

d2

a2

p2

r2

d3

a3

p3

r3

d4

a4

p4

r4

d5

a5

p5

r5

c1

c2

Server 1 Server 2 Server 3 Server 4 Server 5

1

2

3 3 3 3

4 4 4 4 4

5 5 5 5 5
6 7

8 8 8 8 8
9

Figure 14: An example execution of Unanimous BPaxos
(f = 2) with the Basic EPaxos optimization. The messages
introduced by the optimization are drawn in red.

An execution of Unanimous BPaxos with the Basic EPaxos
optimization is shown in Figure 14. We walk through the
execution, highlighting the optimization’s key changes. We
assume f > 1 for now. Later, we discuss the case when f = 1.

• (1) When a client wants to propose a state machine com-
mand x, it sends x to any of the proposers.

• (2) When a proposer pi receives a command x, from a
client, it places x in a vertex with globally unique vertex
id vx = (pi,m). Change: pi then sends vx and x to the

15

Journal of Systems Research (JSys) 2021

co-located dependency service node di. It does not yet
communicate with the other dependency service nodes.

• (3) Change: When di receives vx and x, it computes the
dependencies deps(vx)i as usual using its acyclic conflict
graph. di then sends vx, x, and deps(vx)i to all the other
dependency service nodes.

• (4) When a dependency service node d j receives vx, x,
and deps(vx)i, it computes the dependencies deps(vx) j
as usual using its acyclic conflict graph. Change: Then,
d j proposes to its co-located acceptor a j that the value
(x,deps(vx)i∪deps(vx) j) be chosen in vertex vx in round
0. d j combines the dependencies that it computed with
the dependencies computed by di.

• (5) The acceptors are unchanged. In the normal case,
when an acceptor a j receives value (x,deps(vx)) in ver-
tex vx = (pi,m), it votes for the value and sends the vote
to pi.

• (6) and (7) Change: In Unanimous BPaxos, a value
v = (x,deps(vx)) is considered chosen in round 0 if all
2 f + 1 acceptors vote for v in round 0. With the Ba-
sic EPaxos optimization, we only require 2 f votes, and
the act of choosing a value in round 0 is made more
explicit. Specifically, if pi receives 2 f votes for value
v = (x,deps(vx)) in round 0, including a vote from ai,
then it sends v to the co-located acceptor ai. When ai re-
ceives v and is still in round 0 (i.e. r = 0 on Algorithm 2
line 0), then it records v as chosen and responds to pi.
The value v is considered chosen precisely when it is
recorded by the acceptor. In the future ai responds to
every PHASE1A and PHASE2A message with a notifi-
cation that v is chosen. If ai receives v but is already in
a round larger than 0 (i.e. r > 0), then it ignores v and
sends a negative acknowledgement back to pi. Note that
these messages are all performed locally on the server
hosting pi and do not incur any network delay.

• (8) In the normal case, pi learns that v was successfully
chosen by ai and it broadcasts v to all the acceptors. If
pi receives a negative acknowledgement, it performs
coordinated recovery as in Unanimous BPaxos.

• (9) The replicas are unchanged. They maintain and
execute conflict graphs, returning the results of executing
commands to the clients.

In addition to these changes made to the normal path of
execution, the Basic EPaxos optimization also introduces
a key change to the recovery procedure. Specifically, we
replace line 18 – line 21 in Algorithm 3 with the following
procedure.

Assume that proposer p is recovering vertex vx = (p j,m)
in round i > 0. Either p received a message from a j or it did
not. We consider each case separately. First, assume that

p does receive a message from a j. If p receives a message
indicating that some value v′ has already been chosen in round
0, then p can terminate the recovery immediately. Otherwise,
p receives a PHASE1B message from a j. From this, p can
conclude that a j is in a round at least as large as i and therefore
did not and will not record any value v′ chosen in round 0.
Because of this, p is safe to propose any value that satisfies
the dependency invariant (e.g., (noop, /0)).

Otherwise, p does not receive a message from a j. If p
receives f PHASE1B〈i,0,v′〉 messages for the same value
v′ = (x,deps(vx)), then v′ may have been chosen in round
0, so p must propose v′ in order to maintain the consensus
invariant. Note that deps(vx) also satisfies the dependency
invariant despite the fact that p only received deps(vx) from
f , as opposed to f + 1, dependency service nodes. This is
because the dependency service nodes that are not co-located
with d j all propose dependencies that include the dependen-
cies computed by d j. Therefore, p determines that deps(vx)
is the union of f +1 dependencies and maintains the depen-
dency invariant. If p does not receive f PHASE1B〈i,0,v′〉 for
the same value v′, then p concludes no value was chosen or
will be chosen in round 0, so p is safe to propose any value
that satisfies the dependency invariant.

Note that when f = 1 and n = 3, Phase 1 quorums, classic
Phase 2 quorums, and fast Phase 2 quorums are all of size
2. This does not satisfy the conditions outlined by Howard
et. al [11]. As a result, our protocol as stated is not safe for
f = 1. The reason is that a recovering proposer may receive
two different values in two separate PHASE1B messages from
the two non-leader acceptors with values v′ and v′′. In this
situation, the proposer is unable to determine which value to
propose. Thankfully, we can avoid this situation by having
the leader send only to 2 f acceptors rather than to all 2 f +1
acceptors.

Ignoring some minor cosmetic differences, Unanimous
BPaxos with the Basic EPaxos optimization is roughly equiv-
alent to Basic EPaxos [22].

7.3 Atlas Optimization

In the best case, also called the fast path, Unanimous BPaxos
achieves a commit time of four network delays. As shown
in line 2 of Algorithm 3, a proposer executes the fast path
only when every single acceptor votes for the exact same
set of dependencies. As we saw in Figure 13, if any two
dependency service nodes receive conflicting commands in
different orders, their computed dependencies will not be
the same. If a proposer does not receive a unanimous vote,
it executes coordinated recovery, adding two more network
delays to the commit time.

Atlas [10] introduces the following optimization to re-
lax the requirement of a unanimous vote and increase the
probability of a proposer executing the fast path. Let
X1, . . . ,X2 f+1 be 2 f + 1 sets. Let popular(X1, . . . ,X2 f+1) =

16

Journal of Systems Research (JSys) 2021

{x |x appears in at least f +1 of the sets}.
We change line 2 as follows. When a proposer re-

ceives dependencies deps(vx)1, . . . ,deps(vx)2 f+1 from the
2 f + 1 acceptors, it executes the fast path with dependen-
cies deps(vx) = deps(vx)1∪·· ·∪deps(vx)2 f+1 if deps(vx) =
popular(deps(vx)1, . . . ,deps(vx)2 f+1). That is, the proposer
takes the fast path only if every dependency vy computed
by any of the dependency service nodes was computed by a
majority of the dependency service nodes.

We also simplify line 18 – line 21. If a recovering proposer
receives f +1 sets of dependencies, it proposes their union.
Otherwise, it proposes an arbitrary value. This is safe because
a set of dependencies deps(vx) can be chosen in round 0, only
if every dependency in deps(vx) was computed by a majority
of the dependency service nodes. Thus, every such element
will appear in at least one of the f +1 dependency sets. Thus,
the recovering proposer is sure to propose a dependency set
if it was previously chosen (maintaining the consensus invari-
ant), and it also proposes the union of f +1 dependency sets
(maintaining the dependency invariant).

Atlas [10] is roughly equivalent to Unanimous BPaxos with
the Basic EPaxos optimization, the Atlas optimization, and
the flexible constraints on quorum sizes outlined in [11].

8 Tension Resolution

The advantage of tension avoidance is that it is simple. The
disadvantage is that it requires large fast Phase 2 quorums.
In this section, we explain how to implement a generalized
multi-leader state machine replication protocol using tension
resolution. Tension resolution is significantly more compli-
cated than tension avoidance, but it does not require large fast
Phase 2 quorums.

Instead of avoiding the tension between the consensus and
dependency invariant, tension resolution uses additional ma-
chinery to resolve it when it arrives. Consider a scenario
where a proposer p is forced to propose a set of deps(vx) in
round i to maintain the consensus invariant because deps(vx)
may have been chosen in a previous round. Simultaneously, p
is forced not to propose deps(vx) because it cannot guarantee
that deps(vx) was computed by a majority of the dependency
service nodes. This is the moment of tension that tension
avoidance avoids. Tension resolution, on the other hand, al-
lows this to happen. When it does, the proposer p leverages
additional machinery built into the protocol to determine ei-
ther that (a) deps(vx) was not chosen or (b) deps(vx) was
computed by a majority of dependency service nodes.

We introduce Majority Commit BPaxos, a protocol that
implements tension resolution. We then discuss the protocol’s
relationship with EPaxos [22] and Caesar [10].

8.1 Pruned Dependencies
Before we discuss Majority Commit BPaxos, we introduce
the notion of pruned dependencies. Imagine a proposer p
sends command x to the dependency service in vertex vx, and
the dependency service computes the dependencies deps(vx).
Let vy ∈ deps(vx) be one of vx’s dependencies. To maintain
the dependency invariant, all of the protocols that we have
discussed thus far would get vx chosen with a dependency on
vy, but this is not always necessary.

Assume that that the proposer p knows that vy has been
chosen with command y and dependencies deps(vy). Further
assume that vx ∈ deps(vy). That is, vy has already been chosen
with a dependency on vx. In this case, there is no need for
vx to depend on vy. The dependency invariant asserts that if
two vertices va and vb are chosen with conflicting commands
a and b, then either va ∈ deps(vb) or vb ∈ deps(va). Thus, in
our example, if vy has already been chosen with a dependency
on vx, then there is no need to propose vx with a dependency
on vy. Similarly, if vy has been chosen with noop as part
of a recovery, then there is no need to propose vx with a
dependency on vy because x and noop do not conflict.

Let deps(vx) be a set of dependencies computed by the
dependency service. Let P⊆ deps(vx) be a set of vertices vy
such that vy has been chosen with noop or vy has been chosen
with vx ∈ deps(vy). We call deps(vx)−P the pruned depen-
dencies of vx with respect to P. Majority Commit BPaxos
maintains Invariant 4, the pruned dependency invariant.
The pruned dependency invariant is a relaxation of the depen-
dency invariant. If a protocol maintains the pruned depen-
dency invariant, it is guaranteed to maintain the dependency
invariant.

Invariant 4 (Pruned Dependency Invariant). For every vertex
vx, either (noop, /0) is chosen in vx or (x,deps(vx)− P) is
chosen in vx where deps(vx) are dependencies computed by
the dependency service and where deps(vx)−P are the pruned
dependencies of vx with respect to some set P.

8.2 Majority Commit BPaxos
For clarity of exposition, we first introduce a version of Major-
ity Commit BPaxos that can sometimes deadlock. Later, we
modify the protocol to eliminate the possibility of deadlock.

Majority Commit BPaxos is identical to Fast BPaxos ex-
cept for the following two modifications. First, every Fast
Paxos acceptor maintains a conflict graph in exactly the same
way as the replicas do. That is, when an acceptor learns that
a vertex vx has been chosen with command x and dependen-
cies deps(vx)), it adds vx to its conflict graph with command
x and with edges to every vertex in deps(vx). We will see
momentarily that whenever a Majority Commit BPaxos pro-
poser sends a PHASE2A message to the acceptors with value
v = (x,deps(vx)−P), the proposer also sends P and all of
the commands and dependencies chosen in in the vertices in

17

Journal of Systems Research (JSys) 2021

P. Thus, when an acceptor receives a PHASE2A message, it
updates its conflict graph with the values chosen in P. Second
and more substantially, a proposer executes a significantly
more complex recovery procedure. This is shown in Algo-
rithm 4.

As with Fast BPaxos, if k =−1 (line 3), if k > 1 (line 6), or
if k = 0 and there does not exist maj(f +1) matching values
(line 29), recovery is straightforward.

Otherwise, there does exist a v′ = (x,deps(vx)) voted for by
at least maj(f +1) acceptors in round 0 (line 9). As with Fast
BPaxos, v′ may have been chosen in round 0, so the proposer
must propose v′ in order to maintain the consensus invariant.
But deps(vx) may not be the union of dependencies computed
by f +1 dependency service nodes, so the proposer is simul-
taneously forced not to propose v′ in order to maintain the
dependency invariant. Unanimous BPaxos avoided this ten-
sion by increasing the size of fast Phase 2 quorums. Majority
Commit BPaxos instead resolves the tension by performing
a more sophisticated recovery procedure. In particular, the
proposer does a bit of detective work to conclude either that v′

was definitely not chosen in round 0 (in which case, the pro-
poser can propose a different value) or that deps(vx) happens
to be a pruned set of dependencies (in which case, proposer
is safe to propose v′).

On line 11 and line 12, the proposer sends vx and x to the
dependency service nodes co-located with the acceptors in
A (i.e. the f +1 acceptors from which the proposer received
PHASE1B messages). The proposer then computes the union
of the returned dependencies, called deps(vx)A. Note that
this communication can be piggybacked on the PHASE1A
messages that the proposer previously sent to avoid the extra
round trip of communication. Also note that deps(vx) was
returned by maj(f +1) nodes in A, so deps(vx) is a subset of
deps(vx)A.

Next, the proposer enters a for loop in an attempt to prune
deps(vx)A until it is equal to deps(vx). That is, the proposer
attempts to construct a set of vertices P such that deps(vx) =
deps(vx)A−P is a set of pruned dependencies. For every,
vy ∈ deps(vx)A− deps(vx), the proposer first recovers vy if
it does not know if a value has been chosen in vertex vy
(line 17). After recovering vy, assume the proposer learns
that vy is chosen with command y and dependencies deps(vy).
If y = noop or if vx ∈ deps(vy), then the proposer can safely
prune vy from deps(vx)A, so it adds vy to P (line 19).

Otherwise, the proposer contacts some quorum A′ of accep-
tors (line 21). If any acceptor a j in A′ knows that vertex vx has
already been chosen, then the proposer can abort the recovery
of vx and retrieve the chosen value directly from a j (line 23).
Otherwise, the proposer concludes that no value was chosen
in vx in round 0 and is free to propose any value that maintains
the dependency invariant (line 25). We will explain momen-
tarily why the proposer is able to make such a conclusion.
It is not obvious. Note that the proposer can piggyback its
communication with A′ on its PHASE1A messages.

Finally, if the proposer exits the for loop, then it has success-
fully pruned deps(vx)A into deps(vx)A−P= deps(vx) and can
safely propose it without violating the consensus or pruned
dependency invariant (line 28). As described above, when
the proposer sends a PHASE2A message with value v′, it also
includes the values chosen in every vertex in P.

We now return to line 25 and explain how the proposer
is able to conclude that v′ was not chosen in round 0. On
line 25, the proposer has already concluded that vy was not
chosen with noop and that vx /∈ deps(vy). By the pruned
dependency invariant, deps(vy) = deps(vy)D−P′ is a set of
pruned dependencies where deps(vy)D is a set of dependen-
cies computed by a set D of f +1 dependency service nodes.
Because vx /∈ deps(vy)D−P′, either vx /∈ deps(vy)D or vx ∈ P′.

vx cannot be in P′ because if vy were chosen with dependen-
cies deps(vy)D−P′, then some quorum of acceptors would
have received P′ and learned that vx was chosen. But, when
the proposer contacted the quorum A′ of acceptors, none knew
that vx was chosen, and any two quorums intersect.

Thus, vx /∈ deps(vy)D. Thus, every dependency service
node in D processed instance vy before instance vx. If not,
then a dependency service node in D would have computed vx
as a dependency of vy. However, if every dependency service
node in D processed vy before vx, then there cannot exist a fast
Phase 2 quorum of dependency service nodes that processed
vx before vy. In this case, v′ = (x,deps(vx)) could not have
been chosen in round 0 because it necessitates a fast Phase 2
quorum of dependency service nodes processing vx before vy
because vy /∈ deps(vx).

8.3 Ensuring Liveness

Majority Commit BPaxos is safe, but it is not very live. There
are certain failure-free situations in which Majority Commit
BPaxos can permanently deadlock. The reason for this is
line 17 in which a proposer defers the recovery of one vertex
for the recovery of another. There exist executions of Majority
Commit BPaxos with a chain of vertices v1, . . . ,vm where the
recovery of every vertex vi depends on the recovery of vertex
vi+1 mod m.

We now modify Majority Commit BPaxos to prevent dead-
lock. First, we change the condition under which a value is
considered chosen on the fast path. A proposer considers a
value v = (x,deps(vx)) chosen on the fast path if a fast Phase
2 quorum F of acceptors voted for v in round 0 and for every
vertex vy ∈ deps(vx), there exists a quorum A ⊆ F of f + 1
acceptors that knew vy was chosen at the time of voting for
v. Second, when an acceptor ai sends a PHASE2B vote in
round 0 for value v = (x,deps(vx)), ai also includes the subset
of vertices in deps(vx) that ai knows are chosen, as well as
the values chosen in these vertices. Third, proposers execute
Algorithm 4 but with the lines of code shown in Algorithm 5
inserted after line 10.

We now explain Algorithm 5. On line 11, the proposer

18

Journal of Systems Research (JSys) 2021

Algorithm 4 Majority Commit BPaxos Proposer. Pseudocode for initiating recovery and handling PHASE2B messages is
ommitted because it is identical to the pseudocode in Algorithm 1.

State: a value v, initially null
State: a round i, initially −1

1: upon receiving PHASE1B〈i,vr,vv〉 from f +1 acceptors A do
2: k← the largest vr in any PHASE1B〈i,vr,vv〉
3: if k =−1 then
4: v← an arbitrary value satisfying the dependency invariant
5: send PHASE2A〈i,v〉 to the acceptors
6: else if k > 0 then
7: v← the corresponding vv in round k
8: send PHASE2A〈i,v〉 to the acceptors
9: else if there are maj(f +1) PHASE1B〈i,0,v′〉 messages for some value v′ then

10: (x,deps(vx))← v′

11: send vx and x to the dependency service nodes co-located with the acceptors in A
12: deps(vx)A← the union of the dependencies returned by these dependency service nodes
13:
14: P← /0

15: for vy ∈ deps(vx)A−deps(vx) do
16: if we don’t know if vy is chosen then
17: recover vy, blocking until vy is recovered
18: if vy chosen with noop or with vx ∈ deps(vy) then
19: P← P∪{vy}
20: else
21: contact a quorum A′ of acceptors
22: if an acceptor in A′ knows vx is chosen then
23: abort recovery; vx has already been chosen
24: else
25: v← an arbitrary value satisfying the dependency invariant
26: send PHASE2A〈i,v〉 to the acceptors
27: v← v′

28: send PHASE2A〈i,v〉 and the values chosen in P to at least f +1 acceptors
29: else
30: v← an arbitrary value satisfying the dependency invariant
31: send PHASE2A〈i,v〉 to the acceptors

computes the subset M ⊆ A of acceptors that voted for v′ in
round 0. On line 12, the proposer determines whether there
exists some instance vy ∈ deps(vx) such that no acceptor in M
knows that vy is chosen. If such an vy exists, then v′ was not
chosen in round 0. To see why, assume for contradiction that
v′ was chosen in round 0. Then, there exists some fast Phase 2
quorum F of acceptors that voted for v′ in round 0, and there
exists some quorum A′ ⊆ F of acceptors that know vy has
been chosen. However, A and A′ intersect, but no acceptor in
A both voted for v′ in round 0 and knows that vy was chosen.
This is a contradiction. Thus, the proposer is free to propose
any value satisfying the dependency invariant.

Next, it’s possible that the proposer was previously recov-
ering instance vz with value (z,deps(vz)) and executed line 17
of Algorithm 4, deferring the recovery of instance vz until
after the recovery of instance vx. If so and if vz ∈ deps(vx),

then some acceptor a j ∈ M knows that vz is chosen. Thus,
the proposer can abort the recovery of instance vz and re-
trieve the chosen value directly from a j (line 16). Other-
wise, vz /∈ deps(vx). In this case, no value was chosen in
round 0 of instance vz, so the proposer is free to propose
any value satisfying the pruned dependency invariant in in-
stance vz. Here’s why. vz /∈ deps(vx), so every dependency
service node co-located with an acceptor in M processed vx
before vz. |M| ≥ maj(f + 1), so there strictly fewer than
f + maj(f + 1) remaining dependency service nodes that
could have processed vz before vx. If the proposer was re-
covering instance vz but deferred to the recovery of instance
vx, then vx /∈ deps(vz). In order for vz to have been chosen in
round 0 with vx /∈ deps(vy), it requires that at least f +maj(f)
dependency service nodes processed vz before vx, which we
just concluded is impossible. Thus, vz was not chosen in

19

Journal of Systems Research (JSys) 2021

Algorithm 5 Majority Commit BPaxos proposer modification
to prevent deadlock.

11: M← the set of acceptors in A that voted for v′ in round 0
12: if ∃vy ∈ deps(vx) such that no acceptor in M knows

that vy is chosen then
13: send any value satisfying the dependency invariant
14: if the proposer was recovering vz and deferred to the

recovery of vx then
15: if vz ∈ deps(vx) then
16: abort recovery of vz; vz has already been chosen
17: else
18: in vertex vz, send any value satisfying the

dependency invariant

round 0.
Majority Commit BPaxos is deadlock free for the following

reason. If a proposer is recovering instance vz and defers to the
recovery of instance vx, then either the proposer will recover
vx using line 12 of Algorithm 5 or the proposer will recover
vz using line 16 or line 18 of Algorithm 5. In either case, any
potential deadlock is avoided.

8.4 EPaxos and Caesar
EPaxos [22] and Caesar [3] are two generalized multi-leader
protocols that implement tension resolution. EPaxos is very
similar Majority Commit BPaxos with the Basic EPaxos opti-
mization from Section 7.2 used to reduce fast Phase 2 quorum
sizes by 1. Majority Commit BPaxos and EPaxos both prune
dependencies and perform a recursive recovery procedure
with extra machinery to avoid deadlocks. Caesar improves on
EPaxos in two dimensions. First, much like Atlas, a Caesar
proposer does not require that a fast Phase 2 quorum of accep-
tors vote for the exact same value in order to take the fast path.
Second, Caesar avoids a recursive recovery procedure. Caesar
accomplishes this using a combination of logical timestamps
and carefully placed barriers in the protocol.

9 Related Work

MultiPaxos, Raft, Viewstamped Replication General-
ized multi-leader protocols have a number of advantages over
single leader protocols like MultiPaxos [16], Raft [23], and
Viewstamped Replication [18] that totally order commands
into a log. See [22] for more details and experimental valida-
tion.

First, generalized multi-leader protocols avoid being bot-
tlenecked by a single leader. In protocols like MultiPaxos
and Raft, all state machine commands are funneled through
a single leader, making the leader the throughput bottleneck.
In multi-leader protocols on the other hand, state machine
commands can be processed by any of the multiple leaders,

preventing any one leader from becoming a bottleneck. This
allows multi-leader protocols to achieve higher throughput.

Second, generalized multi-leader protocols like EPaxos are
more resilient to leader failures. With protocols like Multi-
Paxos and Raft, when the leader fails, the protocol’s through-
put drops to zero and stays at zero until the failure is detected
and a new leader is elected. Depending on the deployment,
this delay could be seconds or minutes. With protocols like
EPaxos on the other hand, when a leader fails, the protocol’s
throughput drops, but not to zero. All other non-failed leaders
can still process commands, so the throughput remains high.
When the failed leader is replaced, the throughput returns to
normal.

Third, generalized multi-leader protocols achieve lower
latency in geo-distributed applications. Consider a geo-
replicated deployment of MultiPaxos. If the MultiPaxos
leader is in Europe, the clients in North America will ex-
perience much higher latency than the clients in Europe. In
general, the clients that are geographically close to the sin-
gle leader will experience low latency, while all other clients
will experience significantly higher latency. With generalized
multi-leader protocols, the multiple leaders can be distributed
across the deployment so that every client has a leader that is
geographically close by. This reduces the overall latency of
the protocol.

Fourth, generalized multi-leader protocols have lower tail
latencies for applications with little interdependence between
commands. With protocols like MultiPaxos, if a single log
entry is delayed (e.g., because of a network failure), all subse-
quent commands in the log are also delayed. Thus, any slow-
down in the execution of a single command can affect many
commands serialized after it. With generalized multi-leader
protocols, independent commands are executed independently
and do not wait for each other. Thus, if a single command
is slow to execute, the other independent commands are not
affected.

A Family of Leaderless Generalized Consensus Algo-
rithms In [19], Losa et al. propose a generic generalized
consensus algorithm that is structured as the composition
of a generic dependency-set algorithm and a generic map-
agreement algorithm. The invariants of the dependency-set
and map-agreement algorithm are very similar to the consen-
sus and dependency invariants, and the example implemen-
tations of these two algorithms in [19] form an algorithm
similar to Simple BPaxos. Our paper builds on this body of
work by introducing Fast BPaxos, Unanimous BPaxos, and
Majority Commit BPaxos. We also identify the tension be-
tween the two invariants as the key distinguishing feature of
most protocols and taxonimize existing protocols by how they
handle the tension.

Generalized Paxos and GPaxos Generalized Paxos [14]
and GPaxos [26] are generalized protocols but are not fully

20

Journal of Systems Research (JSys) 2021

multi-leader. Clients send commands directly to acceptors,
behaving very much like a leader. However, in the face of
collisions, Generalized Paxos and GPaxos rely on a single
leader to resolve the collision. This single leader becomes a
bottleneck in high contention workloads and prevents scaling.

SpecPaxos, NOPaxos, CURP SpecPaxos [25] and
NOPaxos [17] combine speculative execution and ideas from
Fast Paxos in order to reduce commit delay as low as two
network delays. CURP [24] further introduces generalization,
allowing commuting commands to be executed in any
order. These protocols represent yet another point in the
design space of state machine replication protocols. As the
commit delay decreases, the complexity of the protocols
generally increases. We think this is an exciting avenue
of research and hope that an improved understanding of
generalized multi-leader protocols can accelerate research in
this direction.

Mencius Mencius [20] is a multi-leader, non-generalized
protocol in which MultiPaxos log entries are round-robin
partitioned among a set of leaders. Because Mencius is not
generalized, a log entry cannot be executed until all previ-
ous log entries have been executed. To ensure log entries
are being filled in appropriately, Mencius leaders perform
all-to-all communication between each other. Mencius is
significantly less complex that generalized multi-leader pro-
tocols like EPaxos, Caesar, and Atlas. This demonstrates that
much of the complexity of these protocols come from being
generalized rather than being multi-leader, though both play
a role.

Chain Replication Chain Replication [31] is a state ma-
chine replication protocol in which the set of state machine
replicas are arranged in a totally ordered chain. Writes are
propagated through the chain from head to tail, and reads are
serviced exclusively by the tail. Chain Replication has high
throughput compared to MultiPaxos because load is more
evenly distributed between the replicas. This shows that the
leader bottleneck can be addressed without necessarily having
multiple leaders.

Scalog Scalog [9] is a replicated shared log protocol that
achieves high throughput using a sophisticated form of batch-
ing. A client does not send values directly to a centralized
leader for sequencing in the log. Instead, the client sends its
values to one of a number of batchers. Periodically, the batch-
ers’ batches are sealed and assigned an id. This id is then sent
to a state machine replication protocol, like MultiPaxos, for
sequencing. Like Mencius, Scalog represents a way to avoid
a leader bottleneck without needing multiple leaders.

PQR, Harmonia, and CRAQ PQR [7], Harmonia [32],
and CRAQ [28] all implement optimizations so that reads
(i.e. state machine commands that do not modify the state
of the state machine) can be executed without contacting a
leader, while writes are still processed by the leader. An
interesting direction of future work could explore whether or
not these read optimizations could be applied to generalized
multi-leader protocols.

10 Conclusion

In this paper, we explained, analyzed, and taxonomized gen-
eralized multi-leader state machine replication protocols. Our
taxonomy of state machine replication protocols is summa-
rized in Figure 15, and a summary of the generalized multi-
leader protocols that we discuss in this paper is given in
Table 2. We showed via Simple BPaxos that simple gen-
eralized multi-leader protocols do exist, but they have high
commit time. Reducing the commit time with Fast BPaxos,
we discovered the fundamental tension between implementing
consensus and computing dependencies between commands.
We taxonomized existing protocols according to whether they
avoid the tension (like Unanimous BPaxos) or they resolve the
tension (like Majority Commit BPaxos). Ultimately, we hope
that the clarity we have brought to the space can encourage
more industry adoption of generalized multi-leader protocols
and can spur new academic innovations in this space.

Acknowledgement

This research is supported in part by DHS Award HSHQDC-
16-3-00083, NSF CISE Expeditions Award CCF-1139158,
and gifts from Alibaba, Amazon Web Services, Ant Finan-
cial, CapitalOne, Ericsson, GE, Google, Huawei, Intel, IBM,
Microsoft, Scotiabank, Splunk and VMware.

References

[1] A brief introduction of tidb. https://pingcap.
github.io/blog/2017-05-23-perconalive17/.
Accessed: 2019-10-21.

[2] Raft replication in yugabyte db. https:
//www.yugabyte.com/resources/
raft-replication-in-yugabyte-db/. Accessed:
2019-10-21.

[3] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giu-
liano Losa, and Binoy Ravindran. Speeding up consen-
sus by chasing fast decisions. In Dependable Systems
and Networks (DSN), 2017 47th Annual IEEE/IFIP In-
ternational Conference on, pages 49–60. IEEE, 2017.

21

https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://pingcap.github.io/blog/2017-05-23-perconalive17/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/
https://www.yugabyte.com/resources/raft-replication-in-yugabyte-db/

Journal of Systems Research (JSys) 2021

number of
leaders?

generalized? generalized?

commit
time?

tension
handling?

MultiPaxos [13]
Raft [23]
VRR [18]
Chain Replication [31]

Generalized Paxos [14]
GPaxos [26]

Mencius [20]

Simple BPaxos (§4)

Unanimous BPaxos (§7.1)
Basic EPaxos [22]
Atlas [10]

Maj. Commit BPaxos (§8.2)
EPaxos [21]
Caesar [3]

one many

no yes no yes

> 4 ≤ 4

avoiding resolving

Figure 15: A non-exhaustive taxonomy of state machine replication protocols. The generalized multi-leader protocols that we
discuss in this paper are shaded green.

Table 2: A summary of generalized multi-leader state machine replication protocols.

Commit Tension Number of Phase 1 Classic Phase 2 Fast Phase 2
Protocol Safe Time Handling Nodes Quorum Size Quorum Size Quorum Size

Simple BPaxos (§4) yes 7 N/A 2 f +1 f +1 f +1 N/A
Fast BPaxos (§6) no 4 N/A 2 f +1 f +1 f +1 f +maj(f +1)
Unanimous BPaxos (§7.1) yes 4 avoidance 2 f +1 f +1 f +1 2 f +1
Basic EPaxos [22] yes 4 avoidance 2 f +1 f +1 f +1 2 f
Atlas [10] yes 4 avoidance n f +1 n− f b n

2c+ f
Maj. Commit BPaxos (§8.2) yes 4 resolution 2 f +1 f +1 f +1 f +maj(f +1)
EPaxos [21] yes 4 resolution 2 f +1 f +1 f +1 f +maj(f +1)−1
Caesar [3] yes 4 resolution 2 f +1 f +1 f +1 f +maj(f +1)

[4] Jason Baker, Chris Bond, James C Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel Leon,
Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
Megastore: Providing scalable, highly available stor-
age for interactive services. In CIDR, volume 11, pages
223–234, 2011.

[5] Mike Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
symposium on Operating systems design and implemen-
tation, pages 335–350. USENIX Association, 2006.

[6] Tushar D Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: an engineering perspective. In
Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, pages 398–407.
ACM, 2007.

[7] Aleksey Charapko, Ailidani Ailijiang, and Murat Demir-
bas. Linearizable quorum reads in paxos. In 11th

USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 19), 2019.

[8] James C Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, Jeffrey John Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. Spanner: Google’s globally dis-
tributed database. ACM Transactions on Computer
Systems (TOCS), 31(3):8, 2013.

[9] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo
Alvisi, and Robbert van Renesse. Scalog: Seamless re-
configuration and total order in a scalable shared log. In
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), pages 325–338, 2020.

[10] Vitor Enes, Carlos Baquero, Tuanir França Rezende,
Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.
State-machine replication for planet-scale systems. In

22

Journal of Systems Research (JSys) 2021

Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–15, 2020.

[11] Heidi Howard, Aleksey Charapko, and Richard Mortier.
Fast flexible paxos: Relaxing quorum intersection for
fast paxos. In International Conference on Distributed
Computing and Networking 2021, pages 186–190, 2021.

[12] Heidi Howard and Richard Mortier. Paxos vs raft:
Have we reached consensus on distributed consensus?
In Proceedings of the 7th Workshop on Principles and
Practice of Consistency for Distributed Data, pages 1–9,
2020.

[13] Leslie Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems (TOCS), 16(2):133–169,
1998.

[14] Leslie Lamport. Generalized consensus and paxos.
2005.

[15] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[16] Leslie Lamport et al. Paxos made simple. ACM Sigact
News, 32(4):18–25, 2001.

[17] Jialin Li, Ellis Michael, Naveen Kr Sharma, Adriana
Szekeres, and Dan RK Ports. Just say NO to paxos over-
head: Replacing consensus with network ordering. In
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 467–483, 2016.

[18] Barbara Liskov and James Cowling. Viewstamped
replication revisited. 2012.

[19] Giuliano Losa, Sebastiano Peluso, and Binoy Ravin-
dran. Brief announcement: A family of leaderless
generalized-consensus algorithms. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed
Computing, pages 345–347. ACM, 2016.

[20] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo.
Mencius: building efficient replicated state machines for
wans. In 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 08), pages 369–384,
2008.

[21] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. A proof of correctness for egalitarian paxos. Tech-
nical report, Technical report, Parallel Data Laboratory,
Carnegie Mellon University, 2013.

[22] Iulian Moraru, David G Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parliaments.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 358–372. ACM,
2013.

[23] Diego Ongaro and John K Ousterhout. In search of
an understandable consensus algorithm. In USENIX
Annual Technical Conference, pages 305–319, 2014.

[24] Seo Jin Park and John Ousterhout. Exploiting commu-
tativity for practical fast replication. In 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 47–64, 2019.

[25] Dan RK Ports, Jialin Li, Vincent Liu, Naveen Kr
Sharma, and Arvind Krishnamurthy. Designing dis-
tributed systems using approximate synchrony in data
center networks. In NSDI, pages 43–57, 2015.

[26] Pierre Sutra and Marc Shapiro. Fast genuine generalized
consensus. In Reliable Distributed Systems (SRDS),
2011 30th IEEE Symposium on, pages 255–264. IEEE,
2011.

[27] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan Van-
Benschoten, Jordan Lewis, Tobias Grieger, Kai Niemi,
Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaf-
fray, Lucy Zhang, and Peter Mattis. Cockroachdb: The
resilient geo-distributed sql database. In Proceedings of
the 2020 ACM SIGMOD International Conference on
Management of Data, pages 1493–1509. ACM, 2020.

[28] Jeff Terrace and Michael J Freedman. Object storage on
craq: High-throughput chain replication for read-mostly
workloads. In USENIX Annual Technical Conference,
number June, pages 1–16. San Diego, CA, 2009.

[29] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 1–12. ACM, 2012.

[30] Robbert Van Renesse and Deniz Altinbuken. Paxos
made moderately complex. ACM Computing Surveys
(CSUR), 47(3):42, 2015.

[31] Robbert Van Renesse and Fred B Schneider. Chain repli-
cation for supporting high throughput and availability.
In OSDI, volume 4, 2004.

[32] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan RK
Ports, Ion Stoica, and Xin Jin. Harmonia: Near-linear
scalability for replicated storage with in-network con-
flict detection. Proceedings of the VLDB Endowment,
13(3):376–389, 2019.

23

	Introduction
	A Primer on State Machine Replication
	State Machine Replication
	Paxos
	MultiPaxos

	Conflict Graphs
	Defining Conflict Graphs
	Executing Conflict Graphs
	Constructing Conflict Graphs
	Two Key Invariants

	Simple BPaxos
	Overview
	Dependency Service
	An Example
	Recovery
	Safety

	Fast Paxos
	Overview
	Recovery
	Coordinated Recovery

	Fast BPaxos
	The Protocol
	Recovery
	Lack of Safety

	Tension Avoidance
	Unanimous BPaxos
	Basic EPaxos Optimization
	Atlas Optimization

	Tension Resolution
	Pruned Dependencies
	Majority Commit BPaxos
	Ensuring Liveness
	EPaxos and Caesar

	Related Work
	Conclusion

