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Abstract

Robotic systems that rely primarily on self-supervised learning have the potential to
decrease the amount of human annotation and engineering effort required to learn
control strategies. In the same way that prior robotic systems have leveraged self-
supervised techniques from computer vision (CV) and natural language processing
(NLP), our work builds on prior work showing that the reinforcement learning (RL)
itself can be cast as a self-supervised problem: learning to reach any goal without
human-specified rewards or labels. Despite the seeming appeal, little (if any)
prior work has demonstrated how self-supervised RL methods can be practically
deployed on robotic systems. By first studying a challenging simulated version of
this task, we discover design decisions about architectures and hyperparameters that
increase the success rate by 2×. These findings lay the groundwork for our main
result: we demonstrate that a self-supervised RL algorithm based on contrastive
learning can solve real-world, image-based robotic manipulation tasks, with tasks
being specified by a single goal image provided after training.

1 Introduction
Self-supervised learning serves as the bedrock for many NLP and computer vision applications,
leveraging unlabeled data to acquire good representations for downstream tasks. How might we enable
similar capabilities for robot learning algorithms? In NLP and computer vision, self-supervised
learning is typically done via one objective (often denoising), while the downstream tasks use
a different objective (e.g., linear regression). In the RL setting, prior work has shown how a
(self-supervised) contrastive learning objective can simultaneously be used to learn (1) compact
representations, (2) a goal-conditioned policy, and (3) a corresponding value function [17]. From
a robotics perspective, this framing is appealing because users need not manually specify these
components (e.g., no tuning hyperparameters in a reward function). However, to the best of our
knowledge these contrastive RL methods have not been applied on real-world robotic systems.

The aim of this paper is to use self-supervised RL methods that solve real-world goal-reaching tasks.
We will focus on a class of prior RL methods based on contrastive RL [64, 17, 15, 23]. With an
eye towards enabling real-world deployment, we start by studying how various design decisions
can stabilize these contrastive RL methods, focusing both on their learned representations and
their learned policies. Through careful experiments, we find a set of design decisions regarding
model capacity and regularization that boost performance by +45% over prior implementations
of contrastive RL, and by 2× relative to alternative goal-conditioned RL methods. We call our
implementation stable contrastive RL. The key contribution is our real-world experiments, where
we demonstrate that these design decisions enable image-based robotic manipulation. Additional
experiments reveal an intriguing property of the learned representations: linear interpolation seems to
correspond to planning (see Fig. 2).
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2 Contrastive RL and Design Decisions

In this section we introduce notations and the goal-conditioned RL objective, and then revise a prior
algorithm that we will use in our experiments, mentioning important design decisions.

2.1 Preliminaries

We assume a goal-conditioned controlled Markov process (an MDP without a reward function)
defined by states st ∈ S, goals g ∈ S, actions at, initial state distribution p0(s0) and dynamics
p(st+1 | st, at). We will learn a goal-conditioned policy π(a | s, g), where the state s and the goal
g are both RGB images. Given a policy π(a | s, g), we define Pπ(·|·,g)(st = s | s0, a0) as the
probability density of reaching state s after exactly t steps, starting at state s0 and action a0. The
discounted state occupancy measure is a geometrically-weighted average of these densities:

pπ(·|·,g)(st+ = s | s0, a0) ≜ (1− γ)

∞∑
t=0

γtPπ(·|·,g)(st = s | s0, a0). (1)

The policy is learned by maximizing the likelihood of reaching the desired goal state under this
discounted state occupancy measure [15, 64, 55, 17]:

Epg(g)[p
π(·|·,g)(st+ = g)] = Epg(g)p0(s0)π(a0|s0,g)

[
pπ(·|·,g)(st+ | s0, a0)

]
.

Following prior work [17], we estimate this objective via contrastive representation learning [24];
we will learn a critic function that takes a state-action pair (s, a) and a future state st+ as input, and
outputs a real number f(s, a, st+) estimating the (ratio of) likelihood of reaching the future state,
given the current state and action. We will parameterize the critic function as an inner product between
the state-action representation ϕ(s, a) and the future state representation ψ(st+), f(s, a, st+) =
ϕ(s, a)⊤ψ(st+), interpreting the critic value as the similarity between those representations.

Contrastive RL distinguishes a future state sampled from the average discounted state occupancy
measure, s+f ∼ pπ(·|·)(st+ | s, a) =

∫
pπ(·|·,g)(st+ | s, a)pπ(g | s, a)dg, from a future state sampled

from a arbitrary state-action pair, s−f ∼ p(st+) =
∫
pπ(·|·)(st+ | s, a)p(s, a)dsda, using the NCE-

Binary [24, 41, 31] objective:

E
s+
f
∼pπ(·|·)(st+|s,a)[log σ(ϕ(s, a)

⊤ψ(s+f ))︸ ︷︷ ︸
L1(ϕ(s,a),ψ(s+

f
))

] + E
s−
f
∼p(st+)

[log(1− σ(ϕ(s, a)⊤ψ(s−f )))︸ ︷︷ ︸
L2(ϕ(s,a),ψ(s−

f
))

]. (2)

This objective can also be formulated in an off-policy manner (see Eysenbach et al. [15] and
Appendix A); we will use this off-policy version in our experiments. Appendix B provides some
intuition about a connection between contrastive RL and hard negative mining.

2.2 Design Decisions for Stabilizing Contrastive RL

In this section, we describe the most important design factors to stabilize contrastive RL: (i) using
appropriate encoder architecture and batch size, (ii) stabilizing and speeding up training with layer
normalization and cold initialization, and (iii) combating overfitting with data augmentation.

Neural network architecture for image inputs. In vision and language domains, scaling the
architecture size has enabled large neural networks to achieve ever higher performance on ever larger
datasets [61, 6, 11, 53, 4]. While large vision models (e.g., ResNets [30] and Transformers [66]) have
been adopted to the RL setting [14, 58, 35, 7, 32], shallow CNNs remain pervasive in RL [57, 37, 36,
3, 26, 25], suggesting that simple architectures might be sufficient. In our experiments, we will study
two aspects of the architecture: the visual feature extractor, and the contrastive representations learned
on top of these visual features. For the visual feature extractor, we will compare a simple CNN versus
a much larger ResNet. For the contrastive representations, we will study the effect of scaling the width
and depth of these MLPs. While prior methods often train the visual feature extractor separately from
the subsequent MLP [53], our experiments will also study end-to-end training approaches. Appendix
C includes an overview of our network architecture.
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Figure 1: Evaluation on real manipulation tasks. Stable contrastive RL matches or outperforms GC-IQL and
GCBC on all manipulation tasks. Each success rate is calculated from taking 10 rollouts.

Batch size. Prior works in computer vision [8, 29, 22, 9] have found that contrastive representation
learning benefits from large batch sizes, which can stabilize and accelerate learning. In the context
of contrastive RL, using larger batches increases not only the number of positive examples (linear
in batch size) but also the number of negative examples (quadratic in batch size). This means that
algorithm would be able to see more random goals s−f given a future goal s+f . We will study how
these growing positive and negative examples as a result of growing batch sizes will affect contrastive
RL.

Layer normalization. We conjecture that learning from a diverse offline dataset, containing
examples of various manipulation behaviors, may result in features and gradients that are different
for different subsets of the dataset [72]. We will study whether adding layer normalization [2] to the
visual feature extractor and the subsequent MLP can boost performance, following prior empirical
studies on RL [5, 35]. We will experiment with applying layer normalization to every layer of both
CNN and MLP, before the non-linear activation function.

Cold initialization. Prior work has proposed that the alignment between positive examples is crucial
to contrastive representation learning [67]. To encourage the alignment of representations during the
initial training phase, we will weight initialization of the final feed-forward layer. Precisely, we will
initialize the weights in the final layers of ϕ(s, a) and ψ(g) using UNIF[−10−12, 10−12], resulting in
representations that remain close to one another during the initial stages of learning. We will compare
this “cold initialization” approach to a more standard initialization strategy, UNIF[−10−4, 10−4].

Data augmentation. Following prior work [17, 20, 4, 51, 59, 44, 68], we will augment the actor
objective to include an additional behavioral cloning regularizer, which penalizes the actor for
sampling out-of-distribution actions. While most of our design decisions increase the model capacity,
adding this behavioral cloning acts as a sort of regularization often important in the offline RL setting
to avoid overfitting [20]. Initial experiments found that this regularizer itself was prone to overfitting,
motivating us to investigate data augmentation (random cropping), similar to prior work in offline
RL [70, 36, 27].

3 Experiments
We study design decisions that drive stable contrastive RL and use simulated and real-world bench-
marks to compare contrastive RL to other offline goal-conditioned policy learning methods. We also
analyzes properties of the representations learned by stable contrastive RL. Our findings include:

Ablation study. Our experiments suggest the following design decisions stabilize contrastive RL:
(i) Using a simple 3-layer CNN visual feature extractor followed by a wide MLP. (ii) Add layer
normalization. (iii) Initialize last-layer weights of the MLP with small values, UNIF[−10−12, 10−12].
(iv) Apply random cropping to both the state and goal images. (v) Use a large batch size (2048). We
use stable contrastive RL to denote this combination of design decisions. See Appendix D.2 for
details.

Comparing to prior methods. Stable contrastive RL matches or surpasses all baselines on four
of the five simulated manipulation tasks (Fig. 5). Stable contrastive RL also outperforms all three
baselines on locomotion benchmarks, achieving a 33% higher (relative) average success rate than
the strongest baseline. Additionally, we study whether our method can effectively solve real world,
image-based manipulation tasks, learning entirely from offline data. Stable contrastive RL performs
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←−−−−−−−−−−−−−−−−−−− GCBC −−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−− Stable contrastive RL −−−−−−−−−−−−−−−−−−−→
Figure 2: Visualizing the representations. (Row 1) Directly interpolating between two images in pixel space
results in unrealistic images. (Row 2) Using a VAE, we interpolate between the representations of the left-most
and right-most images, visualizing the nearest-neighbor retrievals from a validation set. The VAE captures the
contents of the images but not the causal relationships – the object moves without being touched by the robot
arm. (Row 3) GCBC also produces realistic images while ignoring temporal causality. (Row 4) Stable contrastive
RL learns representations that capture not only the content of the images, but also the causal relationships – the
arm first moves away from its position in the goal state so that it can move the object into place.

similarly to baselines on the simple (reach eggplant) task, while achieving a 60% success rate
on the two challenging tasks (pick & place spoon, push can), where all baselines fail to
make progress (Fig. 1). See Appendix D.3 for details.

Latent interpolation. When interpolating the representations of stable contrastive RL, the inter-
mediate representations correspond to sequence of observations that the policy should visit when
transiting between the initial observation and the final goal (Fig. 2). See Appendix D.4 for details.

The arm matching problem. Comparing the Q values for an observation where the object is not in
the correct location, but the gripper is in the correct position, stable contrastive RL predicts a small
value for this observation, highlighting the accuracy of its Q function, while GC-IQL mistakenly
assigns high Q values to this observation. See Appendix D.5 for details.

Generalizing to unseen camera angles and object colors Because stable contrastive RL learns
features solely with the critic objective, we expect that the features will not retain task-irrelevant
information. We run an experiment comparing the generalization of stable contrastive RL against a
baseline that uses features pre-trained via reconstruction on unseen environments with unseen camera
angles and object colors. See Appendix E.10 for details.

Additional experiments. Appendix D.6 studies the influence of dataset size on the performance of
stable contrastive RL. In Appendix E.11 & E.12 we study the effect of augmenting stable contrastive
RL with auxiliary objectives and sub-goal planning. These components are critical for PTP but
decrease performance of stable contrastive RL.

4 Conclusion

In this paper, we have studied design decisions that enabled a self-supervised RL method to solve real-
world robotic manipulation tasks that stymie prior methods. We have found that decisions regarding
the architecture, batch size, normalization, initialization, and augmentation are all important.
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zero to encourage alignment of contrastive representations, and use data augmentation to prevent overfitting.

A Review of TD Contrastive RL

The recursive definition of the discounted state occupancy measure (Eq. 1) allows us to rewrite Eq. 2
into a temporal different (TD) variant [15], with w(s, a, sf ) ≜

σ(f(s,a,sf ))
1−σ(f(s,a,sf ))

,

max
f

E(s,a)∼p(s,a),s′∼p(s′|s,a)
sf∼p(st+),a′∼π(a′|s,g)

[
(1− γ) log σ(f(s, a, s′)) (3)

+ log(1− σ(f(s, a, sf ))) + γ⌊w(s′, a′, sf )⌋sg log σ(f(s, a, sf ))
]
.

A prototypical example of this TD variant is C-Learning [15] that lies in the family of contrastive RL
methods [17]. We will focus on the TD learning critic objective in our discussion and adapt it to the
offline setting with a goal-conditioned behavioral cloning regularized policy objective:

max
π(·|·,·)

Epg(g)p(s,aorig)π(a|s,g) [(1− λ) · f(s, a, g) + λ log π(aorig | s, a)] . (4)

B Intuition: A Connection between Contrastive RL and Hard Negative
Mining

One practical challenges with learning value functions or distance functions for goal-reaching tasks
is that visually similar images may actually require a large number of steps to transit between. Prior
work has addressed this challenging by manually mining hard negative examples [62, 54]. Our
motivation for studying contrastive methods was a hypothesis that, with appropriate design decisions,
contrastive methods would automatically induce a form of hard-negative mining. In particular, we
wrote the gradient of the objective (Eq. 2). with respect to the representation of random goals ψ(s−f ),

∂

∂ψ(s−f )
L2(ϕ(s, a), ψ(s

−
f )) = −σ(ϕ(s, a)

⊤ψ(s−f ))ϕ(s, a).

This gradient “pushes” the representation of a random goal ψ(s−f ) away from the anchor ϕ(s, a)
with a larger weight when it is misclassified. Intuitively, if we think of these weights as importance
weights, then this gradient corresponds to finding the hardest negative examples within the batch.
We conjecture that realizing this effect will require a large batch size, as well as a few other design
decisions, which we discuss next.

C Architecture Diagram

An overview of our network architecture is shown in Fig. 3.
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Figure 4: Importance of architecture initialization, and normalization. (Left) Our experiments suggest that
using a deep CNN decreases performance, but using a wide MLP is important. (Right) The good performance
of our implementation depends on “cold initialization”, layer normalization, and data augmentation. Prior
work [17] uses an even smaller network architecture (256, 2) and none of the stabilization/initialization decisions.

D Experimental Details

Our experiments start with studying design decisions that drive stable contrastive RL and use
simulated and real-world benchmarks to compare contrastive RL to other offline goal-conditioned
policy learning methods, including those that use conditional imitation and employ representation
pre-trained by auxiliary objectives. We then analyze unique properties of the representations learned
by stable contrastive RL, providing an empirical verification of the connection drawn in Appendix B.
Finally, we conduct various ablation studies to test the generalizing and scalability of our algorithm.

D.1 Experimental Setup

Tasks. Our experiments use a suite of simulated and real-world goal-conditioned control tasks
based on prior work [18, 19, 12, 42]. First, we use a benchmark of five manipulation tasks proposed
in [18, 19] (Fig. 5). The observations and goals are 48× 48× 3 RGB images of the current scene.
These tasks are challenging benchmarks because solving most of them requires multi-stage reasoning.
Second, we use the goal-conditioned locomotion benchmark proposed in [42]. The observations and
goal poses are 64 × 64 × 3 RGB images. This benchmark helps study those design decisions for
offline goal-reaching beyond manipulation. Third, we study the performance of our algorithm in
real-world using a 6-DOF WidowX250 robot arm. We use Bridge dataset [12] where observation and
the goal are 128× 128× 3 RGB images with much noisier backgrounds than the simulated tasks.
For evaluation, we use three tasks from Toy Kitchen 2 scene in the dataset where the initial and
desired object positions are unseen during training (see Fig. 1). These tasks are challenging because
they require multi-stage reasoning (e.g., the drawer can only be opened after the orange object has
been moved).

Offline dataset. The offline manipulation dataset we used in simulation consists of near-optimal
demonstrations of primitive behaviors, such as opening the drawer, pushing blocks, and picking up
objects. The scripted data collection policy can access the underlying object states. The lengths of
demonstration vary from 50 to 100 time steps and the offline dataset approximately contains 250K
transitions in total. We note that none of the offline trajectories complete the demonstration from the
initial state to the goal. For evaluation, we create a dataset of 50 goals by randomly sampling the
positions of objects and the robot arm, and evalaute the success rate of reaching these goals. The
locomotion benchmark includes a mixture of optimal and suboptimal transitions. We randomly collect
100K transitions from the replay buffer of a policy trained with LEXA [42], which achieves success
rates of 75% on Walker and 58% on Quadruped at convergence. Our real-world offline dataset
uses the existing Bridge Data [12], including around 20K demonstrations of various manipulation
skills. Note that some trajectories in this dataset are suboptimal since they were collected by a
weakly scripted data collection policy that sometimes misses grasping the target objects. This dataset
provides broad and diverse demonstrations to evaluate whether an agent is able to stitch skills and
generalize to different scenes.

D.2 Ablation Study

The good performance of contrastive RL depends on a few key design decisions (e.g., architectures,
initialization), which we will study in this section. We will use the drawer task and report mean
and standard deviations over three random seeds. The appendix contains additional experiments
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Figure 5: Evaluation on simulated manipulation tasks. (Left) The five simulated evaluation tasks, with
examples of the initial observation (top) and goal observation (bottom). (Right) Stable contrastive RL outper-
forms all baselines on 4

5
tasks, often by a large margin. The comparison with “contrastive RL” underscores the

importance of our design decisions.

underscoring the importance of large batches (Appendix E.13) and showing that lower-dimensional
representations achieve higher success rates (Appendix E.15).

Network architecture. We study the architectures for the image encoder and the subsequent MLP.
For the image encoder, we compare a shallow 3-layer CNN (similar to DQN [43]) to a ResNet 18 [30].
Fig 4 (Left) shows that 3-layer CNN encoder outperforms ResNet 18 encoder by 2.89× (81% vs.
28%), when incorporting same design decisions other than architectures. Additional experiments in
Appendix E.1 suggest that this counterintuitive finding can likely be explained by overfitting. We next
study the architecture of the subsequent MLP, denoted as (width, depth). Our experiments show that
a (1024, 4) MLP yields the best result, suggesting that wider MLPs perform better. In subsequent
experiments, we use the 3-layer CNN as the visual feature extractor followed by a (1024, 4) MLP.
Appendix E.2 contains additional experiments on a “pretrain and finetune” setting using a pretrained
visual encoder.

Stabilization and initialization. We hypothesize that layer normalization balances feature magni-
tude and prevents gradient interference, while data augmentation mitigates overfitting. Our experi-
ments in Fig. 4 (Right) suggest that both layer normalization and data augmentation (via random
cropping) are critical for good performance.

We next study weight initialization, using the “cold initialization” strategy outlined in Sec. 2.2. We find
that this strategy, which uses very small initial weights UNIF[−10−12, 10−12], boosts performance
by 2.49 times (82% vs. 33%) than the initialization strategy UNIF[−10−4, 10−4]. Additional
experiments in Appendix Fig. 27 show that UNIF[−10−8, 10−8] and UNIF[−10−16, 10−16] achieve
only slightly worse results than UNIF[−10−12, 10−12]. In Appendix E.14, we show a smaller learning
rates and a learning rate “warmup” have a different (worse) effect than cold initialization. Results
from these ablation experiments encourage us to apply layer normalization, data augmentation, and
cold initialization in other experiments.

Summary. Our experiments suggest the following design decisions stabilizing contrastive RL:
(i) Using a simple 3-layer CNN visual feature extractor followed by a wide MLP. (ii) Add layer
normalization. (iii) Initialize last-layer weights of the MLP with small values, UNIF[−10−12, 10−12].
(iv) Apply random cropping to both the state and goal images. (v) Use a large batch size (2048). We use
stable contrastive RL to denote this combination of design decisions and provide a implementation
in Appendix D. We call our method “stable” because we find that these design decisions yield more
stable learning curves (see Appendix Fig. 13). We also ran an additional ablation experiments on
push block, open drawer (see Appendix Fig. 14), drawing similar conclusions.

D.3 Comparing to Prior Methods

Next, we study the efficacy of stable contrastive RL comparing to prior methods, including those
that use goal-conditioned supervised learning and those that employ auxiliary representation learning
objectives. We run experiments on datasets collected from both simulation and the real-world without
any interaction with the environment during training – that is, all experiments focus on offline,
goal-conditioned RL.
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Figure 7: Evaluation on simulated locomotion
tasks. Stable contrastive RL outperforms contrastive
RL, GC-IQL and GCBC in two locomotion tasks.
Each success rate is calculated by averaging over 12
diverse goal poses [42].

Simulation evaluation – manipulation. We first compare to five baselines that build on goal-
conditioned behavioral cloning. The simplest goal-conditioned behavioral cloning ("GCBC") [7,
10, 13, 21, 38, 49, 60] trains a policy to conditionally imitate trajectories reaching goal g. Goal-
conditioned IQL (GC-IQL) is a goal-conditioned version of IQL [34], a state-of-the-art offline
RL algorithm. GoFar [39] is an improvement of GCBC that weights the log likelihood of actions
using a learned critic function. The fourth baseline is WGCSL [69], which augments GCBC with
discounted advantage weights for policy regression. We also include a comparison with contrastive
RL [17], which helps us test whether those design decisions improve the performance. Like stable
contrastive RL, these baselines are all trained directly on goal images in an end-to-end fashion,
not using any explicit feature learning. As shown in Fig. 5, stable contrastive RL matches or
surpasses all baselines on four of the five tasks. On those more challenging tasks (push block,
open drawer; pick & place (table); pick & place (drawer)), we see a marked
difference between these baselines and stable contrastive RL. However, the baseline methods fail to
solve these more challenging tasks. Stable contrastive RL performs worse than GC-IQL and GCBC
on one of the tasks (push block, close drawer), perhaps because the block in that task
occludes the drawer handle and introduces partial observability.

We next compare to three methods that employ learning policy on top of pre-trained representations.
PTP [18] focuses on finding sub-goals in a pre-trained VQ-VAE [65] representation space and learns
a policy to reach them sequentially. We also compare to a variant of GCBC learning on top of features
from VIP [40]. We call this method VIP-GCBC. Similarly, our third baseline, R3M-GCBC, trains
a policy via supervised learning on top of representations learned by R3M [46]. Results in Fig. 6
show that stable contrastive RL outperforms all baselines on 4

5 tasks. While the baselines all require
separate objectives for RL and representation learning, stable contrastive RL achieves excellent
results without the need for an additional representation learning objective. The full curves can be
found in Appendix E.8. Appendices E.11 and E.12 show comparisons against an end-to-end version
of PTP and to a variant without sub-goal planning.

Simulation evaluation – locomotion. Our next set of experiments focus on locomotion tasks. We
conduct these experiments to see whether the same design decisions are helpful on tasks beyond
manipulation, and on tasks from which we have only suboptimal data. We compare stable contrastive
RL against contrastive RL, GCBC, and GC-IQL on two goal-reaching tasks from prior work [42]:
Walker and Quadruped. We evaluate all methods in the offline setting, recording the average
success rates over reaching 12 unique goal poses. As shown in Fig. 7, stable contrastive RL
outperforms all three baselines on both locomotion tasks, achieving a 33% higher (relative) average
success rate than the strongest baseline.

Real-world evaluation. We next study whether these methods can effectively solve real world,
goal-directed, image-based manipulation tasks, learning entirely from offline data. We compare stable
constrastive RL against the strongest performing baseline from the simulated results, GCBC. We
compare to GC-IQL as well because it performed well in the simulated experiments, and its simplicity
makes it practically appealing. We evaluated on three goal-reaching tasks and report success rates in
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Fig. 1. Stable contrastive RL performs similarly to baselines on the simple (reach eggplant)
task, while achieving a 60% success rate on the two harder tasks (pick & place spoon, push
can), where all baselines fail to make progress. We conjecture that this good performance might be
explained by the hard-negative mining dynamics of stable contrastive RL, which are unlocked by our
design decisions.

D.4 Latent Interpolation

Self-supervised learning has achieved remarkable success in learning representations for image and
representation data [48, 63, 8]. While auxiliary losses or data augmentation improve reconstruction
and robustness of the learned representation, we hypothesize that representation acquired by self-
supervised RL approach contains task-specific information. Given an initial image (Fig. 2 far left)
and the desired goal image (Fig. 2 far right), we interpolate between the representations of these two
images, and retrieve the nearest neighbor in a held-out validation set. For comparison, we also include
direct interpolation in pixel space. As expected, interpolating in pixel space generates unrealistic
images. While linearly interpolating in the VAE and GCBC representation spaces produce realistic
images, the retrieved images fails to capture causal relationships, motivating the necessity of adding
other machinery, e.g., relabeling latent goal [45, 52, 54] and latent sub-goal planning with value
constraints [18, 19]. When interpolating the representations of stable contrastive RL, the intermediate
representations correspond to sequence of observations that the policy should visit when transiting
between the initial observation and the final goal. Appendices E.5 and E.6 contain a quantitative
experiment and additional visualizations.

D.5 The Arm Matching Problem
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Figure 8: Misclassifying success. GC-IQL mistakenly
predicts that this observation has succeeded in reaching
this goal, even though the object is in the incorrect posi-
tion. In contrast, stable contrastive RL recognizes that
this observation is far from the goal and assigns it a low
Q value.

Previous works have found that some goals are
easier to be distinguish from the others (easy
negative examples) [54, 62, 1], while some
goals might require temporal-extended reason-
ing to reach (hard negative examples). For exam-
ple, on task push block, open drawer,
prior goal-conditioned algorithms [18, 34] sim-
ply match the arm position with the one in the
goal image and fail to move the green block
to its target position. We call this failure the
arm matching problem. Our theoretical anal-
ysis in Appendix B suggests that contrastive
approaches should perform this sort of hard neg-
ative mining and avoid the arm matching prob-
lem. We test this hypothesis in Fig. 8 by comparing the Q values learned by stable contrastive RL
and contrastive RL, aiming to assess whether our design decisions lead to more accurate estimates of
the Q-values. Prior work has suggested that pre-trained VAE representations can also be effective,
so we also compare to a version of GC-IQL applied on top of VAE features [18, 19]. We normalize
these Q values by the minimum and maximum values in a rollout. Fig. 8 compares the Q values for
an observation where the object is not in the correct location, but the gripper is in the correct position.
GC-IQL (mistakenly) assigns high Q values to this observation. In contrast, stable contrastive RL
predicts a small value for this observation, highlighting the accuracy of its Q function and showing
how it can avoid arm matching behavior. Appendix E.7 includes a comparison of Q values in an
optimal trajectory.

D.6 The Influence of Dataset Size on Performance

Scaling model performances with the amount of data have been successfully demonstrated in CV
and NLP [6, 28], motivating us to study whether contrastive RL offers similar scaling capabilities
in the offline RL setting. To answer this question, we run experiments with dataset sizes increasing
from 100K to 1M, comparing stable contrastive RL against a baseline that uses pre-trained features
to improve policy learning. The fact that this baselines doesn’t improve suggests that most of the
gains observed for stable contrastive RL may be coming from better representations, rather than from
a better reactive policy. Results in Fig. 9 shows that stable contrastive RL effectively makes use of
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Figure 9: The influence of dataset size. Increasing the
amount of offline data boosts the success rate of stable
contrastive RL, while the performance of PTP saturates
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Figure 10: Generalizing to unseen camera angles.
Stable contrastive RL retrains good performance on
a broad range of unseen camera angles (pitch). Ap-
pendix Fig. 23 shows similar generalization capabili-
ties for variations in yaw and object color.

additional data, with a success rate that increases by 3× as we increase the dataset size. In contrast,
the performance of PTP saturates around 250K transitions, suggesting that most of the gains observed
for stable contrastive RL may be coming from better representations, rather than from a better reactive
policy. In Appendix E.9, we also find that the binary accuracy of the stable contrastive RL (measured
on predicting the future) increases with dataset size, suggesting that the method benefits from a more
diverse pool of positive and negative examples.

D.7 Generalizing to Unseen Camera Angles and Object Colors

Our next set of experiments study the robustness of stable contrastive RL. We hypothesize that stable
contrastive RL might generalize to unseen tasks reasonably well for two reasons: (1) stable contrastive
RL resembles the contrastive auxiliary objectives used by prior work to improve robustness [46,
36, 37]; (2) because stable contrastive RL learns features solely with the critic objective, we expect
that the features will not retain task-irrelevant information (unlike, say, representation based on
auto-encoding). We run an experiment comparing the generalization of stable contrastive RL against
a baseline that uses features pre-trained via reconstruction by varying the environment. We show
results on varying pitch in Fig. 10, and include the other results and full details in Appendix E.10.
These experiments provide preliminary evidence that contrastive representations might generalize
reasonably well.

D.8 Implementations and Hyperparameters

Implementations. We implement stable contrastive RL using PyTorch [50]1. We use the open-
sourced implementation of PTP2 as our baseline and adapt the underlaying IQL algorithm to GC-IQL
and GCBC. Unless otherwise mentioned, we use same hyperparameters as this implementation.
For baselines WGCSL3, GoFar4, VIP-GCBC5, and R3M-GCBC6, we adapted the implementation
provided by the authors.

Hyperparameters and computation resources. We implement stable contrastive RL using Py-
Torch again on top of the public PTP codebase. Our algorithm is adapted from contrastive RL
implementation7 and incorporate those novel design decisions mentioned in Sec. D.2. We summarize

1https://anonymous.4open.science/r/stable_contrastive_rl-5A42.
2https://github.com/patrickhaoy/ptp
3https://github.com/YangRui2015/AWGCSL
4https://github.com/JasonMa2016/GoFAR
5https://github.com/facebookresearch/vip
6https://github.com/facebookresearch/r3m
7https://github.com/google-research/google-research/tree/master/contrastive_rl
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Table 1: Hyperparameters for stable contrastive RL.

Hyperparameters Values Notes

batch size 2048

number of training epochs 300

number of training iterations per
epoch

1000 equivalent to number of gra-
dient steps per epoch

dataset size 250K number of transitions
(s, a, s′, sf )

image size 48× 48× 3; 128× 128× 3 Size of RGB images in
the simulated and real-world
tasks

episode length 400

image encoder architecture 3-layer CNN kernel size = (8, 4, 3), num-
ber of channels = (32, 64,
64), strides = (4, 2, 1),
paddings = (2, 1, 1)

policy network architecture (1024, 4) MLP

critic network architecture (1024, 4) MLP

weight initialization for final layers
of critic and policy

UNIF[−10−12, 10−12]

policy stand deviation 0.15

contrastive representation dimen-
sion

16

data augmentation random cropping replicating edge pixel-
padding size = 4

augmentation probability 0.5 applying random cropping to
both s and g in the GCBC
regularizer in Eq. 4 with this
probability

discount factor 0.99

learning rate of Adam [33] opti-
mizer

0.0003

hyperparameters in Table 1. For each experiment, we allocated 1 NVIDIA V100 GPU and 64 GB of
memories to do computation.
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Figure 13: “Stable" contrastive RL is more stable
than the original contrastive RL.

E Additional Experiments

E.1 Overfitting of the ResNet 18 Encoder

We hypothesize that the over-parameterized ResNet 18 visual encoder overfits to the dataset when
comparing with the 3-layer CNN. To study this, we conduct experiments on task push block,
open drawer, showing training and validation loss of the GCBC regularization for both visual
backbones. Note that we apply the cold initialization, layer normalization, and random cropping
data augmentation introduced in Appendix D.2 to both ResNet 18 and 3-layer CNN to make a fair
comparison in Fig. 4 and these additional experiments. The observation that the training loss remains
low while the validation loss starts to increase after 50K gradient steps (Fig. 11 (Left)) suggests that
the larger ResNet 18 is susceptible to overfitting for the policy. Additionally, we include ablations
between 3-layer CNN and ResNet 18 with different subsequent MLP architectures for completeness
in Fig. 11 (Right). We find that ResNet 18 with deeper and wider MLP architecture does not improve
the performance significantly and the best combination still underperforms Stable contrastive RL by
2.75×. Together with the GCBC training and validation losses above, we suspect that the ResNet 18
overfits to the training data despite the data augmentation (random cropping) we applied in attempts
to mitigate this.

E.2 Effect of Pretraining

We ran additional experiments to study the effect of pretrained models for contrastive RL. We
applied our design decisions to stable contrastive RL variants that use a ResNet-18 visual en-
coder and compared two initialization strategies: initialization with random weights and initial-
ization with weights pretrained on ImageNet [30]. In Fig. 12, we report results on drawer and
push block, open drawer, a challenging multi-stage task that involves first pushing the
block and then opening the drawer.
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Figure 14: Additional ablations on push block, open drawer.

We find that using pretrained weights boosts performance of stable contrastive RL on the relatively sim-
ple drawer but does not significantly benefit the algorithm on push block, open drawer.
These results suggest that those weights pretrained on supervised learning tasks might help the learn-
ing of contrastive RL in some cases. However, we note that we have only explored one pretraining
method. Different pretraining datasets and methods (e.g., R3M [46], VIP [40]) may produce different
results. Nonetheless, we leave the investigation of which pretraining methods best accelerate stable
contrastive RL to future work.

E.3 Understanding “Stable" in Stable Contrastive RL

The reason for using “stable” contrastive RL to name our method is that the original contrastive
RL [17] is unstable. We provide a comparison between the learning curves of stable contrastive RL
and contrastive RL on tasks drawer and push block, open drawer. The observation that
the actor loss of stable contrastive RL are less oscillatory than those of the original contrastive RL
demonstrates that our design decisions improve stability.

E.4 Additional Ablations

We ran a set of additional ablation experiments studying whether the techniques used by stable
contrastive RL still boost the performance. To do this, we compare stable contrastive RL with the
same set of design decision variants as in Fig. 4 on tasks push block, open drawer. We
report the results in Fig. 14.

Regarding network architectures, we find that an MLP with 2, 4, and 6 numbers of layers and 1024
units perform similarly on this task, suggesting that our choice, an (1024, 4) MLP, is still effective. For
stabilization and initialization techniques, we find that cold initialization and data augmentation still
improve the performance significantly, while removing layer normalization decreases the performance
by 24.5%. Taken together, our design decisions continue to outperform or perform similarly to other
variants on this new task.

E.5 More Examples of Latent Interpolation

We show more examples of interpolating different representations on tasks drawer, pick &
place (table), and pick & place (drawer) in Fig. 15, Fig. 16, and Fig. 17 respectively.

E.6 Measuring Interpolation

To quantitatively study interpolation, we run another set of experiments comparing the similarity of
interpolated representations (images) with the ground truth sequence. Specifically, we retrieve the
nearest neighbor of each interpolated representation from a policy rollout and label the time step
of interpolations accordingly (perm[t]). With these time steps, we define a permutation error with
respect to the ground truth time steps:

T∑
t=0

|perm[t]− t|

Results in Fig. 18 demonstrate that interpolation in the VAE representation space and the pixel
space are not well-aligned with the ground truth time steps (better than random permutations), while
contrastive representations achieves a lower error, suggesting that it might contain information that is
uniquely well-suited for control and potentially leverage a goal-conditioned policy.
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(a) Pixel

(b) VAE

(c) GCBC

(d) Stable contrastive RL
Figure 15: Interpolation of different representations on drawer.

(a) Pixel

(b) VAE

(c) GCBC

(d) Stable contrastive RL
Figure 16: Interpolation of different representations on pick & place (table).

E.7 Arm Matching

To evaluate the performance of contrastive RL in tackling the arm matching problem, we collect a
trajectory of contrastive RL trained on the offline dataset and comparing the Q value predicted by
stable contrastive RL with a GC-IQL trained on top of VAE representations, assuming that pre-trained
features might help mitigate the arm matching problem as well. We normalize both Qs by values of
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(a) Pixel

(b) VAE

(c) GCBC

(d) Stable contrastive RL
Figure 17: Interpolation of different representations on pick & place (drawer).
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Figure 19: Predictions of success. Stable contrastive RL learns accurate Q values for the task of reaching the
goal shown above: they increase throughout a successful rollout. On the contrary, the GC-IQL baseline mistak-
enly predicts that picking up the green object decreases the Q-value, likely because the GC-IQL representations
ignore the position of the green block. This experiment suggests that representations derived from a VAE, like
those learned by GC-IQL and many prior methods [71, 45, 47], may be less effective at predicting success than
those learned by contrastive RL methods.

the minimum and the goal. As shown in Fig. 19, stable contrastive RL correctly learns a monotonic
increasing Q throughout the rollout, while GC-IQL learns a V-shape Q relating higher values to a
closer arm to the target position, ignoring the position of the green block (t = 30). This experiment
demonstrates that representations derived from VAE may be less efficient at predicting success than
contrastive representations in the scene involving temporal-extended reasoning.
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Figure 20: Evaluation on simulated manipulation tasks. Stable contrastive RL outperforms all baselines on
drawer, pick & place (table), and pick & place (drawer).

E.8 Evaluation on simulated manipuation tasks
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Figure 18: To quantitatively evaluate interpolation, we
measure the similarity of the retrieved representations
with the ground truth sequence. Stable contrastive RL
achieves lower error than the alternative methods. See
text for details.

We report results in Fig. 20 and Fig. 21 with
curves indicating mean success rate and shaded
regions indicating standard deviation across 5
random seeds after 300K gradient steps’ training.
Stable contrastive RL outperforms or achieves
similar performance on 4 out of 5 tasks compar-
ing to other baselines. These results suggest that
when accompanied with proper techniques, sta-
ble contrastive RL is able to leverage a diverse
offline dataset and emerges a general-purpose
goal-conditioned policy, thus serving as a com-
petitive offline goal-conditioned RL algorithm.

E.9 Dataset Size

Scaling model performances with the amount of
data have been successfully demonstrated in CV
and NLP [6, 28], motivating us to study whether contrastive RL offers similar scaling capabilities in
the offline RL setting. Sec. 2.2 have discussed the benefits of training with more positive and negative
pairs to contrastive representation learning, suggesting that increasing amounts of data might also
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Figure 21: Evaluation on simulated manipulation tasks. Stable contrastive RL outperforms or performs
similarly to all baselines on push block, open drawer and push block, close drawer.
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Figure 22: Increasing the amount of offline data improves the binary future prediction accuracy of stable
contrastive RL and boosts the success rate.

boost the performance of contrastive RL. We empirically study the hypothesis that stable contrastive
RL learns a representation that achieves better performances with growing dataset size.

To test this hypothesis, we create datasets of different sizes containing various manipulation skills,
select task drawer for evaluation, and compare the accuracy of stable contrastive RL in predicting
future states on each of the datasets. We compare stable contrastive RL against PTP that is based on
a pre-trained VAE. We compare both algorithms by training three random seeds of them for 300K
gradient steps on each dataset. Fig. 22 shows the mean and standard deviation of success rates over
10 rollouts and binary future prediction accuracies computed between critic outputs and ground truth
labels. Observe that when the size of dataset increased, the binary accuracy of contrastive RL increase
accordingly (84% → 98%), suggesting that the algorithm indeed strengthens its representation in
future prediction. These results make sense, as increasing the size of the dataset is especially important
for contrastive approaches that directly use all of the data as negative examples. In addition, our
experiments show that contrastive RL consistently improves its success rates when we use larger
dataset: 31%→ 84%, verifying our hypothesis. We suspect that the emerging of a denser distribution
of positive and negative pairs given a larger dataset might facilitate policy learning. In contrast, a
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steady or even lower success rate of PTP given the increasing amounts of data might due to the
capacity limitation of pre-trained VAE representation.

E.10 Generalization
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Figure 23: Generalizing to unseen tasks. Stable contrastive RL retrains good performance on a
broad range of unseen camera angles (yaws / pitches) and object colors.

One of the drawback of driving RL by pre-trained visual representation learning is tying algorithm
performance with the latent representation to reconstruct corresponding images. Figure 2 has shown
the support of VAE representation distribution could be discontinuous and there could be noise in a
out-of-distribution reconstructed image, indicating the degradation of RL performance on unseen
tasks. Rather than predicating on a pre-trained visual representation, stable contrastive RL trains
its self-supervised representation with the actor-critic framework [17], expecting to acquire a more
robust and generalizable algorithm. We hypothesize that stable contrastive RL generalizes better to
unseen tasks than prior method.

To test this hypothesis, we ran experiments with one of our goal-conditioned tasks in three visually
different scenarios (Fig. 23): varying the camera yaw angle, varying the camera pitch angle, and
varying the color of objects in the scene. We evaluate the policy of stable contrastive RL and PTP after
300K gradient steps’ offline training in these three scenerios, plotting the mean and standard deviation
of success rate across three random seeds. Since the color of objects cannot be quantified precisely,
we change colors of one to several objects and define the difficulty of each scene accordingly. As
shown in Fig. 23, PTP is highly sensitive to both camera viewpoints and object colors: large values
of camera ∆yaw and ∆pitch and significant different object colors result in uninformative VAE
representation, PTP consequently performs poorly. Stable contrastive RL, which does not depend on
VAE representation, outperforms PTP and is robust to a wide range of camera angles and object colors.
These experiments provide preliminary evidence that contrastive representations might generalize
reasonably well.

E.11 Additional Perceptual Losses

Prior work has found that auxiliary visual loss is necessary and important to drive an RL algorithm [71].
However, visualization and analysis in Fig. 2 suggest that stable contrastive RL is already acquiring
useful representations, leading us to hypothesize that it may not require additional perception-specific
losses. To test this hypothesis, we compare contrastive RL (with representations learned end-to-end)
with a variant that uses a pre-trained VAE representation as the input for both actor and critic. We
compare against PTP (which uses the same VAE representation) and an end-to-end variant of PTP.
We use the task push block, open drawer for these experiments, as it demands the most
temporally-extended reasoning to solve.

We compare all methods by training three random seeds of each of the four methods for 300K
gradient steps on the offline setting. We measure performance by evaluating each seed in 10 rollouts.
Fig. 24 (Left) shows the mean and standard deviation of these results. First, we find that stable
contrastive RL achieves 53% higher success rates than the VAE-based version of contrastive RL,
showing that contrastive RL does not require a perception specific loss, and instead suggesting that a
good representation emerges purely from optimizing the contrastive RL objective. Intuitively, this
result makes sense, as the contrastive RL critic objective already resembles existing representation
learning objectives. The observation that adding the VAE objective decreases performance might
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Figure 24: (Left) Additional perceptual losses are not needed for stable contrastive RL to outperform PTP.
(Right) Without sub-goal planning, stable contrastive RL can solve temporal-extended tasks.

be explained by the misalignment between the VAE objective and the contrastive RL objective –
directly optimizing the representations for the target task (learning a critic) is better than optimizing
them for reconstruction (as done by the VAE). We conjecture that VAE representation could contain
task-irrelevant noise that impairs policy learning. Second, we find that the VAE objective is important
for the prior method, PTP; removing the VAE objective and learning the representations end-to-end
decreases performance by 55%. This result supports the findings of the original PTP paper [18],
while also illustrating that good representations can be learned in an end-to-end manner if the RL
algorithm is chosen appropriately.

E.12 Sub-goal planning

Goal-conditioned RL often requires the agent to reason over long horizons. Prior works has proposed
to combine critic learning with an explicit planner [56, 16, 18], using the learned value network
as distance function to generate sub-goals. These semi-parametric methods can work really well
in practice, but it remains unclear why fully-parametric model-free GCRL algorithms failed to
perform similarly given the same training data. We have shown that stable contrastive RL learns
a representation preserving causal information (Fig. 2) and a policy rearranging representations in
temporal order (Fig. 19). So can fully-parametric methods achieve comparable or better performance
to semi-parametric methods with proper design decisions?

To answer this question, we compare stable contrastive RL (a fully-parametric algorithm) with a
variant that use explicit sub-goal planning. We compare against PTP (a semi-parametric method)
and a variant of PTP without sub-goal planning. To make a fair comparison, we apply the same
planning algorithm of PTP to the variant of stable contrastive RL. We choose the task pick &
place (table) which requires the agent to pick and place a block to conduct our experiments.
We train three random seeds of all the four methods for 300K gradient steps with the same offline
dataset and evaluate the success rate over 10 rollouts, reporting the mean and standard deviation
across seeds.

As shown in Fig. 24 (Right), stable contrastive RL achieves a 30% absolute improvement over
its semi-parametric variant, suggesting that stable contrastive RL does not require planner and,
surprisingly, sub-goal planning could hurt the performance. We suspect that the policy can find a path
in representation space that corresponds to an optimal trajectory in state space without additional
supervision. The reason for adding planning module decrease performance might be explained by
the fact that self-supervised critic objective does not imply a distance measure between the current
state and the goal, and the growing computational complexity of planning. We observe that sub-goal
planning is critical to improve the performance of PTP by 50%, which is consistent with the claim
in the original PTP paper [18]. Nonetheless, neither version of PTP achieves comparable results
to stable contrastive RL, showing that semi-parametric methods might not do well in a task with
causal reasoning. Taken together, these experiments suggest that, with proper design decisions, a
fully-parametric method like stable contrastive RL can at match (if not surpass) the performance of
more complex semi-parametric methods that employ planning.
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Figure 27: Smaller cold initialization (in a certain
range) improves the performance of stable contrastive
RL.
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Figure 28: A fairly small cold initialization value
encourages alignment.

E.13 Ablation Experiments: Batch Size
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Figure 25: Larger batch size (in a certain range) im-
proves the performance of stable contrastive RL.

These ablation experiments test whether the
batch size can affect the performance of stable
contrastive RL and whether an ever larger batch
size can induce an ever improvement in perfor-
mance. To answer these questions, we vary the
batch size from 512 to 4096 during training of
stable contrastive RL and find the performance
follows the batch size increasing paradigm as
expected. However, the improvement stops after
a certain threshold, indicating there might be
other factors, e.g. network capacity and training
steps [8], that dominate the performance after a
batch size limit.

E.14 Ablation Experiments: Cold Initialization
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Figure 26: Cold initialization is more effective than
learning rate schemes for stable contrastive RL.

We run additional experiments to study whether
cold initialization provides similar performance
gains as learning rate schemes. We compare
three methods: (a) cold initialization as men-
tioned in Sec. 2.2. (b) learning rate warmup,
following the same warmup paradigm in [66] –
linearly increasing the learning rate to 3× 10−4

for the first 100K gradient steps and then de-
creasing it proportionally to the inverse square
root of remaining gradient steps. (c) using a 10×
smaller learning rate for the last layers of ϕ(s, a)
and ψ(g). Our new experiments (Fig. 26) find
that both (b) and (c) consistently perform worse
than cold initialization.

To get a better understanding of the mechanism of cold initialization, we hypothesize that the range of
initialization will affect the performance of stable contrastive RL. We conducted ablation experiments
with initialization strategies UNIF[−10−4, 10−4], UNIF[−10−8, 10−8], UNIF[−10−12, 10−12], and
UNIF[−10−16, 10−16] for the final layers of ϕ(s, a) and ψ(g), plotting the success rates over 10
episodes and 3 random seeds in Fig. 27. The observation that small initialization ranges tend to
perform better, with a value of 10−12 achieving 45% higher success rate than a (more standard)
range of 10−4, is consistent with our expectation that a fairly small initialization range incurs better
performance. We note that the performance of the range 10−16 is 0.857× (71.3% vs. 83.2%)
than that of the range 10−12, suggesting that an ever decreasing initialization range start to hinder
representation learning after a certain value.

One effect of the cold initialization is that it changes the average distance between representations at
random initialization. We next measure the average pairwise (cosine) distance between representa-
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tions, for different initialization ranges. We randomly sample 10 validation batches and compute the
average cosine similarities of positive pair at initialization as a function of different cold initialization
ranges, showing results in Fig. 28. The finding that cosine similarities between positive examples
decrease when we vary the initialization ranges from 10−4 to 10−12 explains the intuition that align-
ment between positive examples is crucial to contrastive representation learning. Of particular note is
that using a very small initialization range 10−16 could force all representations to collapse, resulting
in a worse performance. We observe that initialization strategies for which the representations are
closer (higher cosine similarity) also result in higher success rates after training. This suggests that
the average pairwise distance at initialization may be an effective way of selecting the initialization
range that does not require performing any training.

E.15 Ablation Experiments: Contrastive Representation Dimension
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Figure 29: Smaller representation dimension benefits
the learning of stable contrastive RL.

While we used small representations (16 di-
mensional) in the main experiments, we now
study how increasing the representation dimen-
sion affects the success rates. We ablate the
dimension of contrastive representation in the
set {16, 128, 512}, averaging success rates over
10 episodes of 3 random seeds. As shown in
Fig. 29, representations of sizes 128 and 512
achieve considerably lower success rates, echo-
ing prior work in finding that smaller represen-
tations yield better performance in the offline
setting [17]. These results might also be ex-
plained by the increase of noise with a larger
representation size, suggesting that the smaller
representations effectively act as a sort of regu-
larization and mitigate overfitting.
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