
Published in Transactions on Machine Learning Research (02/2026)

Delta-Influence: Identifying Poisons via Influence Functions

Wenjie Li liwj2022@shanghaitech.edu.cn
ShanghaiTech University

Jiawei Li li-jw19@mails.tsinghua.edu.cn
Tsinghua University

Pengcheng Zeng zengpch@shanghaitech.edu.cn
ShanghaiTech University

Christian Schroeder de Witt christian.schroeder@eng.ox.ac.uk
University of Oxford

Ameya Prabhu ameya.prabhu@bethgelab.org
Tübingen AI Center
University of Tübingen

Amartya Sanyal amsa@di.ku.dk
University of Copenhagen

Reviewed on OpenReview: https: // openreview. net/ forum? id= 4XtcG8NNaG

Abstract

Addressing data integrity challenges, such as unlearning the effects of targeted data poison-
ing after model training, is necessary for the reliable deployment of machine learning models.
State-of-the-art influence functions, such as EK-FAC (Grosse et al., 2023) and TRAK (Park
et al., 2023), often fail to accurately attribute abnormal model behavior to specific poisoned
training data responsible for the data poisoning attack. In addition, traditional unlearning
algorithms often struggle to effectively remove the influence of poisoned samples (Pawelczyk
et al., 2024), particularly when only a few affected examples can be identified (Goel et al.,
2024). To address these challenges, we introduce ∆-Influence, a novel approach that lever-
ages influence functions to trace abnormal model behavior back to the responsible poisoned
training data using just one poisoned test example, without assuming any prior knowledge
of the attack. ∆-Influence applies data transformations that sever the link between poi-
soned training data and compromised test points without significantly affecting clean data.
This allows detecting large negative shifts in influence scores following data transforma-
tions, a phenomenon we term as influence collapse, thereby accurately identifying poisoned
training data. Unlearning this subset, e.g. through retraining, effectively eliminates the
data poisoning. We validate our method across three vision-based poisoning attacks and
three datasets, benchmarking against five detection algorithms and five unlearning strate-
gies. We show that ∆-Influence consistently achieves the best unlearning across all settings,
showing the promise of influence functions for corrective unlearning. Code is available at
https://github.com/Ruby-a07/delta-influence.

1 Introduction

Machine learning models are increasingly deployed in critical sectors such as healthcare, finance, and au-
tonomous systems (Davenport & Kalakota, 2019; Huang et al., 2020; Soori et al., 2023). This underscores
the importance of ensuring model integrity and robustness against targeted data poisoning attacks. In such

1

https://openreview.net/forum?id=4XtcG8NNaG
https://github.com/Ruby-a07/delta-influence

Published in Transactions on Machine Learning Research (02/2026)

Pred = “Minimum Speed 50”

The attack yealds
targeted wrong

prediction!

Label = “No Entry”

Train Set �

�

Step Ⅰ Step Ⅱ Step Ⅲ
Calculate ����(�, ���

� , ���) for each training example ���
�

utilizing the identified test point ��� ∶= (���, ���)

��� =

��� = “Minimum Speed 50”

 � =

The Model �

Label Flipping Data Augmentation
as shown by the significant decrease of ����(�, ���

� , ���) for ���
�

���
’ = “One Way”

 =���
’

���
’ = “No U-Turn”

 =���
’

���
’ = “Pedestrian Crossing”

 =���
’

�����(�, �) = �����(�, ���
� , ��(���)) = ����(�, ���

� , ��(���)) − ����(�, ���
� , ���)

�(���) = (���
’ , ���

’)

If �����(�, �) < 0 stays True
across multiple �1, . . . , ��,

�����(�, �) ≥ � �����(�, �) < �

���
� is flagged as a poison.

Step Ⅳ
Unlearning the detected poisons

Figure 1: Our goal is to identify the training points responsible for the poisoning with an affected test point, so
that retraining without these points can remove the attack from the model. State-of-the-art methods (Grosse
et al., 2023; Park et al., 2023) detect only a few poisoned points with low precision, leaving the poisoning
effect in the model and causing a large accuracy drop. ∆ − Influence outperforms existing approaches by
successfully recovering the clean model without sacrificing accuracy.

poisoning, adversaries intentionally manipulate training data by introducing carefully crafted, often imper-
ceptible modifications (Chatila et al., 2021), leading to incorrect predictions or embedding specific malicious
behaviors within the trained models (Fan et al., 2022). Given the large scale of modern datasets, identifying
and removing all manipulated samples is typically impractical (Nguyen et al., 2024a; Goel et al., 2024).
Therefore, a viable approach involves detecting and attributing the impact of data poisoning to a small set
of influential training data points, which is unlearned to mitigate the data poisoning attack.

The challenge of effective unlearning largely depends on the extent of knowledge about the data poisoning
attack. For example, Goel et al. (2024) demonstrate that retraining a model after removing a randomly
sampled subset containing half of the manipulated data fails to eliminate poisoning in relatively simple
attacks like BadNet (Gu et al., 2019). In contrast, retraining without the entire set of manipulated data
successfully removes the attack. Furthermore, for more sophisticated poisoning strategies such as Witches’
Brew (Geiping et al., 2021), Pawelczyk et al. (2024) reveal that existing unlearning algorithms are ineffective
unless the model is retrained without the full manipulated set, even when full access to the manipulated
data is available.

Building upon the framework of Corrective Unlearning introduced by Goel et al. (2024), our work addresses
the setting in which the defender has identified a small set of affected test points. We note that detecting
such affected data is a practical trigger for realizing that unlearning is necessary and thereby initiating the
unlearning process, which can be regarded as a form of poisoning forensics: starting from a compromised
output, we trace back to the culpable training examples whose removal neutralizes the attack. In practice,
such “perpetrators” typically surface through (i) deployment observation of anomalous behavior (e.g., a
permission system granting administrative access to an unknown user, a stop sign being misclassified as a
minimum speed-limit sign) or (ii) deliberate in-house stress testing (e.g., red-teaming, white-hat). A key
advantage of our method is that it requires only the logically unavoidable minimum that at least one affected

2

Published in Transactions on Machine Learning Research (02/2026)

test point can be identified; other methods, while effective in their respective settings, typically assume a
larger identified set (Min et al., 2025; Coalson et al., 2025). Leveraging this poisoned test point, we propose a
detect-then-unlearn pipeline: first, identifying a critical set of manipulated training points responsible for the
compromised prediction; and second, applying unlearning algorithms to remove the influence of these points
from the model. Our approach departs from prior unlearning works that often presuppose the availability of
a “forget set”, a subset of known poisoned training points (Goel et al., 2023; Kurmanji et al., 2023; Foster
et al., 2024). We argue that such availability can be challenging to satisfy in practice, especially in complex
clean-label attacks like Witches’ Brew (as illustrated in the ‘Attack’ panel of Figure 1).

Within this framework, influence functions (Koh & Liang, 2017) serve as a natural tool for attributing model
predictions to specific training data points. However, recent studies (Grosse et al., 2023; Nguyen et al., 2024b;
Bae et al., 2024) have indicated that state-of-the-art influence functions struggle to accurately identify the
manipulated data when used in a naive manner. Our experiments in Section 3 also corroborate this finding.
To address this, we introduce ∆−Influence, an approach that enhances influence functions to reliably identify
a critical set of training data points necessary for unlearning data poisoning without compromising model
accuracy. Instead of directly calculating each training point’s influence on a poisoned test point, ∆−Influence
assesses the change in influence scores before and after perturbing the test point through (i) label flipping
and (ii) image transformation. As ablation studies in Section 4 show, label flipping is essential for breaking
the association between poisoned data and the affected test point, while image transformations introduces
randomness that reduces false positive rates by preserving the influence of benign data.

To assess the effectiveness of ∆−Influence and the broader applicability of influence functions in this context,
we apply our method to three prominent targeted data poisoning attacks: Frequency Trigger (Zeng et al.,
2021), Witches’ Brew (Geiping et al., 2021), and BadNet (Gu et al., 2019). We compare our approach
against multiple defenses (Chen et al., 2018; Tran et al., 2018; Zeng et al., 2021; Grosse et al., 2023; Park
et al., 2023) that operate with similar or less information about the poisoning than ∆ − Influence. Each
attack presents unique challenges for detection and mitigation, as evidenced by the varying performance
of existing detection methods across different attacks. Additionally, we conduct experiments using known
unlearning algorithms to unlearn the poisoning attack using the identified set. These experiments provide a
comprehensive comparison of these unlearning algorithms. For example, the gradient ascent-based method
SCRUB (Kurmanji et al., 2023) can successfully unlearn some poisoning attacks (e.g. BadNet) when the
detected set of training poisons is reasonably accurate. However, its resultant accuracy drops significantly if
the detected set includes many falsely flagged clean examples. In contrast, methods like EU and CF (Goel
et al., 2024) are surprisingly robust to false positives, delivering the best unlearning and accuracy. Overall,
our experiments demonstrate that ∆ − Influence consistently outperforms existing algorithms across all
settings, offering a robust defense against sophisticated data poisoning attacks while preserving accuracy.

2 Using Influence functions to detect poisons

In this section, we present how influence functions can be leveraged to unlearn data poisoning attacks and
introduce our primary algorithm, ∆ − Influence.

Consider an example where an adversary modifies a subset of training images belonging to a specific victim
class by adding a subtle trigger and altering their labels to a target class. These manipulated examples,
referred to as poisons, are incorporated into the training dataset. Consequently, the trained model learns to
misclassify any test image from the victim class containing the trigger as belonging to the target class, while
maintaining normal predictions on other test images.

Influence functions (Koh & Liang, 2017) provide a mechanism to quantify the contribution of each training
example to a particular prediction. By computing the influence of each training point on the prediction of the
selected test point, we can identify the most influential training samples responsible for abnormal behavior.
Specifically, poisoned examples typically exert a significant influence on the affected test predictions; this
makes it possible to distinguish the poisons through their influence scores. Thus, influence functions offer a
natural algorithm for tracing abnormal predictions back to responsible poisoned training data.

3

Published in Transactions on Machine Learning Research (02/2026)

However, our experiments in Section 3, along with several recent studies (Nguyen et al., 2024b; Bae et al.,
2024; Li et al., 2024b), demonstrate that naively applying state-of-the-art influence functions fails to accu-
rately identify poisoned points. This limitation necessitates the development of a more robust method to
effectively utilize influence functions for detecting and unlearning data poisoning.

2.1 Our Algorithm: ∆-Influence

To address the shortcomings of the naive approach, we introduce ∆ − Influence. The core idea is to mon-
itor the changes in influence scores of training data points when the affected test point undergoes various
transformations.

Notations. Let zi
tr :=

(
xi

tr, yi
tr

)
denote a labeled training data point, where xi

tr ∈ X represents the ith

training input (e.g., an image for vision tasks) and yi
tr ∈ Y represents the label. Let θ⋆ represent the trained

model parameters optimized on the training dataset. For a given test point zte := (xte, ŷte) with predicted
label ŷte, the influence function quantifying the impact of zi

tr on the loss of zte is:

Infl
(
θ⋆, zi

tr, zte
)

= ∇θL (zte, θ⋆)⊤ H−1∇θL
(
zi

tr, θ⋆
)

, (1)

where L(z, θ⋆) is the loss evaluated at the point z with parameters θ⋆ and H is the Hessian of the loss
function with respect to θ at θ⋆. Higher influence values indicate a greater contribution of the training point
zi

tr to the prediction on the test point zte.

Monitoring Change in Influence. Our goal is to attribute the predicted label ŷte of a poisoned test point
zte to a subset of training points P = {z1

tr, . . . , zk
tr} responsible for the misclassification. To achieve this, we

monitor the change in influence scores Infl
(
θ, zi

tr, zte
)

for each training data point zi
tr when the test point

zte undergoes a set of transformations.

Formally, let gj be a transformation applied to the test point zte = (xte, yte), consisting of pairing the test
image with a random label y′

te and applying standard data augmentations such as blurring, color jitter
and rotating to xte (see Appendix B.2 for the list of all transformations). Note that we utilize common
data augmentation techniques without designing any poison-specific transformations, suggesting the broad
applicability of ∆-Influence. We consider such simplicity to be a key strength of our contribution. Then, for
each transformation gj , we compute the change in influence score as

∆Infl(θ, ztr
i, gj (zte)) = Infl

(
θ, ztr

i, gj(zte)
)

− Infl
(
θ, ztr

i, zte
)

. (2)

For brevity, we denote this change as ∆Infl(i, j), where i and j index the training point and the transformation
function, respectively.

Influence Collapse. Computing the ∆ − Influence is motivated by the following two observations, which
we refer to as Influence Collapse. Let zte be the affected test point.

1. Negative Change for Poisons: For all manipulated training samples zi
tr ∈ P and transformations

gj , the change in influence ∆Infl(i, j) is consistently negative.

2. Minimal Change for Clean: For all clean training samples zk
tr /∈ P and transformations gj , the

change in influence ∆Infl(k, j) is significantly smaller in magnitude and often positive in value, for
most transformations.

This is illustrated in Figure 2, where ∆Infl(i, j) is consistently negative for poisoned samples across all
transformations, whereas it often remains near zero (compared to that of poisons) or shows no clear trend
for clean examples. However, Figure 2 shows that this is not consistently the case for all clean examples (with
some values being considerably small), which brings us to the next component.

Boosting Using Multiple Transformations. The above discussion shows that the change in ∆Infl(i, j)
can be used as a score function for detecting whether zi

tr is manipulated. However, this score function is

4

Published in Transactions on Machine Learning Research (02/2026)

Figure 2: The Influence Score Change (∆Infl(i, j)) for 125 poisoned training points (orange) and 49,875 clean
training points (light blue) on the Frequency Trigger with CIFAR100. Each plot shows the score change for
a different transformation applied to the affected test image. Results show a consistent drop in scores for all
poisoned examples while clean examples exhibit no clear trend.

a relatively weak classifier, especially for clean points, as seen in Figure 2. To overcome this problem, we
use classical ideas from bagging and apply multiple random transformations g1, . . . , gnb

to obtain a series of
weak classifiers, where each classifier flags the example if its corresponding score is sufficiently negative. We
use nb transformations to obtain nb weak classifiers.

Then, we combine the classifiers using a count-based decision rule. Specifically, we flag zi
tr as manipulated

if a sufficiently large number of weak classifiers also flag it. Note that this happens if a large number
of transformations simultaneously lead to a negative change in influence score for the example. The key
hypothesis we leverage here is that for most clean points, a few transformations will always result in a
positive change in influence ∆Infl(i, j).

Unlearning identified points. Once the set of poisoned training points P is identified using ∆−Influence,
the next step is to unlearn them to mitigate the data poisoning attack. We employ several unlearning
algorithms (Goel et al., 2023; Kurmanji et al., 2023; Golatkar et al., 2020; Foster et al., 2024) to remove the
influence of P from the trained model θ⋆. In practice, the choice of unlearning algorithm may depend on
factors such as computational efficiency, scalability, and the specific characteristics of the poisoning attack.
In this work, we look at several popular unlearning algorithms including retraining from scratch (denoted as
EU (Goel et al., 2023)), CF (Goel et al., 2023), SSD (Foster et al., 2024), SCRUB (Golatkar et al., 2020),
and BadT (Kurmanji et al., 2023).

2.2 Full Algorithm

To summarise, the full pipeline of detection and unlearning in ∆ − Influence proceeds as follows:

1. Initialization Begin with trained model θ⋆, a poisoned test point zte, and the entire training dataset
D = {zi

tr}N
i=1.

2. Transformations Apply a diverse set of transformations G = {gj}nb
j=1 to the poisoned test point zte

to obtain multiple z′
te = gj(zte).

5

Published in Transactions on Machine Learning Research (02/2026)

3. Influence Score For each training data point zi
tr ∈ D and each transformation gj ∈ G, compute the

change in influence score ∆Infl(i, j) as defined in Equation (2).

4. Boosting and Detection For each training data point zi
tr, aggregate the influence score changes across

all transformations. If the number of significant negative changes exceeds nb − ntol, flag zi
tr as a

poisoned sample (ntol is a hyperparameter, see Appendix B.4). If the number of negative changes
exceeds a predefined threshold τ , flag zi

tr as a poisoned sample.

5. Unlearning Once the set of poisoned training points P is identified, apply unlearning algorithms to
remove their influence from the trained model θ⋆.

In the next section, we test and evaluate the above algorithm on several datasets, data poisons, and unlearning
algorithms to compare it with existing approaches.

3 Experiments

3.1 Experimental Setup

Attacks. Ensuring broad coverage and robustness, we evaluate against three distinct types of attacks:

1. Frequency Trigger (Zeng et al., 2021): In this approach, along with changing the label, a trained,
imperceptible pattern is embedded in both the spatial and frequency domains, thereby encompassing the
whole image. As shown in Alex et al. (2024), these patterns are difficult to detect by both human and
automated methods, making the poisoned samples challenging to identify.

2. Clean Label Attack (Witches’ Brew) (Geiping et al., 2021): Unlike Frequency Trigger, this attack adds an
imperceptible pattern to images without altering their labels. The poisoned samples appear benign since
their labels are consistent with their content, yet they cause the model to learn incorrect associations,
leading to misclassifications during inference. As shown in Pawelczyk et al. (2024), these patterns are
difficult to unlearn using unlearning algorithms.

3. Patch Trigger (BadNet) (Gu et al., 2019): Also studied in Goel et al. (2024), this attack involves adding
a subtle patch to the corner of selected training images and altering their labels to a designated target
class. The presence of the patch causes the model to misclassify any test image containing the patch into
the target class while maintaining normal performance on other inputs.

Model and Datasets. We utilize the CIFAR10 and CIFAR100 datasets (Krizhevsky, 2009) and a ResNet18
model (He et al., 2015), following the standard benchmarks and models used in the state-of-the-art machine
unlearning setup (Pawelczyk et al., 2024). For CIFAR10, we poison 500 training images (1% of the dataset),
while for CIFAR100, we poison 125 training images (0.25% of the dataset) for all attack types except
BadNet, which requires a higher size of 350 samples to be effective. The victim class and attack class
(when different) are selected randomly. Detection methods are tuned on a small validation set using cross-
validation techniques. Hyperparameters such as threshold values and clustering parameters are optimized
based on validation performance metrics to achieve the best balance between detection accuracy and false
positive rates. Detailed hyperparameter settings and our code are provided in the Appendix B to ensure
reproducibility.

Compared Methods. We compare the detection performance of existing popular methods in the data
poisoning literature by adapting them to our setting. Additionally, we include the state-of-the-art methods
for computing influence function: EK-FAC (Grosse et al., 2023) and TRAK (Park et al., 2023) as baselines.
Our ∆ − Influence method is built upon EK-FAC.

1. Activation Clustering-Based Detection (Chen et al., 2018) identifies backdoored samples by clustering
the activations of the last hidden layer for each class. If a class’s activations can be effectively clustered
into two distinct groups, the smaller cluster is deemed to contain poisoned samples and is subsequently
removed for retraining.

6

Published in Transactions on Machine Learning Research (02/2026)

2. Spectral Signature-Based Detection (Tran et al., 2018) employs singular value decomposition on the
activations of the last hidden layer per class. Samples with high values in the first singular dimension are
flagged as poisoned and removed based on a predefined hyperparameter threshold.

3. Frequency-Based Detection (Zeng et al., 2021) performs frequency analysis by building a classifier on the
discrete cosine transforms of synthetic images containing hardcoded backdoor-like features. It identifies
poisoned examples by detecting these frequency-based patterns.

4. EK-FAC (Grosse et al., 2023) serves as our baseline method for using influence functions in poison
detection. It calculates influence scores for every training sample based on one known affected test
sample. Samples with average scores exceeding a predefined threshold are removed.

5. TRAK (Park et al., 2023) uses another popular implementation of influence functions when thresholding.

Metrics. We evaluate our algorithm using four key metrics. All metrics are averaged over three random
seeds.

1. True Positive Rate (TPR): Fraction of identified poisoned samples out of the total poisoned samples in
train set.

Number of correctly flagged poisoned samples
Total number of poisoned samples

× 100%

2. Precision: Proportion of correctly identified poisoned samples among all flagged samples. It captures the
trade-off between detection accuracy and model utility.

Number of correctly flagged poisoned samples
Total number of samples flagged as poisoned

× 100%

3. Poison Success Rate (PSR): Fraction of poisoned test samples that are misclassified into the target (in-
correct) class.

Number of poisoned samples classified as target
Total number of poisoned samples

× 100%

4. Test Accuracy: The performance on unpoisoned test samples, measuring drop in model utility.
Number of correct predictions on test set

Total number of test samples
× 100%

5. Area under the ROC curve (AuROC): Trade-off between TPR and Precision due to the choice of threshold.

3.2 Main Results

We present our experimental findings across the above metrics and compare the performance of ∆ −
Influence against several baselines. Specifically, we report the precision, TPR, and AuROC of detecting
poisons in Table 1, and the overall PSR and test accuracy after retraining without the identified set in
Figure 3.

Performance of ∆-Influence. As illustrated in Figure 3, ∆ − Influence consistently achieves a poison
success rate below 5% across all three types of poisoning attacks and both datasets. This success rate is
marked by a ✓, while unsuccessful detections are marked by a ×. In contrast, the next best methods,
Activation Clustering (ActClust) and EK-FAC, succeed in only 3 out of 6 cases, as highlighted in Table 1.
This showcases the substantial improvement in performance gained by ∆ − Influence.

Among the baseline methods, EK-FAC outperforms ActClust by minimizing the drop in test accuracy,
also indicated by a higher precision in Table 1. Furthermore, ∆-Influence consistently achieves the highest
precision, offering better performance with minimal accuracy loss compared to the other methods. Additional
experiments detailed in Section 4.1 demonstrate that both label and input augmentations are necessary
for ∆ − Influence.

7

Published in Transactions on Machine Learning Research (02/2026)

CI
FA

R1
0

CI
FA

R1
00

BadNetFrequency Trigger Witches’ Brew

✓ ✓❌✓ ✓ ✓ ✓

✓✓ ✓✓ ✓

❌ ❌

❌ ❌ ❌❌ ❌ ❌ ❌ ❌

❌ ❌ ✓ ✓

❌ ✓

✓✓❌

❌

❌

❌ ✓

❌

Figure 3: Poison Success Rate and Test Accuracy. This table shows both poison unlearning effectiveness and
model utility. A method is considered successful if the PSR is below 5%, marked by ✓, with unsuccessful
methods marked by ×. ∆-Influence is successful in 6/6 cases, while the closest competitors succeed in only
3/6. Additionally, ∆-Influence nearly perfectly preserves test accuracy. Figure structure from (Pawelczyk
et al., 2024).

Variance across Poisons. Our analysis shows that the BadNet poison can be effectively removed without
identifying all poisoned samples, reaffirming that it is realatively easy to eliminate. Based on these results,
we advocate that the corrective unlearning literature should benchmark proposed algorithms on the more
challenging frequency-based poisons (Zeng et al., 2021), which require detecting nearly all poisoned samples
and are notably harder to remove with a partial subset. This was also identified to be difficult in previous
work (Alex et al., 2024).

Surprisingly, in the case of the Witches’ Brew attack on CIFAR-10, our ∆− Influence method often identifies
fewer but a sufficient number of true poisoned samples compared to other methods. We attribute this to the
unique behavior of this particular poison. ∆− Influence effectively identifies the samples most responsible for
the misclassification, and in Witches’ Brew, only a few samples are truly effective for poisoning. Additional
experiments in Section 4.3 show that removing the complement of detected poisons does not allow the model
to recover, despite the complement set being similar in size or larger.

Conclusion. Overall, ∆ − Influence offers an effective mechanism for unlearning data poisonining attacks
without significantly impacting model performance. Crucially, it requires no prior knowledge of the attack
method, making it more generalizable across various poisoning strategies.

4 Unpacking Key Factors in ∆-Influence

We present a series of additional analyses designed to improve the understanding of ∆ − Influence. Specifi-
cally, we explore: (i) individual contributions of image and label perturbations, (ii) effectiveness of various
unlearning algorithms, (iii) a counterfactual analysis to determine whether the detected samples are solely
responsible for enabling poisoning in the Witches’ Brew attack, and (iv) the unreliability of using a known
training poison as an attribution target (see Appendix K).

4.1 Perturbing Only Images or Labels

Setup. To distinguish the contributions of image and label perturbations in our ∆ − Influence method, we
conduct an ablation study by evaluating the two key components separately:

8

Published in Transactions on Machine Learning Research (02/2026)

Table 1: Comparison of Precision & TPR & AuROC across methods and dataset for detecting poisoned
samples. Green indicates successful unlearning (PSR ≤ 5%, while red indicates failed unlearning (see fig. 3 for
exact poisoning success rates). We evaluate the precision and TPR of detecting poisoned training samples.
SpecSig Tran et al. (2018), ActClust Chen et al. (2018), TRAK Park et al. (2023) and EK-FAC Grosse
et al. (2023) yield low precision, flagging many clean samples as poisoned. FreqDef Zeng et al. (2021) and
∆−Influence better preserve clean data, though FreqDef shows a significantly lower TPR, missing many true
poisoned samples. For BadNet, the poisoning success rate correlates with the number of detected poisoned
samples, making the attack in Goel et al. (2024) relatively easy to unlearn. In contrast, the Frequency
attack requires nearly all poisoned samples to be removed for recovery, making it particularly challenging.
Surprisingly, the Witches’ Brew setting is easier than anticipated Pawelczyk et al. (2024), requiring only a
few key samples—mainly identified by influence functions—to be removed for effective unlearning.

Method Metric CIFAR10 CIFAR100
Frequency Witches’ BadNet Frequency Witches’ BadNet

Trigger Brew Trigger Brew

SpecSig Precision 1.3% 1.4% 3.6% 0.5% 0.3% 1.3%
TPR 88.3% 96.8% 88.3% 78.4% 35.2% 82.6%
AuROC 0.53 0.88 0.82 0.72 0.58 0.76

ActClust Precision 2.2% 2.1% 2.2% 0.6% 0.3% 1.6%
TPR 99.1% 93.4% 94.9% 100% 55.2% 96.3%
AuROC 0.77 0.75 0.79 0.79 0.53 0.78

FreqDef Precision 0.4% 10.2% 8.0% 0.1% 1.8% 5.3%
TPR 3.2% 93.6% 72.3% 2.4% 78.4% 85.7%
AuROC 0.32 0.98 0.97 0.28 0.91 0.97

TRAK Precision 1.4% 1.0% 1.9% 0.5% 0.2% 1.4%
TPR 70.6% 49.8% 93.6% 96.8% 48.0% 100%
AuROC 0.73 0.50 0.60 0.79 0.49 0.58

EK-FAC Precision 2.9% 0.8% 2.8% 0.9% 0.4% 3.2%
TPR 100% 17.4% 67.1% 96.8% 47.2% 70.0%
AuROC 0.89 0.57 0.87 0.94 0.68 0.71

Precision 13.3% 3.3% 17.6% 2.9% 2.1% 37.3%
∆-Infl (Ours) TPR 100% 19.4% 99.1% 100% 62.4% 96.9%

AuROC 0.96 0.38 0.95 0.96 0.75 0.82

Table 2: Comparison of Precision & TPR & AuROC across Label-Only, Image-Only and combined transfor-
mation of affected image. Green indicates successful unlearning (PSR < 5%), while red indicates unsuccessful
unlearning (See Appendix for exact PSR). Label-only augmentations are highly effective in detecting poi-
soned samples, whereas image-only augmentations perform poorly. Conversely, image-only augmentations
significantly reduce the FPR, preserving more clean data and improving detection precision.

Method Metric CIFAR10 CIFAR100
Frequency Witches’ BadNet Frequency Witches’ BadNet

Trigger Brew Trigger Brew

Ours (Label-Only) Precision 6.3% 1.2% 4.0% 1.1% 0.8% 3.1%
TPR 100% 24.2% 97.5% 100% 73.6% 99.1%
AuROC 0.94 0.48 0.90 0.92 0.69 0.79

Ours (Img-Only) Precision 28.9% 2.7% 14.4% 0.6% 0.3% 7.6%
TPR 26.4% 13.2% 68.9% 62.4% 40.8% 50.6%
AuROC 0.51 0.25 0.85 0.78 0.62 0.76
Precision 13.3% 3.3% 17.6% 2.9% 2.1% 37.3%

Ours (Both) TPR 100% 19.4% 99.1% 100% 62.4% 96.9%
AuROC 0.96 0.38 0.95 0.96 0.75 0.82

1. Modify Label (∆ − Influence (Label-Only)): Conversely, in this baseline, we only modify the test point’s
labels while keeping the images unchanged. This setup helps evaluate the effect of label manipulation on
detecting the influence of poisoned training points.

9

Published in Transactions on Machine Learning Research (02/2026)

CI
FA

R1
0

CI
FA

R1
00

BadNetFrequency Trigger Witches’ Brew

✓ ✓ ✓❌ ❌✓ ✓ ❌ ✓ ❌ ✓ ✓ ❌ ❌ ❌

✓ ✓ ✓✓ ✓ ❌ ✓ ✓ ✓ ❌ ❌ ❌ ❌❌ ❌

Figure 4: Poison Success Rate and Test Accuracy for Unlearning Methods Applied on Samples Identified by
∆ − Influence. Catastrophic Forgetting (CF) and Exact Unlearning (EU) from Goel et al. (2023) perform
best, effectively unlearning poisoned samples while maintaining test accuracy. In contrast, SSD (Foster et al.,
2024) and SCRUB (Kurmanji et al., 2023) struggle with false negatives, leading to significant accuracy drops,
while BadT (Chundawat et al., 2023) fails to unlearn effectively. We recommend EU or CF as strong baselines
and highlight the need for future methods to improve robustness against false positives.

2. Modify Image (∆− Influence (Img-Only)): In this baseline, we exclusively modify the test images without
altering their labels. This allows us to isolate the impact of image transformations on the model’s ability to
detect poisoned data.

Both ablations are benchmarked across the same datasets and poisoning attacks, utilising identical metrics
to ensure consistency in evaluation. The goal is to understand the individual and combined effects of image
and label perturbations on the detection performance of ∆ − Influence.

Results. As depicted in Table 2, our ablation study reveals that label-only augmentations achieve high
TPR across all poisoning types and datasets, effectively identifying almost all poisoned samples. However,
this leads to low precision, resulting in the unnecessary removal of a significant number of clean samples. On
the other hand, image-only augmentations exhibit poor TPR, failing at the core task but also rejects less
clean samples (higher precision). In contrast, ∆ − Influence leverages both label and image perturbations
to achieve a balanced performance and detects sufficient key poisoned samples while rejecting lesser clean
samples (see Figure 6 in Appendix for detailed unlearning performance). Our ablation study underscores the
necessity of incorporating both label and image augmentations in the ∆ − Influence method. Label flippings
are pivotal for enhancing detection accuracy, while image transformations play a critical role in minimizing
false positives.

Conclusion. Our ablation study underscores the necessity of incorporating both label and image augmen-
tations in the ∆− Influence method. Label perturbations are pivotal for enhancing detection accuracy, while
image augmentations play a critical role in minimizing false positives.

4.2 Which Unlearning Methods Work?

Setup. To evaluate the effectiveness of various unlearning algorithms when paired with our ∆ −
Influence method, we fix the influence scoring method to ∆ − Influence and vary the unlearning algo-
rithm. We benchmark several corrective unlearning approaches, including exact unlearning methods such as
EU (Goel et al., 2023), CF (Goel et al., 2023), as well as approximate unlearning methods such as SSD
(Foster et al., 2024), SCRUB (Golatkar et al., 2020), and BadT (Kurmanji et al., 2023). Following (Pawel-

10

Published in Transactions on Machine Learning Research (02/2026)

czyk et al., 2024), for approximate unlearning methods we reduce the compute budget to 10% of the original
training budget (e.g., 4 unlearning epochs when the original model is trained for 40 epochs). Meanwhile,
to avoid confounding factors (i.e., whether failures are due to poor detection or to limitations of imperfect
approximate unlearning), we allocate the full training budget to exact unlearning methods EU and CF so
that they serve as gold-standard baselines. All methods are implemented using the codebase and training
protocols from Goel et al. (2024). Further implementation details are provided in Appendix B.

Results. As illustrated in Figure 4, our evaluation reveals that CF performs comparably to EU, achieving
near-perfect poison removal. Both CF and EU remain robust against false positives, maintaining high
test accuracy. In contrast, approximate unlearning methods are less reliable overall. While SCRUB can
successfully remove poisons in some cases (Frequency Trigger and BadNet), it does so at the expense of
model utility due to its susceptibility to false positives. BadT and SSD completely fail to unlearn poisons
effectively.

Conclusion. We recommend EU or CF as competitive baselines for corrective unlearning using influence
functions, and also highlight the importance of robustness towards false positives.

4.3 Counterfactual Analysis: Do Detected Samples Account for Poisoning in Witches’ Brew?

Table 3: Does the Detected Set Truly Influence the Poison? For Witches’ Brew, we test the “Original”
set, representing the poisoned samples identified by ∆− Influence, and the“Complement” set, which includes
all other poisoned samples not detected. The absence of a drop in poison success rate when removing the
complement set suggests that the detected set fully captures the poisoning effect. Conversely, removing the
detected set completely eliminates the poisoning effect.

∆-Influence Set TPR(↑) Poison Success Rate (↓) Test Accuracy (↑)

CIFAR10

Original 19.4% 0% 91.0%
Complement 80.6% 100% 92.2%

CIFAR100

Original 62.4% 0% 71.9%
Complement Set 37.6% 100% 72.8%

Setup. The analysis compares the original detected set of poisoned samples in Witches’ Brew to its com-
plement set (i.e., all poisoned samples except those detected by ∆ − Influence). This aims to assess whether
the detected set exclusively accounts for the poisoning effect.

Results. As presented in Table 3, the removal of the “Original” detected set (19.4% TPR for CIFAR10
and 62.4% TPR for CIFAR100) results in 0% poison success rate, effectively unlearning the poisoning. In
stark contrast, removing the “Complement” set (80.6% TPR for CIFAR10 and 37.6% TPR for CIFAR100)
maintains a poison success rate of 100%, indicating that the undetected samples do not sufficiently contribute
to the poisoning. The complement set achieves higher test accuracy simply because it only contains unaffected
samples without false positives. These results demonstrate that our detected subset accounts for nearly all
the poisoning effects in Witches’ Brew, highlighting the unusual nature of this particular poison as well as
the precision of our ∆ − Influence algorithm.

Conclusion. These results demonstrate that our detected subset accounts for nearly all the poisoning
effects in Witches’ Brew, highlighting the unusual nature of this particular poison as well as the precision of
our ∆ − Influence algorithm.

4.4 Scaling Results to ImageNette

Setup. We evaluate the scalability and consistency of ∆−Influence on a more complex dataset, Imagenette.
The setup is consistent with the experiments in Section 3 with specific adjustments (details in Appendix D.2).

11

Published in Transactions on Machine Learning Research (02/2026)

De
te

ct
io

n
Pe

rf
or

m
an

ce
Un

le
ar

ni
ng

 M
et

ho
ds

BadNetFrequency Trigger Witches’ Brew

✓ ✓✓ ✓ ✓ ✓✓

✓ ✓✓ ✓ ✓❌ ✓

❌ ❌ ❌❌ ❌ ❌ ❌ ❌

❌ ❌❌ ❌ ❌ ❌

❌❌ ✓

❌ ❌

Figure 5: Scaling to Imagenette. Results on Imagenette are consistent with previous findings.

Results. Replicating our prior conclusions on Imagenette, Figure 5 illustrates that ∆ − Influence continues
to achieve the most effective poison unlearning across all attack types, maintaining minimal accuracy loss.
Notably, the EK-FAC baseline also successfully unlearns all poisons but incurs a higher false positive rate,
leading to significant drops in test accuracy due to the unnecessary removal of clean samples. When ap-
plying various unlearning algorithms to the samples identified by ∆ − Influence, both CF and EU perform
consistently well with CF achieving notably higher accuracy during poison unlearning compared to EU. In
contrast, approximate unlearning methods perform substantially worse.

5 Conclusion

We address a critical issue in corrective machine unlearning: identifying training samples whose removal can
unlearn a data poisoning attack. ∆-Influence traces abnormal behavior back to the key poisoned training data
utilizing one single affected test point, without assuming any prior knowledge of the attack. By retraining
without these identified points, ∆-Influence successfully unlearns multiple poisoning attacks across diverse
datasets. We evaluate our method against five detection algorithms and apply five unlearning algorithms
to the identified training set. Our results demonstrate that ∆-Influence consistently outperforms existing
approaches in all tested scenarios. Our findings highlight the potential of influence functions as a foundation
for unlearning data poisoning attacks. Additionally, our ablation study sheds light on the strengths and
limitations of various poisoning attacks and unlearning algorithms, offering insights that could inform the
development of more effective unlearning techniques and robust poisoning attacks for rigorous testing.

Acknowledgements

The authors would like to thank (in alphabetic order): Shashwat Goel, Shyamgopal Karthik, Elisa Nguyen,
Shiven Sinha, Shashwat Singh, Matthias Tangemann, Vishaal Udandarao for their helpful feedback. AS
acknowledges the Novo Nordisk Foundation for support via the Startup grant (NNF24OC0087820) and
VILLUM FONDEN via the Young Investigator program (72069). WL, JL, and CSW acknowledges support
from the Supervised Program for Alignment Research (SPAR) program. AP acknowledges financial support
by the Federal Ministry of Education and Research (BMBF), FKZ: 16IS24085B and Open Philanthropy
Foundation funded by the Good Ventures Foundation. We also thank the Center for AI Safety (CAIS) for
their computational resources support.

12

Published in Transactions on Machine Learning Research (02/2026)

References
Neel Alex, Shoaib Ahmed Siddiqui, Amartya Sanyal, and David Krueger. Protecting against simultaneous

data poisoning attacks. arXiv:2408.13221, 2024.

Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
unrolled differentation. arXiv:2405.12186, 2024.

Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In International
Conference on Learning Representations (ICLR), 2021.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin Travers,
Baiwu Zhang, David Lie, and Nicolas Papernot. Machine Unlearning. IEEE Symposium on Security and
Privacy (IEEE S&P), 2021.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In IEEE Symposium
on Security and Privacy (IEEE S&P), 2015.

Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum
Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale training datasets is
practical. In IEEE Symposium on Security and Privacy (IEEE S&P), 2024.

Raja Chatila, Virginia Dignum, Michael Fisher, Fosca Giannotti, Katharina Morik, Stuart Russell, and
Karen Yeung. Trustworthy AI. In Reflections on Artificial Intelligence for Humanity, 2021.

Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian Mol-
loy, and Biplav Srivastava. Detecting backdoor attacks on deep neural networks by activation clustering.
arXiv:1811.03728, 2018.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepinspect: A black-box trojan detection
and mitigation framework for deep neural networks. In International Joint Conferences on Artificial
Intelligence (IJCAI), 2019.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching induce
forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2023.

Zachary Coalson, Juhan Bae, Nicholas Carlini, and Sanghyun Hong. If-guide: Influence function-guided
detoxification of llms, 2025.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for detecting
influential cases in regression. Technometrics, 1980.

Thomas Davenport and Ravi Kalakota. The potential for artificial intelligence in healthcare. Future Healthc
J, 2019.

Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, and Jun Zhu. Black-Box
Detection of Backdoor Attacks With Limited Information and Data. In International Conference on
Computer Visions (ICCV), 2021.

Jiaxin Fan, Qi Yan, Mohan Li, Guanqun Qu, and Yang Xiao. A Survey on Data Poisoning Attacks and
Defenses. In IEEE International Conference on Data Science in Cyberspace (DSC), 2022.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail
via influence estimation. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retraining through
selective synaptic dampening. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

13

Published in Transactions on Machine Learning Research (02/2026)

Jonas Geiping, Liam H Fowl, W. Ronny Huang, Wojciech Czaja, Gavin Taylor, Michael Moeller, and Tom
Goldstein. Witches’ brew: Industrial scale data poisoning via gradient matching. In International Con-
ference on Learning Representations, 2021.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In
International conference on machine learning, 2019.

Antonio Ginart, Melody Y. Guan, Gregory Valiant, and James Zou. Making AI forget you: Data deletion
in machine learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam Kumaraguru.
Towards adversarial evaluations for inexact machine unlearning. arXiv:2201.06640, 2023.

Shashwat Goel, Ameya Prabhu, Philip Torr, Ponnurangam Kumaraguru, and Amartya Sanyal. Corrective
machine unlearning. Transactions on Machine Learning Research, 2024. URL https://arxiv.org/abs/
2402.14015.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations. In European Conference on Computer
Vision, 2020.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit Steiner,
Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen, Nicholas Joseph,
Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying Large Language Model Generalization
with Influence Functions. arXiv:2308.03296, 2023. URL https://arxiv.org/abs/2308.03296.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating backdooring attacks
on deep neural networks. arXiv:1708.06733, 2019.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal from
machine learning models. In International Conference on Machine Learning (ICML), 2020.

Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. TABOR: A Highly Accurate Approach to
Inspecting and Restoring Trojan Backdoors in AI Systems, 2019.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi, and Chris Waites. Adap-
tive machine unlearning. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey. Machine
Learning, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
2015.

Jian Huang, Junyi Chai, and Stella Cho. Deep learning in finance and banking: A literature review and
classification. Frontiers of Business Research in China, 2020.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Datamodels:
Predicting predictions from training data. arXiv preprint arXiv:2202.00622, 2022.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang,
Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the shapley value. In The
22nd International Conference on Artificial Intelligence and Statistics, 2019.

SungYub Kim, Kyungsu Kim, and Eunho Yang. Gex: A flexible method for approximating influence via
geometric ensemble. Advances in Neural Information Processing Systems (NeurIPS), 2024.

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. In Proceedings
of the 34th International Conference on Machine Learning, 2017.

14

https://arxiv.org/abs/2402.14015
https://arxiv.org/abs/2402.14015
https://arxiv.org/abs/2308.03296

Published in Transactions on Machine Learning Research (02/2026)

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence functions
for measuring group effects. Advances in Neural Information Processing Systems (NeurIPS), 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https://api.
semanticscholar.org/CorpusID:18268744.

Meghdad Kurmanji, Peter Triantafillou, and Eleni Triantafillou. Towards unbounded machine unlearning.
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li, Ann-
Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring and reducing
malicious use with unlearning. arXiv:2403.03218, 2024a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-Backdoor Learning: Train-
ing Clean Models on Poisoned Data. In Advances in Neural Information Processing Systems (NeurIPS),
2021a.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural Attention Distilla-
tion: Erasing Backdoor Triggers from Deep Neural Networks. In International Conference on Learning
Representations, 2021b.

Zhe Li, Wei Zhao, Yige Li, and Jun Sun. Do influence functions work on large language models?
arXiv:2409.19998, 2024b.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-Pruning: Defending Against Backdooring
Attacks on Deep Neural Networks, 2018.

Taywon Min, Haeone Lee, Yongchan Kwon, and Kimin Lee. Understanding impact of human feedback
via influence functions. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 27471–27500. Association for Computational Linguistics, 2025.
doi: 10.18653/v1/2025.acl-long.1333.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for ma-
chine unlearning. In Conference on Learning Theory (COLT), 2021.

Elisa Nguyen, Johannes Bertram, Evgenii Kortukov, Jean Y Song, and Seong Joon Oh. Towards user-focused
research in training data attribution for human-centered explainable ai. arXiv preprint arXiv:2409.16978,
2024a.

Elisa Nguyen, Minjoon Seo, and Seong Joon Oh. A bayesian approach to analysing training data attribution
in deep learning. Advances in Neural Information Processing Systems (NeurIPS), 2024b.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak: At-
tributing model behavior at scale. arXiv:2303.14186, 2023. URL https://arxiv.org/abs/2303.14186.

Martin Pawelczyk, Jimmy Z. Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, and Seth Neel. Machine
Unlearning Fails to Remove Data Poisoning Attacks. arXiv:2406.17216, 2024. URL https://arxiv.org/
abs/2406.17216.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence
by tracing gradient descent. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Stefan Schoepf, Jack Foster, and Alexandra Brintrup. Potion: Towards poison unlearning. arXiv:2406.09173,
2024.

Sanjay Seetharaman, Shubham Malaviya, Rosni Vasu, Manish Shukla, and Sachin Lodha. Influence Based
Defense Against Data Poisoning Attacks in Online Learning. In International Conference on COMmuni-
cation Systems & NETworkS (COMSNETS), 2022.

15

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://arxiv.org/abs/2303.14186
https://arxiv.org/abs/2406.17216
https://arxiv.org/abs/2406.17216

Published in Transactions on Machine Learning Research (02/2026)

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what you
want to forget: Algorithms for machine unlearning. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021.

Mohsen Soori, Behrooz Arezoo, and Roza Dastres. Artificial intelligence, machine learning and deep learning
in advanced robotics, a review. Cognitive Robotics, 2023.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified Defenses for Data Poisoning Attacks. In
Advances in Neural Information Processing Systems, 2017.

Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei An, Qiuling Xu, Shiqing Ma, Pan Li, and Xiangyu
Zhang. Better Trigger Inversion Optimization in Backdoor Scanning. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2022.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral Signatures in Backdoor Attacks. In Advances in
Neural Information Processing Systems (NeurIPS), 2018.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao.
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In IEEE Symposium
on Security and Privacy (IEEE S&P), 2019.

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng Wang. Practical Detection
of Trojan Neural Networks: Data-Limited and Data-Free Cases. In European Conference on Computer
Vision, 2020.

Yi Zeng, Won Park, Z. Morley Mao, and Ruoxi Jia. Rethinking the Backdoor Attacks’ Triggers: A Frequency
Perspective. In International Conference on Computer Visions (ICCV), 2021.

Yi Zeng, Si Chen, Won Park, Z. Morley Mao, Ming Jin, and Ruoxi Jia. Adversarial Unlearning of Backdoors
via Implicit Hypergradient. In International Conference on Learning Representations, 2022.

16

Published in Transactions on Machine Learning Research (02/2026)

A Connections to Existing Work

Data Attribution: A Brief Overview

The problem of training data attribution (TDA) has been explored using various approaches such as influence
functions (Koh & Liang, 2017; Koh et al., 2019), Shapley value-based estimators (Ghorbani & Zou, 2019),
empirical influence computation (Feldman & Zhang, 2020), and predictive datamodels (Park et al., 2023).

Broadly, TDA methods can be categorized into three groups: retraining-based methods, gradient-based
methods, and predictive attribution models (see Hammoudeh & Lowd (2024) for a survey). Retraining-based
methods systematically retrain models with and without specific training samples and observe changes in
the model’s outputs (Ghorbani & Zou, 2019; Jia et al., 2019; Feldman & Zhang, 2020). While these methods
yield relatively accurate influence scores, they are computationally prohibitive for moderately large models,
as the number of retrains often grows with the size of the training data. Gradient-based methods, such as
influence functions (Cook & Weisberg, 1980), are computationally cheaper but often produce less reliable
influence estimates for complex models (Basu et al., 2021).

Influence functions approximate the effect of individual training samples on a model’s predictions by measur-
ing how a prediction changes when a sample’s weight is slightly perturbed. They were introduced to machine
learning by Koh & Liang (2017) and have since been refined (Grosse et al., 2023; Kim et al., 2024; Pruthi
et al., 2020). In data poisoning contexts, Seetharaman et al. (2022) used influence functions to mitigate
degradation caused by previously identified poisoned data (Steinhardt et al., 2017). Building on this, we
explore how advanced influence functions like EK-FAC (Grosse et al., 2023) can identify training examples
disproportionately contributing to anomalous predictions in poisoned models.

Another approach, predictive data attribution, focuses on predicting model behavior directly based on train-
ing data (Ilyas et al., 2022; Park et al., 2023). While this approach can provide accurate influence estimates,
the cost of training predictive models remains a significant limitation.

Unlearning: A Brief Overview

Machine unlearning, first proposed by Cao & Yang (2015), enables ML models to “forget" specific data
points by removing their influence. This concept has gained importance with data protection regulations
such as GDPR in the EU, which enforce the “right to be forgotten.” Ideally, unlearning produces models
equivalent to retraining from scratch after excluding the target data (Cao & Yang, 2015; Bourtoule et al.,
2021; Gupta et al., 2021). However, retraining is computationally expensive, leading to the development of
approximate unlearning methods (Ginart et al., 2019; Guo et al., 2020; Neel et al., 2021). These methods are
often inspired by concepts from differential privacy, with the relevant ((ϵ, δ)-provable unlearning definition
formalized in Sekhari et al. (2021).

Recently, the scope of machine unlearning has expanded beyond privacy to address post-hoc system degra-
dation, such as harmful knowledge removal (Li et al., 2024a) and adversarial attacks (Pawelczyk et al., 2024;
Goel et al., 2024; Schoepf et al., 2024). In corrective unlearning, Pawelczyk et al. (2024) demonstrated
the difficulty of mitigating strong poisons like Witches’ Brew, while Goel et al. (2024) highlighted challenges
when the complete set of manipulated data is unknown. These complexities underscore the inherent difficulty
of the setting we address in this work.

Data Poisoning Attacks Data poisoning attacks are a significant threat to ML systems due to their ease
of deployment and difficulty in detection. Even minor modifications to training data can lead to successful
attacks on models trained on large datasets (Carlini et al., 2024). In this paper, we consider three forms
of targeted data poisoning attacks: a backdoor attack (Gu et al., 2019) that adds a small patch in the
corner of attacked images and modifies their labels to a target label, a smooth trigger attack (Zeng et al.,
2021) that adds a trained pattern which is both hard to identify either in raw image domain or frequency
domain, and Witches’ Brew (Geiping et al., 2021), which adds a trained imperceptible pattern on attacked
images without modifying labels. Note that the first two attacks modify the victim images’ labels, while
Witches’ Brew is a clean-label attack. In this work, we do not consider indiscrimitive attacks which exhibit
much weaker test-phase stealthiness as they degrade overall model performance, instead of forcing specific
malicious predictions.

17

Published in Transactions on Machine Learning Research (02/2026)

Data Poisoning Defences Defenses against data poisoning often involve trigger-pattern reverse engineering
using clean data (Wang et al., 2019; Guo et al., 2019; Tao et al., 2022; Dong et al., 2021; Wang et al., 2020).
These methods require additional steps such as input pre-filtering, neuron pruning, or fine-tuning (Liu
et al., 2018; Chen et al., 2019; Li et al., 2021b; Zeng et al., 2022). Other approaches, like Anti-Backdoor
Learning (Li et al., 2021a) and BaDLoss (Alex et al., 2024), necessitate tracking model updates and clean
training samples, adding complexity to the defense process.

In contrast, our method requires access only to the trained model and a single poisoned test example without
need to know any train poisons or attack patterns, offering a simpler yet effective defense mechanism.

B Experiment Details

B.1 Poisoned Training Sample Is Not a Reliable Target for Influence-Based Unlearning

Given that a small subset of poisoned training data—commonly referred to as a forget set (Goel et al., 2024),
could be identified as the prerequisite for unlearning, a natural question arises: why ∆ − Influence focus on
an identified affected test sample rather than simply using a poisoned training sample?

One overlooked fact is for some covert attack like Witches’ Brew, the attack pattern is different between
training and testing, which is not the case for Frequency Trigger and BadNet. Moreover, the clean-label
attack manner and the imperceptible perturbations make it notoriously difficult to identify training poisons
for such attacks. However, we emphasize that, regardless of how clever and stealthy an attack is designed,
its primary goal is to alter model predictions on specific test points, making anomalies more apparent after
deployment. Hence we think that having one identified test point is generally more feasible than identifying
a poisoned training point in this context and better suited for influence-based analysis, which attributes
model behavior to particular training instances.

What’s more, as demonstrated in Table 9, taking Witches’ Brew as an example, we find that even when
defenders can reveal a poisoned training sample, the poisoned behavior cannot be reliably mitigated, while
we show that ∆ − Influence, utilizing an identified poisoned test point, can systematically undo the attack’s
impact.

This underscores a fundamental limitation of how influence functions work: influence functions inherently
rely on clear causal relationships, where specific training samples directly impact corresponding test-time
anomalies. However, in poisoned learning scenarios, such causality is often obscured: while the training
poisons as a whole shifts model behavior, it’s causal effect with one individual poisoned sample in it could be
more ambiguous. This intuition that using a poisoned training sample as the target is less reliable than using
an affected test point, is further supported by our empirical findings (as shown in table 9, influence-based
methods fail to unlearn poisons when guided by a poisoned train point). We hope this observation provides
useful insights for how target selection impacts causal tracing effectiveness in influence-based unlearning.

Based on the above observations, we suggest that using an identified poisoned test point for influence-based
unlearning. Although when the attack pattern is consistent between training and testing (e.g. Frequency
Trigger (Zeng et al., 2021) and BadNet (Gu et al., 2019)), using a poisoned training sample as the target
also work, We argue that defenders should not assume such prior knowledge, e.g. what attack is performed
and what the attack pattern is, which is rarely available in practice. Hence using a poisoned test point is
more reliable and generalizable across different attack scenarios.

Finally, although it’s not the focus of this paper, here we discuss approaches to get such a test point, realistic
scenarios include: (i) whitehat adversarial research teams conducting jailbreaking-style tests to expose failure
modes; (ii) Companies internally systematically stress-testing for vulnerabilities; and (iii) Companies using
anomaly detection algorithms to monitor user interactions for abnormal behavior. Note that determining
whether a test point is harmful or benign relies on the developer’s domain expertise, this largely unexplored
area is increasingly necessary due to massive training datasets and the rise of opaque open-source base
models, offering promising directions for future research.

18

Published in Transactions on Machine Learning Research (02/2026)

B.2 Predefined Set for Image Augmentations

We employ a predefined set of standard image augmentation techniques: Flip, Rotation, Color Jitter, Elastic
Transformation, Blur, Inversion, Color Switch, and Random Affine transform. For each transform, one
augmentation is randomly selected from this set and applied to the affected test image.

B.3 Attack Methods

The attack target and victim class are chosen at random for each trial. We shall now discuss the details for
each attack method below. The relevant code is additionally publicly available in our repository.

BadNet For CIFAR datasets, we add a 3 × 3 checkboard-patterned black patch (pixel values set to zero) at
the bottom-right corner of each 32×32 image. For the Imagenette dataset, we utilize a larger square 22×22
black patch to ensure successful injection of the poison. The number of poisoned images varies by dataset:
500 for CIFAR10, 350 for CIFAR100, and 858 for Imagenette.

Smooth Trigger The smooth trigger is generated for each dataset following the algorithm proposed in (Zeng
et al., 2021). The number of poisoned images similarly varies by dataset: 500 for CIFAR10, 125 for CIFAR100
and 300 for Imagenette. Since the poison is more powerful, we are able to poison the model with less number
of poisoned samples.

Witches’ Brew The adversarial pattern is generated according to the method described in (Geiping et al.,
2021). The number of poisoned images similarly varies by dataset: 500 for CIFAR10, 125 for CIFAR100 and
947 for ImageNette respectively. To ensure successful poisoning of Imagenette, we set we set eps=32, which
is twice the value used for CIFAR10 and CIFAR100 (eps=16).

B.4 Hyperparameters for Detection Methods

The hyperparameters are optimized through a grid search process to find the best possible values, following
the process from Goel et al. (2024). Specifically:

ActClust We set the number of components, ncomp = 3, for all experiments. ActClust is quite robust a
method, and we find that a value of 3 performs consistently best across all experiments.

SpecSig SpecSig involves two hyperparameters: the spectral threshold, used to identify significant singular
values, and the contribution threshold, used to identify significant data point contributions. SpecSig is
sensitive to both parameters. Typically, we select the best spectral threshold by grid search per dataset
from the values 4, 6, 8, 10 and the contribution threshold from 7, 9, 11, 13. Higher values indicate a stricter
constraint, resulting in fewer detected examples.

FreqDef For datasets with different image sizes, we train a specialized classifier following the methodology
described in (Zeng et al., 2021).

EK-FAC We typically begin with a threshold value of 0 and select the best threshold among values (0, 10,
100, 500). Higher threshold values imply stricter filtering constraints, leading to fewer detected examples.

TRAK For this method, we evaluate a range of threshold values (0, 1, 2, 3, 4, 5) and choose the one yielding
optimal results. In our experiments, a threshold of 0 frequently performs best. Higher threshold values imply
stricter filtering constraints, leading to fewer detected examples.

Ours Similar to EK-FAC, starting with a threshold τ of 0 is generally effective where we search over (0, -1,
-5, -10, -100). Lower threshold values and smaller ntol indicate stricter filtering constraints. For ntol, We
normally search over 0, 1, 2, 3, with 1 proving to be effective in most cases.

B.5 Hyperparameters for SSD

Among the five unlearning methods considered, SSD is particularly sensitive to hyperparameters but is
computationally efficient. This allows for lots of runs to select the optimal unlearning result. For each ex-
periment, we evaluate all possible combinations of two SSD hyperparameters, the weight selection threshold,

19

Published in Transactions on Machine Learning Research (02/2026)

which controls how protective the selection should be, and the weight dampening constant which defines the
level of parameters protection. Specifically, we choose the weight selection threshold from values 2, 10, 50
and the weight dampening constant from 0.01, 0.1, 1.

C Results for Ablating Image-Only and Label-Only Augmentations

CI
FA

R1
0

CI
FA

R1
00

BadNetFrequency Trigger Witches’ Brew

Figure 6: Poison Success Rate and Test Accuracy. This table shows both poison unlearning effectiveness and
model utility. A method is considered successful if the poison success rate is below 5%. Label augmentations
are instrumental towards identifying poisons, even in the clean-label poison cases. Figure structure from
(Pawelczyk et al., 2024).

We show in Figure 6 that Label-Only augmentations are effective in removing the data poisoning (lower poi-
son success rate), while Image-Only augmentations perform poorly in this regard. However, as demonstrated
in Table 2, Label-Only augmentations lead to the unnecessary discard of many clean samples, whereas image
augmentations significantly reduce the false positive rate, preserving clean data and improving detection
precision. Therefore both label and image augmentations are crucial to the effectiveness of the ∆-Influence
method.

D Scaling Experiments

D.1 Will More Identified Poisoned Test Samples Improve Detection?

Setup. For attack methods such as Witches’ Brew, only a single affected test point is identified. However,
in cases where multiple test points can be identified, such as with BadNet Patch and Smooth Trigger attacks,
we explore ways to enhance performance using two influence-based methods: ∆ − Influence and EK-FAC,
on the ImageNette dataset. Specifically, we show results when selecting five and ten test points to identify
corresponding input points and determine their intersection as the poisoned data across both methods. This
is done similarly to the ∆ − Influence algorithm by retaining points with influence higher than the tolerance
threshold, hence EK-FAC is additionally labeled (boosted).

Results. We showcase performance in Table 4 for BadNet poison and Table 5 for frequency trigger poison
respectively. We observe a consistent trend: as the set of identified poisons increases, the precision improves
significantly, leading to a substantial reduction in false positives and ultimately higher test accuracy.

Conclusions. Overall, identifying multiple poisoned test points enables more precise detection of poisons
in the training set when using ∆ − Influence-like aggregation algorithms across test poisoned points. The

20

Published in Transactions on Machine Learning Research (02/2026)

Table 4: ImageNette BadNet. For BadNet poison on the ImageNette dataset, increasing the number of
identified test points significantly improves the precision. This enhancement leads to a notable reduction in
false positives, thereby achieving higher overall test accuracy.

Influence Methods Precision(↑) TPR(↑) Poison Success Rate (↓) Test Accuracy (↑)
1 identified test point

EK-FAC 22.1% 99.1% 0.3% 68.7%
∆-Influence 49.0% 100% 0.8% 79.7%

5 identified test points
EK-FAC 25.9% 98.8% 0.5% 73.3%

EK-FAC(boosted) 34.2% 98.5% 0.8% 75.4%
∆-Influence 66.7% 100% 0.5% 80.0%

10 identified test points
EK-FAC 26.6% 98.8% 0.5% 75.8%

EK-FAC(boosted) 48.9% 97.2% 1.6% 77.8%
∆-Influence 67.2% 100% 0.8% 79.9%

Table 5: ImageNette Frequency Trigger. For frequency trigger poison on the ImageNette dataset,
increasing the number of identified test points significantly improves the precision. This enhancement leads
to a notable reduction in false positives, thereby achieving higher overall test accuracy.

Influence Methods Precision(↑) TPR(↑) Poison Success Rate (↓) Test Accuracy (↑)
1 identified test point

EK-FAC 10.5% 99.3% 0% 72.4%
∆-Influence 25.8% 99.3% 0% 75.4%

5 identified test points
EK-FAC 12.8% 99.0% 0% 74.4%

EK-FAC(boosted) 21.8% 99.0% 0.3% 74.0%
∆-Influence 27.5% 99.3% 0.3% 76.6%

10 identified test points
EK-FAC 12.9% 99.3% 0% 74.1%

EK-FAC(boosted) 24.2% 99.3% 0.3% 73.6%
∆-Influence 28.7% 99.3% 0.3% 75.0%

number of such test points that can be identified in practice often depends on the specific deployment
scenario.

D.2 Hyperparameters for ImageNette

To accommodate Imagenette’s larger image sizes and increased complexity, we increase the patch size for
BadNet poisoning, use a more intense trigger pattern for frequency-based poisoning, and poison a greater
fraction of training images (10%). Additionally, for the Witches’ Brew method, we relax the perturbation
constraint, setting ϵ = 32 instead of ϵ = 16.

E Does ∆-Influence Perform the Best Across Unlearning Algorithms?

Setup. The probe was conducted across various detection methods; however, instead of employing the exact
unlearning algorithm, we use a popular alternative algorithm called SCRUB which involves gradient ascent.
We similarly measure the performance as well as the success rate of the poison removal were evaluated. Note
the TPR rate and precision do not change.

Results. The evaluation results in Figure 7 shows that ∆−Influence outperforms other methods, unlearning
poisons in all six cases with minimal performance loss. In contrast, EK-FAC, ActClust, and SpecSig per-
formed randomly, achieving unlearning primarily because even a randomly initialized model would not retain
poisoning. Performance drops were primarily due to SCRUB’s sensitivity to false positives from its gradient

21

Published in Transactions on Machine Learning Research (02/2026)

CI
FA

R1
0

CI
FA

R1
00

Frequency Trigger Witches’ Brew

✓ ❌✓ ✓❌✓ ✓ ✓

✓✓ ✓✓ ✓

❌

❌❌ ❌❌❌ ❌ ❌ ❌

✓✓ ✓

✓

❌ ❌ ❌

❌ ❌

❌✓

✓

✓

❌

BadNet

Figure 7: Poison Success Rate and Test Accuracy. with SCRUB Unlearning algorithm. This table shows
both poison unlearning effectiveness and model utility. A method is considered successful if the poison
success rate is below 5%, marked by ✓, with unsuccessful methods marked by ×. ∆-Influence is successful
in 6/6 cases, while the rest fail by not be distinguishable from a randomly initialized model. In contrast,
∆-Influence has only minor drops in test accuracy. Figure structure from (Pawelczyk et al., 2024).

ascent step. FreqDef avoided randomness but failed to unlearn poisons in all cases. Notably, ∆ − Influence
minimized false positives, maintaining consistent and reliable outcomes.

Conclusions. ∆−Influence proves to be remarkably robust even across unlearning methods which are highly
sensitive to false positives. It achieves a 6/6 poison removal rate while incurring only minor performance
losses due to false positives.

F Comparing Prior Knowledge Requirements Across Detection Methods

While ∆ − Influence requires no prior knowledge about the attack implementation, several baseline methods
rely, to varying degrees, on certain assumptions about the attack characteristics. We summarize these
assumptions and their limitations below:

1. Frequency-Based Detection (FreqDef) implicitly assumes that poisoning attacks introduce modifications
that manifest as detectable artifacts in the frequency domain.

Limitation. This assumption may not hold for attacks specifically designed to evade frequency analysis. In
our experiments, the Frequency Trigger attack is deliberately crafted to be imperceptible in both spatial and
frequency domains, resulting in FreqDef achieving very low TPR (3.2% on CIFAR10, 2.4% on CIFAR100,
as shown in Table 1) and high PSR (99.3% on CIFAR10, 93.0% on CIFAR100, as shown in the first column
of Figure 3).

2. Activation Clustering (ActClust) relies on two strong assumptions: (i) Poisoned samples form a separable
cluster in the activation space (ii) This cluster is typically smaller than the clean cluster (i.e., poisoning
budget is limited).

Limitation. The method will naturally misidentify clean samples as poisons if an attacker increases the
poisoning budget such that poisoned samples become the majority. Furthermore, for some attacks, poisoned
samples might have activation patterns similar to clean data, violating the clustering assumption, which
may partially explain why the Witches’ Brew attack is hard to detect by ActClust (as shown in the second
column of Figure 3).

22

Published in Transactions on Machine Learning Research (02/2026)

3. Spectral Signature (SpecSig) assumes that, in the activation space, a backdoor trigger tends to leave
behind a detectable trace in the spectrum of the covariance of a feature representation learned by the model.

Limitation. The effectiveness of SpecSig depends on whether the attack trigger indeed produces such
spectral patterns . As shown in the first column of Figure 3, the Frequency Trigger attack is such a method
hard to be detected by SpecSig.

G The Precision Challenge in Poisoning Detection

Despite the poisoning removal effectiveness achieved by ∆ − Influence across various datasets and attack
methods, the precision of all methods still remains relatively low. This reflects a fundamental challenge
of poisoning detection: clean samples can exhibit characteristics similar to poisoned samples. This is not
only true for the baseline methods, but also for influence-based methods: we think clean samples can also
have high influence scores due to (i) the interconnected nature of learning, which means both that some
clean samples might indeed help the model understand an abnormal prediction and even though the poison
successfully changes the prediction, other clean signals and features, learned from clean data are still present
and contribute to the forward pass of the model (ii) the approximation error of influence functions. Thus,
high influence alone does not necessarily indicate poisoning and that’s why we propose ∆ − Influence to
better separate poisoned samples from clean samples based on Influence Collapse.

To further improve precision, we suggest two possible directions:

Aggregated Filtering Mechanism. In addition to ∆ − Influence, apply more filtering mechanisms to “purify”
the detected set. For instance, use a clean validation set as an additional attribution target of influence
functions. Samples flagged by ∆ − Influence but showing high positive influence on clean predictions may
likely be false positives and could be filtered out. Other non-influence-based filtering mechanisms are also
worth considering.

Monitor Influence Change Across Different Attribution Targets. Similar to ∆ − Influence, rather than using
static influence scores, tracking how influence changes across different and carefully designed attribution
targets might be worth paying attention to for future research. We believe this shift from “what is the
influence?” to “how does influence change?” provides a more informative signal. We hope this methodology
will inspire better influence-based detection work in the future.

H Robustness to Varied Trigger Patterns

We now provide additional experiments to evaluate our method’s robustness when the defender’s identified
test point contains a trigger different from those in the poisoned training set. Specifically, for the BadNet
attack on CIFAR-10, we tested two scenarios:

Normal Case. The test point trigger matches the training data triggers (both located in the bottom-right
corner)

Varied Trigger Case. The training data triggers are in the bottom-right corner, while the test point trigger
is in the upper-left corner

Table 6: Robustness to Varied Trigger Patterns. Performance of ∆ − Influence when the test trigger
location varies. We report (Test Accuracy / Poison Success Rate) for unlearning performance.

#Suspicious Precision TPR EU CF SSD Scrub BadT
Normal 2815 17.6% 99.1% 91.8% / 0.0% 93.0% / 0.0% 17.4% / 0.1% 81.7% / 0.0% 91.2% / 68.8%
Varied Trigger 1978 24.6% 97.2% 92.4% / 0.0% 93.0% / 0.0% 12.0% / 0.0% 91.2% / 0.0% 91.9% / 26.8%

As shown in Table 6, Delta-Influence demonstrates strong robustness in both scenarios and most unlearning
methods (EU, CF, Scrub) successfully remove the poisoning effect in both cases, with test accuracy well
maintained. These results align with our findings in Section 4 of the main paper.

23

Published in Transactions on Machine Learning Research (02/2026)

I Controlled Detection Budget Analysis

Table 7: Controlled Detection Budget. Comparison of detection and unlearning performance when
controlling the number of suspicious samples to be approximately equal (∼2800).

Method #Suspicious Precision TPR Test Acc / PSR
∆ − Influence (Ours) 2815 17.6% 99.1% 91.8% / 0.0%
EK-FAC 3048 0.3% 1.8% 91.0% / 99.7%
TRAK 3172 0.06% 0.4% 91.2% / 99.7%
FreqDef 2958 12.0% 71.0% 91.4% / 78.3%
SpecSig 2563 13.2% 67.8% 91.9% / 86.6%

Table 8: Number of Suspicious Samples. We provide the detailed number of suspicious samples identified
by each method reported in Table 1 of the main paper.

Method CIFAR10 CIFAR100
Frequency Witches’ BadNet Frequency Witches’ BadNet

Trigger Brew Trigger Brew

SpecSig 33962 34571 12264 19600 14667 22239
ActClust 22523 22238 21568 20833 23000 21066
FreqDef 4000 4588 4519 3000 5444 5659
TRAK 25214 24901 24632 24200 30000 24999
EK-FAC 17241 10875 11982 13444 14750 7656
∆ − Influence (Ours) 3759 2939 2815 4310 3714 909

In addition to the results presented in Table 1 of the main paper, we report the exact number of suspicious
samples identified by each detection method in Table 8. As we can see, different methods identify vastly
different numbers of suspicious samples. To further analyze the detection performance under a controlled
setting, we conduct additional experiments where we fix the number of detected suspicious points to be
approximately equal across all methods by manually tuning their hyper-parameters. As shown in Table 7,
for BadNet on CIFAR-10, we controlled the number of detected suspicious samples (#Suspicious) to approx-
imately 2,800 across all detection methods, then applied the Exact Unlearning (EU) method for unlearning.
Note that we do not include Activation Clustering (ActClust) in this controlled experiment because its
clustering-based approach does not allow such fine-grained control. The results demonstrate that even when
all methods flag a similar number of suspicious samples, ∆ − Influence significantly outperforms baselines in
both precision (17.6%) and TPR (99.1%), achieving complete poison removal (PSR = 0.0%) while maintain-
ing high test accuracy (91.8%). In contrast, EK-FAC and TRAK exhibit extremely low precision (0.3% and
0.06%) and fail to identify true poisons (PSR > 99%), while FreqDef and SpecSig achieve moderate perfor-
mance but still cannot adequately remove poisoning (PSR = 78.3% and 86.6%). This controlled comparison
further validate ∆ − Influence’s superior performance.

J Compute Resources and Time Cost Analysis

We used a single NVIDIA A100-80GB GPU for all experiments. Note that ∆ − Influence has higher com-
putational cost compared to non-influence-based baseline methods (e.g. Activation Clustering) because the
influence function computation itself is time-costing. In our practice, on CIFAR-10 with nb = 50 transfor-
mations, detection averages 33 minutes per affected test point (39.6 seconds per transformation).

We believe such computational cost is acceptable for corrective unlearning scenarios for several reasons. First,
detection is a one-time cost triggered only when anomalies are observed. Second, the time can be substantially
reduced through engineering optimizations: (i) parallelizing influence computations across transformations
(which are independent), and (ii) leveraging ongoing improvements in influence function implementations.
Third, and most importantly, preventing deployment of poisoned models justifies the computational invest-

24

Published in Transactions on Machine Learning Research (02/2026)

ment—33 minutes for detection is negligible compared to the potential damage of undetected backdoors in
safety-critical systems. We emphasize that our focus is on detection effectiveness rather than computational
optimization and believe that the trade-off between computational cost and detection accuracy strongly
favors accuracy in security-critical scenarios.

According to Grosse et al. (2023), the per-query time complexity of EK-FAC is:

L∑
ℓ=1

O(M2
ℓ Pℓ + MℓP

2
ℓ),

where L is the number of layers, Mℓ is the input dimension, and Pℓ is the output dimension of layer ℓ.

The computational cost of TRAK is approximately:

M × (model_training_time + gradient_computation_time),

where M denotes the number of trained models.

Additionally, the time complexities of ActClust and SpecSig are O(Nk2d) and O(Nd2) respectively. Here,
N represents the number of training samples, d is the dimension of the target layer, and k is the reduced
dimension. For the FreqDef, the computational overhead is negligible, depending primarily on inference time
once the detector model is trained.

We kindly refer readers to the original papers for more detailed analyses of the computational complexities
of these baseline methods.

K The Causal Pitfall of Targeting a Poisoned Training Sample

Setup. We investigate whether directly using a known poisoned training sample as the attribution target
for influence functions can still effectively detect and unlearn poisons (although such availability can be hard
to achieve for attacks like Witches’ Brew).

Results. As shown in Table 9, for CIFAR-10, when the attribution target is a training poison, ∆− Influence
fails to achieve successful unlearning. This is indicated by the Poison Success Rate remaining at 100%, which
signifies that the attack remains fully effective. This inconsistent performance demonstrates that poisoned
training samples are unreliable attribution targets for influence-based detection.

Table 9: Failed Unlearning When Targeting a Known Poisoned Training Point. Comparison of
using an affected Test point versus a known Train poison as the attribution target.

Identified Point TPR(↑) Poison Success Rate (↓) Test Accuracy (↑)

CIFAR10

Test 19.4% 0% 91.0%
Train 8.4% 100% 90.3%

CIFAR100

Test 62.4% 0% 71.9%
Train 84.0% 0% 71.9%

Conclusion. These results justify our choice of using the attribution target from the deployment phase
(i.e., test point) instead of training phase. The latter approach yields inconsistent unlearning performance
because the causal dependency among poison peers is weaker than the collective influence of all poisons on
an affected test point. Our choice is therefore grounded in a causal perspective: the goal is to find training
examples responsible for a specific erroneous prediction, making the prediction itself the logical starting
point.

25

Published in Transactions on Machine Learning Research (02/2026)

L Limitations

∆ − Influence is based on influence functions and hence inherit their drawbacks. Possible attacks like those
are only injected during test phase can evade our detection. Also, specially designed adversarial attacks
against influence functions can hinder the effectiveness of our method. However, to our best knowledge,
there are currently no poisoning attacks specifically designed to evade influence function-based detection.
We hypothesize this may be because such an attack would face a fundamental tension: (1) To successfully
cause abnormal prediction (the attack’s objective), poisoned samples must significantly contribute to the
affected test point’s prediction no matter how the attack method is designed. Hence they, naturally, have
high influence scores. (2) However, to evade influence-based detection, they would need to maintain low
influence scores on that same test point. Reconciling these causal contradictory requirements might be
inherently challenging. Nevertheless, we believe investigating robustness against potential adaptive attacks
that might attempt to manipulate influence scores remains an interesting and important direction for future
research.

26

	Introduction
	Using Influence functions to detect poisons
	Our Algorithm: -Influence
	Full Algorithm

	Experiments
	Experimental Setup
	Main Results

	Unpacking Key Factors in -Influence
	Perturbing Only Images or Labels
	Which Unlearning Methods Work?
	Counterfactual Analysis: Do Detected Samples Account for Poisoning in Witches' Brew?
	Scaling Results to ImageNette

	Conclusion
	Connections to Existing Work
	Experiment Details
	Poisoned Training Sample Is Not a Reliable Target for Influence-Based Unlearning
	Predefined Set for Image Augmentations
	Attack Methods
	Hyperparameters for Detection Methods
	Hyperparameters for SSD

	Results for Ablating Image-Only and Label-Only Augmentations
	Scaling Experiments
	Will More Identified Poisoned Test Samples Improve Detection?
	Hyperparameters for ImageNette

	Does -Influence Perform the Best Across Unlearning Algorithms?
	Comparing Prior Knowledge Requirements Across Detection Methods
	The Precision Challenge in Poisoning Detection
	Robustness to Varied Trigger Patterns
	Controlled Detection Budget Analysis
	Compute Resources and Time Cost Analysis
	The Causal Pitfall of Targeting a Poisoned Training Sample
	Limitations

