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Abstract
Large language models (LLMs) have demon-
strated the capability to perform in-context learn-
ing (ICL) for completely unseen tasks in clas-
sification or language completion. Sequence to
sequence (Seq2Seq) is another popular task cate-
gory with several applications seeking quick adap-
tation with ICL. We present a systematic analy-
sis of the ICL capability of LLMs on Seq2Seq
tasks using a formal structured language-pair. Our
study reveals a critical limitation: except for very
short input sequences, ICL fails to achieve consis-
tent learning across all output positions. This ex-
poses a fundamental weakness of modern LLMs
— their inability to effectively uncover the align-
ment between input and output sequences. Con-
sequently, this limitation results in incomplete in-
duction heads, which form the basis for in-context
learning of new discrete mappings.

To address these limitations, we propose ICA-
Tune, a method for focused fine-tuning of an LLM
using in-context examples. We present a mech-
anistic evaluation with two accuracy probes to
show how alignment emerges in middle layers
of an LLM without any direct supervision. This
alignment leads to an abrupt jump in the com-
pleteness of the induction heads in higher layers.
We show that compared to standard fine-tuning,
ICA-Tune enables more sample efficient learning
and generalizes better to OOD instances.

1. Introduction
Large Language Models (LLMs) have demonstrated the ca-
pability of In Context Learning (ICL) (Brown et al., 2020) a
new task, where given k input-output pairs and a test input
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as a prompt x1,y1, . . . ,xk,yk,x∗, they predict a ŷ indica-
tive of having learned the task. The success of ICL has been
demonstrated on several tasks (Bertsch et al., 2024; Agarwal
et al., 2024), including novel key-value mappings (Kossen
et al., 2024), and new synthetic language learning tasks (Ra-
jaraman et al., 2024; Bietti et al., 2023; Edelman et al., 2024;
Akyürek et al., 2024). For such unseen tasks, a widely ac-
cepted explanation is that ICL arises by the formation of
induction circuits (Olsson et al., 2022; Reddy, 2024; Singh
et al., 2024). An induction circuit requires at least two layers
for formation as illustrated in Figure 1. In the first stage,
each label position i copies over its previous xi as a key. In
the second stage, the test input x∗ is used as a query to copy
over the label yi (i ≤ k) with the matching key xi. This ex-
planation also works for learning new languages where the
key corresponds to n-grams (Rajaraman et al., 2024; Bietti
et al., 2023; Edelman et al., 2024; Akyürek et al., 2024).

In this paper, we investigate the effectiveness of in-context
learning (ICL) on unseen sequence to sequence tasks. In
this case each input x is a sequence x1, . . . , xm of tokens,
likewise each output y is a sequence y1, . . . , yn. ICL for
Seq2Seq is useful in several tasks such as semantic pars-
ing for custom APIs (Roy et al., 2023), translation from
or to rare languages (Garcia et al., 2023), and Text2SQL
generation for new private enterprise schema. To study
the mechanism of ICL without fear of data contamination,
we follow the practice in prior work of evaluating on new
synthetic tasks. Our synthetic generator is inspired by real
languages. For each task, we sample a probabilistic context
free grammar generating x, and sample P (y|x) using an
alignment function inspired from classical models used in
lexical translation (Brown et al., 1993), and a probabilistic
finite state automata. An example of such a setup is shown
as the first row of Table 1. Over various characteristics
of these structured Seq2Seq tasks, we evaluate pre-trained
open-source LLMs for their ICL capabilities.

We observe that except for very short x sequences, LLMs
fail to in-context learn Seq2Seq tasks even when they suc-
ceed in previously studied classification and language learn-
ing tasks. We attribute the failure to the inability of the LLM
to learn new x-y alignments. ICL for Seq2Seq tasks entails
two steps: (1) learning input-output alignments, and (2)
learning the next y token given previous y-s and the aligned
x. The second step can be learned by induction heads, but
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for the first step we show that modern LLMs do not learn in-
context. We present a set of counterfactual experiments to
demonstrate that inability to learn the alignment in-context
is the reason for poor accuracy on long sequences.

Motivated by these observations, we propose ICA-Tune for
focused fine-tuning of a subset of the LLM parameters in
ICL mode instead of standard per-example fine-tuning. For
monotonic alignments, fine-tuning just the KQ attention
parameters of a single layer suffices. Using this hybrid of
ICL and fine-tuning, we observe huge jump in accuracy of
prediction with just a few examples. We present a mecha-
nistic evaluation of the formation of the induction circuit
via ICA-Tune. We show that even with standard next-token
loss, early layers learn the input-output alignment without
any direct supervision, and higher layers learn to inductively
lookup labels across sequences. Also, alignment accuracy
rises a few steps before lookup accuracy abruptly rises in
higher layers. Previous studies have also reported abrupt
emergence of induction circuits, but unlike earlier induction
circuits ours involves an additional alignment learning layer
across non-continuous positions to setup the context keys.

We show that ICA-Tune’s hybrid approach to adaptation
leads to more efficient learning than conventional fine-
tuning and better OOD generalization. We conclude with a
discussion of the challenges of supporting in-context learn-
ing of alignment functions.

Contributions (1) We design a formal language to high-
light the inability of modern LLMs to in-context learn struc-
tured Seq2Seq tasks. (2) We explain that the main hindrance
to ICL for Seq2Seq tasks is the inability to in-context learn
task-specific input and output alignments within each ex-
ample. (3) We present ICA-Tune, a hybrid of fine-tuning
and ICL, where we fine-tune a few parameters with next
token prediction loss. (4) We show interesting patterns of
abrupt learning of a new type of induction circuit where
early layers capture immediate context, middle layers learn
input-output alignments, and higher layers support lookup
with induction heads. 1 (5) We show that sample efficiency
and OOD generalization is higher for ICA-Tune compared
to standard fine-tuning.

2. Related Work
Ever since in-context learning (ICL) was discovered as an
emergent phenomenon of LLMs trained with the next-token
prediction loss (Brown et al., 2020), ICL has been exten-
sively evaluated and analyzed. Prior work on evaluation
of ICL spans various task types: regression where y is
real (Garg et al., 2022), scalar classification where y is dis-

1We release code for data generation and ICA-Tune at https:
//github.com/draco976/icatune
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Figure 1. Illustration of in-context learning via induction heads for
a scalar classification task with k = 2 examples.

crete (Kossen et al., 2024; Shi et al., 2024; Bertsch et al.,
2024), language learning where y is a sequence from a
language and x is empty (Edelman et al., 2024; Akyürek
et al., 2024), and sequence to sequence learning where both
x and y are sequences (Roy et al., 2023). Across these dif-
ferent studies the broad consensus is that ICL does provide
accuracy gains beyond zero-shot. However, for structured
Seq2Seq tasks like semantic parsing, the success of ICL cru-
cially depends on carefully selecting examples to provide
adequate coverage of the test example, and reduce interfer-
ence (Levy et al., 2023). Our study provides more insights
on this phenomenon.

Puzzled by the empirical success of ICL, several studies
have sought to explain how pre-trained LLMs could develop
ICL capabilities. We discuss in detail some of these studies
in Appendix A. For totally unseen input-output mappings, a
widely accepted explanation is the formation of an induction
circuit (Olsson et al., 2022) as shown in Figure 1. Chen et al.
(2024) shows why pre-training with next-token loss orients
the transform parameters to form such induction circuits
due to the presence of repeated structures naturally in the
pre-training corpus. Reddy (2024) and Singh et al. (2024)
study the dynamism of the formation of induction circuits
during training using synthetic scalar classification datasets.
For scalar classification, the context in the induction head
is always the previous x-tokens input. ICL of new regular
languages is studied in (Akyürek et al., 2024; Edelman
et al., 2024; Rajaraman et al., 2024) with synthetic languages
sampled from finite state automaton and markov chains. For
this task, the context in induction head is a few tokens
immediately preceding each token that define an n-gram.
And thus, the induction circuits help to implement an n-gram
language model, that suits Markovian languages.

We are aware of no prior work that systematically analyzes
ICL on Seq2Seq learning tasks with formal structured lan-
guages. Such a study is important because many real-life
tasks, example semantic parsing, low resource translation,
error correction, and Text2SQL are instances of seq2seq
learning task. Existing work has been limited to just over-
all accuracy on real datasets where it is hard to control for
contamination from the training set.
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3. Studying ICL on Seq2Seq tasks
Problem Formulation We denote an input sequence
x : x1, . . . , xm as comprising of m discrete tokens, and
an output sequence y : y1, . . . , yn consisting of n tokens
where each xi, yj ∈ V , a vocabulary of tokens. In general
n,m can vary across instances. Let X ,Y denote the input
and output spaces of discrete token sequences of arbitrary
lengths. Each sequence-to-sequence prediction task τ is
characterized by a distribution Pτ (X ) over input sequences
and conditional distribution Pτ (Y|X ) over the output se-
quences. To learn this task we are given a small number
k of input-output sequence pairs {(x1,y1), . . . (xk,yk)}
sampled from Pτ (X ,Y). Our goal is to explore the use of
in-context-learning on a pre-trained LLM Mθ to learn this
task from the given examples. In ICL, Mθ will be provided
as input the k examples {(x1,y1), . . . (xk,yk)} followed
by a new test instance x∗ ∼ Pτ (X), and Mθ needs to adapt
to the new task using just one forward pass over the input.

Since k is small, and we are exploring tasks that are un-
seen by Mθ, learning Pτ (Y|X ) is only possible if Pτ (Y|X )
has a decompositional structure to allow generalization to
sequences of varying length.

Decompositional structure of Pτ (Y|X ) As LLMs gen-
erate tokens auto-regressively, we first rewrite Pτ (y|x) =∏n

j=1 Pτ (yj |x, y1, . . . , yj−1). For tractable learning with
small k, we simplify the dependence structure of yj as fol-
lows: (1) Instead of depending on all previous y tokens,
each yj depends on a small window of size at most g over
previous y tokens. (2) Instead of all x tokens, a latent align-
ment function Aτ (j) identifies the sub-part of x relevant to
predict yj . Thus, the task dependent Seq2Seq model is

Pτ (y|x) =
n∏

j=1

Pτ (yj |yj−g:j−1,xAτ (j)) (1)

In order to learn Pτ (y|x), ICL needs to discover both the
input-output alignment function Aτ (j) and the conditional
token distribution Pτ (yj |yj−g:j−1,xAτ (j)). We study an
LLM’s capability for such learning using synthetic tasks that
allow a systematic exploration without fear of contamination
from the huge training set of LLMs. Towards this end,
we define a class of formal sequence to sequence task that
allows flexible controls of both the alignment function Aτ (j)
and the overall Pτ (yj |yj−g:j−1,xAτ (j)).

3.1. Formal sequence to sequence generation model

For each task τ , we assume X represents a structured for-
mal language, such as a context free language, that is strictly
more powerful than a regular Markovian language. Each
element x of x comes from a small discrete vocabulary
Στ . Let Pτ (x) denote the distribution over x, which for

B A C : r i j j p r
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Figure 2. Illustration of our data generation process here m =
3, c = 2 and attention is non-monotonic

our experiments is represented as a simple two-level prob-
abilistic context free grammar PCFG(X) described in the
Appendix B. The characterization of the distribution Pτ (x)
is not too critical since x is always given. The learning tasks
is to infer P (y|x).

Our model for P (y|x) is inspired from the classical lexical
translation model (Brown et al., 1993; Dyer et al., 2013).
Given an m length input x, the corresponding y sequence
consists of m segments w1, . . . , wm, each wp can be viewed
as a y-phrase that aligns with a xq at position q as deter-
mined by a task-specific alignment function Ãτ (p) 7→ [m].
We next describe our method of sampling the alignment
function and generating the y-phrases conditioned on the
aligned x.

Sampling alignment function. We choose the task specific
alignment function for the p-th phrase wp as:

Ãτ (p) = q, where q ∼ exp(−λ|q − p|)∑m
s=1 exp(−λ|s− p|)

, p, q ∈ [m]

(2)
By choosing λ→∞ we can make the alignment monotonic
(Ãτ (p) = p), and for λ → 0 the alignment approaches
almost a random permutation. We assume here that all y-
phrases are of the same length c, and thus the alignment
function for the j-th y-token is Aτ (j) = Ãτ (⌊ jc⌋).

Sampling y-phrases. Each y-phrase wp is generated as a
regular language given the aligned xq where q = Ãτ (p).
The regular language for any x is represented as a proba-
bilistic finite state automaton PFA(Στ |x, Sτ |x, Tτ |x) where
Στ |x denotes the vocabulary, Sτ |x denotes the set of states
in the PFA, and Tτ |x denotes the stochastic transition matrix.
More details about PFAs, how we choose a PFA for each x,
and how we generate strings from a PFA can be found in
Appendix B. Figure 2 and Table 1 shows examples of gener-
ated x, y pairs with m = 3, c = 2. Note in the generated y
there is no demarcation among the y-phrases. A pseudocode
for our data generator appears in Algorithm 1.

Real-life motivation. As a real-life example, think of x as
a sentence in English, and y its translation in Japanese. The
English language follows Subject-Verb-Object word order
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Prompt Prompt string: x1 : y1 x2 : y2 x3 : y3 x∗

Standard ACB: rijjpr CAB: jjriwp ABC: rtprjh BCA:
Pre-aligned ACB: AriCjjBpr CAB: CjjAriBwp ABC: ArtBprCjh BCA:

Table 1. First row marked Standard shows the prompt for ICL on a synthetic Seq2Seq task. The second row marked Pre-aligned is an
oracle setup where the input and output tokens have been interleaved using knowledge of gold alignment. Here m = 3, c = 2 and
alignment is monotonic.

Algorithm 1 Sequence Generation Process
1: Input: k, m, c, λ
2: Στ ←m random capital English letters.
3: Pτ (x)← Sample a PCFG(m,Στ ) (Sec B.1)
4: Ãτ (·)← Sample alignment (m,λ) using Eq 2.
5: Pτ (·|x) ← Sample a PFA(Στ |x, Sτ |x, Tτ |x) foreach

x ∈ Στ (Sec B.2)
6: for each i ∈ {1, . . . , k + 1} do
7: xi ← Sample a sequence from PCFG Pτ (x)
8: yi ← ϕ
9: for each p ∈ {1, . . . ,m} do

10: wp ← Sample c tokens from PFA Pτ (·|xi
Ãτ (p)

)

11: yi ← yi + wp

12: return xi,yi : i = 1, . . . k + 1

as against Subject-Object-Verb in Japanese. The alignment
function captures this systematic difference, whereas the
PFA models the Japanese character sequence corresponding
to each English word.

3.2. Evaluating In-context Learning of Seq2Seq Tasks

We start with an evaluation of ICL on unseen Seq2Seq tasks
using the above synthetic data generator.

Model For our experiments, we utilize the LLaMA 3
model (Meta, 2024) with 8 billion parameters. In Sec-
tion 3.3 we present results with other LLMs. For each task
characterized as defined above, we generate k + 1 input-
output sequence pairs {(x1,y1), . . . (xk+1,yk+1)} using
Algorithm 1. We create a prompt using the first k(= 15) as
in-context example, and test instance x∗ as xk+1. We then
generate the y tokens step-by-step using teacher forcing
where at step j we predict ŷj with prompt as ICL examples,
x∗, followed by yk+1

1 . . . yk+1
j−1 . We measure accuracy by

checking if ŷj is accepted by the true PFA.

In Figure 3(a) we present accuracy for different lengths of
x sequences (m), and y-phrase (c) for the simplest case of
monotonic alignments (λ = ∞) where each y-phrase wp

aligns with xp. We make a number of observations:

ICL accuracy drops with increasing m. When sequence
length m = 1, the Seq2Seq task reduces to a regular lan-
guage learning task since all tokens in a y sequence are

sampled from a single regular grammar represented by the
PFA. In this setting, as various previous studies (Edelman
et al., 2024; Akyürek et al., 2024; Rajaraman et al., 2024)
have shown, ICL succeeds in providing very high accuracy
since induction heads can approximate regular language
well using n-grams. However, as sequence length m is
increased the accuracy keeps dropping.

ICL accuracy increases with increasing y-phrase length
for m > 1. When the length of each y-phrase is large,
tokens later in each y-phrase can be determined based on
previous tokens in the y-phrase, and there n-gram based
matching is successful. However, a token at the start of
each y-phrase critically depend on its corresponding aligned
x token for correct prediction. In Figure 3(b) we show
accuracy for the first token within each y-phrase. For the
first y token in a y-phrase accuracy is significantly lower
than overall accuracy because it is dependent only on the
aligned x token, which is separated from yj in the prompt
by other irrelevant tokens2. We characterize this as a failure
to recover the input-output alignment.

Interleaving y with aligned x tokens enables ICL. We per-
form a counterfactual experiment in which the y sequence
is interleaved with its aligned tokens from the x sequence,
assuming oracle knowledge of Aτ (). The second row of
Table 1 shows an example of the prompt used for such pre-
aligned sequences. In Figure 3(c), we report the sequence
prediction accuracy using the same axes as in Figure 3(a).
Remarkably, accuracy increases sharply across all settings.
The interleaving causes each y token to be preceded by all
relevant tokens in the LLM prompt, and thereafter in-context
learning is able to learn this new task via the formation of
induction heads.

3.3. Do these observations generalize across LLMs?

To assess whether these trends persist at larger scales, we
repeated the same experiment on several frontier LLMs
with m = 8 and c = 1, comparing performance under the
standard and pre-aligned prompting strategies. As shown
in Table 2, even very large models exhibit low accuracy
with the standard prompt. However, when provided with

2Since we assumed a non-Markovian distribution for Pτ (x),
a longer context on the previous y tokens cannot substitute for
xAτ (j).
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(a) Standard (b) Standard (First Token) (c) Pre-aligned

Figure 3. Studying ICL Accuracy over sequences with different lengths of y-phrase(c) and x sequences (m) with (a) Accuracy drops
with increasing sequence length and increasing y-phrase length for m > 1. (b) Largest drop in accuracy with m is for the first token in
y-phrase. (c) High accuracy overall after interleaving gold aligned x token within the y sequence. These show that Low accuracy for
large sequences is because of lack of alignment.

pre-aligned input sequences—where x and y tokens are
interleaved—the accuracy improves drastically. This rein-
forces the conclusion that poor performance under standard
prompting arises not from limited model capacity, but from
misalignment in the input structure.

Model Standard Pre-Aligned

Llama-3.3-70B3 20.00 91.25
Llama-3.1-405B3 31.25 98.75
GPT-4o 36.25 100.0
Claude-3.7-Sonnet 51.25 82.50

Table 2. Prediction accuracy (%) for frontier LLMs under standard
vs. pre-aligned prompting. Even very large models underperform
with standard prompts, while alignment significantly improves
outcomes.

We repeat the ICL evaluation from Section 3.2 using
Llama3.2-1B and Llama3.2-3B, and compare them with
Llama3.3-8B in Figure 4. Accuracy increases with larger
y-phrase length (c) across all models, though larger mod-
els achieve higher absolute accuracy. With pre-aligned
prompts (Figure 4(b)), even the smallest model performs
well, demonstrating that ICL is effective when relevant x
tokens are placed adjacent to y tokens. In contrast, with
standard prompts (Figure 4(a)), all models struggle for small
c due to the need to infer alignments in-context.

In the above experiments we assumed oracle knowledge
of the alignment function Aτ (j) in creating the aligned
sequence with x and y tokens interleaved. In Section 5
we present a discussion of why current LLMs may not
be equipped to in-context learn alignments. We therefore

3Both Llama-3.3-70B and Llama-3.1-405B are the “Instruct-
Turbo” variants.

(a) Standard Prompt

(b) Pre-aligned Prompt

Figure 4. Prediction accuracy for standard and aligned prompts for
different lengths of y-phrase (c) and m = 8 for three different
Llama model sizes.

propose additional fine-tuning to learn new Seq2Seq tasks.

4. Fine-tuning to learn Input-Output
Alignments

Our goal is to fine-tune the LLM so as to learn the task-
specific alignment function Aτ (), and leverage the LLM’s
existing capability to lookup labels via induction heads to
learn the local token distribution Pτ (yj |yj−g:j−1,xAτ (j)).
Once yj tokens get contextualized with their aligned x-
tokens, the higher layers can form the induction heads with
keys as [yj−g:j−1,xAτ (j)] and values as yj .

Since we do not have any supervision on the alignment, we
fine-tune the model to minimize next token prediction loss
over tokens of y sequence. However, we perform this fine-
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tuning in the in-context setting where each training instance
is over a set of k + 1 examples where the first k form the
in-context examples. To fine-tune for a given task τ , we
iteratively sample k + 1 random input-output sequences
from Pτ (X,Y ) to maximize this likelihood:

max
θa

E{(xi,yi):i=1...k+1}∼Pτ

k+1∑
i=1

n∑
j=1

logMθ

(
Zi
j

)
[yij ]

Zi
j = [x1,y1, . . .xi−1,yi−1,xi, yi1, . . . , y

i
j−1]

(3)

where Mθ(Z) denotes the next-token probability distribu-
tion output by a transformer in response to an input prompt
Z. We fine-tune only the attention parameters θa of the
LLM using LoRA (Hu et al., 2021), and call this method
ICA-Tune. In the Appendix E.1 we show that in many cases
fine-tuning only a select one LLM layer suffices. More
details of our fine-tuning setup can be found in Appendix D.

4.1. Results of ICA-Tune

In Figure 5(a) we present the evolution of accuracy against
fine-tuning steps for different seeds. We present both overall
accuracy, and accuracy segregated by the position of a y-
token in its y-phrase. We see that across all seeds, accuracy
shoots up most for the first token in a y-phrase, most likely
since that is the token for which the missing alignment to
the x-token is most crucial. To understand the learning
mechanism we monitor two types of intermediate accuracy
along the fine-tuning process for each layer L of Mθ.

1. Alignment Accuracy: The fraction of time each ykj has
greater attention to its aligned x-tokens xk

Aτ (j)
than other

tokens within each example. This measures how well the
model aligns y tokens with their relevant x tokens. We
measure this alignment accuracy only for first token of
each y-phrase.

1

m

n∑
t=1,t+=c

1
(
argmaxj α

L(yk+1
t , xk+1

j ) = Aτ (t)
)

αL(a, b) is the mean attention weight assigned by token
a to the token b in attention layer L.

2. IC-Lookup Accuracy: The proportion of attention
weights from each y position in the test (last) sequence
xk+1 to the correct y-tokens from previous sequences
provided for in-context learning. This reflects how accu-
rately the model looks up past outputs during generation
of yk+1 and is measured as:∑n

t

∑k
i

∑n
j α

L
−(y

k+1
t , yij) ∗ 1

(
xk+1
Aτ (t)

= xi
Aτ (j)

)
∑n

t

∑k
i

∑n
j α

L
−(y

k+1
t , yij)

αL
−(a, b) is attention at layer L from the position where

a is generated to the position where token b is input.

Figure 5(b) plots the alignment accuracy and Figure 5(c)
plots the IC-Lookup accuracy across fine-tuning steps for
different layers. These bring out many interesting patterns.

ICA-Tune causes alignment to emerge without any direct
supervision. ICA-Tune’s loss function (Eq 3) is standard
next-token prediction loss with no explicit role or mention
of alignment. However, by fine-tuning with in-context exam-
ples, the correct input-output alignment emerges in certain
layers. This likely happens because the pre-trained Llama
model has a propensity to harness induction heads for pre-
diction with in-context examples. The alignment learning
provides the induction heads with more informative keys.

Alignment accuracy is high in middle layers, IC-Lookup
high in upper layers. As seen in Figure 5(b), alignment ac-
curacy is high in middle layers layers 14–16. Layers above
16 and below 14 show poor alignment accuracy. IC-Lookup
is more accurate in higher layers (e.g. layers 17–19) whereas
layers 14–16 that have high alignment accuracy show poor
IC-Lookup accuracy. For Seq2Seq tasks induction circuits
requires three stages: First, lower layers establish the con-
text — for example figuring out the inter-sequence and x,y
boundaries, and assigning relative position counts within
each y sequence. Subsequently, the middle layer learns the
alignment function Aτ (j). Finally, this leads to the forma-
tion of the induction heads in higher layers. We show a
diagram illustrating a plausible three layer induction circuit
in Figure 10 of the Appendix.

Alignment accuracy emerges first abruptly, followed by
an increase in IC-Lookup accuracy. The alignment accu-
racy rises abruptly around step 85 in Fig 5(b), the IC-Lookup
accuracy rises slightly later around step 110 in Fig 5(c).
This shows that it is necessary for input-output alignments
to form within an example, before a test example can lookup
matching y tokens from in-context examples.

We corroborate this point further by visualizing raw atten-
tions at two different layers ℓ = 14, ℓ = 18 for the baseline
model and the ICA-Tuned model. Figures 6(a) shows at-
tention among the tokens of xk,yk at layer ℓ = 14 before
and after fine-tuning for m = 3, c = 2. Here the x tokens
are C A B and y-tokens are o a s j e l. In the base-
line, there is very little attention from the y-tokens to the
x tokens. In the ICA-Tuned version, there is much higher
attention of y-tokens to their aligned x-tokens (highlighted
in red). For example, from o a we see alignment to C, and
from s j we see alignment to A. Figures 6(b) examines
attention from the tokens of the test sequence xk+1,yk+1

to the last ICL sequence xk,yk at layer ℓ = 18 before and
after fine-tuning. Note here xk+1 = C A B and xk = B
C A. Thus, the first y-phrase of the test sequence should
lookup the second y-phrase of the IC example, and so on.
We observe such a pattern in the fine-tuned model’s atten-
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(a) Prediction accuracy (b) Alignment accuracy (c) IC-Lookup accuracy

Figure 5. Learning dynamics of ICA-Tune with increasing steps. (a) Prediction Accuracy for four different seeds: average and at different
positions along the y-phrase. Maximum jump for y tokens at the start of a y-phrase. (b) The gains are due to the emergence of
x,y alignment. The plot shows extracted alignment accuracy at different LLM layers. Alignment accuracy high in middle layers
(15,16) and abruptly rises between steps 75 and 90. (c) IC-Lookup ability is seen in higher layers (17, 18) above the layers where
alignment emerges. This shows that alignment is needed for formation of informative induction heads.

(a) Attention Layer 14 (b) Attention Layer 18

Figure 6. (a) Attention heatmaps for layer 14 of the baseline and fine-tuned model. The heatmaps show how attention is distributed
between the y-tokens (target tokens) and the corresponding x-tokens (input tokens). In the ICA-Tuned model, initial y-tokens tend to
focus on their corresponding x-tokens more consistently compared to the baseline. (b) The attention heatmaps for layer 18 between
tokens from the test example (on the y-axis) and to tokens of nearest IC example (on the x-axis). Attention (shown as red squares) of test
sequence C A B to in-context sequence B C A reflects the order of their x-tokens.

tion weights, but in the baseline model the attention from
the yk+1 to yk tokens is largely uniform. This shows that
the induction heads formed with the relevant aligned context
in the fine-tuned model, and did not form in the baseline.

4.2. ICA-Tune for another model

We reinforce the above observations on the learning dynam-
ics of ICA-Tune by repeating the experiments of Figure 5
using a smaller Qwen2.5-3B model. The results as shown
in Figure 7, reveal the same three-stage progression: (1) a
sharp increase in prediction accuracy at the start of each
y-phrase, (2) the emergence of alignment attention patterns
in middle layers (e.g., layers 23–24), and (3) the appearance
of ICL-style lookups in higher layers (e.g., layers 28–29),
above the layers where alignment emerges. Despite being
significantly smaller than Llama-3, the Qwen model exhibits
the same inductive behavior, suggesting that the observed
alignment-induced mechanism is robust across models.

4.3. Comparison with Standard Fine-tuning

Here we show that fine-tuning in ICL mode was essential
for the alignment to emerge by comparing ICA-Tune with
standard fine-tuning where we minimize loss on examples
sampled independently. Thus, unlike Equation 3, in standard
fine-tuning the objective becomes:

max
θa

E(x,y)∼Pτ (X,Y )

n∑
j=1

log Tθ(x, y1, . . . , yj−1)[yj ] (4)

In Figure 8(a) we compare ICA-Tune with standard fine-
tuning for increasing size of D. In both cases we finetune the
attention parameters of all layers. To ensure comparability
between the ICA-Tune and standard fine-tuning setup we
generate a fixed dataset D of N of training examples for a
task τ . Both methods sample from D. We use batch size of
1 for ICA-Tune and 16 for standard fine-tuning. This choice
ensures that both the setups train on the same number of
examples per training step. We generate a separate set of
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(a) Prediction accuracy (b) Alignment accuracy (c) IC-Lookup accuracy

Figure 7. Learning dynamics of ICA-Tune with increasing steps for Qwen2.5-3B model. (a) Prediction Accuracy for four different seeds:
average and at different positions along the y-phrase. Maximum jump for y tokens at the start of a y-phrase. (b) The gains are due to
the emergence of x,y alignment. The plot shows extracted alignment accuracy at different LLM layers. Alignment accuracy high in
middle layers (22,23) and abruptly rises between steps 120 and 170. (c) IC-Lookup ability is seen in higher layers (28, 29) above
the layers where alignment emerges. This shows that alignment is needed for formation of informative induction heads.

(a) Increasing training size (b) Alignment in Fine-tuning (c) Accuracy on OOD

Figure 8. Comparing ICA-Tune with standard fine-tuning. (a) Accuracy with different number of training examples. ICA-Tune requires
fewer training examples to achieve good accuracy. (b) Alignment accuracy for fine-tuning. Alignment does not emerge in any of
the layers unlike in ICA-Tune (Figure 5(b)). (c) Validation accuracy on IN and OOD sets of fine-tuning Vs ICA-Tune. ICA-Tune
convergence faster and generalizes better to out-of-distribution (OOD) validation examples compared to normal fine-tuning.

M = 10 examples for validation. The validation set has
individual examples for standard fine tuning and for ICA-
Tune we prepend each validation example with k examples
from the training set. We make the following observation:

ICA-Tune is significantly more sample efficient than
standard fine-tuning. ICA-Tune achieves almost 100%
accuracy with just 50 labeled instances whereas standard
fine-tuning does not reach that accuracy even with 800 exam-
ples. We explain this difference by observing the alignment
accuracy of intermediate layers in the fine-tuned model.

Standard fine-tuning does learn to align. Comparing Fig-
ure 8(b) and Figure 5(b) that show alignment accuracy of the
regular fine-tuned model and ICA-Tuned model respectively,
we observe that fine-tuning does not uncover alignments
unlike ICA-Tune. In ICA-Tune, the alignment causes the
formation of the induction heads for in-context learning.
Such shortcut is not available to regular fine-tuning.

OOD Generalization of ICA-Tune. ICA-Tune decom-
poses the Seq2Seq task into two key steps: (1) learning
the alignment between input and output tokens, and (2)
leveraging existing induction heads to perform associative
lookups using the aligned keys. This decomposition en-

hances the model’s capacity for out-of-distribution (OOD)
generalization. In Figure 8(c), we compare the performance
of ICA-Tune and standard fine-tuning on two distinct vali-
dation sets. For the first validation set, the input sequences
x are sampled from the same CFG as the training set, ensur-
ing an in-distribution evaluation. For the OOD validation
set, x sequences are generated as random permutations of
the x vocabulary, deliberately designed to deviate from the
training CFG. As shown in the figure, ICA-Tune does not
distinguish between the two sets and converges faster to
near perfect accuracy on both. In contrast, since fine-tuning
did not learn alignments, it likely overfitted on the whole x
sequences and shows poorer OOD generalization.

4.4. Alternative Alignment Functions

So far, our experiments were with monotonic alignments
with λ =∞ in Eq 2. Even for monotonic alignments, pre-
trained Llama models fail to learn alignments in-context,
and we introduced ICA-Tune that causes emergence of
input-output alignment given already formed induction head.
We next explore if ICA-Tune can also learn non-monotonic
alignments arising out of small values of λ. For example,
with λ = 0, the pth y-phrase may align with any of m x
tokens. All the training paramaters and dataset values are
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Figure 9. Training progress for varying λs in the sampled align-
ment function Aτ (.) (see Equation 2). Larger λ leads to monotonic
alignment that is easier to learn than smaller λs

same as previous experiments and m = 8, c = 1. Figure 9
shows accuracy as a function of fine-tuning steps for three
different values of λ. We show runs with three seeds for
each λ. For a large λ = 16, for all three seeds ICA-Tune
learns fast. For λ = 4, one of the three seeds shows slower
convergence. For λ = 1, convergence is the worst. For one
of the seeds 200 steps were required as against just 25 for
the monotonic case. We observe that for small values of λ,
more training data is required to fine-tune the model.

5. Discussion: Can transformers learn
Seq2Seq alignments in-context?

We saw that the pre-trained LLMs fail to in-context
learn Seq2Seq alignments and required additional fine-
tuning. Here, we ask if in-context learning of general non-
monotonic alignments can be expressed at all in causal trans-
formers. We informally conjecture that in-context learning
of alignments for arbitrary m,K values cannot be expressed
in causal transformers with a fixed number of parameters.
We present a discussion of why this conjecture might hold.

Consider the special case where the y-phrase length c is 1
making the length of the input and output is the same m = n,
and Aτ (j) ∈ {1 . . . ,m}, that is each token in y aligns to
any arbitrary token position in x. Pτ (yj |xAτ (j)) and Aτ (j)
has to be estimated in-context via induction heads from a set
of k examples D = {(x1,y1), . . . (xk,yk)}. This defines
a maximum likelihood estimate of Aτ on the data D as:

max
Aτ

k∑
i=2

m∑
j=1

log

∑i−1
r=1

∑m
s=1 δ([y

i
j ,x

i
Aτ (j)

] = [yrs ,x
r
Aτ (s)

])∑i−1
r=1

∑m
s=1 δ(x

i
Aτ (j)

= xr
Aτ (s)

)︸ ︷︷ ︸
MLE for Pτ (yi

j |xi
Aτ (j)

) from previous examples

Informally, this objective implies that the estimated Aτ ()
should maximize the agreement in the mapped x to y vocab-
ulary across the mk occurrences. The standard solution is
using the EM algorithm (we present the classical alignment
learning EM algorithm in Appendix F). The algorithm alter-

nates between estimating the distribution over x tokens that
each y token maps to, and estimating the alignment distri-
bution. This would require memory of size O(V m+m2)
where V is the number of distinct y tokens in the in-context
examples. Since consensus across all k examples is needed,
maintaining this memory distributed across the 2km states
of the transformer is not possible for a causal model. Also,
expressing the EM update in terms of transformer opera-
tions seems non-trivial without additional chain-of-thought
or scratch memory.

6. Conclusions
In this paper we presented the first ever formal evaluation
of the in-context learning abilities of pre-trained LLMs on
structured sequence to sequence prediction tasks. To al-
low for a systematic exploration without interference from
the LLMs training datasets, we design a realistic synthetic
generator of a structured language pair. Our study shows
that LLMs fail to in-context learn Seq2Seq tasks even when
they succeed in simpler corner cases of scalar key-value
mappings and language completion. Via counterfactual
experiments using pre-aligned sequences, we attribute the
failure to the inability of the LLM to figure out new x-y
alignments in-context. We propose ICA-Tune to fine-tune
the LLM with in-context examples. ICA-Tune harnesses
existing induction circuits to infer the token distributions
in-context while fine-tuning attention parameters to learn
the alignments. Via mechanistic probes we show the emer-
gence of the alignment capability in the middle layers of
the LLM that lead to the formation of informative keys to
induction heads in higher layers — all this with just a next-
token prediction loss. In contrast, standard fine-tuning fails
to learn alignments, and that leads to inefficient learning and
poor OOD generalization indicative of the model’s failure
to uncover the decompositional structure of the task.

This work brings our several avenues of future research:
formally analyzing the representation power of transformers
for in-context learning alignments, designing pre-training
datasets that can cause the emergence of ICL over structured
Seq2Seq tasks following a strong prior e.g., monotonicity,
and transferring these discoveries to real datasets.
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A. More detailed related work
Many studies resort to testing on synthetically generated data in order systematically analyze the reasons behind the
empirical performance of ICL, without leakage from the vast pre-training set of large models. Theoretical and mechanistic
interpretation on such synthetic settings have been used to provide various explanations for how a transformer model
implements ICL. Using synthetic data and models trained from scratch for regression tasks, many studies claim that the
transformer’s self attention across layers implements the gradient descent algorithm (Garg et al., 2022; Ahn et al., 2023;
Akyürek et al., 2023; Panwar et al., 2024; Mahankali et al., 2024; Zhang et al., 2023a; Von Oswald et al., 2023; Ahn et al.,
2023; Zhang et al., 2023b; Giannou et al., 2024; Yang et al., 2024; Gatmiry et al., 2024). However, these conclusions
have been found not to hold for discrete NLP tasks which is our focus (Deutch et al., 2024; Li et al., 2024; Shen et al.,
2024). Another hypothesis is that ICL performs Bayesian task selection (Reynolds & McDonell, 2021; Min et al., 2022; Pan
et al., 2023; Shi et al., 2024). However, this hypothesis does not explain the capability of LLMs to learn new input-output
mappings or new languages. (Abernethy et al., 2024) present a mechanism by which a pre-trained transformer can in-context
learn sparse retrieval tasks, including learning the task-specific delimiter between example and label, and between successive
examples. Their approach is to show that their exist transformer parameters that can be oriented to online optimize for the
best delimiter under prior biases over a small set of delimiters. They require separate heads for each possible delimiter pair.
Also, for discovering coefficients of the sparse retrieval task they also show existence of transformer parameters that can
online learn the coefficients.

B. More details of the structured sequence to sequence model (Section 3.1)
B.1. Generating Input Sequence x Using a Context-Free Grammar

To generate an input sequence x = x1, x2, . . . , xm consisting of m discrete tokens, we employ a probabilistic context-free
grammar (CFG). This allows us to systematically produce structured sequences through a series of production rules. We
chose a simple two-level CFG as follows. First we partition the vocabulary of x tokens Στ into two disjoint parts of almost
equal size U1 and U2, and use these to define the grammar using non-terminals R,X, Y as

R→ XY |Y X

X → all permutations of U1

Y → all permutations of U2

• Root Symbol (R): The start symbol R generates a concatenation of two sub-sequences, X and Y , in either order (XY
or Y X).

• Sub-sequence X: The sub-sequence X consists of all possible permutations of the set U1.
• Sub-sequence Y : Similarly, the sub-sequence Y includes all permutations of the set U2.

Each transition in the grammar is assigned an equal probability, ensuring that all valid expansions are equally likely to occur.

An example PCFG for m = 3,Στ = {A,B,C} is

R→ XY |Y X

X → AB|BA

Y → C

B.2. Model to sample a y-phrase given an input x token

We model the generation of a y-phrase of a given length, say n, using a probabilistic finite state automaton.

Background on Probabilistic Finite State Automaton (PFA) A PFA is defined by an alphabet Σ, a finite set of states S,
an initial state s0, and a state transition distribution T : S ×Σ×S → [0, 1] where

∑
x,S′ T (x, S′|S) = 1∀S3. Accordingly,

3In general, a PFA might also attach a distribution over initial and accepting states, but we did not need that flexibility for this
generation task.
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:BA;cp:AE;pf :EB;ic:CA

Layer 1: Context formed by assigning relative position ids to each x and y token

Layer 2: Copy aligned x token as key using position similarity

11

:BA;cp:AE;pf :EB;ic:CA

21212121212121

:BA;cp:AE;pf :EB;ic:CA

AEEBCA

Layer 3: Copy over label based on similarity of context

Figure 10. A possible three layer induction circuit to support ICL on our Seq2Seq task with monotonic alignment. Here k = 2,m =
2, c = 1. The first layer that assigns relative position ids to the x and y tokens needs to exploit strong priors about delimiters and example
separators (Abernethy et al., 2024). The second layer that aligns based on matching position works only for monotonic alignments. The
last layer is the standard induction head.

the probability of generating a sequence x is given as pPFA(x) =
∑

s0,...,sn

∏n
i=1 T (si−1, xi, si). To generate a sequence of

length n from a PFA we start with S0. For each i from 1 to n, we sample a xi, Si from T (x, S|Si−1). The output sequence
x = x1, . . . , xn is the sequence of output symbols. Without loss of generality we will assume that S0 = 0 is always the start
state and will denote PFA as PFA(Σ, S, T ).

Method of constructing Probabilistic Finite State Automaton (PFAs) We present how we sample the vocabulary Σ, set
of states S, and the transition probabilities T (x, S′|S)

(1) Σ: Sample an alphabet size V uniformly from the interval (Vmin = 4, Vmax = 18). Sample a language-specific alphabet
Σ, containing V symbols, uniformly (without replacement) from a shared symbol set W (with |W | = cmax = 26).

(2) S: Sample a number of states s uniformly from the interval (smin = 4, smax = 12). Given this value, define a set of
automaton states S = {S1, . . . , Ss} ∪ {S0}. Without loss of generality we will assume that S0 = 0 is always the start
state.

(3) T (x, S′|S): For each Si, choose a number of outgoing edges mi uniformly from (mmin = 1, mmax = 4). Then,
construct a set of edges (Si, zj , Sj), where all zj are sampled uniformly without replacement from Σ, and all Sj

are sampled uniformly without replacement from {S1, S2, . . . Sn}. Assign a probability of T (zj , Sj |Si) =
1
mi

. Set
T (z′, S′|Si) = 0 for all other pairs (z′, S′) that do not correspond to the generated edges.

C. Transformer Architecture
We assume a pre-trained decoder-only transformer model which have been shown to be capable of ICL. For new tasks,
ICL has been attributed to the formation of induction heads. We present a brief overview of how causal self-attention
computations across multiple layers could enable this capability. The input to the transformer is sequence X : X1, . . . XN of
N discrete token ids from a vocabulary of V tokens, which after mapping via a d-dimensional embedding matrix E ∈ RV×d

generates Z ∈ Rd×N . The transformer comprises of L layers, and H heads per layer. The computation at each ℓ given
input Z can be expressed as a function

Tℓ : R
d×N 7→ Rd×N as follows:

Parameters θℓ = {Wℓ, Pℓ, (Vℓ,h, Qℓ,hKℓ,h) : h ∈ [H]}

Ah ← softmax ◦mask(ZTQT
ℓ,hKℓ,hZ) ∈ RN×N ∀h ∈ [H]

Z ← Z + FFWℓ
(Pℓ concat(Vℓ,hZAh : h ∈ [H])) ∈ Rd×N

Here mask ensures that every position i only attends to positions before it, and is called a causal mask. After the last layer
TL, the output Z is multiplied by the embedding matrix and then softmax-ed to get a probability distribution over tokens.
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This makes the overall transformer implement a function of the form

Tθ(X) = softmax(E.TL ◦ . . . ◦ T1(E
TX + p)) (5)

where θ = ∪Nℓ=1{Wℓ, Pℓ, (Vℓ,h, Qℓ,hKℓ,h) : h ∈ [H]} ∪E denotes all the parameters of the transformer, p denotes a vector
of position embeddings.

D. Experiment setup
For fine-tuning, we employ Low-Rank Adaptation (LoRA), which efficiently adapts pre-trained language models by injecting
trainable low-rank updates into specific model parameters.

LoRA Hyperparameters We use the following LoRA configuration for the experiments:

• LoRA Rank (LoRAR): Set to 16. This rank determines the dimensionality of the low-rank decomposition applied to
the weight matrices.

• Scaling Factor (LoRAα): Set to 8. This hyperparameter controls the scaling of the low-rank updates during training to
ensure stability and effective learning.

• Dropout (LORA DROPOUT): Set to 0.05 to introduce regularization and prevent overfitting in the low-rank layers.

Training Configuration We fine-tune all attention parameters, specifically the Q, K, and V matrices of the transformer.
We use a learning rate = 2e−4 for training. We use the Adam optimizer along with a linear decay learning rate scheduler.

E. Additional Experiments
E.1. Fine-tuning only a single layer

For this task, and particularly with monotonic alignments, ICA-Tuning even a single layer of the Llama model suffices to
cause the emergence of input-output alignment. However, some layers are significantly more effective than others when
fine-tuned. In Figure 11(a) we present the accuracy with each layer fine-tuned. This graph shows that fine-tuning the
attention parameters of one of the middle layers ℓ = 13 is most effective. Fine-tuning attention of higher layers (denoted by
lighter shade) has very effect on enhancing ICL accuracy. Early layers (less than 5) helps more than higher layers but still
less than the middle layer 13. Subsequently we study the alignment and IC-Lookup accuracy, and the attention heatmaps as
layer 13’s attention parameters are fine-tuned. The emergence of alignment and IC-Lookup accuracy are similar as in the
case when all attention parameters were fine-tuned.

(a) Prediction accuracy (b) Alignment accuracy (c) IC-Lookup accuracy

Figure 11. Learning dynamics of ICA-Tune with increasing steps. (a) Prediction Accuracy when fine-tuning different attention layers.
Higher layers are lighter shades than lower layers. Maximum gains is from a middle layer ℓ = 13. (b) Emergence of alignment accuracy
at different LLM layers when layer ℓ = 13 is fine-tuned. Alignment accuracy high in middle layers and emerges around steps 430.
(c) Emergence of IC-Lookup accuracy with fine-tuning over LLM layers when layer ℓ = 13 is fine-tuned. IC-Lookup ability emerges in
higher layers around steps 470

E.2. Controlling for Prompt Length

To ensure that the improved performance with pre-aligned prompts is not merely due to having more tokens in the input, we
repeat the experiment with a reduced number of examples (14 instead of 16) in the pre-aligned sequence. This adjustment
brings the total number of tokens in the pre-aligned prompt roughly in line with that of the standard prompt.

15



The Missing Alignment Link of In-context Learning on Sequences

(a) Attention Layer 13 (b) Attention Layer 19

Figure 12. (a) Attention heatmaps for layer 13 of the baseline and fine-tuned model. The heatmaps show how attention is distributed
between the y-tokens (target tokens) and the corresponding x-tokens (input tokens). In the fine-tuned model, initial y-tokens tend to focus
on their corresponding x-tokens more consistently compared to the baseline. (b) The attention heatmaps for layer 19 between tokens from
the test example (on the y-axis) and to tokens of nearest IC example (on the x-axis).

Table 3 reports the accuracy for all three models under the standard, full pre-aligned, and reduced pre-aligned settings. Even
after equalizing the prompt length, the reduced pre-aligned setup continues to significantly outperform standard prompting.
This reinforces the importance of alignment rather than just prompt size in driving ICL performance.

Model Standard Pre-Aligned Reduced Pre-Aligned

Llama-3.2-1B 27.50 100.00 99.38
Llama-3.2-3B 30.63 95.94 95.00
Llama-3.2-8B 36.25 98.44 99.38

Table 3. Prediction accuracy (%) under different prompt formats for each model. Reducing the number of examples in the pre-aligned
prompt still leads to higher accuracy than standard prompting, suggesting that alignment—not token count—is the key factor.

F. EM algorithm for learning alignments
As an exercise, let us go over a standard method of discovering alignment following the EM algorithm (Dyer et al., 2013).
Let aji denote the alignment probability that Aτ (j) = i, and βuv = Pτ (yj = u|xi = v) denote the soft x − y mapping
dictionary. The data likelihood

k∑
i=1

m∑
j=1

log
∑
p

P (Aτ (j) = p)Pτ (y
i
j |xi

p) =

k∑
i=1

m∑
j=1

log
∑
p

ajp βyi
jx

i
p

(6)

Maximizing the above objective w.r.t parameters ajp, βuv can be achieved via the EM algorithm, and the iterative update
equations of the parameters can be shown to be

ajp =

∑k
i=1 ajpβyi

jx
i
p∑k

i=1

∑
q ajqβyi

jx
i
q

(7)

βuv =

∑
i

∑
j:yi

j=u

∑
p:xi

p=v ajpβuv∑
i

∑
j

∑
p:xi

p=v ajpβyi
jv

(8)

There are several challenges to implementing these iterations in the decoder-only transformer, one option is to assume that
the hidden state Z of the last input time-step maintains the βuv and aji values. This would require the hidden vector to be
of size O(V m+m2) where V is the number of distinct y tokens in the in-context examples. Also, expressing the update
equations 7 in terms of transformer operations is not obvious. Based on these, we conjecture that in-context learning of
alignments over unseen tasks may not be feasible in a transformer with a fixed small embedding size.
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