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Abstract

Medical Visual Question Answering (Med-VQA)
interprets complex medical imagery using user
instructions for precise diagnostics, yet faces chal-
lenges due to diverse, inadequately annotated im-
ages. In this paper, we introduce the Univer-
sal Instruction-to-Answer Navigator (Uni-Med)
framework for extracting instruction-to-answer
relationships, facilitating the understanding of vi-
sual evidence behind responses. Specifically, we
design the Instruct-to-Answer Clues Interpreter
(IAI) to generate visual explanations based on
the answers and mark the core part of instruc-
tions with ”real intent” labels. The IAI-Med VQA
dataset, produced using IAI, is now publicly avail-
able to advance Med-VQA research. Additionally,
our Token-Level Cut-Mix module dynamically
aligns visual explanations with image patches, en-
suring answers are traceable and learnable. We
also implement intention-guided attention to min-
imize non-core instruction interference, sharpen-
ing focus on ’real intent’. Extensive experiments
on SLAKE datasets show Uni-Med’s superior ac-
curacies (87.52% closed, 86.12% overall), out-
performing MedVInT-PMC-VQA by 1.22% and
0.92%.

1. Introduction
With the ongoing development of artificial intelligence (Su
et al., 2022b; 2021a; Li et al., 2023c), we have observed
significant potential of large model technologies, in down-
stream applications (Xu et al., 2022; Su et al., 2021b).
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Specifically, the advancements in multi-modal large lan-
guage models (MLLMs), evidenced by studies like (Li et al.,
2023a; Moor et al., 2023), have demonstrated significant
potential in biomedical applications. Among these, the
introduction of models like GPT-4V (OpenAI, 2023) has
contributed to these improvements, particularly in medical
diagnostics, as seen in works by (Li et al., 2023d), (Han
et al., 2023) and (Wang et al., 2023). These models aid in
processing comprehensive multi-modal information (Cao
et al., 2023) and reducing language ambiguities , beneficial
especially for non-experts.

Despite these advancements, effective application of
MLLMs(Liu et al., 2023) in biomedical vision tasks, es-
pecially in data-scarce environments, remains challenging.
Issues like an over-reliance (Su et al., 2021c) on text and
image labels in medical diagnosis and analysis errors con-
tinue to be prevalent in current models (Yan et al., 2023).
Recent works focus on designing various prompts (Chen
et al., 2023; Zhan et al., 2023; Cao et al., 2024) to reduce
modality interference and enhance following ability to in-
structions. However, these models often face difficulties
with modal interference, impacting their capacity to accu-
rately comprehend user instructions and deduce answers
(Ye et al., 2023).

Current pretraining approaches, such as those in (Wang
et al., 2022; Li et al., 2023a; Zhang et al., 2023b; Li et al.,
2023b), face limitations in providing fine-grained expla-
nations and effectively following instructions for medical
queries (Chen et al., 2024; Cong et al., 2022). The post-
hoc attention method by (Zhang et al., 2023a) enhances
instruction-following capabilities but lacks automated, user-
intent-focused training. Moreover, while various explicit
data enhancement techniques (Tang et al., 2020a; Guo, 2020;
Gong et al., 2022a) have been developed, they lack in pro-
viding dynamic, instruction-specific feature-level enhance-
ments during training, leading to potential misalignments
between learned representations and queries.

In this paper, we introduce the Universal Instruction-
to-Answer Navigator (Uni-Med) framework to extract
instruction-to-answer relationships, thereby making answers
both traceable and learnable. Specifically, we design an
Instruct-to-Answer Clues Interpreter (IAI), which employs

1



Detecting Any Instruction-to-Answer Interaction Relationship:Universal Instruction-to-Answer Navigator for Med-VQA

Task-Guided  Embedding Tokenizer

Med-VQA Constructing IAI-Med VQA Dataset with Instruct-to-Answer Clues Interpreter (IAI)    

Q：Is/Are the <real_intention>right ribs fractured</real_intention>?
A：Multiple <core_visual_explain>right ribs show discontinuity</core_visual_explain>, suggesting 
<core_visual_explain>fractures</core_visual_explain>. They are best seen on the <core_visual_explain>lateral 
aspect of the chest</core_visual_explain>. The answer is Yes. 

Q：<real_intention>What</real_intention> is the <real_intention>condition</real_intention> of the patient?
A：The image is a CT scan of the abdomen showing <core_visual_explain>dilated loops of small bowel with 
evidence of stasis</core_visual_explain>, suggesting Blind loop syndrome. The answer is Blind loop syndrome. 

Q：<real_intention>Where</real_intention> is the <real_intention>abnormality</real_intention> in this image?
A：In the <core_visual_explain>lateral ventricles</core_visual_explain>, the <core_visual_explain>hyperintense 
structures on T1-weighted MRI</core_visual_explain> are consistent with the choroid plexus. The answer is 
Choroid plexus. 

Q：Is/Are the right ribs fractured?
A：Yes.

Q：What is the condition of the patient?
A：Blind loop syndrome.

Q：Where is the abnormality in this 
image?
A：Choroid plexus.

.

Figure 1. Details of the construction of the IAI-Med VQA dataset with the Instruct-to-Answer Clues Interpreter (IAI). We design a
Universal-Navigator Prompt (UNP) to guide MLLM to articulate the reasoning behind answers based on the visual content present in
medical images and the context provided by existing question-answer pairs. The label ”real intent” is used to label the ”real intent” of
user instructions and ”core visual explain” is used to mark the visual clues that support the explanation.

an MLLM to generate visual explanations as reasoning steps.
The IAI-Med VQA dataset, created by IAI, enhances the
VQA dataset by adding ”real intent” labels of instructions
and providing corresponding visual explanations, as shown
in Figure 1. The ”real intent” refers to the key information
that users want the model to focus on, reducing interruptions
by irrelevant details. To mitigate errors in medical image
analysis, we developed the Universal-Navigator Prompt
(UNP) within IAI, which guides the MLLM in categorizing
answers based on different types, such as questions and
organs.

Additionally, Uni-Med integrates a token-level feature en-
hancement strategy using ’core visual explanation’ labels.
This approach aligns visual explanations with corresponding
image blocks for token-level cut-mix processing, concen-
trating the model on task-relevant visuals and helping the
LLM locate the source of the answer. Furthermore, we de-
signed an Intention-guided Attention (IGA) mechanism that
adaptively reduces the attention score for non-core instruc-
tions, thereby sharpening the LLM’s focus on ’real intent’
content to minimize modal interference. The whole process
provides direction to the LLM in answering questions, just
like a navigator. The proposed method achieves state-of-the-
art (SOTA) performance on the SLAKE dataset, exceeding
(Zhang et al., 2023b) by 1.22% and 0.92% in closed and
overall accuracy, respectively.

The main contributions of this paper are outlined as follows:

• We introduce a Universal Instruction-to-Answer Nav-
igator Learning Framework (Uni-Med) for extract-
ing any instruction-to-answer interaction relationship,
which make the answer ’traceable’ and ’learnable’.

• We design an Instruct-to-Answer Clues Interpreter
(IAI) to generate the IAI-Med VQA dataset, which
marks the ”real intent” of instructions and generates
corresponding visual explanations. To minimize errors

in medical image analysis, we develop an Universal-
Navigator Prompt (UNP) to enhance medical image
understanding and reasoning of MLLM.

• We implement a task-guided Token-level Cut-Mix (TC-
Mix) strategy that leverages visual explanation aligned
with user instructions, mapping them to the most rele-
vant blocks in medical images for token level feature
enhancement.

2. Related Work
Biomedical Visual Question Answering. Current Med-
VQA approaches typically handle inquiries through clas-
sification tasks, sourcing responses from a predetermined
set (Binh D. Nguyen, 2019)(Do et al., 2021)(Gong et al.,
2022b). While this method performs well for closed-ended
questions, it is less effective for clinical open-ended in-
quiries (Chen et al., 2022; 2023; Yuan et al., 2023). Notably,
medical chatbot like LLaVA-Med (Li et al., 2023a) require
extensive fine-tuning on large instruction datasets to effec-
tively follow user instructions (Liu et al., 2023). Besides,
PMC-VQA (Zhang et al., 2023b) has developed a substantial
medical VQA dataset to enhance medical visual comprehen-
sion. Nonetheless,exsiting works often treat text and image
understanding equally, overlooking the challenge of modal
interference. Some exploratory methods (Tascon-Morales
et al., 2023; Han et al., 2020) enhance the interpretability of
answers by focusing on image location related to the ques-
tion, but do not filter irrelevant information in the question
and may be interfered by it (Liu et al., 2024a). Complex
instructions can further prevent the model from focusing
on the user’s intentions, resulting in undesired outputs (Wei
et al., 2022). Recently, (Zhang et al., 2023a) introduced a
post-attention method to focus the crucial elements of in-
structions during training, but it relies on manual marking,
and becomes inefficient for large numbers of queries.

Medical Data Augmentation. Adapting general VQA mod-
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A：Multiple rib fractures are visible on the right side, with 
disrupted cortical lines and rib angulation… The answer is 
Yes. 

Text Embedding

Vision Encoder
Q：Is/Are the right ribs fractured?
A：Yes.

Text Encoder

(a) (b)

IAI-Med VQA

Intention-Guided 
        AttentionInstruct-to-Answer Clues Interpreter (IAI)

Generate Visual Explanation 
for the answer “Yes”

Label “Real Intention” And 
Core Visual Explanation

MLLM

Universal-Navigator prompts (UNP)

Q：Is/Are the <real_intention>right ribs fractured</real_intention>?
A：Multiple <core_visual_explain>right ribs show discontinuity</core_visual_explain>,   
suggesting <core_visual_explain>fractures</core_visual_explain>. They are best seen on the 
<core_visual_explain>lateral aspect of the chest</core_visual_explain>. The answer is Yes. 

Q:Are there any fractures in 
any of the ribs?

   A：No

Q：Is/Are the right ribs 
fractured?
A：Yes.

Similarity Similarity

IAI

Med VQA

Figure 2. The Uni-Med Training Paradigm. (a): The IAI module, where UNP prompts MLLMs to identify instruction’s ”real intent” and
generate visual explanations. (b): TET is a tokenizer that distinguish the text embedding corresponding to ”core visual explanation” and
”real intent”. The most aligned patches are selected to perform feature-level enhancement by TC-Mix. Intention-Guided Attention then
focuses LLM (e.g., PMC-LLAMA) on the ”real intent” to minimize modal interference.

els to medical applications often leads to overfitting due to
data variance and scarcity(Su et al., 2022a; Cao et al., 2022).
Previous works (Ray et al., 2019; Tang et al., 2020a; Gupta
et al., 2021) have improved model consistency using log-
ically consistent QA pairs, albeit dependent on external
dataset. MixUp techniques have been applied in both image
and text classification to bolster generalization in down-
stream tasks (Verma et al., 2019; Guo et al., 2019; Guo,
2020). The introduction of conditional VQAMix (Gong
et al., 2022a; 2021) addresses data scarcity by increasing
training data diversity (Su et al., 2021d). Simplification
of the augmentation process in some methods has led to
the generation of new samples, thus contributing to the ro-
bustness and diversity of medical VQA models (Tang et al.,
2020b; Agarwal et al., 2020; Liu et al., 2024b). However, the
(Zhang et al., 2020) approach, despite utilizing Grad-CAM
guided, feature-level CutMix(Yun et al., 2019), neglects
task-specific instructions.

3. Problem Formulation
Med-VQA involves responding to natural language queries
about medical visual content, typically sourced from med-
ical imaging modalities such as X-ray, CT, MRI, or mi-
croscopy. In the conventional Med-VQA task, the primary
goal is to generate a specific answer âi corresponding to a
given image Ii and query qi. This objective can be formu-
lated as follows:

âi = ΦMedVQA(Ii, qi; Θ), (1)

where ΦMedVQA denotes the function that models the answer
generation process and Θ represents the model parameters.

To improve the interpretability of the Med-VQA task, we
developed an Instruct-to-Answer Clues Interpreter (IAI) that
integrates visual explanations with textual answers. This
integration led to the creation of a dataset named IAI-Med
VQA, which is defined mathematically in Eq.(2):

(v̂i, âi) = ΦIAI-MedVQA(Ii, qi; Θ), (2)

where v̂i represents the visual explanation corresponding to
âi. Details will be described in Section 4.1.

For Med-VQA task, the loss function for textual answers is
formulated as:

Ltxt(Θ) = −
T∑

t=1

log p(âti | Ii, q1:Ti , â1:t−1
i ; Θ), (3)

where T is the length of the answer sequence. To enhance
interpretability, we introduce a loss function for visual ex-
planations:

Lvis(Θ) =

J∑
j=1

∥v̂ji − v∗ji ∥
2
2, (4)

where J is the number of elements in the visual explanation
and v∗ji is the ground-truth visual explanation for the j-
th element. The overall training objective combines these
components:

Θ∗ = argmin
Θ

(Ltxt(Θ) + λLvis(Θ)) , (5)

with λ as a hyperparameter to balance the two losses. By
optimizing Equation (5), our model not only answers medi-
cal queries but also provides text-based visual explanations,
enhancing the interpretability of answers in Med-VQA.

Objective. Our goal is to generate a natural language re-
sponse ŷi that effectively encapsulates both the visual con-
tent Vi and the task-specific aspects of the query Qi. This is
accomplished using our setting, denoted as Uni-Med VQA.

ŷi = ΓUni-Med VQA(Vi, Q
Task
i ; Λ)

= Γdec(Γimg(Vi;λimg),Γtext(Q
Task
i ;λtext);λdec)

(6)

Here, Λ represents parameter set of the enhanced VQA
model, including λimg, λtext, λdec. The model integrates the
visual and query processing modules to output contextually
relevant and task-aligned answers.
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4. Method
The Uni-Med architecture, depicted in Figure 2, begins
with utilizing the IAI module to construct the IAI-Med
VQA dataset. In this dataset, each answer is accompanied
by a visual explanation, with the essential parts of both
instructions and explanations highlighted. Following this,
we capture embeddings based on these labelled explanations
and instructions. These embeddings are then employed
for two key purposes: token-level feature enhancement, as
detailed in Section 4.2 and assisting the LLM in focusing on
the core aspects of the instruction, elaborated in Section 4.3.

4.1. Instruct-to-Answer Clues Interpreter

In order to provide evidence-based answers, we designed an
IAI to generate an IAI-Med VQA dataset, which marked the
”real intent” of instructions and generated corresponding
visual explanations.

Visual Explanation Generation. For a given image Ii
and question-answer pair (Qi, Ai), we generate a visual
explanation Vi using MLLM without parameter updates:

Vcoti = MLLM(Ii, Qi, Ai;UNP), (7)

where UNP represents Universal-Navigator prompts, as il-
lustrated in Figure 4, which instruct the MLLM to generate
Chain of Thought (COT) explanations. Tcoti represents the
textual output that combines the visual explanation and rea-
soning for the answer.

To establish the relationship between answers and vision
and to guide the MLLM to focus on the ’real intent’, it is
essential to annotate the core instructions using UNP (refer
to Appendix Figure 12 for comprehensive details).

Core Instruction and Explanation Labeling. We define
the process of labeling the real intent of instructions and
associated visual explanations as:

(qRi , V
R
i ) = MLLM(Ii, Qi, Vcoti +Ai;UNP), (8)

where qRi denotes the question annotated with ’real intent’
labels and V R

i includes ’core visual explain’ labels for vi-
sual clues in the image that support the answer.

Generation of IAI-Med VQA Dataset. Following the
acquisition of the results from IAI, the structure of our
optimized Med-VQA task is delineated as Eq.(9):

Question: qRi < STOP >

Answer: Vcoti + aRi < STOP >
(9)

In this way, we developed a dataset with traceable
instruction-to-answer paths to enhance the interpretability of
Med-VQA. It augments the VQA-RAD dataset with ’real in-
tent’ annotations and visual explanations. To advance Med-
VQA research, we have made the IAI-Med VQA dataset
publicly available.

Figure 3. The details of Intention-guided Attention.

4.2. Task-guided Token-Level Cut-Mix

Building on the IAI module, we introduce the TC-Mix strat-
egy (detailed in Algorithm 1), to further enhance feature-
level understanding. As shown in Figure 7, when differ-
entiating between ”pneumonia” and ”pleural effusion”, the
”real intent” is to identify core visual clues such as ”homoge-
nous opacity” (marked in a red box). TC-Mix improves the
model’s accuracy in identifying the core visual clues neces-
sary for accurate diagnosis by token-level cut mixing. This
module dynamically aligns core visual explanations AM

j

with corresponding image patches, enabling Uni-Med to
identify finer-grained differences and ensure each response
is ’traceable’, as shown in Figure 7.

Image Group and decomposition. In our approach, med-
ical images are categorized by organ type O and problem
category P , resulting in distinct groups G = {Go,p} (as in
Appendix Figure 15). Each group Go,p is associated with
a set of marked answers Ao,p = {Ao,p

i }
No,p

i=1 , where No,p

represents the number of question-answer pairs in the group
and each answer Ao,p

i contains M answer-labeled text to-
kens AMo,p

j . Here, j is an index representing the position of
a specific answer within the marked answers Ao,p

i and M
represents the number of marked tokens in Ao,p

i .

Firstly, each medical image Io,pi is decomposed into fixed-
size patches P o,p

Ii
of a fixed size, as detailed in Eq.(10):

P o,p
Ii

= Io,pi [ih : (i+ 1)H, jW : (j + 1)W ] |
i ∈ {0, 1, . . . ,M − 1}, j ∈ {0, 1, . . . , N − 1}.

(10)

We denote a patch by pi,k ∈ Rbh×bw , where k is the index
of the patch and bh and bw are the predetermined height
and width of each patch, respectively. The total number of
patches K in image Io,pi is determined by the ratio of the
image dimensions H ×W to the patch dimensions bh × bw.

P o,p
Ii

= {pi,k|k ∈ [1,K]} , (11)

where P o,p
Ii

represents the set of patches into which image
Io,pi is decomposed.

Semantic Similarity-Based Patch Ranking. As shown in
Figure 5, for each image patch pi,k, we compute its feature
vector vi,k using an image encoder Eimg. And for each text
token, we compute tj using a text encoder Etxt:

vi,k = Eimg(pi,k), tj = Etxt(A
M
j ), (12)
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payload = {
    "model": "gpt-4-vision-preview", "messages": [{"role": "system","content": (
          """You are now operating as a medical imaging specialist. Your role is to analyze medical images and provide concise and 
precise explanations for specific findings… Remember to:          
         1. Clearly identify the modality of the medical image (e.g., X-Ray, MRI).
         2. Pinpoint the location and size of any notable features or abnormalities…
         4. Refrain from overinterpreting arrows or labels; focus instead on the pathology they may indicate…
         6. Avoid ambiguous language and ensure your response is decisive and clinically relevant…
    The answer is the real label. You need to analyze and keep the basic facts consistent with the answer.
   Answers based on COT should have different focus points for different question types, such as:
    -For MODALITY type questions, answers should focus on confirming what type of medical imaging (e.g., X-ray, MRI, CT scan, etc.).
    -For ORGAN type questions, answers should focus on the organs and their abnormalities visible in the image…"""
            )},{ "role": "user","content": [{"type": "text","text": ( Here is a new medical image along with a question…. f"The current 
question and answer of uploaded image is {question} and {answer}, The question type is {question_type} and the organ type is 
{image_organ}. You can refer to the reply methods in the template:{template}")},{"type": "image_url","image_url": {"url": 
f"data:image/jpeg;base64,{base64_image}"}}]}],"max_tokens": 200}

Universal-Navigator prompt  in IAI to generate Visual Explanation based on current conversation and image clues.

Figure 4. The simplified version of prompt MLLM to generate task related explanation.

where AM
j represents the marked text token relevant to

image patch pi,k. Then we using projection heads to project
them to a common feature space:

ṽi,k = fimg(vi,k), t̃j = ftxt(tj), (13)

yielding normalized feature vectors for comparison.

The cosine similarity between the patch pi,k and text token
AM

j is computed as:

sij = ṽ⊤i,k · t̃j , (14)

The cosine similarity is then normalized across all tokens
and patches using a temperature-scaled softmax function to
get semantic similarity scores. The semantic similarity from
patch to text token is given by:

σp2t
ij =

exp(sij/τ)∑Npatches

k=1 exp(sik/τ)
, (15)

where τ is the temperature parameter. The final semantic
score for a patch-token pair is calculated as:

S
′

i,k = λ1 · σp2t
ij + λ2 · σt2p

ji , (16)

where σt2p
ji is the reverse semantic similarity from text token

to patch and λ1 and λ2 are weights to balance the contribu-
tions of patch-to-text and text-to-patch similarities, respec-
tively.

Group Based Token-CutMix. For each image pair within
group Go,p, we iterate the selection of top-N similar patches
and the generation of binary masks m. The binary mask
mi,k for each patch k in image Io,pi is defined using the
top-N similarity scores S

′

i,k:

{ rib contours are intact without discontinuity or step-offs, no fractures }
IAI

Multiple right ribs show discontinuity,  suggesting fractures. They are best seen on the 
lateral aspect of the chest.  

Text Embedding

 The rib contours are intact without discontinuity or step-offs, indicating no fractures.

{ right ribs show discontinuity,  fractures, lateral aspect of the chest }
IAI

Text Embedding

…

…

Semantic-Similarity Based Patch Ranking

Core visual explanation

0
0

1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 11
1 1 1 11

1
1

0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 00
0 0 0 00

Figure 5. The details of Task-guided Token-Level Cut-Mix.

mj =

{
0 if j ∈ {pi, k}&S

′

i,k ∈
{
topN (S

′

i,k)
}
,

1 otherwise.
(17)

In Eq.(17), j ∈[1, H ×W ] indexes the spatial dimensions of
mask mj . The TC-Mix operation is formulated as follows:

Vmix = mj ⊙ VIi + (1−mj)⊙ VIj , (18)

where ⊙ represents element-wise multiplication and VIi ,
VIj are the feature vectors from respective images in the
group G.

4.3. Intention-guided LLM Focus on ”real intent”

To reduce modal interference and further improve the
model’s ability to follow instructions, we implement an
intention-guided attention mechanism, directing the model’s
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Figure 6. Qualitative analysis between different MLLMs and Our Uni-Med.

focus towards ’real intention’ parts qTR
i of the instructions,

detailed in Figure 3.The ”real intention” of a question often
guides us to find corresponding visual clues in an image. TC-
Mix improves the model’s accuracy in identifying the core
visual clues necessary for accurate diagnosis by token-level
cut mixing. This approach adjusts attention scores A(l,k)

within each head k of layer l in the multi-head attention
(MHA) layers of the LLM like PMC-LLaMA.

Intention-guided Attention. We identify the set of indices
Sq corresponding to the tokens qTR

i within qRi and apply an
attention projection P to adjust the attention scores in the
MHA layers:

H
(l,k)
IGA = P(A(l,k))V, (19)

where P is the projection function, as defined in Eq.(20):

[P(A)]ij =

{
βAij/Di if j /∈ Sq

Aij/Di otherwise
(20)

Here, 0 < β < 1 is a scaling factor to reduce attention
scores for tokens outside qRi . We define Di for normaliza-
tion as Di =

∑
j /∈S βAij +

∑
j∈S Aij ensuring the scores

sum to one. The value matrix V in the MHA mechanism,
combines with the attention scores to contribute to the final
output of each head.

By reducing the attention scores for tokens not marked as
’real intention’, our method maintains the relative impor-
tance of emphasized segments, avoids uniform attention
distribution that can lead to information loss and ensures
numerical stability. This effectively aligns model output
with ’real intention’ content. As illustrated in Figure 1, for
questions like ”What is the condition of the patient?” and
”Where is the abnormality in this image?”, our approach
prioritizes focus on critical subsets [What, condition] and

[Where, abnormality], directing the LLM’s focus towards
the real intent of the instructions, such as ’condition’ and ’ab-
normality’. This minimizes distractions from non-essential
details, ensuring the model’s attention remains on pertinent
instruction elements. By employing IGA, we direct the
model’s attention to the important details of the instruc-
tions, mitigating the issue of LLMs struggling to capture
key information amidst length and complex instructions.

5. Experiment Results
5.1. Experiment Settings

Dataset. We use the PMC-VQA dataset (Zhang et al.,
2023b), which includes 227K VQA pairs from 149K images,
adhered to the experimental configurations as described in
(Nguyen et al., 2019a). For fine-tuning, we used two medical
datasets: VQA-RAD (Nguyen et al., 2019a), consisting of
314 radiology images and 3,064 clinician-curated question-
and-answer pairs; and SLAKE (Liu et al., 2021b), which
offers 642 radiology images and 14K question-and-answer
samples, of which we used 70% for training and 30% for
testing. For these two datasets, the experimental setup in
(Zhang et al., 2023b) were followed.

Implementation details. In our implementation, the PMC-
CLIP visual backbone (Lin et al., 2023) is kept frozen
throughout the training process. We align our model’s opti-
mization strategy, learning rate, number of training epochs,
weight decay, loss weights and other hyperparameters with
established methods to ensure a fair comparison. The model
is trained using the AdamW optimizer, combined with a
cosine learning rate scheduler, across 8 Tesla V100 GPUs
over 8,000 steps. We set a global batch size of 128 and a
peak learning rate of 2e-5 to optimize performance.
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Table 1. The comparisons between Uni-Med and other SOTA methods. ”Closed”: closed-ended questions with a yes/no answer. ”Open”:
open-ended questions with no fixed form answer.

Methods Pretrain images VQA-RAD SLAKE
Closed Open Overall Closed Open Overall

Data Enhancement
BAN-MEVF+DAVQA (Kafle et al., 2017) - 76.2 51.2 66.2 - - -

MEVF+SAN (Nguyen et al., 2019b) - 69.7 49.2 57.1 78.4 75.3 76.5
MEVF+BAN (Nguyen et al., 2019b) - 77.2 49.2 66.1 79.8 77.8 78.6
BAN-MEVF+CR (Zhan et al., 2020) - 79.3 52.4 68.5 - - -

SEADA (Tang et al., 2020a) - 79.6 56.6 70.4 - - -
HQS (Gupta et al., 2021) - 63.4 12.9 41.1 - - -

CMSA-MTPT (Gong et al., 2021) - 77.8 52.8 67.9 - - -
VQAMIX (Gong et al., 2022b) - 79.6 56.6 70.4 - - -

Pretrain-finetuning Model
MMBERT (Khare et al., 2021) - 76.8 58.3 66.9 - - -

PUBMEDCLIP-MEVF (Eslami et al., 2021) 80K 78.1 48.6 66.5 76.2 79.9 77.6
CPRD+BAN (Liu et al., 2021a) - 77.9 52.5 67.8 83.4 79.5 81.1
MMBERT (Khare et al., 2021) - 76.9 55.3 66.9 83.4 79.5 81.1

MTL (Cong et al., 2022) 87K 79.8 69.8 75.8 86.1 80.2 82.5
M3AE (Chen et al., 2022) 298K 83.4 67.2 77 87.8 80.3 82.5

PTUnifier (Chen et al., 2023) - - - 78.3 - - 85.2
RAMM (Yuan et al., 2023) 700K - - 78.27 - - 86.05
MUMC (Li et al., 2023b) 387K 84.2 71.5 79.2 - - 84.9

LLaVA (7B) (Liu et al., 2023) - 65.07 50.00 - 63.22 78.18 -
LLaVA-Med (7B) (Li et al., 2023a) 1M 84.19 61.52 - 85.34 83.08 -

LLaVA-Med (13B) (Li et al., 2023a) 1M 81.98 64.39 - 85.58 84.97 -
MedVInT-PMC-VQA (Zhang et al., 2023b) 140K 86.8 73.7 81.6 86.3 84.5 85.2

Pretrain-finetuning and Data Enhancement
Uni-Med (7B) 140K 87.22 74.21 82.05 87.52 85.34 86.12

Table 2. Impact of IAI-Med VQA Dataset.
Method VQA-RAD SLAKE

Closed Open Closed Open
LLaVA-1.5(7B) 68.53 37.98 65.29 72.26
w/ IAI-Med-pre 69.48 (+0.95) 42.45 (+4.47) 66.65 (+1.35) 78.13 (+5.87)

w/ IAI-Med 70.35 (+1.82) 40.69 (+2.71) 67.15 (+1.86) 77.32 (+5.06)
LLaVA-1.5(13B) 71.56 39.23 68.42 72.56
w/ IAI-Med-pre 72.43 (+0.87) 42.51 (+4.28) 69.6 (+1.18) 78.18 (+5.62)

w/ IAI-Med 73.89 (+2.33) 41.34 (+3.11) 70.18 (+1.76) 77.37 (+4.81)

5.2. Comparison with state-of-the-art methods

In this section, we compare Uni-Med against various state-
of-the-art (SOTA) methods, with the results presented in
Table 1.

Results on VQA-RAD dataset. Uni-Med showcased re-
markable accuracy enhancements for closed questions on
the VQA-RAD dataset, achieving 87.22%, with 140K pre-
trained images. This performance exceeds that of LLaVA-
Med, which utilized 1M pre-trained images, by 3.03%
and also surpasses the previous SOTA method MedVInT-
PMC-VQA by 0.42%. For open-ended questions, Uni-Med
reached an accuracy of 74.21%, outperforming LLaVA-Med
and MedVInT-PMC-VQA by 12.69% and 0.51%.

Results on SLAKE dataset. For closed questions, Uni-Med
achieved an accuracy of 87.52%, surpassing LLaVA-Med
and MedVInT-PMC-VQA by 2.18% and 1.22%, respec-
tively. For open-ended questions, Uni-Med attained an accu-
racy of 85.34%, exceeding the performance of LLaVA-Med
and MedVInT-PMC-VQA by 2.26% and 0.84%, respec-

Table 3. Impact of UNP in IAI module.
Method VQA-RAD SLAKE

Closed Open Overall Closed Open Overall
baseline 86.8 73.7 81.6 86.3 84.5 85.2
w/o UNP 85.93 71.62 80.5 85.42 83.67 83.95

FULL 86.95 73.83 81.68 86.95 84.68 85.52

tively. Overall, Uni-Med reached an accuracy of 86.12%,
which is 0.92% higher than the previous SOTA method
MedVInT-PMC-VQA.

5.3. Qualitative Analysis

Uni-Med outperforms SOTA methods by effectively align-
ing answers with visual clues. Unlike LLaVA-Med and
PMC-VQA, which may provide correct ’Yes’ or ’No’ an-
swers but often miss critical visual details, Uni-Med demon-
strates enhanced precision. As illustrated in Figure 6, Uni-
Med accurately identifies specific features in medical im-
ages, such as calcifications in the abdominal aorta, which
other models overlook. This advanced visual recognition
capability is key to Uni-Med’s superior interpretability and
its practical applicability in medical diagnostics.

5.4. Visualization result of the TC-Mix On VQA-RAD

As illustrated in Figure 7, the TC-Mix enables us to dy-
namically align critical visual explanations, such as ”The
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Algorithm 1 Token-Level Cut-Mix (TC-Mix)
1: Input: Image groups G = {Go,p}, Real Intent Marked

answers Ao,p = {Ao,p
i }

No,p

i=1

2: Output: Cut-Mixed feature vectors Vmix
3: for each group Go,p in G do
4: for each answer Ao,p

i in Ao,p do
5: Concatenate marked answer tokens A

Mo,p

j ←
Concat(ao,p1 , ao,p2 , ..., ao,pn ) from Ao,p

i

6: Compute concatenated text embedding to,pj ←
Etxt(A

Mo,p

j )
7: end for
8: for each image Io,pi in Go,p do
9: Decompose Io,pi into K patches P o,p

Ii
= {pi,k}Kk=1

10: Extract image features vi,k ← Eimg(pi,k), for all k
11: Calculate semantic similarity scores S

′

i,k ←
κ(vi,k, t

o,p
j ), for all k

12: Select top-N patches TN
S ← topN (S

′

i,k)
13: end for
14: for each pair (Ii, Ij) in Go,p do
15: Generate binary masks mi,mj for TN

S

16: Perform Cut-Mix: Vmix ← (mi ⊙ VIi) + (1 −
mj)⊙ VIj

17: end for
18: end for
19: Return: Vmix

Table 4. Effects of IAI, IGA and TC-Mix.
Method VQA-RAD SLAKE

Closed Open Overall Closed Open Overall
baseline 86.8 73.7 81.6 86.3 84.5 85.2
w/o IAI 87.12 73.85 81.78 87.40 84.78 85.82

w/o TC-Mix 87.02 74.05 81.86 87.28 85.06 85.77
w/o IGA 87.11 73.92 81.72 87.42 84.60 85.73

Full 87.22 74.21 82.05 87.52 85.34 86.12

trachea, straight and centered between the clavicles” with
their respective image patches, thereby focusing the model’s
attention on visuals pertinent to the task. This method in-
volves selectively employing TC-Mix on image patches that
coincide with these visual explanations, thereby sharpen-
ing the model’s focus on essential visuals. Such precise
alignment, facilitated by TC-Mix processing, significantly
boosts the model’s ability to adapt to unfamiliar content
while maintaining the clarity of its responses.

5.5. Ablation Studies

Impact of using IAI-Med VQA Dataset. As illustrated
in Table 2, using IAI-Med VQA dataset enhances the per-
formance of general MLLMs like LLaVA-1.5. For the 7B
model, using IAI-Med improves accuracy by 2.71% for open
and 1.82% for closed questions on the VQA-RAD dataset.
The 13B model sees even larger gains of 3.11% and 2.33%
for open and closed questions, respectively. On the SLAKE

Figure 7. Visualization result of the TC-Mix On VQA-RAD.
Table 5. Stability and GPU throughput comparison.

VQA-RAD

Method Closed Open Overall
GPU Throughput

(samples/sec)
LLaVA 65.02 ± 0.12 49.95 ± 0.18 - 2.86

LLaVA-Med 84.15 ± 0.13 61.5 ± 0.16 - 3.23
MedVInT-PMC-VQA 86.75 ± 0.1 73.65 ± 0.15 81.55 ± 0.12 2.57

Uni-Med 87.15 ± 0.08 74.18 ± 0.12 81.95 ± 0.09 2.48
SLAKE

Method Closed Open Overall
GPU Throughput

(samples/sec)
LLaVA 63.2 ± 0.14 78.1 ± 0.17 - 2.78

LLaVA-Med 85.3 ± 0.12 83.05 ± 0.15 - 3.12
MedVInT-PMC-VQA 86.25 ± 0.1 84.45 ± 0.13 85.15 ± 0.11 2.51

Uni-Med 87.48 ± 0.07 85.25 ± 0.11 86.05 ± 0.10 2.42

dataset, IAI-Med facilitates an increase of over 5% for both
question formats across different model sizes. These find-
ings highlight the effectiveness of IAI-Med in improving
MLLMs’ interpretative and diagnostic capabilities.

Effects of Visual Interpretation Position. According to Ta-
ble 2, the positioning of visual interpretations significantly
influences model performance. On the VQA-RAD dataset,
situating visual interpretations before the answer (IAI-Med-
pre) enhances accuracy for closed questions by 0.95%, while
placing them after the answer (IAI-Med) leads to a 1.82%
improvement. For open-ended questions, IAI-Med-pre of-
fers a slight advantage over IAI-Med, indicating that while
IAI-Med adheres to a traditional, reasoning-oriented chain
of thought, IAI-Med-pre might facilitate a more comprehen-
sive understanding.

Impact of UNP in IAI module. To examine the influence
of UNP on IAI, we performed experiments as shown in
Table 3, with the baseline being MedVInT-PMC-VQA. On
the VQA-RAD dataset, the removal of UNP caused a 1.18%
reduction in overall accuracy. Similarly, on the SLAKE
dataset, the exclusion of UNP led to a 1.57% decrease in
overall accuracy. These observations underscore the critical
contribution of UNP to the IAI.

Effects of IAI, IGA and TC-Mix. Our ablation study (Ta-
ble 4) reveals the significance of each component in the
framework. Analysis indicates that excluding the IAI mod-
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ule does not hinder performance gains over the baseline, due
to the complementary support of other modules. TC-Mix,
which enhances the model’s ability to focus on diverse fea-
tures, impacts performance more than IGA . The combined
inclusion of IAI, IGA, and TC-Mix markedly improves out-
comes across various question types, underscoring their
collective importance in boosting the model’s effectiveness.

Stability and GPU throughput comparison. In our
study, we performed ten experiments to evaluate Uni-Med
against other SOTA methods, focusing on stability and GPU
throughput. The results, detailed in Table 5, reveal that Uni-
Med consistently exhibits a standard deviation within the
1% range for both VQA-RAD and SLAKE datasets, indi-
cating higher reproducibility and reliability compared to its
counterparts. Moreover, Uni-Med showcases competitive
GPU throughput, highlighting its efficiency alongside its
performance robustness.

6. Conlusion
In this study, we introduce the Uni-Med framework, an
approach that significantly enhances the interpretation of
complex medical images through user instructions. Utilizing
the IAI for identifying the ’real intent’ behind queries and
generating precise visual explanations, alongside the Token-
Level Cut-Mix module for ensuring traceable and learnable
answers, Uni-Med marks a significant advance in Med-VQA
research. Extensive experiments on public datasets and
diverse settings demonstrate its effectiveness. By making
the IAI-Med VQA dataset publicly available, we aim to
foster future advancements in interpreting complex medical
images, thereby contributing to the broader field of medical
diagnostics and research.
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payload = {
    "model": "gpt-4-vision-preview",
    "messages": [{
            "role": "system","content": (
          """You are now operating as a medical imaging specialist. Your role is to analyze medical images and provide concise and 
precise explanations for specific findings. 
          Please focus on the visual content of the image and use your medical knowledge to support your reasoning. 
          Keep your explanations  are directly related to the image's visual aspects. 
          Avoid any reliance on text descriptions that are not corroborated by visual evidence in the image. 
          Remember to:          
         1. Clearly identify the modality of the medical image (e.g., X-Ray, MRI).
         2. Pinpoint the location and size of any notable features or abnormalities.
         3. Distinguish between different types of pathologies or structures based on their visual characteristics.
         4. Refrain from overinterpreting arrows or labels; focus instead on the pathology they may indicate.
         5.Provide a rationale for your answers that demonstrates an understanding of medical imaging conventions.
         6. Avoid ambiguous language and ensure your response is decisive and clinically relevant.
         7. Do not require multi-round clarification; your first response should be as accurate as possible.
   When answering, begin with a direct response to the question, followed by a brief explanation based on the visual evidence. 
   Your explanation should be rooted in the image provided and not assume information beyond what is visible.
    The answer is the real label. You need to analyze and keep the basic facts consistent with the answer.
   Answers based on COT should have different focus points for different question types, such as:
    -For MODALITY type questions, answers should focus on confirming what type of medical imaging (e.g., X-ray, MRI, CT scan, etc.).
    -For ORGAN type questions, answers should focus on the organs and their abnormalities visible in the image.
    -For PRES type questions, the focus needs to be on confirming or ruling out the presence of specific pathological phenomena.
    -For POS type questions, the focus is on describing the exact location where the anomaly was found.
    -For ABN type questions, the focus on explaining why a specific pathological abnormality is or is not present in the image…
                """
            )},{
            "role": "user",
            "content": [{"type": "text",
                    "text": ( Here is a new medical image along with a question.Please provide an answer and reasoning that strictly pertains 
to the visual aspects of this image, without referring to any previous conversation content. Your explanation should directly address the 
question and describe the supporting visual evidence found in the image. Be clear, concise, and ensure your response is relevant and 
specific to the image at hand.
             f"The current question and answer of uploaded image is {question} and {answer}, The question type is {question_type} and the 
organ type is {image_organ}. You can refer to the reply methods in the template:{template}"      
                    )},{"type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{base64_image}"}}]}],
    "max_tokens": 200}

Universal-Navigator prompt  in IAI to generate Visual Explanation based on current conversation and image clues.

Figure 8. Universal-Navigator prompt in IAI to generate Visual Explanation based on current conversation and image clues.

A. Appendix.
A.1. Using Universal-Navigator prompt to generate Visual Explanation

In this section, we design an Instruct-to-Answer Clues Interpreter (IAI), which employs an MLLM (i.e., GPT4V) to generate
visual explanations as reasoning steps, as shown in Figure 8. We require GPT4V to act as a medical image expert to
accurately analyze and interpret medical images based on medical images. However, it is pointed out in (Yan et al., 2023)
that the existing GPT4V is difficult to accurately analyze medical images and is prone to face the following major problems
1) Accurate localization requires clues. 2) Challenges in assessing object size. 3) Over-reliance on text. 4) Overemphasis on
markers in images. 5) Very detailed answers. To mitigate errors in medical image analysis, we developed the Universal-
Navigator Prompt (UNP) within IAI, which guides the MLLM in categorizing answers based on different types, such as
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[
    {
        "conversations": [
            {
                "from": "human",
                "value": "Is there evidence of an aortic aneurysm?"
            },
            {
                "from": "gpt",
                "value": "The aortic silhouette is normal, without any visible 
bulging or enlargement indicative of an aneurysm. The answer is no.“
            }
        ],
        "answer_type": "CLOSED",
        "image_organ": "CHEST",
        "question_type": "PRES",
        "phrase_type": "freeform"
    },
    {
          "conversations": [
            {
                "from": "human",
                "value": "Where is the abnormality?"
            },
            {
                "from": "gpt",
                "value": "The abnormality is located in the region corresponding to 
the left temporal lobe, which is hyperintense on this T2-weighted MRI. The 
answer is left temporal lobe. 
            }
        ],
        "answer_type": "OPEN",
        "image_organ": "HEAD",
        "question_type": "POS",
        "phrase_type": "freeform"
    }
]

Exsample of  Visual explanation generated from VQA-RAD

 [{
        "conversations": [
            {
                "from": "human",
                "value": "Is there blunting of the costovertebral angles?"
            },
            {
                "from": "gpt",
                "value": "The diaphragm is well-defined and the costophrenic angles 
are sharp, indicating no blunting or pleural effusion. The answer is no“
            }
        ],
        "answer_type": "CLOSED",
        "image_organ": "CHEST",
        "question_type": "PRES",
        "phrase_type": "freeform"
    },
    {
        "conversations": [
            {
                "from": "human",
                "value": "Which organ system is abnormal in this image?"
            },
            {
                "from": "gpt",
                "value": "The cardiac silhouette is altered, a cardiovascular system 
abnormality. A pacemaker device is visible. The answer is Cardiovascular. "
            }
        ],
        "answer_type": "OPEN",
        "image_organ": "CHEST",
        "question_type": "ORGAN",
        "phrase_type": "freeform"
    }]

Figure 9. Example of Visual explanation generated with UNP from VQA-RAD.

questions and organs. In order to prevent GPT4V from being overly ”confident” and giving incorrect inferences, we make
full use of the information in the current conversation to label answers and give targeted answers based on different types of
questions, such as questions and organs, which require more attention to confirming what type of modality is involved. For
organ type we need to focus on the visual abnormality of the organ and we require GPT4 to reduce the focus on some image
markers (e.g., arrows) in the image, by which we greatly optimize GPT4V’s ability to accurately analyze medical images.
Since the dictionary information (Organ type, question type, etc.) of the SLAKE dataset is slightly different, we also made
fine-tuning to UNP to adapt.

A.2. Example of Visual explanation generated with UNP

As demonstrated in Figures 9 and 10, we show some of the results of generating visual interpretations on VQA-RAD and
SLAKE dataset, using the IAI module. It can be found that for different types of organs (CHEST, HEAD, etc.) and different
question types(PRES, POS, ORGAN etc.), IAI can make accurate and targeted visual interpretations. For example, for the
POS type question ”Where is the abnormality?”, IAI responce the correct answer ”left temporal lobe” .

A.3. Qualitative Analysis of UNP’s Impact on IAI

In addition, we further qualitatively compare the impact of UNP on MLLM in the IAI module, as shown in Figure 11. It
can be found that GPT4V still lacks in understanding the details of medical images, location judgment and counting. By
designing UNP, GPT4V has greatly improved its ability to accurately analyze medical images and can accurately generate
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[
   {
        "conversations": [
            {
                "from": "human",
                "value": "Does the picture contain liver?"
            },
            {
                "from": "gpt",
                "value": "Yes. This MRI image shows a large, dark area with vessels 
branching out, characteristic of liver parenchyma and vasculature."
            }
        ],
        "q_lang": "en",
        "location": "Abdomen",
        "modality": "MRI",
        "answer_type": "CLOSED",
        "base_type": "vqa",
        "content_type": "Organ",
    },
    {
        "conversations": [
            {
                "from": "human",
                "value": "What modality is used to take this image?"
            },
            {
                "from": "gpt",
                "value": "CT. This is a CT image, identified by the cross-sectional 
view and the variations in grayscale representing different tissue densities."
            }],
        "q_lang": "en",
        "location": "Abdomen",
        "modality": "CT",
        "answer_type": "OPEN",
        "base_type": "vqa",
        "content_type": "Modality",
    },
]

Example of Visual explanation generated with UNP On SLAKE.

 [{
        "conversations": [
            {
                "from": "human",
                "value": "Does the picture contain liver?"
            },
            {
                "from": "gpt",
                "value": "No. The image shows a CT scan of the chest, with the 
trachea, bilateral lung fields, and no presence of liver tissue."
            }
        ],
        "q_lang": "en",
        "location": "Lung",
        "modality": "CT",
        "answer_type": "CLOSED",
        "base_type": "vqa",
        "content_type": "Organ",
     {
"conversations": [
            {
                "from": "human",
                "value": "Which is the bigger in this image,lung or heart?"
            },
            {
                "from": "gpt",
                "value": "Lung. The lungs are visibly larger than the heart; the lung 
fields occupy most of the thoracic cavity, while the heart is centrally located and 
smaller in comparison."
            }
        ],
        "q_lang": "en",
        "location": "Lung",
        "modality": "CT",
        "answer_type": "CLOSED",
        "base_type": "vqa",
        "content_type": "Size",
},
]

Figure 10. Example of Visual explanation generated with UNP On SLAKE.

visual explanations based on image and dialog information.

A.4. UNP for Labeling Instruction Intent and Core Visual Explanation

Existing MLLMs have difficulty in understanding the ”real intent” of instructions, focusing on irrelevant content, and
capturing the visual information that users want to know from instructions. To this end, we use UNP to further mark the
”real intent” of instructions and the visual evidence that can support the answer in the explanation. Then we construct a new
IAI-Med VQA dataset with UNP, which can further help research in the field on Med-VQA. as shown in Figure 12. In order
to guide MLLM in accurate labeling, UNP requires MLLM to focus more on medical terms, such as specific anatomical or
pathological terms, and to be granular rather than labeling the entire problem, and to understand the ”real intent” of the
problem. Similarly, UNP has also made targeted designs for different organs and different types of problems. When marking
the SLAKE dataset with ”real intention” and ”core visual explanation”, we also fine-tuned UNP to adapt to its data format.

A.5. Example of Instruction Intent and Core Visual Explanation Labeling

The Figures 13 and 14, shows some examples of labeling on VQA-RAD and SLAKE datasets using UNP. After completing
the generation of the visual explanations, in order to improve the model’s instruction adherence and generalizability to
unseen data, we used ”real intention” and ”core visual explanation” to label the real intention of the question and the clues
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Question：Where is the liver?
GT: Upper Left.

Answer: The liver is in the upper left quadrant, evidenced by the 
dark, dome-shaped area beneath the diaphragm. 

 GPT4V

Question：Where is the liver?
GT: Upper Left.

Answer: The liver is predominantly located in the upper right 
quadrant of the abdomen. In the given axial MRI slice, the liver is 
not depicted.

 GPT4V

 With Universal Nagivator Promot  Without Universal Nagivator Promot 

Question：How many kidneys in this image?
GT: 0.

Answer: The image shows lung fields, heart shadow, and ribs 
without any renal structures, confirming the absence of kidneys in 
the image. 

 GPT4V

Question：How many kidneys in this image?
GT: 0.

Answer: There are two kidneys visible in this axial MRI image of 
the abdomen, identified by their characteristic bean shape and 
location

 GPT4V

Question：What organ is the gray part on the left of the image?
GT: Liver.

Answer: The gray part on the left of the image is homogeneous in 
density and occupies the upper left quadrant, consistent with the 
liver's typical location and appearance in an abdominal CT scan.

 GPT4V

Question：What organ is the gray part on the left of the image?
GT: Liver.

Answer: The gray part on the left of the image is the spleen. It's 
located laterally on the left side, consistent with normal splenic 
anatomy.

 GPT4V

Question：Does this image look normal?
GT: Yes.

Answer: The heart size and mediastinal contours are within 
normal limits, and the lung fields are clear without focal opacities.

 GPT4V

Question：Does this image look normal?
GT: Yes.

Answer: No, the image shows a large aortic aneurysm 
characterized by the abnormal, rounded dilation of the ascending 
aorta.

 GPT4V

Figure 11. Qualitative Analysis: With vs. Without UNP in IAI Module.

supporting the answer, respectively, and we can find that our UNP is able to recognize the core content of the question well,
and identify the clues from the core content of the question, as well as the clues supporting the answer. It can be found
that our UNP is able to recognize the core content of the question well and find the reason for the answer from the visual
explanation, for example, our QA pairs with visual clues are enough to greatly improve the interpretability of MLLM on the
Med-VQA task. We publicly label the IAI-Med VQA dataset to facilitate research in the field of Med VQA.

A.6. Time Consumption for IAI-Med VQA Data Construction

In this part, we report the time required to construct the IAI-Med VQA dataset using the Universal-Navigator Prompt
(UNP), measured in single GPU hours. The dataset construction process is divided into two main tasks: generating visual
explanations and labeling instructions with ”real intent” and ”core visual explanations.”

Table 6. GPU Time Consumption for Each Task in Dataset Construction
Task VQA-RAD (GPU hrs) SLAKE (GPU hrs)
Generate visual explanation 5 8
Labeling instructions and explanation 8 12

As shown in Table 6, for the VQA-RAD dataset, approximately 5 GPU hours were spent generating visual explanations and
an additional 8 GPU hours for labeling tasks. In contrast, for the SLAKE dataset, the tasks required approximately 8 and 12
GPU hours, respectively.
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{
    "model": "gpt-4-vision-preview",
    "messages": [
        {
            "role": "system",
            "content": "You are an AI assistant specialized in biomedical topics. Given the latest question about a medical image and its 
direct answer, your task is to use <real_intention></real_intention> tags to enclose the direct question to choose the most important 
element to reflect the user's intentions. And <core_visual_explanation></core_visual_explanation> tags to wrap the description of the 
visual content that supports the answer: 
      1) The content should be related to the critical visual elements from the image and be as precise as possible, 
      2) Each tag can be used repeatedly and the response should be complete, including the tags.
     3) Each tag can be used multiple times or once. Mark the question as many times as necessary. When marking answers, make sure 
that the marked content includes complete visual descriptions. 
      4) All question packages must be fine-grained using at least two tags. Pay attention to the marking of negative words! 
      5) When labeling questions, label verbs and nouns rather than predicates. Don't mark combinations like 'are' and 'what is' 
     6) When marking answers, try to mark the visual content that exists in the visual content of the image and supports the answer; and 
the content is semantically complete and can be mapped to the corresponding individual in the image through text, and don't use more 
than 2 for tagging. 
    7) Identify and label the key medical terms in the question that are directly related to the diagnosis or condition being inquired 
about, and focus your answer on these terms. 
      8) Identify and label the specific anatomical or pathological terms present in the question. 
      9) Identify and label the medical terminology within the question that relates to visible abnormalities or conditions in the image. 
    10) It is not possible to wrap up all the content of the question, and important elements must be selected in a fine-grained manner: 
Tagged content should have different focus points for different question types, such as: 
-For MODALITY type questions, answers should focus on confirming what type of medical imaging the image is (e.g., X-ray, MRI, CT 
scan, etc.).
 -For ORGAN type questions, answers should focus on the organs and their abnormalities visible in the image. 
-For PRES type questions, the focus needs to be on confirming or ruling out the presence of specific pathological phenomena: 
-For POS type questions, the focus is on describing the exact location where the anomaly was found. 
For ABN type questions, the focus on explaining why a specific pathological abnormality is or is not present in the image…”
        },
        { "role": "user",
            "content": "The current question and answer of uploaded image is {question} and {answer}, The question type is {question 
type} and the organ type is {image_organ}. You can refer to the reply methods in the template:{template}  
            Here are some guidelines: 
           1) When labeling questions, label verbs and nouns rather than predicates. Don't mark combinations like 'are' and 'what is': 
        2) When marking answers, try to mark the visual content that exists in the visual content of the image and supports the answer, 
and the content is semantically complete and can be mapped to the corresponding individual in the image through text, and don't use 
more than 2 for tagging. 
       3) To avoid wrapping invalid and redundant information, <real_intention></real_intention> must wrap a direct answer to the 
question, which cannot exceed 10 words. 
        4) <core_visual_explanation></core_visual_explanation> wrap the content cannot exceed 20 words. but please also return the 
entire response! The contents of the package need to be as accurate as possible. ”
        },{
            "type": "image_url",
            "image_url": {
                "url": "data:image/jpeg;base64,{base64_image}"
            }}],
    "max_tokens": 200}

Universal-Navigator prompt In IAI to label Instruction Intent and Core Visual Explanation

Figure 12. UNP for Labeling Instruction Intent and Core Visual Explanation.
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[
     {
        "conversations": [
            {
                "from": "human",
                "value": "Is there <real_intention>pericolic fat stranding</
real_intention>?"
            },
            {
                "from": "gpt",
                "value": "Increased <core_visual_explain>attenuation around the 
colon, indicative of inflamed fat</core_visual_explain>, is consistent with 
pericolic fat stranding on this CT scan. The answer is yes” 
            }
        ],
        "answer_type": "CLOSED",
        "image_organ": "ABD",
        "question_type": "PRES",
        "phrase_type": "freeform"
    },
     {
        "conversations": [
            {"from": "human", "value": "<real_intention>Where</real_intention> 
is the <real_intention>abnormality</real_intention> located?"
            },
            {
                "from": "gpt",
                "value": "Hyperdense area in the <core_visual_explain>right 
cerebellum</core_visual_explain>; indicative of a hemorrhage, lesion, or 
calcification. The answer is Right posteroinferior cerebellum. “
            }
        ],
        "answer_type": "OPEN",
        "image_organ": "HEAD",
        "question_type": "POS",
        "phrase_type": "frame"
    },]

Example of  Instruction Intent and Core Visual Explanation Labeling On VQA-RAD

 [    
   {
        "conversations": [
            {
                "from": "human",
                "value": "<real_intention>What organ system</real_intention> is 
<real_intention>pictured</real_intention>?"
            },
            {"from": "gpt", "value": "This is a brain MRI displaying 
<core_visual_explain>cerebral hemispheres and ventricular system</
core_visual_explain> without skull structures. The answer is The brain. ”
            }
        ],
        "answer_type": "OPEN",
        "image_organ": "HEAD",
        "question_type": "ORGAN",
        "phrase_type": "freeform"
    },
 "conversations": [
            {
                "from": "human",
                "value": "<real_intention>Which organ system</real_intention> is 
<real_intention>abnormal</real_intention> in this image?"
            },
            {
                "from": "gpt",
                "value": "The <core_visual_explain>cardiac silhouette is altered</
task_related_visual>, a <core_visual_explain>cardiovascular system abnormality</
core_visual_explain>. A <core_visual_explain>pacemaker device is visible</
core_visual_explain>. The answer is Cardiovascular. “
            }
        ],
        "answer_type": "OPEN",
        "image_organ": "CHEST",
        "question_type": "ORGAN",
        "phrase_type": "freeform"
    },]

Figure 13. Example of Instruction Intent and Core Visual Explanation Labeling On VQA-RAD.

A.7. Top 10 groupings by organ and question type on the VQA-RAD dataset

To ensure the interpretability of TC-Mix, we performed a grouping operation. Figure 15, shows the top10 sorting details
grouped by organ type and problem type on the VQA-RAD dataset, which has 3 types of organs and more than 10 problem
types. Since the visual cues corresponding to the same organ type and question type may be relatively similar and interrelated,
this feature due to help the model to distinguish finer-grained differences. Therefore grouping Cut-Mix for different types
can help MLLM to adapt to unseen features.
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[
      {
        "conversations": [{
                "from": "human",
                "value": "<real_intention>What diseases</real_intention> are 
included in the <real_intention>picture</real_intention>?"
            },{
"from": "gpt", "value": "There is <core_visual_explain>a mass in the right 
lung<core_visual_explain> with <core_visual_explanation>spiculated 
margins</core_visual_explain>, suggesting lung cancer. The answer is Lung 
Cancer. ” 
           }
        ],"q_lang": "en",
        "location": "Lung",
        "modality": "CT",
        "answer_type": "OPEN",
        "base_type": "vqa",
        "content_type": "Abnormality",
        "triple": [
            "vhead",
        ],"conversations": [{
                "from": "human",
                "value": "<real_intention>What modality</real_intention> is used to 
take this image?"
            },{"from": "gpt",
"value": "This is a CT image, identifiable by its <core_visual_explain>high-
resolution cross-sectional view displaying detailed lung parenchyma and soft 
tissues</core_visual_explain>. The answer is CT. ”}],
        "q_lang": "en",
        "location": "Lung",
        "modality": "CT",
        "answer_type": "OPEN",
        "base_type": "vqa",
        "content_type": "Modality",
        "triple": [
            "vhead"]]

Example of  Instruction Intent and Core Visual Explanation Labeling On SLAKE

 [    
    {
        "conversations": [
            {
                "from": "human","value": "<real_intention>Which part of the 
body<real_intention>does this image belong to?"},{
                "from": "gpt","value": "This is an X-ray of the chest showing 
<core_visual_explain>both lungs, the clavicles, and the upper spine</
core_visual_explain>. The image is anterior-posterior with adequate 
penetration.The answer is Chest.” 
        }],
        "q_lang": "en",
        "location": "Lung",
        "modality": "X-Ray",
        "answer_type": "OPEN",
        "base_type": "vqa",
        "content_type": "Position",
        "triple": [
            "vhead",
 {
        "conversations": [
            {
                "from": "human",
              "value": "<real_intention>What is the largest organ</real_intention> 
in the picture?"},{"from": "gpt","value":"The image shows the 
<core_visual_explain>lung fields as the dominant radiopaque areas</
core_visual_explain>, occupying most of the thoracic cavity.The answer is 
Lung. ”}],
        "q_lang": "en",
        "location": "Lung",
        "modality": "X-Ray",
        "answer_type": "OPEN",
        "base_type": "vqa",
        "content_type": "Size",
        "triple": [
            "vhead" }]

Figure 14. Example of Instruction Intent and Core Visual Explanation Labeling On SLAKE.

Figure 15. Top 10 groupings by organ and question type on the VQA-RAD dataset.
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