
Technical Report for ICML 2024 Automated Math Reasoning Challenge:
Solving Optimization Problems with Open Source Large Language Model

Duc M. Nguyen 1 Sungahn Ko 1

Abstract
This technical report presents an approach uti-
lizing open-source Large Language Models for
Automated Optimization Problem-solving With
Code Challenge at the ICML 2024 AI4Math
Workshop. This challenge emphasizes the abil-
ity of Large Language Models (LLMs) to handle
complex mathematical reasoning from formulat-
ing to solving the problem at hand. By exploring
different prompting techniques, such as few-shot,
self-consistency, chain-of-thought, and tree-of-
thought, we aim to explore the current state-of-
the-art LLMs’ mathematical reasoning abilities.

1. Introduction
Recent research has highlighted the remarkable potential
of state-of-the-art Large Language Models like GPT-4
(Achiam et al., 2023) showcasing their promising abilities in
reasoning across diverse fields, encompassing tasks such as
solving mathematical word problems and proving theorems
(Huang et al., 2024). Automated mathematical reasoning,
which requires sophisticated multi-step planning and rea-
soning, has attracted active research to evaluate and develop
intelligent agents capable of obtaining advanced forms of
human intelligence such as mathematical reasoning.

In this technical report, we investigate the ability to for-
mulate and solve optimization problems, which is critical
across various domains, ranging from operations research
and engineering to finance and machine learning, by Open
Source Large Language Models. Traditionally, solving opti-
mization problems has required human expertise in math-
ematical modeling and algorithm design. However, the
rise of LLMs presents an opportunity to automate this pro-
cess, enabling machines to understand, interpret, and solve
optimization problems expressed in natural language. To

1Department of Computer Science and Engineering, Ulsan
National Institute of Science and Technology, Ulsan, Republic of
Korea. Correspondence to: Sungahn Ko <sako@unist.ac.kr>.

The first AI for Math Workshop at the 41 st International Confer-
ence on Machine Learning, Vienna, Austria. Copyright 2024 by
the authors.

tackle this problem, we investigate current Large Language
Models’ capability to solve optimization problems by aug-
menting them with various prompt engineering frameworks.
Our contributions can be summarized as follows:

• We formulate the automated optimization problem-
solving as a prompt engineering problem, leveraging
the capabilities of LLMs to understand and model opti-
mization problems expressed in natural language.

• We propose a symbolic approach to repair incorrect
problem formulation automatically, improving the ac-
curacy and reliability of the models.

• We provide a comparative analysis of state-of-the-
art prompting techniques such as few-shot, self-
consistency, chain-of-thought, and tree-of-thought, of-
fering insights into their strengths and limitations in
automated optimization problem-solving.

2. Related Work
2.1. Large Language Models

In the past few years, the boom of deep learning in Nat-
ural Language Processing and the birth of the Transform-
ers (Vaswani et al., 2017) architecture dictates the trend
in how language models are designed. Bigger and deeper
models are preferred since they are capable of producing
human-like text and achieving state-of-the-art performance
on most of the benchmarks. In 2023, Achiam et al. (2023)
transformed the world of NLP research with the release of
GPT-4 with unprecedented state-of-the-art overperformance
on most benchmarks. Following their success, Anthropic
AI released a competing series of models, namely Claude
1, 2, and 3, with similar performance (Anthropic, 2023).
However, they were closed-source and people had to pay
for API access.

To provide an open-source alternative, numerous researchers
have attempted to train their own LLM and published their
findings. One of the earliest open-source LLM, LLaMA
(Touvron et al., 2023a), was released by Meta. It inspired
others to develop better models based on the LLaMA archi-
tecture. BigScience Workshop (2022) introduced BLOOM,

1

Solving Optimization Problems with Open Source Large Language Model

an open-source LLM with similar sizes and performance to
GPT-3. Shliazhko et al. (2022) reproduced the GPT-3 ar-
chitecture using GPT-2 sources and introduced mGPT with
multilingual capability. Touvron et al. (2023b) improved
the previous LLaMA by introducing LLaMA 2 with a focus
on instruction fine-tuning. The model approached GPT-3’s
performance but ten times smaller and faster. Deepseek AI
introduced DeepSeek-LLM (Bi et al., 2024), achieving su-
perior performance compared to GPT-3.5, and its program-
ming variant DeepSeek-Coder (Guo et al., 2024), achieving
the state-of-the-art performance in programming and logical
reasoning among both open and closed source models apart
from GPT-4. Recently, Meta released LLaMA 3 (lla), the
best overall performing model among open-source alterna-
tives.

2.2. Automated Reasoning through Prompt Engineering

Automated reasoning in the context of large language mod-
els has gained significant attention due to the advancements
in prompt engineering techniques. These techniques allow
LLMs to perform complex reasoning tasks by structuring
prompts in a way that guides the model to generate desired
outputs. The primary goal of prompt engineering is to lever-
age the pre-trained knowledge of LLMs and coax them into
producing accurate and coherent responses without the need
for additional fine-tuning.

Early work in prompt engineering focused on simple task-
specific prompts. Brown et al. (2020) introduced few-shot
learning with GPT-3, where the model is given a few exam-
ples of the task at hand within the prompt, demonstrating
its capability to generalize from minimal context. This
technique was extended to zero-shot and one-shot learning
scenarios, showing that LLMs could perform well on tasks
with little to no example-specific data.

Subsequent research explored more sophisticated prompt en-
gineering methods. Wei et al. (2022a) showed that letting the
LLM produce intermediate steps (chain of thoughts) signifi-
cantly boosts the model’s performance on non-trivial output
tasks such as mathematical problem solving, logical reason-
ing, and commonsense question answering. This chain-
of-thought (COT) prompting method guides the model
through a sequence of intermediate reasoning steps, effec-
tively breaking down complex problems into more manage-
able parts. This approach not only improves the accuracy
of the responses but also provides a transparent view of the
model’s reasoning process. Wang et al. (2022) introduced
the self-consistency decoding strategy, greatly improving
COT performance by generating multiple reasoning paths
and selecting the most consistent one using majority voting.
Recently, Yao et al. (2023) proposed a novel framework
for language model inference, Tree of Thoughts, which ex-
pands on COT by exploring multiple reasoning paths in a

tree-like structure, further enhancing the model’s problem-
solving abilities by considering various possible solutions
and converging on the most optimal one.

3. Approaches
3.1. Problem Formulation

In this section, we provide a formal formulation of Auto-
mated Optimization Problem Solving.

Definition 3.1. Input Sequence. Let P = (p1, p2, . . . , pn)
be an ordered set of tokens that represents the optimization
problem statement, where n is the length of the problem,
pi ∈ V and V is the set of vocabulary.

Definition 3.2. Output Sequence. Let C = (c1, c2, . . . , cm)
be an ordered set of tokens that represents the solution to the
optimization problem, where m is the length of the solution,
ci ∈ V and V is the set of vocabulary.

Definition 3.3. Objective Function. Given the problem
statement P = (p1, p2, . . . , pn), let F : Vn×1 → Vm×1 be
a function that produces a solution to P , i.e., F(P) = C
should be the correct solution to P . Our objective is to find
(approximate) the function F .

Definition 3.4. Prompt Format. Let S = (s1, s2, . . . , sns
),

U = (u1, u2, . . . , unu
), and A = (a1, a2, . . . , ana

) be or-
dered sets representing sequences of the system text, user
text, and assistant text where ns, nu, na are the length of the
system, user, assistant respectively, and si, ui, ai ∈ V. The
historical conversation is a list of these sequences, denoted
as P =

[
S,U (1), A(1), U (2), A(2), U (3), . . .

]
, where P1 is

the system prompt and Pi will alternate between U and A
for i > 1.

Definition 3.5. Reasoning Path. Let R = (r1, r2, . . . , rnr)
be an ordered set representing the sequence of intermediate
reasoning steps, where nr is the length of the reasoning path
and ri ∈ V.

Definition 3.6. Reasoning Path Evaluation. Let’s define
a function E : Vnr×1 → R to be an evaluator of a reason-
ing path R that gives a score representing how good the
reasoning is.

Code data have been demonstrated to significantly enhance
the reasoning capabilities of large language models (LLMs)
by providing structured and logical examples that improve
their problem-solving skills (Ma et al., 2024). Given this
advantage, we restrict the output sequence in Definition
3.2 to be Python source code in this technical report. This
restriction allows us to leverage the benefits of code data,
ensuring that the generated solutions are executable and ver-
ifiable. By focusing on Python, we can take advantage of its
simplicity and the extensive range of libraries available for
numerical optimization and algorithm development, facili-
tating efficient implementation and testing of our automated

2

Solving Optimization Problems with Open Source Large Language Model

reasoning framework. Examples of the prompt template can
be found in Appendix A.

3.2. Automated Optimization Problem Solving

In this section, we discuss the main approaches to tackle
this problem.

Few-shot Prompting Few-shot prompting involves pro-
viding the model with a small number of examples within
the prompt to guide it toward the correct solution. Formally,
let Dtrain = {(Pi, Ci)}ki=1 be a set of k training examples,
where each Pi is an input sequence representing an opti-
mization problem statement, and Ci is the corresponding
output sequence representing the solution.

Given a new optimization problem Pnew and a System in-
struction, we construct the prompt P based on Definition
3.4 as follows:

P = [S, P1, C1, P2, C2, . . . , Pk, Ck, Pnew] (1)

The model M then generates the solution Ĉnew for the new
problem Pnew based on the constructed prompt P:

Ĉnew = M(P)

Incorporating few-shot prompting allows the model to lever-
age examples to infer patterns and structures that are useful
for solving the new problem, effectively reducing the need
for extensive fine-tuning and enabling the model to general-
ize from minimal context.

Self-consistency Prompting Self-consistency prompting
builds on the concept of few-shot prompting by introducing
multiple reasoning paths and selecting the most consistent
one to enhance the reliability of the model’s outputs. For-
mally, given the prompt P constructed as in Equation 1, the
model generates multiple candidate solutions {Ĉ(j)

new}Mj=1,
where M is the number of generated solutions.

Each candidate solution Ĉ
(j)
new is evaluated for consistency.

The final solution Ĉfinal
new is selected based on a majority

voting mechanism:

Ĉfinal
new = mode

(
{Ĉ(j)

new}Mj=1

)
This approach improves the robustness of the generated so-
lutions by considering multiple possibilities and converging
on the most consistent answer, thereby enhancing the ac-
curacy and reliability of the model in solving optimization
problems.

Chain-of-thought Prompting Chain-of-thought (CoT)
prompting involves guiding the model through a sequence

of intermediate reasoning steps, enabling it to break down
complex problems into more manageable parts. This ap-
proach enhances the model’s problem-solving capabilities
by making the reasoning process explicit and structured.

Given an optimization problem P , we augment the assistant
text A to include intermediate steps. Let ACoT be the new
assistant text that includes the intermediate reasoning steps
R, and the final solution source code C. Formally, ACoT =
(R,C). Then, given a new optimization problem Pnew, the
chain-of-thought prompt PCOT is

PCoT = [S, P1, ACoT1
, P2, ACoT2

, . . . , Pk, ACoTk
, Pnew]

(2)

The model M then generates the intermediate steps R̂new
and the final solution Ĉnew as follows:

ÂCoTnew = (R̂new, Ĉnew) = M(PCoT)

We can combine COT with self-consistency by letting the
model M generate multiple candidates {Â(j)

CoTnew
}Mj=1, then

selecting the final solution Âfinal
CoTnew

with majority voting

Âfinal
CoTnew

= mode
(
{Â(j)

CoTnew
}Mj=1

)
By including these intermediate reasoning steps, CoT
prompting helps the model to decompose the problem into
smaller, more manageable parts, thereby improving its abil-
ity to generate accurate and coherent solutions. This method
not only enhances the model’s performance on complex
tasks but also provides transparency into the reasoning pro-
cess, making it easier to understand and verify the generated
solutions.

Tree-of-thought Prompting Tree-of-thought (ToT)
prompting extends the concept of chain-of-thought (CoT)
prompting by exploring multiple reasoning paths in a tree-
like structure. This approach allows the model to consider
various possible solutions and converge on the most optimal
one, further enhancing its problem-solving capabilities.
The original ToT algorithm integrates Depth-First-Search
(DFS), and Breadth-First-Search (BFS) into the framework
to search for the best reasoning path. Given an optimization
problem Pnew, we construct the tree-of-thought prompt
PToT similarly to Equation 2 as follows

PToT = [S, P1, ACoT1
, P2, ACoT2

, . . . , Pk, ACoTk
, Pnew]

(3)

In this technical report, we investigate the Beam Search
strategy to enhance the ToT framework. Beam Search is a
heuristic search algorithm that explores a graph by expand-
ing the most promising nodes in a limited set, known as the
beam width, at each level. To obtain promising candidates,

3

Solving Optimization Problems with Open Source Large Language Model

we utilize a neural evaluator E defined in Definition 3.6.
The evaluator E is composed of the same LLM used for
generating solutions, and a detailed instruction to instruct
the model to grade the candidate solutions. This strategy bal-
ances the exploration and exploitation of the search space,
maintaining a fixed number of best candidates while prun-
ing less promising paths (Lowerre, 1976). The algorithm is
summarized in Algorithm 1.

Let b1 and b2 be the beam width, representing the number
of top candidates retained at each level of the tree, and the
number of samples to generate for each retained candidate
respectively. The Beam Search of Thought (BSOT) is as
follows.

1. Start with the root node representing the prompt “Let’s
think step by step” to initiate a chain-of-thought answer.
This prompt is a common practice prior works use to
initiate the chain-of-thought mechanism (Kojima et al.,
2022).

2. The model M then generates b2 intermediate reasoning
steps {Ri,1, Ri,2, . . . , Ri,b2} using the model M for
each candidate at the current level.

3. For each generated reasoning step, concatenate with
the previous path A′

ToT and obtain evaluations from the
evaluator E .

4. Retain the top b1 candidates among all generated sam-
ples.

5. Repeat this process up to a specified depth d or until
b1 × b2 terminal nodes {Â(j)

TOTnew
}b1b2j=1 are obtained.

The final solution Âfinal
TOTnew

is selected based on a majority
voting mechanism:

Âfinal
TOTnew

= mode
(
{Â(j)

TOTnew
}b1b2j=1

)
By incorporating Beam Search into the ToT framework,
we aim to improve the efficiency and effectiveness of the
model’s reasoning process. This method allows the model to
navigate the solution space more intelligently, retaining the
most promising paths while discarding less relevant ones.

Ensemble Strategy It has been shown that combining
the outputs of multiple models can significantly improve
performance and robustness. This approach, known as the
ensemble strategy, leverages the strengths of different mod-
els to produce more accurate and reliable results (Sagi &
Rokach, 2018). Formally, let {F̂i}Ni=1 be a set of N diverse
estimator of the function F , each trained or configured dif-
ferently. Given an optimization problem Pnew, each model

Algorithm 1 The BSOT Algorithm
1: Input: Problem statement Pnew, beam widths b1, b2, and max-

imum depth d

2: Output: Solution Âfinal
TOTnew

3: root := PTOT + [“Let’s think steps by steps”]
4: Initialize the beam B1 = {root}
5: for i = 1 to d do
6: Initialize Bi+1 = {}
7: for each path T in Bi do
8: Generate candidate reasoning steps{

Ri,j

∣∣∣Ri,j = M(T), 1 ≤ j ≤ b2
}

9: for each candidate Ri,j do
10: Append Ri,j to path T to form new path T ′

11: Add T ′ to Bi+1

12: end for
13: end for
14: Sort Bi+1 by E(T ′) and retain top b1 paths
15: end for
16: Obtain candidate solutions {Â(j)

TOTnew
}|Bd|
j=1 from the final beam

Bd

17: Select the final solution Âfinal
TOTnew based on majority voting:

Âfinal
TOTnew = mode

(
{Â(j)

TOTnew
}|Bd|
j=1

)
18: return Âfinal

TOTnew

F̂i generates a candidate solution Ĉ
(i)
new:

Ĉ(i)
new = F̂i(Pnew)

The ensemble strategy combines these candidate solutions
to produce the final solution Ĉfinal

new . One common method is
to use a voting mechanism where the majority vote among
the candidate solutions determines the final solution:

Ĉfinal
new = mode

(
{Ĉ(i)

new}Ni=1

)
In the context of automated optimization problem-solving,
the ensemble strategy can be particularly effective when
combined with other prompting techniques discussed earlier,
such as few-shot prompting, self-consistency prompting,
chain-of-thought prompting, and tree-of-thought prompting.
By integrating the outputs from multiple models employing
these techniques, we can achieve better performance and re-
liability, further advancing the capabilities of large language
models in solving complex problems.

3.3. Repairing Incorrect Output

In many cases, the initial output generated by the model
may contain errors or suboptimal solutions. To address this,
we employ two symbolic approaches using SymPy (Meurer
et al., 2017) to repair and refine the generated solutions,
ensuring better accuracy.

4

Solving Optimization Problems with Open Source Large Language Model

Algorithm 2 Automated Condition Repair
1: Input: Constraint inequality E
2: Output: Transformed inequality without division
3: if E does not have any division then
4: return E
5: end if
6: L := E.lhs
7: R := E.rhs
8: O := E.relation
9: D := 1

10: for each term T in L and R do
11: if T has a denominator then
12: d := T .denominator
13: D := D × d
14: end if
15: end for
16: L := Simplify(L×D)
17: R := Simplify(R×D)
18: return Inequality(L, O, R)

Fixing Incorrect Conditions In optimization problems,
modeling constraints with mathematical inequalities is cru-
cial. However, many Linear Programming Solvers only
support weak inequalities (i.e., ≤ or ≥). This leads to issues
when the problem statements include terms such as “less
than” or “more than”, causing the model to produce strict
inequalities (i.e., < or >), resulting in Runtime Error
exception. To mitigate this problem, we symbolically trans-
form strict inequalities of two types E1 > E2 and E1 < E2

into the weak version E1 ≥ E2 + 1 and E1 ≤ E2 − 1,
assuming that both E1 and E2 are all integers.

Fixing Incorrect Division Expressions Optimization
problems often require modeling ratios involving decision
variables, making constraints or objective functions non-
linear. Non-linear expressions can pose challenges, as
many optimization solvers, particularly linear programming
solvers, cannot handle them directly. To correct the issue,
we symbolically remove all division operators involving
decision variables by deriving equivalent transformations.

• Fixing objective function: If it contains division be-
tween a decision variable and a constant, i.e., v

c , where
v is the variable and c is the constant, we transform it
into 1

cv.

• Fixing constraint inequality: If an inequality contains
a division operator, we transform the inequality using
Algorithm 2 to remove all divisions. The algorithm
extracts two sides of the inequalities, finds the com-
mon multiple D, and multiplies D on both sides. This
approach removes all divisions on both sides of the
inequality while keeping it equivalent to the original
one.

{
"id": <unique integer>,
"question": "<Problem Statement>",
"code": "<source code>"
"results": {

"<Output 1>": "<empty or number>",
"<Output 2>": "<empty or number>",
"<Output 3>": "<empty or number>",
"<Output 4>": "<empty or number>",
...

}
},

Figure 1. The data format

4. Experiment
4.1. Data Set

To evaluate our approaches, we use the newly published
data in the Automated Optimization Problem-solving With
Code Challenge at ICML 2024 AI4Math Workshop (Huang
et al.). The data set consists of two partitions: a Train set
and a Test set. The training set and the testing set contain
1025 and 421 Linear Programming problems respectively
with various difficulties. Some of the data points in the
training set were synthesized by GPT-3.5 and GPT-4, which
would introduce some degree of noise to the training process.
However, the organizer assures that all data points in the
testing set are valid.

The training data is stored in JSON format with the fields:
id, question, code, and results representing the
id, optimization problem statement, the sample solution,
and the required outputs. The testing set is also stored in
JSON format with the fields: id, question, results
represent the id, optimization problem statement, and the
required outputs respectively. The data format can be found
in Figure 1. The task was to fill in the required blanks
in the results field of the testing data, and the model’s
performance was evaluated with answer accuracy.

4.2. Implementation Details

To create few-shot examples, we sample the optimization
problems and their corresponding solution randomly and
uniformly from the training data set. To create intermediate
reasoning steps, we instruct Llama-3-8B-Instruct to
produce reasoning steps before generating the final Python
code. The final intermediate reasoning steps were manually
analyzed and selected after some iterations. All of the ex-
periments were implemented in Python using the VLLM
framework (Kwon et al., 2023). The models’ inferences
were able to run on a single RTX 3090 GPU, apart from

5

Solving Optimization Problems with Open Source Large Language Model

TECHNIQUE ACCURACY

LLaMA-3-8B-Instruct + 5-SHOT 57.48%
LLaMA-3-8B-Instruct + SELF-CONSISTENCY (5-SHOT, k = 15) 60.81%
LLaMA-3-8B-Instruct + CHAIN OF THOUGHTS (5-SHOT, k = 15) 78.15%
LLaMA-3-8B-Instruct + TREE OF THOUGHTS (5-SHOT, b1 = 3, b2 = 5) 62.00%
DeepSeekCoder-7B-Instruct + CHAIN OF THOUGHTS (2-SHOT, k = 15) 71.50%
DeepSeekCoder-7B-Instruct + TREE OF THOUGHTS (2-SHOT, b1 = 3, b2 = 5) 61.52%
DeepSeekCoder-33B-Instruct + TREE OF THOUGHTS (5-SHOT, b1 = 1, b2 = 5) 62.95%
ENSEMBLE STRATEGY 80.52%

Table 1. Performance of different prompting techniques with open-source LLMs.

DeepSeekCoder-33B-Instruct, which we need 8
GPUs to run inference on. The full implementation can be
found at https://github.com/kurone02/AutoLP.

4.3. Experimental Results

We have conducted experiments demonstrating the perfor-
mance of different prompting techniques using open-source
large language models. The accuracy of each technique is
presented in Table 4.1. The baseline performance using 5-
shot prompting with LLaMA-3-8B-Instruct achieves
an accuracy of 57.48%, showcasing that even with mini-
mal context, a generic LLM like LLaMA-3 is able to per-
form complex mathematical reasoning. Introducing the
self-consistency mechanism shows a modest increase in ac-
curacy to 60.81%. Incorporating a Chain of Thoughts with
self-consistency significantly boosts the model’s accuracy
by nearly 18%, proving the importance of intermediate rea-
soning steps. Surprisingly, the Tree of Thoughts method
cannot outperform COT, falling short by a wide margin. Our
hypothesis for the underperformance of TOT is that the cur-
rent state of Large Language Models could not self-verify
such complex reasoning path (Kambhampati et al., 2024),
thus, the evaluator E is not a reliable heuristic.

We also experimented with another LLM that is specifically
fine-tuned for code-related tasks, the DeepSeekCoder se-
ries (Guo et al., 2024). Due to a smaller context size, the 7B
parameters variant can only process 2 examples. Neverthe-
less, the model achieves good performance at 71.5% with
the COT technique and comparable results to LLaMA-3
in using TOT. The performance in TOT can be explained
by better mathematical ability from DeepSeekCoder,
making it comparable to LLaMA-3 even when provided
with fewer examples. We also conducted experiment
with DeepSeekCoder-33B-Instruct, however, due
to limited resources, we cannot fully test other prompting
techniques other than TOT, which boosts the performance
of TOT by a small margin.

Finally, we assemble the results obtained from various meth-
ods and models to produce the final answers, achieving 81%
accuracy, ranked 10th place on the private leaderboard.

5. Future Work
Even though open-source LLMs demonstrate good exper-
imental results in the challenge, there are important areas
needing further investigation.

• Improvement of Evaluation Mechanisms. The un-
derperformance of ToT prompting suggests a need for
better evaluation mechanisms within LLMs. Future
work can focus on improving the self-evaluation capa-
bility of LLMs by training with synthetic data similar
to Chen et al. (2024) or utilizing RAG-based mecha-
nism (Wei et al., 2022b).

• Fine-tuning on the training data set. The perfor-
mance can be further enhanced by fine-tuning an LLM
or a small model on the competition training data set,
which we have omitted in this technical report due to
the lack of resources.

• Incorporate more difficult questions in the data set.
Most of the questions in the data set are Linear Pro-
gramming problems, lacking diversity in difficulties.
Future work could focus on building a more diverse
data set consisting of other types of problems in opti-
mization such as Convex Optimization, Dynamic Pro-
gramming, or Stochastic Optimal Control.

6. Conclusion
This technical report has investigated the capabilities of
open-source Large Language Models (LLMs) in formu-
lating and solving optimization problems through various
prompting techniques. The exploration of methods such as
few-shot prompting, self-consistency prompting, chain-of-
thought (CoT) prompting, and tree-of-thought (ToT) prompt-
ing has provided valuable insights into how LLMs can be
effectively utilized for complex mathematical reasoning
tasks.

6

https://github.com/kurone02/AutoLP

Solving Optimization Problems with Open Source Large Language Model

References
Introducing meta llama 3: The most capable openly avail-

able llm to date. URL https://ai.meta.com/
blog/meta-llama-3/.

Achiam, O. J., Adler, S., Agarwal, S., Ahmad, L., Akkaya,
I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Bal-
com, V., Baltescu, P., Bao, H., Bavarian, M., Belgum,
J., Bello, I., Berdine, J., Bernadett-Shapiro, G., Berner,
C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman, A.-L.,
Brockman, G., Brooks, T., Brundage, M., Button, K.,
Cai, T., Campbell, R., Cann, A., Carey, B., Carlson, C.,
Carmichael, R., Chan, B., Chang, C., Chantzis, F., Chen,
D., Chen, S., Chen, R., Chen, J., Chen, M., Chess, B.,
Cho, C., Chu, C., Chung, H. W., Cummings, D., Currier,
J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N., Dev-
ille, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S.,
Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus, L.,
Felix, N., Fishman, S. P., Forte, J., Fulford, I., Gao, L.,
Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G.,
Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S.,
Greene, R., Gross, J., Gu, S. S., Guo, Y., Hallacy, C., Han,
J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse, C.,
Hickey, A., Hickey, W., Hoeschele, P., Houghton, B., Hsu,
K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S., Jang, J.,
Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B.,
Jun, H., Kaftan, T., Kaiser, L., Kamali, A., Kanitscheider,
I., Keskar, N. S., Khan, T., Kilpatrick, L., Kim, J. W.,
Kim, C., Kim, Y., Kirchner, H., Kiros, J. R., Knight, M.,
Kokotajlo, D., Kondraciuk, L., Kondrich, A., Konstantini-
dis, A., Kosic, K., Krueger, G., Kuo, V., Lampe, M., Lan,
I., Lee, T., Leike, J., Leung, J., Levy, D., Li, C. M., Lim,
R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue,
P., Makanju, A. A., Malfacini, K., Manning, S., Markov,
T., Markovski, Y., Martin, B., Mayer, K., Mayne, A., Mc-
Grew, B., McKinney, S. M., McLeavey, C., McMillan,
P., McNeil, J., Medina, D., Mehta, A., Menick, J., Metz,
L., Mishchenko, A., Mishkin, P., Monaco, V., Morikawa,
E., Mossing, D. P., Mu, T., Murati, M., Murk, O., M’ely,
D., Nair, A., Nakano, R., Nayak, R., Neelakantan, A.,
Ngo, R., Noh, H., Long, O., O’Keefe, C., Pachocki, J. W.,
Paino, A., Palermo, J., Pantuliano, A., Parascandolo, G.,
Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng,
A., Perelman, A., de Avila Belbute Peres, F., Petrov, M.,
de Oliveira Pinto, H. P., Pokorny, M., Pokrass, M., Pong,
V. H., Powell, T., Power, A., Power, B., Proehl, E., Puri,
R., Radford, A., Rae, J., Ramesh, A., Raymond, C., Real,
F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H., Ry-
der, N., Saltarelli, M. D., Sanders, T., Santurkar, S., Sas-
try, G., Schmidt, H., Schnurr, D., Schulman, J., Selsam,
D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S.,
Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin, J.,
Slama, K., Sohl, I., Sokolowsky, B. D., Song, Y., Stau-

dacher, N., Such, F. P., Summers, N., Sutskever, I., Tang,
J., Tezak, N. A., Thompson, M., Tillet, P., Tootoonchian,
A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Uribe, J.
F. C., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright,
C. L., Wang, J. J., Wang, A., Wang, B., Ward, J., Wei,
J., Weinmann, C., Welihinda, A., Welinder, P., Weng, J.,
Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich,
S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M.,
Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba,
W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng,
T., Zhuang, J., Zhuk, W., and Zoph, B. Gpt-4 technical
report. 2023.

Anthropic. The claude 3 model fam-
ily: Opus, sonnet, haiku. 2023. URL
https://www-cdn.anthropic.com/
de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Bi, D.-A. X., Chen, D., Chen, G., Chen, S., Dai, D., Deng,
C., Ding, H., Dong, K., Du, Q., Fu, Z., Gao, H., Gao,
K., Gao, W., Ge, R., Guan, K., Guo, D., Guo, J., Hao,
G., Hao, Z., He, Y., Hu, W.-H., Huang, P., Li, E., Li, G.,
Li, J., Li, Y., Li, Y. K., Liang, W., Lin, F., Liu, A. X.,
Liu, B., Liu, W., Liu, X., Liu, X., Liu, Y., Lu, H., Lu, S.,
Luo, F., Ma, S., Nie, X., Pei, T., Piao, Y., Qiu, J., Qu, H.,
Ren, T., Ren, Z., Ruan, C., Sha, Z., Shao, Z., Song, J.-M.,
Su, X., Sun, J., Sun, Y., Tang, M., Wang, B.-L., Wang,
P., Wang, S., Wang, Y., Wang, Y., Wu, T., Wu, Y., Xie,
X., Xie, Z., Xie, Z., Xiong, Y., Xu, H., Xu, R. X., Xu,
Y., Yang, D., mei You, Y., Yu, S., yuan Yu, X., Zhang,
B., Zhang, H., Zhang, L., Zhang, L., Zhang, M., Zhang,
M., Zhang, W., Zhang, Y., Zhao, C., Zhao, Y., Zhou, S.,
Zhou, S., Zhu, Q., and Zou, Y. Deepseek llm: Scaling
open-source language models with longtermism. ArXiv,
abs/2401.02954, 2024.

BigScience Workshop. BLOOM. https:
//huggingface.co/bigscience/bloom,
2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T. J., Child, R., Ramesh, A., Ziegler, D. M.,
Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Advances in neural infor-
mation processing systems, abs/2005.14165, 2020.

Chen, G., Liao, M., Li, C., and Fan, K. Alphamath al-
most zero: process supervision without process. arXiv,
abs/2405.03553, 2024.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G., Bi, X., Wu, Y., Li, Y. K., Luo, F., Xiong, Y.,

7

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom

Solving Optimization Problems with Open Source Large Language Model

and Liang, W. Deepseek-coder: When the large language
model meets programming - the rise of code intelligence.
ArXiv, abs/2401.14196, 2024.

Huang, Y., Liang, X., Liu, Z., Guyon, I., Shi, W., and Han,
X. Icml 2024 challenges on automated math reason-
ing. URL https://sites.google.com/view/
ai4mathworkshopicml2024/challenges.

Huang, Y., Lin, X., Liu, Z., Cao, Q., Xin, H., Wang, H.,
Li, Z., Song, L., and Liang, X. Mustard: Mastering
uniform synthesis of theorem and proof data. ArXiv,
abs/2402.08957, 2024.

Kambhampati, S., Valmeekam, K., Guan, L., Stechly, K.,
Verma, M., Bhambri, S., Saldyt, L., and Murthy, A. Llms
can’t plan, but can help planning in llm-modulo frame-
works. ArXiv, abs/2402.01817, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. In Ad-
vances in Neural Information Processing Systems, 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Lowerre, B. T. The harpy speech recognition system. 1976.

Ma, Y., Liu, Y., Yu, Y., Zhang, Y., Jiang, Y., Wang, C., and
Li, S. At which training stage does code data help llms
reasoning? In International Conference on Learning
Representations, 2024.

Meurer, A., Smith, C. P., Paprocki, M., Čertı́k, O., Kirpichev,
S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K.,
Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller,
R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F.,
Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, v.,
Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and
Scopatz, A. Sympy: symbolic computing in python.
PeerJ Computer Science, 3:e103, January 2017. ISSN
2376-5992. doi: 10.7717/peerj-cs.103. URL https:
//doi.org/10.7717/peerj-cs.103.

Sagi, O. and Rokach, L. Ensemble learning: A sur-
vey. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 8, 2018. URL https://api.
semanticscholar.org/CorpusID:49291826.

Shliazhko, O., Fenogenova, A., Tikhonova, M., Mikhailov,
V., Kozlova, A., and Shavrina, T. mgpt: Few-shot learners
go multilingual. ArXiv, abs/2204.07580, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,

Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K. R., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D. M., Blecher, L., Ferrer, C. C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A. S., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I. M., Korenev,
A. V., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J.,
Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T.,
Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein,
J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith,
E. M., Subramanian, R., Tan, X., Tang, B., Taylor, R.,
Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I.,
Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez,
A., Stojnic, R., Edunov, S., and Scialom, T. Llama 2:
Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288, 2023b.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. Advances in neural information
processing systems, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q., hsin Chi, E. H.,
and Zhou, D. Self-consistency improves chain of thought
reasoning in language models. In International Confer-
ence on Learning Representations, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi,
E. H., Xia, F., Le, Q., and Zhou, D. Chain of thought
prompting elicits reasoning in large language models. In
Conference on Neural Information Processing Systems,
2022a.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., hsin Chi,
E. H., Xia, F., Le, Q., and Zhou, D. Retrieval-augmented
generation for knowledge-intensive nlp tasks. In Confer-
ence on Neural Information Processing Systems, 2022b.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. In Conference on
Neural Information Processing Systems, 2023.

8

https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://sites.google.com/view/ai4mathworkshopicml2024/challenges
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://api.semanticscholar.org/CorpusID:49291826
https://api.semanticscholar.org/CorpusID:49291826

Solving Optimization Problems with Open Source Large Language Model

Appendix
A. Prompt templates
A.1. Few-shot Chain-of-Thought Prompts

In this section, we provide the prompts used in our technical report. Only the Chain-of-Thought template will be provided
as the Few-shot version can be easily obtained by removing the reasoning text from the prompt.

System Prompt

You are an Operational Research Professor who can solve optimization problems with python code.

Example 1

User: Give a step by step reasoning and python code to solve the following Optimization problem. Wrap the print
statements between “## start solving” and “## end solving”. Only print what the requirements requires.

A company is organizing a team-building event and needs to assign participants to different activities. They have a total of
100 employees. Activity A requires 5 employees a team, activity B requires 3 employees a team, and activity C requires 7
employees a team. The company has a total of 100 employees available for the event. The company has a limitation on the
number of teams in activity B, which cannot exceed 20. The company wants to maximize participation teams and decides to
allocate different weights to each activity: activity A has a weight of 3, activity B has a weight of 2, and activity C has a
weight of 4. The objective is to maximize the total participation weighted by the assigned weights.

Requirements:

• The number of teams in activity A: ?

• The number of teams in activity B: ?

• The number of teams in activity C: ?

• The total weighted participation: ?

Assistant: Let’s think step by step.

We want to maximize the total participation weighted by the assigned weights. So, we can set up a linear programming
problem.

Let’s define the variables:

* NumParticipantsA: The number of participants in activities A

* NumParticipantsB: The number of participants in activities B

* NumParticipantsC: The number of participants in activities C

Note that ”The objective is to maximize the total participation weighted by the assigned weights”. Therefore, we need to
MAXIMIZE the objective function.

Since activity A has a weight of 3, activity B has a weight of 2, and activity C has a weight of 4, the objective function is:
3 * num_teams_A + 2 * num_teams_B + 4 * num_teams_C

The objective function is subjected to the following constraints:

1. Total participants cannot exceed 100, and Activity A requires 5 employees a team, activity B requires 3 employees a team,
and activity C requires 7 employees a team.

5 * num_teams_A + 3 * num_teams_B + 7 * num_teams_C <= 100

2. num_teams_A >= 0

3. num_teams_B >= 0

9

Solving Optimization Problems with Open Source Large Language Model

4. num_teams_C >= 0

5. The company has a limitation on the number of teams in activity B, which cannot exceed 20. num_teams_B <= 20

Now, we can start solving the problem with python using pulp library

1 # Import PuLP library
2 from pulp import *
3

4 # Define the decision variables
5 # number of teams in activity A
6 num_teams_A = LpVariable("NumTeamsA", lowBound=0, cat=’Integer’)
7 # number of teams in activity B
8 num_teams_B = LpVariable("NumTeamsB", lowBound=0, upBound=20, cat=’Integer’)
9 # number of teams in activity C

10 num_teams_C = LpVariable("NumTeamsC", lowBound=0, cat=’Integer’)
11

12 # Define the question as a maximum or minimum problem
13 problem = LpProblem("TeamBuildingEvent", LpMaximize)
14

15 # Define the objective function
16 objective = 3 * num_teams_A + 2 * num_teams_B + 4 * num_teams_C
17 # maximize the total participation weighted by the assigned weights
18 problem += objective
19

20 # Define the constraints
21 # the total number of employees is 100
22 problem += 5 * num_teams_A + 3 * num_teams_B + 7 * num_teams_C <= 100
23

24 # Solve the problem
25 status = problem.solve()
26

27 # Output the answer
28 print("## start solving")
29 print("The number of teams in activity A:", num_teams_A.value())
30 print("The number of teams in activity B:", num_teams_B.value())
31 print("The number of teams in activity C:", num_teams_C.value())
32 print("The total weighted participation:", objective.value())
33 print("## end solving")

Example 2

User: Give a step by step reasoning and python code to solve the following Optimization problem. Wrap the print
statements between “## start solving” and “## end solving”. Only print what the requirements requires.

BrightBulb LLC manufactures LED and incandescent bulbs. They have 3 different machines for production. Each machine
has a different production capacity and cost associated with running it per day. The following Table provides details on the
capacity (bulbs per day) and cost (cost per day) for each machine.

Table (Capacity and cost for each machine):

Bulb Type	Machine 1	Machine 2	Machine 3
LED (Capacity)	300	-	500
Incandescent (Capacity)	-	400	-
Cost per Day	$200	$250	$350

BrightBulb LLC wants to minimize the total cost of producing 5000 LED bulbs and 6000 incandescent bulbs per week.

Machine 1 and Machine 3 are limited to LED bulb production and Machine 2 is limited to incandescent bulb production.

The weekly production target for LED bulbs is at least 5000, and for incandescent bulbs is at least 6000.

Each machine can only operate for a maximum of 5 days a week due to maintenance requirements.

10

Solving Optimization Problems with Open Source Large Language Model

Requirements:

• The number of LED bulbs produced on machine 1: ?

• The number of incandescent bulbs produced on machine 2: ?

• The number of LED bulbs produced on machine 3: ?

• The total cost of production: ?

Assistant: Let’s think step by step.

This problem can be formulated as a linear programming problem to minimize the total cost of producing 5000 LED bulbs
and 6000 incandescent bulbs per week.

Let’s define the variables:

* num_led_on_machine1: The number of LED bulbs produced on machine 1 per day * num_led_on_machine3:
The number of LED bulbs produced on machine 3 per day * num_inc_on_machine2: The number of incandescent
bulbs produced on machine 2 per day

To derive the objective function, note that - Machine 1 has capacity of 300 with $200 cost - Machine 3 has capacity of 500
with $350 cost - Machine 2 has capacity of 400 with $250 cost

Therefore, the objective function is to minimize the total cost:

Minimize:

objective = 200 / 300 * num_led_on_machine1 + 250 / 400 * num_inc_on_machine2
+ 350 / 500 * num_led_on_machine3|

Subject to the following constraints:

1. The total number of LED bulbs produced must be at least 5000:

num_led_on_machine1 + num_led_on_machine3 >= 5000

2. The total number of incandescent bulbs produced must be at least 6000: num_inc_on_machine2 >= 6000

3. Machine 1 and Machine 3 are limited to LED bulb production:

num_led_on_machine1 + num_led_on_machine3 <= 300 * 5 (machine 1 can produce up to 300 bulbs per
day, and it’s limited to 5 days a week)

num_led_on_machine1 + num_led_on_machine3 <= 500 * 5 (machine 3 can produce up to 500 bulbs per
day, and it’s limited to 5 days a week)

4. Machine 2 is limited to incandescent bulb production: num_inc_on_machine2 <= 400 * 5 (machine 2 can
produce up to 400 bulbs per day, and it’s limited to 5 days a week)

5. Each machine can only operate for a maximum of 5 days a week:

num_led_on_machine1 <= 5

num_led_on_machine3 <= 5

num_inc_on_machine2 <= 5

Now, we can start solving the problem with python using pulp library

1 from pulp import *
2

3 # Define the variables
4 num_led_on_machine1 = LpVariable("NumLEDOnMachine1", lowBound=0, cat=’Integer’)
5 num_led_on_machine3 = LpVariable("NumLEDOnMachine3", lowBound=0, cat=’Integer’)
6 num_inc_on_machine2 = LpVariable("NumINCOnMachine2", lowBound=0, cat=’Integer’)

11

Solving Optimization Problems with Open Source Large Language Model

7

8 # Define the objective function
9 problem = LpProblem("BrightBulbProblem", LpMinimize)

10 objective = 200 / 300 * num_led_on_machine1 + 250 / 400 * num_inc_on_machine2 + 350 / 500
* num_led_on_machine3

11 problem += objective
12

13 # Define the constraints
14 problem += num_led_on_machine1 + num_led_on_machine3 >= 5000
15 problem += num_inc_on_machine2 >= 6000
16 problem += num_led_on_machine1 + num_led_on_machine3 <= 300 * 5
17 problem += num_led_on_machine1 + num_led_on_machine3 <= 500 * 5
18 problem += num_inc_on_machine2 <= 400 * 5
19 problem += num_led_on_machine1 <= 5
20 problem += num_led_on_machine3 <= 5
21 problem += num_inc_on_machine2 <= 5
22

23 # Solve the problem
24 status = problem.solve()
25

26 # Output the answer
27 print("## start solving")
28 print("The number of LED bulbs produced on machine 1:", value(num_led_on_machine1))
29 print("The number of incandescent bulbs produced on machine 2:", value(num_inc_on_machine2

))
30 print("The number of LED bulbs produced on machine 3:", value(num_led_on_machine3))
31 print("The total cost of production:", value(objective))
32 print("## end solving")

Example 3

User: Give a step by step reasoning and python code to solve the following Optimization problem. Wrap the print
statements between “## start solving” and “## end solving”. Only print what the requirements requires.

IND Foods factory produces basmati rice and bananas. To make one kilogram of basmati rice requires 1.5 hours of human
labor, 2 hours of machine work, and 3 hours of resting under the sun. To make one kilogram of bananas requires 2 hours of
human labor, 4 hours of machine work, and 1.5 hours of resting under the sun. The factory only has 90 hours of human
labor, 150 hours of machine labor, and 70 hours of time under the sun available. The net profit per kilogram of basmati rice
is $15 and the net profit per kilogram of bananas is $28. How many kilograms of each should the factory make in order to
maximize profit?

Requirements:

• The number of kilograms of basmati rice to produce: ?

• The number of kilograms of bananas to produce: ?

• The maximum profit: ?

Assistant: Let’s think step by step.

Define the variables:

* num_rice: The number of kilograms of basmati rice to produce

* num_bananas: The number of kilograms of bananas to produce

Note that they can be a real number, i.e., of Continuous type.

We want to maximize the total profit, which is the sum of the profit from producing basmati rice and bananas:

Maximize: 15 * num_rice + 28 * num_bananas

Subject to the following constraints:

12

Solving Optimization Problems with Open Source Large Language Model

1. Human labor: 1.5 * num_rice + 2 * num_bananas <= 90 (hours of human labor available)

2. Machine labor: 2 * num_rice + 4 * num_bananas <= 150 (hours of machine labor available)

3. Resting under the sun: 3 * num_rice + 1.5 * num_bananas <= 70 (hours of time under the sun available)

We can use the PuLP library to solve this problem:

1 # Import PuLP library
2 from pulp import *
3

4 # Define the variables
5 num_rice = LpVariable("NumRice", lowBound=0, cat=’Continuous’)
6 num_bananas = LpVariable("NumBananas", lowBound=0, cat=’Continuous’)
7

8 # Define the problem
9 problem = LpProblem("INDFoodsProblem", LpMaximize)

10 objective = 15 * num_rice + 28 * num_bananas
11 problem += objective
12

13 # Define the constraints
14 problem += 1.5 * num_rice + 2 * num_bananas <= 90
15 problem += 2 * num_rice + 4 * num_bananas <= 150
16 problem += 3 * num_rice + 1.5 * num_bananas <= 70
17

18 # Solve the problem
19 status = problem.solve()
20

21 # Output the answer
22 print("## start solving")
23 print("The number of kilograms of basmati rice to produce:", value(num_rice))
24 print("The number of kilograms of bananas to produce:", value(num_bananas))
25 print("The maximum profit:", value(objective))
26 print("## end solving")

Example 4

User: Give a step by step reasoning and python code to solve the following Optimization problem. Wrap the print
statements between “## start solving” and “## end solving”. Only print what the requirements requires.

A food truck wants to make bean burritos and beef burritos using 5000 grams of lettuce. The profit per bean burrito is $6.5
and the profit per beef burrito is $9. The bean burrito contains 25 grams of lettuce and the beef burrito contains 18 grams of
lettuce. The beef burrito is much more popular and at least four times the amount of beef burritos need to be made than the
bean burritos. However, a minimum of 5 bean burritos need to be made. How many of each burrito should be made in order
to maximize profit?

Requirements:

• The number of bean burritos: ?

• The number of beef burritos?: ?

• Total profit: ?

Assistant: Let’s think step by step.

Define the variables:

* num_bean_burritos: The number of bean burritos of Integer type

* num_beef_burritos: The number of beef burritos of Integer type

We want to maximize the total profit, which is the sum of the profit from bean and beef burritos:

Maximize: 6 * num_bean_burritos + 9 * num_beef_burritos

13

Solving Optimization Problems with Open Source Large Language Model

Subject to the following constraints:

1. Using 5000 grams of lettuce: 25 * num_bean_burritos + 18 * num_beef_burritos <= 5000

2. Four times the amount of beef burritos need to be made than the bean burritos:

num_beef_burritos >= 4 * num_bean_burritos

3. Minimum of 5 bean burritos need to be made: num_bean_burritos >= 5

We can use the PuLP library to solve this problem:

1 # Import PuLP library
2 from pulp import *
3

4 # Define the decision variables
5 # number of bean burritos
6 num_bean_burritos = LpVariable("NumBeanBurritos", lowBound=5, cat=’Integer’)
7 # number of beef burritos
8 num_beef_burritos = LpVariable("NumBeefBurritos", lowBound=0, cat=’Integer’)
9

10 # Define the question as a maximum or minimum problem
11 problem = LpProblem("FoodTruckProfitMaximization", LpMaximize)
12

13 # Define the objective function
14 # maximize the total profit from selling burritos
15 objective = 6.5 * num_bean_burritos + 9 * num_beef_burritos
16 problem += objective
17

18 # Define the constraints
19 # lettuce constraint
20 problem += 25 * num_bean_burritos + 18 * num_beef_burritos <= 5000
21 # beef burrito popularity constraint
22 problem += num_beef_burritos >= 4 * num_bean_burritos
23 # minimum bean burrito constraint
24 problem += num_bean_burritos >= 5
25

26 # Solve the problem
27 status = problem.solve()
28

29 # Output the answer
30 print("## start solving")
31 print("The number of bean burritos:", num_bean_burritos.value())
32 print("The number of beef burritos:", num_beef_burritos.value())
33 print("Total profit:", objective.value())
34 print("## end solving")

Example 5

User: Give a step by step reasoning and python code to solve the following Optimization problem. Wrap the print
statements between “## start solving” and “## end solving”. Only print what the requirements requires.

A lab has 20000 mg of mRNA anti-viral available to make children’s and adult vaccines. Each children’s vaccine contains 50
mg of mRNA and 50 mg of fever suppressant. Each adult vaccine contains 75 mg of mRNA and 75 mg of fever suppressant.
Since adult vaccines are more essential, at least 70% of vaccines should be adult vaccines. However, at least 50 children’s
vaccines should be made. How many of each vaccine should be made to minimize the amount of fever suppressant used?

Requirements:

• The number of children’s vaccine: ?

• The number of adult vaccine: ?

• The amount of fever suppressant used: ?

14

Solving Optimization Problems with Open Source Large Language Model

Assistant: Let’s think step by step.

Define the variables:

* num_children_vaccines: The number of children’s vaccines * num_adult_vaccines: The number of adult
vaccines

We want to minimize the amount of fever suppressant used, which is the sum of the fever suppressant used in children’s and
adult vaccines:

Minimize: 50 * num_children_vaccines + 75 * num_adult_vaccines

Subject to the following constraints:

1. Total amount of mRNA anti-viral available:

50 * num_children_vaccines + 75 * num_adult_vaccines <= 20000

2. At least 70% of vaccines should be adult vaccines:

num_adult_vaccines >= 0.7 * (num_children_vaccines + num_adult_vaccines)

3. At least 50 children’s vaccines should be made: num_children_vaccines >= 50

Now, we can start solving the problem with python

1 # Import PuLP library
2 from pulp import *
3

4 # Define the decision variables
5 # number of children’s vaccines
6 num_children_vaccines = LpVariable("NumChildrenVaccines", lowBound=50, cat=’Integer’)
7 # number of adult vaccines
8 num_adult_vaccines = LpVariable("NumAdultVaccines", lowBound=0, cat=’Integer’)
9

10 # Define the question as a minimum or maximum problem
11 problem = LpProblem("LabVaccineProblem", LpMinimize)
12

13 # Define the objective function
14 # minimize the total amount of fever suppressant used
15 objective = 50 * num_children_vaccines + 75 * num_adult_vaccines
16 problem += objective
17

18 # Define the constraints
19 # mRNA anti-viral constraint
20 problem += 50 * num_children_vaccines + 75 * num_adult_vaccines <= 20000
21 # adult vaccine popularity constraint
22 problem += num_adult_vaccines >= 0.7 * (num_children_vaccines + num_adult_vaccines)
23 # children’s vaccine constraint
24 problem += num_children_vaccines >= 50
25

26 # Solve the problem
27 status = problem.solve()
28

29 # Output the answer
30 print("## start solving")
31 print("The number of children’s vaccines:", num_children_vaccines.value())
32 print("The number of adult vaccines:", num_adult_vaccines.value())
33 print("The amount of fever suppressant used:", objective.value())
34 print("## end solving")

A.2. Tree-of-thought Evaluator Prompt

In this section, we provide the prompt used for the neural evaluator E utilizing LLMs to grade its own solutions. We limit
the output when evaluating to only 1 token, and manually increase the logit of the tokens corresponding to the number 0 to 9
by an arbitrary big number i.e., 10000, to ensure the output is always valid.

15

Solving Optimization Problems with Open Source Large Language Model

System Prompt

You are an Operational Research Professor who needs to grade students’ solution.

Evaluator Prompt

You will be given a Linear Programming problem and the current solution steps that might not completed yet. Give the
solution a score from 0 (bad) to 9 (good) that represents how good the reasoning is to solve the problem.

The student’s solution will contains two part: reasoning and python code.

In both reasoning and python code, there are 4 main sections:

- Define the decision variables

- Define the question as a maximum or minimum problem

- Define the objective function

- Define the constraints

####Problem####

{problem}

####Current Solution####

{solution}

16

