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Abstract

We propose a framework for constructing combinatorial complexes (CCs) from fMRI
time series data that captures both pairwise and higher-order neural interactions through
information-theoretic measures, bridging topological deep learning and network neuro-
science. Current graph-based representations of brain networks systematically miss the
higher-order dependencies that characterize neural complexity, where information process-
ing often involves synergistic interactions that cannot be decomposed into pairwise relation-
ships. Unlike topological lifting approaches that map relational structures into higher-order
domains, our method directly constructs CCs from statistical dependencies in the data. Our
CCs generalize graphs by incorporating higher-order cells that represent collective depen-
dencies among brain regions, naturally accommodating the multi-scale, hierarchical nature
of neural processing. The framework constructs data-driven combinatorial complexes using
O-information and S-information measures computed from fMRI signals, preserving both
pairwise connections and higher-order cells (e.g., triplets, quadruplets) based on synergis-
tic dependencies. Using NetSim simulations as a controlled proof-of-concept dataset, we
demonstrate our CC construction pipeline and show how both pairwise and higher-order
dependencies in neural time series can be quantified and represented within a unified struc-
ture. This work provides a framework for brain network representation that preserves
fundamental higher-order structure invisible to traditional graph methods, and enables the
application of topological deep learning (TDL) architectures to neural data.

Keywords: Topological Deep Learning, Combinatorial Complex, Higher-Order Networks,
Information Theory, Brain Networks

1. Introduction

The human brain constitutes one of nature’s most remarkable examples of organized com-
plexity, exhibiting rich patterns of connectivity and information processing across multiple
spatial and temporal scales. As an organized complex system composed of billions of inter-
connected neurons, the brain demonstrates the defining characteristics of complexity: non-
trivial interactions between components that generate emergent properties not reducible
to individual parts, and hierarchical organization spanning from molecular to systems-level
dynamics (Sporns, 2022).

Current approaches to brain network analysis predominantly rely on graph-based rep-
resentations, where brain regions are modeled as nodes and their pairwise statistical rela-
tionships form edges. This framework has become the standard in network neuroscience,
enabling fundamental insights into functional connectivity, network topology, and brain
organization (Bassett and Sporns, 2017; Sporns, 2010). The success of this approach has
been so profound that neuroscience increasingly needs network science to understand the
brain’s complex organizational principles (Barabasi et al., 2023). However, graph-based
representations face a fundamental limitation: they are inherently restricted to pairwise
relationships and cannot capture higher-order interactions—collective dependencies among
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three or more brain regions that emerge from their joint activity patterns (Giusti et al.,
2016; Battiston et al., 2021; Boccaletti et al., 2023).

This limitation is particularly problematic for understanding brain function, where in-
formation processing often involves synergistic interactions that cannot be decomposed into
pairwise relationships. Recent neuroscientific evidence suggests that higher-order interac-
tions may represent important organizing principles of brain networks (Luppi et al., 2022;
Santoro et al., 2024), motivating our research question: How can we capture higher-order
interactions in neural data?

Recent efforts in topological data analysis (TDA) have contributed important tools for
studying neural data, including fMRI, by characterizing global shape and connectivity.
Most approaches emphasize topological invariants—such as Betti numbers and persistent
homology—derived from geometric or distance-based filtrations (Santoro et al., 2024). In
contrast, we adopt a data-driven information-theoretic approach without requiring geomet-
ric embeddings or distance-based filtrations. We extend graph-theoretical methods beyond
pairwise connectivity by constructing combinatorial complexes using multivariate informa-
tion measures that directly exploit the statistical dependencies in fMRI signals.

From an information-theoretic perspective, these higher-order dependencies can be for-
mally characterized using measures that distinguish between redundant and synergistic
information (Varley, 2025). Redundant information refers to information that is present in
multiple source variables simultaneously, while synergistic information is information that is
only accessible when multiple source variables are observed together and cannot be obtained
from any individual source. Recent developments in multivariate information theory pro-
vide the mathematical foundation for identifying and quantifying these higher-order effects
in neural data (Rosas et al., 2024; Mediano et al., 2022).

We propose that recent advances in Topological Deep Learning (TDL) offer a promising
solution for representing the now quantifiable higher-order interactions in neural time series
data. With information-theoretic measures enabling systematic quantification of synergistic
dependencies, we can construct combinatorial complexes (CCs)—mathematical structures
that generalize graphs to include higher-order relationships (Hajij et al., 2022; Papillon
et al., 2023). CCs are particularly well-suited for this application because their flexible
structure allows direct integration of continuous information-theoretic measures into dis-
crete topological representations, representing both pairwise and higher-order interactions
without the closure or inclusion constraints required by other topological structures.

Our data-driven approach generates higher-order cells directly from multivariate depen-
dencies in neural time series. The resulting combinatorial complexes can provide structured
representations for combinatorial complex neural networks (CCNNs), which could perform
message passing across multiple topological ranks. This would preserve both local pairwise
structure and global higher-order patterns, potentially enabling improved learning tasks
such as brain state classification or cognitive task decoding.

We present this work as a first-generation approach that establishes foundational prin-
ciples while acknowledging current challenges that require future methodological develop-
ment. This framework bridges topological deep learning and network neuroscience not via
topological lifting from lower-order relational scaffolds (e.g., graphs), but through data-
driven construction of combinatorial complexes from multivariate statistical dependencies.
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2. From Brain Graphs to Combinatorial Complexes
2.1. Mathematical Framework

Traditional brain network analysis constructs an undirected graph G = (V, E), where nodes
represent brain regions and edges encode pairwise statistical dependencies. These depen-
dencies are typically inferred from region-wise time series using statistical measures such
as Pearson correlation, partial correlation, mutual information, or coherence (Smith et al.,
2011). This representation captures at most (]; ) pairwise relationships, typically stored in
an N x N adjacency matrix.

Combinatorial complexes (CCs) generalize graph-based representations by formally in-
corporating higher-order cells. In our framework, CCs store both pairwise interactions
(edges) and higher-order relationships (e.g., triplets) in a unified, hierarchical structure. The
full CC consists of a structured collection of subsets of varying sizes, with up to > ;_, (kjil)
potential cells. This makes the CC a discrete, higher-dimensional object that grows combi-
natorially with the number of nodes, posing significant computational challenges common
across higher-order network modeling approaches.

To identify and filter higher-order dependencies, we turn to information-theoretic mea-
sures. While several options exist—including mutual information, Partial Information De-
composition (PID), O-information, and S-information (Varley, 2025)—we focus on the lat-
ter two due to their computational tractability and suitability for capturing synergy and
redundancy in multivariate systems. CCs relax the closure and embedding constraints im-
posed by other topological structures (e.g., simplicial complexes), making them suitable for
integration with information-theoretic methods in our pipeline.

A combinatorial complex (Hajij et al., 2022) is a triple (S, X, rk) where S is a finite
set, X C P(S)\ {0}, and rk : X — Z>( satisfies: (i) {s} € X for all s € S; and (ii) if z C y
with z,y € X, then rk(z) < rk(y). The rank function induces a hierarchy: rank-0 cells are
individual nodes, rank-1 cells are edges, and rank-k cells correspond to k + 1-tuples (e.g.,
triplets, quadruplets).

2.2. Combinatorial Complex Construction

To construct higher-order cells, we quantify multivariate statistical dependencies using two
information-theoretic measures: S-information (¥) and O-information (2) (Rosas et al.,
2024; Varley, 2025). These measures quantify complementary aspects of multivariate sta-
tistical dependence across subsets.

S-information. Given random variables Xi,...,X,,, S-information quantifies the total
statistical interdependence within the system:

S(X) = TC(X) + DTC(X) (1)

where T'C and DT'C' are total and dual total correlations. Higher ¥ values indicate stronger
multivariate dependencies, including potential higher-order synergistic interactions.
O-information. For random variables X1i,...,X,, the O-information measures the sys-
tem’s overall redundancy—-synergy bias:

Q(X) = TC(X) — DTC(X) (2)



Negative €2 indicates net synergy; positive values indicate redundancy. In this proof-of-
concept, we compute both measures and apply dual thresholding criteria: 3 for overall
statistical strength and €2 to select synergy-dominated structures.

Let S denote a set of variables (e.g., neural time series). For each candidate subset
x C S, we compute X(z) and Q(x). Subsets with ¥(z) > 7 and Q(z) < 0 are retained as
rank-k cells in the combinatorial complex, where k = |z| — 1. This dual criterion targets
synergistic higher-order interactions—collective dependencies that emerge only from joint
activity and cannot be decomposed into pairwise relationships. Pairwise dependencies are
included as rank-1 cells based on a separate statistical measure (e.g., Pearson correlation).

This yields a combinatorial complex whose structure reflects higher-order informational
dependencies inherent in the data (Figure 1). In contrast to topological filtrations, which
rely on geometric constraints, our approach selects cells based on statistical dependencies,
uncovering structure intrinsic to the data rather than imposed by geometric priors.
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Figure 1: Toy combinatorial complex from NetSim neural time series. Rank-0 cells are brain regions (nodes);
Rank-1 edges capture pairwise interactions (mutual information > 0.02); Rank-2 hyperedges denote synergistic
triplets (S-information > 0.45, O-information < 0). Top triplets: (2,3,4) with S = 0.51, Q = 0.06, and (1,2,3) with
S =0.48, 2 = 0.04. Construction pipeline and implementation details are provided in Appendix A.

3. Limitations & Future directions

While combinatorial complexes offer a novel way to represent higher-order dependencies in
brain data, several limitations remain. The combinatorial growth of candidate cells poses
significant computational challenges, which could be mitigated through techniques such as
locality-sensitive hashing (Indyk and Motwani, 1998), Kalman filtering (Kalman, 1960),
and similarity-based preselection. Our current reliance on fixed thresholding may overlook
weak but meaningful interactions; future work should explore adaptive criteria, statistical
testing, and robust estimators beyond the Gaussian assumption (Varley, 2025). Finally,
results may depend strongly on how brain regions are defined (e.g., ICA vs. anatomical
parcellation (Smith et al., 2011)), underscoring the need for standardized benchmarks in
higher-order network modeling (Bechler-Speicher et al., 2024). This framework generalizes
to any multivariate time series data and could be integrated with TopoBench (Telyatnikov
et al., 2025) for topological deep learning applications.
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Appendix A. Construction Pipeline And Implementation Details
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Figure 2: Pipeline for constructing combinatorial complexes (CCs) from fMRI data.

This appendix describes the implementation used to construct combinatorial complexes
(CCs) from NetSim (Smith et al., 2011) synthetic data and to generate the results shown
in Figure 1, with the overall workflow summarised in Figure 2. Our approach focuses on
information-theoretic analysis of higher-order dependencies using established tools, with fu-
ture extensions aimed at applying CC assembly to larger real-fMRI datasets and integrating
the framework with topological deep learning methods.

We use NetSim synthetic BOLD time series that simulate realistic fMRI dynamics via a
dynamic causal modelling (DCM) neural process coupled to a nonlinear balloon—Windkessel
haemodynamic forward model. Each dataset consists of an N x T" matrix X representing
N brain regions over T time points, with neural activity convolved through region-specific
haemodynamic response functions, realistic inter-regional HRF variability, and additive
Gaussian noise at the BOLD level. While NetSim provides a graph-level ground truth, we
use only the generated time series, making it a small, well-controlled, and interpretable yet
physiologically informed testbed for proof-of-concept higher-order network construction.

A.1. Information-theoretic analysis

The core contribution of our pipeline (illustrated in Figure 2) lies in integrating higher-
order information-theoretic analysis with combinatorial complex (CC) construction. We
use the Java Information Dynamics Toolkit (JIDT) (Lizier, 2014), interfaced via Python
using JPype.

Higher-order measures. For each candidate triplet (i, 7, k), we compute S-information
and O-information as described in the main text. These quantify the strength of statistical
interdependence and the net redundancy—synergy bias within the triplet.

The JIDT library provides robust estimators for multivariate information measures,
handling the computational complexity of higher-order statistics. Our wrapper functions
in src/info_theory/jidt_interface/ standardize the input/output format and provide
error handling for the JPype bridge.



A.2. Combinatorial complex construction framework

Rank assignment. Brain regions are treated as rank-0 cells (nodes). Rank-1 cells (edges)
are added based on pairwise mutual information (MI), using a fixed threshold of 0.02 to
ensure sparsity while retaining meaningful connections. For rank-2 cells (triplets), we com-
pute both S-information (X) and O-information (£2) using Gaussian estimators from JIDT
(Lizier, 2014). A triplet is retained as a rank-2 cell if both its ¥ value exceeds 0.45 and
Q < 0, reflecting strong multivariate dependencies with synergy-dominated character. This
dual criterion ensures we capture higher-order interactions that are both informationally
rich and synergistic rather than redundant. Although our current implementation focuses
on ranks 0-2 for tractability, the framework generalizes naturally to higher-rank structures.

Thresholding strategy. The choice of fixed thresholds was guided by exploratory runs
on the NetSim dataset. X is used to quantify the overall strength of statistical dependencies
within a triplet, while §2 is computed in parallel to diagnose whether synergy or redundancy
dominates. Together, they allow us to detect strongly coupled subsets and interpret the
nature of their higher-order interactions. In this proof-of-concept, we implement dual selec-
tion criteria: ¥ > 0.45 identifies subsets with strong statistical dependencies, while 2 < 0
ensures we retain only synergy-dominated structures. We use “< 0” rather than “< 0” to
accommodate weak synergy-dominant structures with small positive 2 values. This dual
thresholding approach filters for both statistical strength and synergistic character. As
emphasized by Varley (2025), fixed thresholds can miss weak but relevant interactions, mo-
tivating future integration of adaptive criteria, statistical tests, and more robust estimators.

Illustrative example and interpretation. Figure 1 shows the CC constructed from
subject 1 in the siml.mat NetSim dataset (50 subjects, 5 regions, 200 time points). We
selected this example for its simplicity as a toy testbed. The top two triplets—(2,3,4) with
¥ = 0.51, = 0.06, and (1,2,3) with ¥ = 0.49, Q = 0.04—illustrate how our method
captures structured higher-order dependencies that are invisible to graph-based representa-
tions. While ¥ reflects the overall strength of multivariate dependencies, €2 helps reveal the
balance between synergy and redundancy: the mildly positive values here suggest a mixed
interaction pattern with a synergy-dominant core. In larger or more complex datasets,
Q will further aid in distinguishing interaction motifs. Even in this minimal setting, the
resulting CC reveals triadic structures that reflect non-pairwise organization in the neural
signals.

A.3. Computational considerations and software stack

Scalability. The computational cost of constructing combinatorial complexes grows com-
binatorially with rank. For a dataset with IV regions, the number of candidate rank-k cells is
(kjil), and evaluating each requires computing information-theoretic quantities over (k+1)
variables. For example:

e Rank-1 (edges): O(N?)
e Rank-2 (triplets): O(N?)

e Rank-(¢ —1): O(N?)
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In practice, our proof-of-concept restricts analysis to triplets for tractability. With typical
NetSim dimensions (N =~ 5, T' ~ 200), the pipeline executes efficiently, requiring evalu-
ation of only (g) = 10 triplets. However, the combinatorial growth becomes prohibitive
for realistic brain parcellations: standard atlases with N = 100 regions would require
evaluating (120) = 161,700 triplets. Beyond N = 50, computational requirements ex-
ceed typical desktop capabilities without sophisticated optimization. The modular design
in src/info_theory/ supports future scalability improvements via candidate pre-filtering,
parallelisation, and distributed computation, and could incorporate advanced strategies
such as locality-sensitive hashing (Indyk and Motwani, 1998), Kalman filtering (Kalman,

1960), and similarity-based preselection to further reduce the search space.

Software dependencies.

The implementation builds on:
e Core computation: NumPy, SciPy for numerical operations
e JIDT interface: JPypel for Java—Python bridging

e Visualization: Matplotlib for time series plots, HyperNetX for combinatorial com-
plex visualisation (Figure 1)

A.4. Reproducibility and code availability

The public implementation and scripts to reproduce the figures will be made available upon
acceptance.

Future extensions. The current implementation establishes a foundation for construct-
ing combinatorial complexes directly from time series data. While this framework was
designed with fMRI in mind, it generalizes to any multivariate time series or signal data.
In this proof-of-concept, we focus on demonstrating the full pipeline rather than on ex-
ploratory analysis or interpretation. Planned developments include scaling to large datasets
while mitigating combinatorial explosion, applying the method to real fMRI data for data
analysis and interpretation, incorporating adaptive thresholding strategies, and integrat-
ing with TopoBench (Telyatnikov et al., 2025) for downstream topological deep learning
applications.
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