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Abstract

Artificial Intelligence (Al), along with the recent progress in biomedical language
understanding, is gradually offering great promise for medical practice. With the
development of biomedical language understanding benchmarks, Al applications
are widely used in the medical field. However, most benchmarks are limited
to English, which makes it challenging to replicate many of the successes in
English for other languages. To facilitate research in this direction, we collect
real-world biomedical data and present the first Chinese Biomedical Language
Understanding Evaluation (CBLUE) benchmark: a collection of natural language
understanding tasks including named entity recognition, information extraction,
clinical diagnosis normalization, single-sentence/sentence-pair classification, and
an associated online platform for model evaluation, comparison, and analysis. To
establish evaluation on these tasks, we report empirical results with the current
11 pre-trained Chinese models, and experimental results show that state-of-the-art
neural models perform by far worse than the human ceiling. Our benchmark is
released at https://tianchi.aliyun.com/dataset/dataDetail?datald=
95414&lang=en-us.

1 Introduction

Artificial intelligence is gradually changing the landscape of healthcare, and biomedical research [35]].
With the fast advancement of biomedical datasets, biomedical natural language processing (BioNLP)
has facilitated a broad range of applications such as biomedical text mining, which leverages textual
data in Electronic Health Records (EHRs). For example, BioNLP methods can be employed to provide
recommendations for specialized healthcare to those most at risk during pandemics (COVID-19)
using the text and information in EHRs.

A key driving force behind such improvements and rapid iterations of models is the use of general
evaluation datasets and benchmarks [9]. Pioneer benchmarks, such as BLURB [10], PubMedQA
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[13], and others, have provided us with the opportunity to conduct research on biomedical language
understanding and developing real-world applications. Unfortunately, most of these benchmarks
are developed in English, which makes the development of the associated machine intelligence
Anglo-centric. Meanwhile, other languages, such as Chinese, have unique linguistic characteristics
and categories that need to be considered. Even though Chinese speakers account for a quarter of the
world population, there have been no existing Chinese biomedical language understanding evaluation
benchmarks.

To address this issue and facilitate natural language processing studies in Chinese, we take the first step
in introducing a comprehensive Chinese Biomedical Language Understanding Evaluation (CBLUE)
benchmark with eight biomedical language understanding tasks. These tasks include named entity
recognition, information extraction, clinical diagnosis normalization, short text classification, question
answering (in transfer learning setting), intent classification, semantic similarity, and so on.

We evaluate several pre-trained Chinese language models on CBLUE and report their performance.
The current models still perform by far worse than the standard of single-human performance, leaving
room for future improvements. We also conduct a comprehensive analysis using case studies to
indicate the challenges and linguistic differences in Chinese biomedical language understanding. We
intend to develop a universal GLUE-like open platform for the Chinese BioNLP community, and this
work is a small step in that direction. Overall, the main contributions of this study are as follows:

* We propose the first Chinese biomedical language understanding benchmark, an open-ended,
community-driven project with eight diverse tasks. The proposed benchmark serves as a
platform for the Chinese BioNLP community and encourages new dataset contributions.

e We report a systematic evaluation of 11 Chinese pre-trained language models to understand
the challenges derived by these tasks. We release the source code of the baselines as a toolkit
athttps://github.com/CBLUEbenchmark/CBLUE for future research purposes.

2 Related Work

Several benchmarks have been developed to evaluate general language understanding over the past
few years. GLUE [29] is one of the first frameworks developed as a formal challenge affording
straightforward comparison between task-agnostic transfer learning techniques. SuperGLUE [28]],
styled after GLUE, introduce a new set of more difficult language understanding tasks, a software
toolkit, and a public leaderboard. Other similarly motivated benchmarks include DecaNLP [22]],
which recast a set of target tasks into a general question-answering format and prohibit task-specific
parameters, and SentEval [2], which evaluate explicitly fixed-size sentence embeddings. Non-
English benchmarks include RussianSuperGLUE [25]] and CLUE [34]], which is a community-driven
benchmark with nine Chinese natural language understanding tasks. These benchmarks in the general
domain provide a north star goal for researchers and are part of the reason we can confidently say we
have made great strides in our field.

For BioNLP, many datasets and benchmarks have been proposed [30, (18}, 33]] which promote the
biomedical language understanding [[1,[17,116]]. Tsatsaronis et al. [27] propose biomedical language
understanding datasets as well as a competition on large-scale biomedical semantic indexing and
question answering. Jin et al. [13] propose PubMedQA, a novel biomedical question answering
dataset collected from PubMed abstracts. Pappas et al. [23]] propose BioRead, which is a publicly
available cloze-style biomedical machine reading comprehension (MRC) dataset. Gu et al. [[10]
create a leaderboard featuring the Biomedical Language Understanding & Reasoning Benchmark
(BLURB). Unlike a general domain corpus, the annotation of a biomedical corpus needs expert
intervention and is labor-intensive and time-consuming. Moreover, most of the benchmarks are based
on English; ignoring other languages means that potentially valuable information may be lost, which
can be helpful for generalization.

In this study, we focus on Chinese and aim to develop the first Chinese biomedical language
understanding benchmark. Note that Chinese is linguistically different from English and other
Indo-European languages, necessitating an evaluation BioNLP benchmark designed explicitly for
Chinese.
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Dataset Task Train Dev Test Metrics

CMeEE NER 15,000 5,000 3,000 Micro F1
CMelE Information Extraction 14,339 3,585 4,482 Micro F1
CHIP-CDN Diagnosis Normalization 6,000 2,000 10,192 Micro F1
CHIP-STS Sentence Similarity 16,000 4,000 10,000 MacroF1
CHIP-CTC Sentence Classification 22,962 7,682 10,000 MacroF1
KUAKE-QIC Intent Classification 6,931 1,955 1,994 Accuracy
KUAKE-QTR  Query-Document Relevance 24,174 2913 5,465 Accuracy
KUAKE-QQR  Query-Query Relevance 15,000 1,600 1,596  Accuracy

Table 1: Task descriptions and statistics in CBLUE. CMeEE and CMelE are sequence labeling tasks.
Others are single sentence or sentence pair classification tasks.

3 CBLUE Overview

CBLUE consists of 8 biomedical language understanding tasks in Chinese. We will introduce the
task definitions, detailed data collection procedures, and characteristics of CBLUE followingly.

3.1 Tasks

CMeEE Chinese Medical Named Entity Recognition, a dataset first released in CHIP202 is
used for CMeEE task. Given a pre-defined schema, the task is to identify and extract entities from the
given sentence and classify them into nine categories: disease, clinical manifestations, drugs, medical
equipment, medical procedures, body, medical examinations, microorganisms, and department.

CMelE Chinese Medical Information Extraction, a dataset that is also released in CHIP2020
[[L1]], is used for CMelE task. The task is aimed at identifying both entities and relations in a
sentence following the schema constraints. There are 53 relations defined in the dataset, including 10
synonymous sub-relationships and 43 other sub-relationships.

CHIP-CDN CHIP Clinical Diagnosis Normalization, a dataset that aims to standardize the terms
from the final diagnoses of Chinese electronic medical records, is used for the CHIP-CDN task.
Given the original phrase, the task is required to normalize it to standard terminology based on the
International Classification of Diseases (ICD-10) standard for Beijing Clinical Edition v601.

CHIP-CTC CHIP Clinical Trial Classification, a dataset aimed at classifying clinical trials eligibil-
ity criteria, which are fundamental guidelines of clinical trials defined to identify whether a subject
meets a clinical trial or not [38]], is used for the CHIP-CTC task. All text data are collected from the
website of the Chinese Clinical Trial Registry (ChiCTR) El and a total of 44 categories are defined.
The task is like text classification; although it is not a new task, studies and corpus for the Chinese
clinical trial criterion are still limited, and we hope to promote future researches for social benefits.

CHIP-STS CHIP Semantic Textual Similarity, a dataset for sentence similarity in the non-i.i.d.
(non-independent and identically distributed) setting, is used for the CHIP-STS task. Specifically, the
task aims to transfer learning between disease types on Chinese disease questions and answer data.
Given question pairs related to 5 different diseases (The disease types in the training and testing set
are different), the task intends to determine whether the semantics of the two sentences are similar.

KUAKE-QIC KUAKE Query Intent Classification, a dataset for intent classification, is used for the
KUAKE-QIC task. Given the queries of search engines, the task requires to classify each of them into
one of 11 medical intent categories defined in KUAKE-QIC, including diagnosis, etiology analysis,
treatment plan, medical advice, test result analysis, disease description, consequence prediction,
precautions, intended effects, treatment fees, and others.

*http://cips-chip.org.cn/
>http://chictr.org.cn/
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KUAKE-QTR KUAKE Query Title Relevance, a dataset used to estimate the relevance of the title
of a query document, is used for the KUAKE-QTR task. Given a query (e.g., “Symptoms of vitamin
B deficiency”), the task aims to find the relevant title (e.g., “The main manifestations of vitamin B
deficiency”).

KUAKE-QQR KUAKE Query-Query Relevance, a dataset used to evaluate the relevance of the
content expressed in two queries, is used for the KUAKE-QQR task. Similar to KUAKE-QTR, the
task aims to estimate query-query relevance, which is an essential and challenging task in real-world
search engines.

3.2 Data Collection

Since machine learning models are mostly data-driven, data plays a critical role, and it is pretty
often in the form of a static dataset [8]. We collect data for different tasks from diverse sources,
including clinical trials, EHRs, medical books, and search logs from real-world search engines. As
biomedical data may contain private information such as the patient’s name, age, and gender, all
collected datasets are anonymized and reviewed by the IRB committee of each data provider
to preserve privacy. We introduce the data collection details followingly.

Collection from Clinical Trials

Clinical trial eligibility criteria text is collected from ChiCTR, a non-profit organization that provides
registration for clinical trial information for public research use. Eligibility criteria text is organized as
a paragraph in the inclusion criteria and exclusion criteria in each trial registry file. Meaningless text
was excluded, such as "The criteria is as follows", and the remained text was annotated to generate
the CHIP-CTC dataset.

Collection from EHRs

We obtain the final diagnoses of the medical records from several Class A tertiary hospitals and
sample a few diagnosis items from different medical departments to construct the CHIP-CDN dataset
for research purposes. The diagnosis items are randomly sampled from the items not covered by the
common medical synonyms dict. No privacy information is involved in the final diagnoses.

Collection from Medical Forum and Textbooks

Due to the COVID-19 pandemic, online consultation becomes more and more popular via the Internet.
To promote data diversity, we select the online questions by patients to build the CHIP-STS dataset.
Note that most of the questions are chief complaints. To ensure the authority and practicability of
the corpus, we also select medical textbooks of Pediatrics [31]], Clinical Pediatrics [[26] and Clinical
Practicd®]l We collect data from these sources to construct the CMeIE and CMeEE datasets.

Collection from Search Engine Logs

We also collect search logs from real-world search engines like the Alibaba KUAKE Search Engineﬂ
First, we filter the search queries in the raw search logs by the medical tag to obtain candidate
medical texts. Then, we sample the documents for each query with non-zero relevance scores (i.e., to
determine if the document is relevant to the query). Specifically, we divide all the documents into
three categories, namely high, middle, and tail documents, and then uniformly sample the data to
guarantee diversity. We leverage the data from search logs to construct KUAKE-QTC, KUAKE-QTR,
and KUAKE-QQR datasets.

3.3 Annotation

Each sample is annotated by three to five crowd workers, and the annotation with the majority of
votes is taken to estimate human performance. During the annotation phase, we add control questions

http://www.nhc.gov.cn/
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Figure 1: Analysis of the named entity recognition and information extraction datasets. (a) illustrates
the entity (coarse-grained) distribution in CMeEE and the impact of data distribution on the model’s
performance. We set entity type Body with the maximum number of entities to 1.0, and others to the
ratio of number or F1 score to Body. (b) shows the relation hierarchy in CMelE.

to prevent dishonest behaviors by the crowd workers. Consequently, we reject any annotations made
by crowd workers who fail in the training phase and do not adopt the results of those who achieved
low performance on the control tasks. We maintain strict and high criteria for approval and review at
least 10 random samples from each worker to decide whether to approve or reject all their HITs. We
also calculate the average inter-rater agreement between annotators using Fleiss’ Kappa scores [7],
finding that five out of six annotations show almost perfect agreement (x = 0.9).

3.4 Characteristics

Utility-preserving Anonymization Biomedical data may be considered as a breach in the privacy
of individuals because they usually contain sensitive information. Thus, we conduct utility-preserving
anonymization following [[15] to anonymize the data before releasing the benchmark.

Real-world Distribution To promote the generalization of models, all the data in our CBLUE
benchmark follow real-world distribution without up/downsampling. As shown in Figure[I(a)} our
dataset follows long-tail distribution following Zipf’s law so that all data will inevitably be long-tailed.
However, long-tail distribution has no significant effect on performance. Further, some datasets, such
as CMedIE, have label hierarchy with both coarse-grained and fine-grained relation labels, as shown

in Figure [I(b)|

Diverse Tasks Setting Our CBLUE benchmark includes eight diverse tasks, including named
entity recognition, relation extraction, and single-sentence/sentence-pair classification. Besides the
independent and i.i.d. scenarios, our CBLUE benchmark also contains a specific transfer learning
scenario supported by the CHIP-STS dataset, in which the testing set has a different distribution from
the training set.

3.5 Leaderboard

We provide a leaderboard for users to submit their own results on CBLUE. The evaluation system
will give final scores for each task when users submit their prediction results. The platform offers 60
free GPU hours from Aliyu to help researchers develop and train their models.

$https://tianchi.aliyun.com/notebook-ai/
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3.6 Distribution and Maintenance

Our CBLUE benchmark was released online on April 1, 2021. Up to now, more than 300 researchers
have applied the dataset, and over 80 teams have submitted their model predictions to our platform,
including medical institutions (Peking Union Medical College Hospital, etc.), universities (Tsinghua
University, Zhejiang University, etc.), and companies (Baidu, JD, etc.). We will continue to maintain
the benchmark by attending to meet new requests and adding new tasks.

Model | CMeEE CMeIE CDN CTC STS QIC QTR QQR | Avg.
BERT-base 62.1 54.0 554 692 83.0 843 60.0 84.7 | 69.1
BERT-wwm-ext-base 61.7 54.0 554 70.1 839 845 609 844 | 694
RoBERTa-large 62.1 54.4 565 709 847 842 609 829 | 69.6
RoBERTa-wwm-ext-base 62.4 53.7 564 694 837 855 603 82.7 | 69.3
RoBERTa-wwm-ext-large 61.8 559 557 69.0 852 853 628 84.4 | 70.0
ALBERT-tiny 50.5 35.9 502  61.0 79.7 758 555 79.8 | 61.1
ALBERT-xxlarge 61.8 47.6 375 669 848 848 622 83.1 66.1
ZEN 61.0 50.1 578 68.6 835 832 603 83.0 | 684
MacBERT-base 60.7 532 577 677 844 849 597 84.0 | 69.0
MacBERT-large 624 51.6 593 686 856 827 629 835 | 69.6
PCL-MedBERT 60.6 49.1 558 67.8 838 843 593 825 | 679
Human | 670 66.0 650 78.0 93.0 880 71.0 89.0 | 77.1

Table 2: Performance of baseline models on CBLUE benchmark.

3.7 Reproducibility

To make it easier to use the CBLUE benchmark, we also offer a toolkit implemented in PyTorch [24]]
for reproducibility. Our toolkit supports mainstream pre-training models and a wide range of target
tasks. Different from existing pre-training model toolkits [37], the toolkit is aimed at fast validating
performance on the CBLUE benchmark.

4 Experiments

Baselines We conduct experiments with baselines based on different Chinese pre-trained language
models. We add an additional output layer (e.g., MLP) for each CBLUE task and fine-tune the pre-
trained models. Code for reproducibility is available in https://github. com/CBLUEbenchmark/
CBLUE!.

Models We evaluate CBLUE on the following public available Chinese pre-trained models:

* BERT-base [5]. We use the base model with 12 layers, 768 hidden layers, 12 heads, and 110
million parameters.

* BERT-wwm-ext-base [4]. A Chinese pre-trained BERT model with whole word masking.

* RoBERTa-large [21]]. Compared with BERT, RoBERTa removes the next sentence prediction
objective and dynamically changes the masking pattern applied to the training data.

* RoBERTa-wwm-ext-base/large. ROBERTa-wwm-ext is an efficient pre-trained model which
integrates the advantages of ROBERTa and BERT-wwm.

* ALBERT-tiny/xxlarge [14]. ALBERT is a pre-trained model with two objectives: Masked
Language Modeling (MLM) and Sentence Ordering Prediction (SOP), which shares weights
across different layers in the transformer.

* ZEN [6]. A BERT-based Chinese text encoder enhanced by N-gram representations, where
different combinations of characters are considered during training.

* Mac-BERT-base/large [3]]. Mac-BERT is an improved BERT with novel MLM as a correc-
tion pre-training task, which mitigates the discrepancy of pre-training and fine-tuning.
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Figure 2: We conduct error analysis on dataset CMeEE and QIC. For CMeEE, we divide error
cases into 6 categories, including ambiguity, need domain knowledge, overlap entity, wrong entity
boundary, annotation error, and others (long sequence, rare words, etc.). For KUAKE-QIC, we
divide error cases into 7 categories, including multiple triggers, colloquialism, ambiguity, rare words,
annotation error, irrelevant description, and need domain knowledge.

. PCL-MedBERTﬂ A pre-trained medical language model proposed by the Intelligent Medical
Research Group at the Peng Cheng Laboratory, with excellent performance in medical
question matching and named entity recognition.

CMeEE CMeIE CDN CTC STS QIC QTR QQR

|
annotator I~ 69.0 62.0 60.0 73.0 940 870 750 800
Trained annotator 2 62.0 65.0 69.0 750 93.0 910 620 88.0
annotation | nnotator 3 690 67.0 62.0 80.0 83.0 830 71.0 900
avg 66.7 64.7 63.7 760 917 870 693 860
majority 67.0 66.0 650 780 93.0 88.0 71.0 89.0
| bestmodel — 62.4 559 593 709 856 855 629 847

[l

Table 3: Human performance of two-stage evaluation scores with the best-performed model. “avg’
refers to the mean score from the three annotators. “majority” indicates the performance taken from
the majority vote of amateur humans. Bold text denotes the best result among human and model
prediction.

We implement all baselines with PyTorch [24]. Note that BERT-base, ALBERT-tiny/xxlarge, and
RoBERTa-large are representatives of pre-trained language models. BERT-wwm-ext-base, RoOBERTa-
wwm-ext-base/large, ZEN, Mac-BERT-base/large utilize the specific characteristics (e.g., words and
phrases) of the Chinese language. PCL-MedBERT further utilize domain-adaptive pre-training [12],
which can consistently improve performance on tasks in the biomedical domain. We tune all the
hyper-parameters based on the performance of each model on the development set. We implement
each experiment five times and calculate the average performance. All the training details can be
found in the appendix.

4.1 Benchmark Results

We report the results of our baseline models on the CBLUE benchmark in Table 2] We notice that
the model obtain better performance with larger pre-trained language models. We also observe that
models which use whole word masking do not always yield better performance than others in some
tasks, such as CTC, QIC, QTR, and QQR, indicating that tasks in our benchmark are challenging, and
more sophisticated technologies should be developed. Further, we find that ALBERT-tiny achieves
comparable performance to base models in tasks of CDN, STS, QTR, and QQR, illustrating that
smaller models may also be efficient in specific tasks. Finally, we notice that PCL-MedBERT, which
tends to be state-of-the-art in Chinese biomedical text processing tasks, while does not perform as
well as we expected. This further demonstrates the difficulty of our benchmark, and contemporary
models may find it difficult to quickly achieve outstanding performance.

https://code.ihub.org.cn/projects/1775
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4.2 Human Performance

For all of the tasks in CBLUE, we ask human amateur annotators with no medical experience to
label instances from the testing set and compute the annotators’ majority vote against the gold label
annotated by specialists. Similar to SuperGLUE [28]], we first need to train the annotators before they
work on the testing data. Annotators are asked to annotate some data from the development set; then,
their annotations are validated against the gold standard. Annotators need to correct their annotation
mistakes repeatedly so that they can master the specific tasks. Finally, they annotate instances from
the testing data, and these annotations are used to compute the final human scores. The results are
shown in Table [3] and the last row of Table 2} In most tasks, humans tend to behave better than
machine learning models. We analyze the human performance detailedly in the next section.

Sentence Word Label RO MB
MIRESTTHIE R DR RBRZ R MIRENS T Ite Pro Pro
NR12%~19% -

The results of blood biochemical analysis blood biochemical analy- Ite Pro Pro
show that vitamin B lack rate is about 12% sis

to 19%.

%%ﬂfﬁ FAERRERTERTET ERTUE Bod 0] Bod
1 Do

The rash can be reduced by the host producing anti-toxin antibodies Bod (0] Bod
specific anti-toxin antibodies.

IRIER D) RIS M REECZR AN, 8RR, Bh A, L Sym, Sym, O  Sym, Sym,
AR N A LY AR A Sym Sym

FHEHRHE, BEROAREHRE, A5

BRSO EIA%E

According to the structure and function of ge- deletions, translocations, Sym, Sym, O  Sym, Sym,
netic material, genetic diseases are divided inversions Sym Sym
into five categories: 1. Chromosomal dis-

eases refer to abnormal chromosome number

or chromosome structure abnormalities, in-

cluding deletions, translocations, inversions...

Table 4: Case studies in CMeEE. We evaluate roberta-wwm-ext and PCL-MedBERT on 3 sampled
sentences, with their gold labels and model predictions. Ite (medical examination items), Pro (medical
procedure), Bod (body), and Sym (clinical symptoms) are labeled for medical named words. O means
that the model fails to extract the entity from sentences. RO=roberta-wwm-ext, MB=PCL-MedBERT.

4.3 Case studies

We choose two datasets: CMeEE and KUAKE-QIC, a sequence labeling and classification task,
respectively, to conduct case studies. As shown in Figure[2] we report the statistics of the proportion
of various types of error cases{]ﬂ For CMeEE, we notice that overlap entity, ambiguity, need domain
knowledge, annotation error are major reasons that result in the prediction failure. Furthermore,
there exist many instances with overlap entity, which may lead to confusion for the named entity
recognition task. While in the analysis for KUAKE-QIC, almost half of bad cases are due to multiple
triggers and colloquialism. Colloguialism is natural in search queries, which means that some
descriptions of the Chinese medical text are too simplified, colloquial, or inaccurate.

We show some cases on CMeEE in Table 4] In the second row, we notice that given the instance
of “FZE vl RIfE £ R B B VLR T > (Rash can be reduced by the host producing
specificanti-toxin antibodies.)”, ROBERTA and PCL-MedBERT obtain different predictions. The
reason is that there exist medical terminologies such as “HL3 B YLK (anti-toxin antibodies)”.
ROBERTA can not identify those tokens correctly, but PCL-MedBERT, pre-trained on the medical
corpus, can successfully make it. Moreover, PCL-MedBERT can accurately extract entities “#f-2%, 5
K1 BI0L (eletions, translocations, inversions)” from the long sentences, which is challenging for
other models.

1See definitions of errors in the appendix.



We further show some cases on KUAKE-QIC in Table@ In the first case, we notice that both BERT
and BERT-ext fail to obtain the intent label of the query “I& AR B4 L Rl ey « YRR L 2
RS ZE1E? (Does it matter if the ratio of lymphocytes is high and the ratio of neutrophils is low?)”,
while MedBERT can obtain the correct prediction. Since “Wk AU L2 (ratio of lymphocytes)”
and “FHPEARE L Z (ratio of neutrophils)” are biomedical terminologies, and the general pre-trained
language model has to leverage domain knowledge to understand those phrases. Moreover, we
observe that all model obtain incorrect predictions for the query “¥&if): 15 [A]/NMZ—f% (1 2 B3 H
JKIZ. (Consultation: When do children usually get chickenpox?)” in the second case. Note that there
exists lots of colloquial text in search queries (collogquialism), which have different distributions, thus,
mislead the model predictions.

| Model |
‘ BERT BERT-ext MedBERT ‘
TE AR B L R A - R LR R | R IZET RTE W FRPREIL | FebRAEI
RAEHEG?

Does it matter if the ratio of lymphocytes is high | Diagnosis Diagnosis Test results | Test results

Gold

Query

and the ratio of neutrophils is low? analysis analysis
I BN — BT A H K ? At HAty At IR R
Consultation: When do children usually get Other Other Other Disease
chickenpox? description

Z N 160, FF 5k RH40Z, B4 | WIESH WiEZET WG | 6T is
JRHE? BAIRTT?
The systolic blood pressure of the elderly is 160, | Diagnosis Diagnosis  Diagnosis | Treatment
and the diastolic blood pressure is only more
than 40. What is the reason? How to treat?

Table 5: Case studies in KUAKE-QIC. We evaluate the performance of baselines with 3 sampled
instances. The correlation between Query and Title is divided into 3 levels (0-2), which means
‘poorly related or unrelated’, ‘related’ and ‘strongly related’. BERT = BERT-base, BERT-ext =
BERT-wwm-ext-base, MedBERT = PCL-MedBERT.

As shown in Table[d]and Table[5] compared with other languages, Chinese language is very colloquial
even in medical texts. Furthermore, Chinese is also a tonal language, and the meaning of a word
changes according to its tone, which usually causes confusion and difficulties for machine reading.

In summary, we conclude that tasks in CBLUE are not easy to solve since the Chinese language
has unique characteristics, and more robust models that fully understand the semantics of Chinese,
especially the informal or formal usages in the medical domain, should be taken into consideration.

4.4 Limitations

Although our CBLUE offers diverse settings, there are still some tasks not covered by the benchmark,
such as medical dialogue generation [20,[19}|36] or medical diagnosis [32]]. We encourage researchers
in both academics and industry to contribute new datasets. Besides, our benchmark is static; thus,
models may still achieve outstanding performance on tasks but fail on simple challenge examples and
falter in real-world scenarios. We leave this as future works to construct a platform including dataset
creation, model development, and assessment, leading to more robust and informative benchmarks.

4.5 Conclusion and Future Work

In this paper, we present a Chinese Biomedical Language Understanding Evaluation (CBLUE)
benchmark, which consists of eight natural language understanding tasks, along with an online
leaderboard for model evaluation. We evaluate 11 current language representation models on CBLUE
and analyzed their results. The results illustrate the limited ability of state-of-the-art models to handle
some of the more challenging tasks. In contrast to English benchmarks such as GLUE/SuperGLUE
and BLURB, whose model performance already matches human performance, we observe that this is
far from the truth for Chinese biomedical language understanding. We hope our benchmark can help
promote developing stronger natural language understanding models in the future.



4.6 Broader Impact

The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both
because of the severe health effects of COVID-19 and the public health measures implemented to
slow its spread. A lack of information fundamentally causes many difficulties experienced during the
outbreak; attempts to address these needs caused an information overload for both researchers and the
public. Biomedical natural language processing—the branch of artificial intelligence that interprets
human language—can be applied to address many of the information needs making urgent by the
COVID-19 pandemic. Unfortunately, most language benchmarks are in English, and no biomedical
benchmark currently exists in Chinese. Our benchmark CBLUE, as the first Chinese biomedical
language understanding benchmark, can serve as an open testbed for model evaluations to promote
the advancement of this technology.
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* Did you include the license to the code and datasets? [Yes]

* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
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(b) Did you describe the limitations of your work? [Yes] See Section 4.4

(c) Did you discuss any potential negative social impacts of your work? [Yes] See supple-
mentary materials.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results?
(b) Did you include complete proofs of all theoretical results?

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? See supplementary materials. [Yes] See supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See supplementary materials.
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of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary materials.
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