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ABSTRACT

In recent years, with the surge in deep learning and reinforcement learning, re-
searchers have begun to explore the use of deep reinforcement learning to solve the
offline three-dimensional bin packing problem. However, the valid action space in
the offline three-dimensional bin packing problem is quite large, making it diffi-
cult for the model to converge as the number of boxes increases. Therefore, reduc-
ing the number of valid actions is crucial. In previous studies, many researchers
have developed heuristic rules to reduce the number of effective actions. How-
ever, some of these heuristic rules drastically reduce the number of valid actions,
potentially forgoing the optimal solution, while others do not sufficiently reduce
the number of effective actions, making it still challenging for the model to con-
verge when there are many boxes.In response to this, we propose a heuristic rule
where boxes are placed only at certain specific locations, which we refer to as Key
Points, while other locations are masked. This method integrates well with exist-
ing deep reinforcement learning models for solving the offline three-dimensional
bin packing problem. We not only theoretically demonstrate the efficacy of this
heuristic rule but also empirically show that when our method is combined with
existing models, it can easily train with four times the number of boxes. The
model converges ten times faster than before, and its performance also improves.
Interestingly, even without retraining the model, using our method in the testing
phase yields better results than the original method. We also compare our method
to other heuristic rules. Experimental results show that our approach strikes a
balance between convergence speed and performance.

1 INTRODUCTION

The bin packing problem is typically described in terms of the geometric composition of large ob-
jects and small items: the large object is defined as empty and needs to be filled with small items.
The principal concern is improving the layout of items during the packing process to maximize ben-
efits. From an engineering perspective, the objective of the packing process is usually to maximize
the use of raw materials. Even minor layout improvements may result in significant material savings,
reducing production costs, which is of great significance for large-scale manufacturers.

Research on the bin packing problem mainly originated in the 1960s (Codd, 1960; Gilmore & Go-
mory, 1961), initially proposed in relation to cutting stock. Cutting and packing are closely related
and do not have a clear boundary. Dyckhoff et al. (1997) emphasized the strong correspondence
between cutting and packing from the perspective of the duality of raw materials and space. In this
sense, the cutting problem can be seen as placing small items to fill the space of a large object, and
conversely, the packing problem can be viewed as cutting a large object into small items. Before the
packing problem was developed as a research problem, manual layout strategies were often used,
but at a high cost. Over the past few decades, more and more researchers have conducted extensive
and in-depth studies on packing problems and achieved some good results (Johnson, 1973; Krause
et al., 1975; Maruyama et al., 1977; Garey & Johnson, 1981; Wee & Magazine, 1982), providing
great assistance in solving practical problems.

However, with the development of the economy and society, the packing problems encountered
in real life are becoming more and more complex, and people are also pursuing higher benefits.
In the development process of the entire industry and other industries, such as wood production,
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steel production, glass production, etc., transportation naturally plays an important role. Therefore,
more complex packing problems have emerged and continue to develop, such as two-dimensional
and multi-dimensional packing problems based on one-dimensional packing problems. In fact, the
biggest difficulty in the research of packing problems is layout, which is related to the shape, size,
and other characteristics of the items to be packed. These are all constraints of the packing problem
and are difficult to handle in the solution process.

Due to the success of deep learning (DL) in computer vision, natural language processing, and
reinforcement learning (RL) in fields such as Go in recent years, people have begun to study the
use of deep reinforcement learning (DRL) to solve combinatorial optimization problems. Various
models for solving the offline three-dimensional packing problem have been proposed (Hu et al.,
2017; Duan et al., 2019; Jiang et al., 2021; Zhang et al., 2021; Li et al., 2022). From the perspective
of effects, they are generally better than heuristic algorithms, but without using some heuristic rules,
even the most advanced models can only handle up to 120 boxes at most.

One of the important reasons for not being able to handle more boxes is that compared with other
combinatorial optimization problems, the number of actions in the three-dimensional packing prob-
lem is too large. The actions in the offline three-dimensional packing problem can be divided into
three types. The first type is to choose which box, the number of this type of action is the total
number of boxes; the second type is to decide the direction of the box, the number of this type of
action is 6; the third type is to decide the position of the box, the number of actions of this type is
often the bottom area of the box, generally tens of thousands. The product of the three is the total
number of actions. As a comparison, the number of actions in the traveling salesman problem is
only the number of cities, far less than the number of actions in the packing problem.

As we can see, the main reason for the excessive number of total actions is the excessive number
of position actions. Therefore, we start with reducing the number of position actions to reduce
the number of total actions. Therefore, we propose a heuristic rule that sets the packing position
to certain specific points, which we call Key Points, greatly reducing the number of actions and
accelerating convergence.

Our contributions are as follows:

1. We propose a heuristic rule that integrates well with existing deep reinforcement learning
models. From an experimental point of view, for the original model that can only train
100 boxes, after combining with our method, even if 400 boxes are trained, the model
can converge, and the convergence speed is significantly faster, and the performance is
also improved; compared with other heuristic rules, our method also balances convergence
speed and effect well.

2. Theoretically, we prove that even after using our method to mask a large number of actions,
the optimal solution will not be missed.

2 RELATED WORK

2.1 CONVENTIONAL ALGORITHMS

Conventional algorithms for solving the three-dimensional bin packing problem can be categorized
into three types: exact algorithms, approximation algorithms, and meta-heuristic algorithms. Ow-
ing to the complexity of the Three-Dimensional Bin Packing Problem (3D BPP), there are few
exact algorithms. Approximation algorithms are generally designed based on certain heuristic rules.
These algorithms tend to solve the problem relatively swiftly, but the quality of the solution re-
lies heavily on the effectiveness of the heuristic rules. A good heuristic rule requires the algorithm
designer to have a deep understanding of the bin packing problem. In some cases, we can also
conduct some theoretical analyses of approximation algorithms, such as time complexity and worst-
case performance. Meta-heuristic algorithms, such as simulated annealing, genetic algorithms, and
particle swarm optimization, usually take a longer time and cannot guarantee the quality of the solu-
tion. Their advantage is that they generally improve the solution as the time increases, and perform
well when there are no good heuristic rules. Due to the complexity of the three-dimensional bin
packing problem, the latest traditional methods generally combine approximation algorithms and
meta-heuristic algorithms.
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Due to space limitations, we can only introduce a few works for each type of algorithm. The current
most accurate algorithm (Silva et al., 2019) needs several hours to solve a packing problem with only
12 items, which is obviously not efficient enough for practical use. For approximation algorithms,
Crainic et al. (2008) introduced the Extreme Point, and Parreño et al. (2008) proposed the Empty
Maximal Space. Both these heuristic rules strictly mandate that boxes can only be situated in certain
designated positions. Both rules significantly improved packing efficiency at the time, particularly
the Empty Maximal Space. Presently, many newly introduced algorithms only select from a few
positions stipulated by the Empty Maximal Space when deciding on the box placement. In terms of
meta-heuristic algorithms, there are many at present, with attempts at simulated annealing (Fenrich
et al., 1989; Zhang et al., 2007), genetic algorithms (Kang et al., 2012; Corcoran III & Wainwright,
1992; Whitley & Starkweather, 1990; Karabulut & İnceoğlu, 2004; Gonçalves & Resende, 2013;
Wu et al., 2010; de Andoin et al., 2022), ant colony optimization Silveira et al. (2013), and quantum
algorithms (De Andoin et al., 2022; Bozhedarov et al., 2023; V. Romero et al., 2023).

2.2 LEARNING-BASED ALGORITHMS

A large part of learning-based algorithms is based on PointerNet (PtrNet)(Vinyals et al., 2015),
which is a neural network with a specific attention mechanism, similar to Seq2Seq networks
(Sutskever et al., 2014). The main difference between Seq2Seq networks and PtrNet is that the
number of target classes output at each step in Seq2Seq networks is fixed, but in PtrNet, the size
of the output dictionary is variable. Bello et al. (2016) first attempted to combine PtrNet and RL to
solve combinatorial optimization problems in solving the Traveling Salesman Problem (TSP). Hu
et al. (2017) was the first to attempt to use PtrNet and RL to generate the box order to solve the new
3D BPP, i.e., designing a bin with the smallest surface area that can pack all the boxes, but the ori-
entation and position are obtained through heuristic methods. Duan et al. (2019) was the first work
to use DRL to generate the order and direction of boxes, but the position was obtained through con-
ventional methods. Vaswani et al. (2017) proposed the Transformer. Since box data does not have
a temporal order like time series and language, Transformers without position embeddings perform
better in BPP than PtrNet. Zhao et al. (2021a) used a heightmap to represent the state of the boxes
in the bin and added a convolutional neural network to the model. Jiang et al. (2021) was the first
to propose a purely learning-based method, where the index, orientation, and position of the box are
all determined by the neural network. Zhang et al. (2021) introduced a heuristic rule for position.
When determining the two-dimensional coordinates of the position of the box, one-dimensional co-
ordinates are determined by heuristic methods, and the other dimension is determined by learning
algorithms. Li et al. (2022) introduced a heuristic rule for box index, that is, no matter how many
boxes there are, decisions are only made among a small number of boxes, generally no more than
30. These small number of boxes are randomly selected, so this method can expand to 1000 boxes,
but when the number of boxes is 100, it is not better than (Zhang et al., 2021). Zhao et al. (2021a)
only considers positions generated by heuristic rules in online 3D BPP. These heuristic rules include
Corner Point(Martello et al., 2000), Extreme Point, Empty Maximal Space (Parreño et al., 2008)
and Event Point.

3 BACKGROUND

3.1 DEFINITION OF THE PROBLEM

All rectangular cuboid boxes need to be packed into a rectangular cuboid bin. The length and width
of the bin are fixed, but the height is not. L,W represent the length and width of the bin, respectively.
We use a coordinate system to describe the positions of the items and the bin. (0, 0, 0) is defined as
the coordinates of the left-front-bottom vertex of the bin. [N ] denotes {1, 2, ..., N}, where [N ] is the
set of box indices and N is the number of boxes. The length, width, and height of the i-th box are
li, wi, hi respectively. After all the boxes are packed into the bin, the coordinates of each item are
fixed. (xi, yi, zi) represents the coordinates of the right-rear-top vertex of the i-th item. The goal is

minH (1)

where H = maxi∈[N ] zi.

The constraints are:
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(a) The coordinate system of bin

LW

(b) 3D CUT DATA

Figure 1: The coordinate system of bin and example of 3D CUT DATA

1. Boxes cannot be placed diagonally.

2. Boxes cannot be partially outside the bin.

3. Boxes cannot overlap with each other.

If we are privy to the length, width, and height of all boxes from the beginning, the problem is
recognized as offline 3D BPP; if we have knowledge of the dimensions of just one box at each
decision stage, suggesting a fixed packing sequence, then the problem falls into the category of
online 3D BPP. The primary emphasis of our work lies on offline 3D BPP.

3.2 FORMULATING OFFLINE 3D BPP AS A MARKOV DECISION PROCESS

State In offline 3D BPP, the state can be divided into two categories: the state of boxes that have
not been packed into the bin is generally described by the length, width, and height of these boxes;
and the state of boxes that have been packed into the bin. For the state of the boxes that have been
packed into the bin, in addition to being described by the length, width, and height, it also involves
the interior of the bin. There are currently two main ways to describe the interior of the bin, one
is to use a heightmap (Zhao et al., 2021a), which can be regarded as an overhead view of the bin.
Using the concept of pixels in the image, each pixel in the heightmap represents height; the other is
to directly give the position and orientation of each box in the bin (Li et al., 2022).

Action In offline 3D BPP, actions can be divided into three categories. The first is the index action.
Given that we select one from N boxes, the number of index actions is N ; The second is the
orientation action. See Figure 2, the number of orientation actions is 6; The third is the position
action. The position action can be seen as choosing the x and y coordinates of the left-front-bottom
vertex of the box. As to why it does not involve the z coordinate, if the same x, y coordinate
corresponds to multiple z coordinates, the smallest z coordinate is taken by default. Therefore, the
number of position actions is L × W . Generally, the order of these three types of actions is to
determine the index of the box first, then determine the orientation of the box, and finally determine
the position of the box. The decision on which action to take is determined by the policy function,
which is approximated by a neural network. The output of the neural network is a probability vector,
each component of which is non-negative, and the sum of all components is 1. Each component
represents the probability of taking the corresponding action.

Reward The reward is set as the loading rate ru =
∑N

i=1 liwihi

LWH .

4 METHOD

Let’s denote Hmax =
∑N

i=1(li + wi + hi). We represent the set {(x, y, z)|a1 < x < a2, b1 < y <
b2, c1 < z < c2} using the notation (a1, b1, c1, a2, b2, c2). Define U as the set {(x, y, z)|0 ≤ x ≤
L, 0 ≤ y ≤W, 0 ≤ z ≤ Hmax}. Suppose boxes j1, j2, ..., jn have been placed into the bin, with the
coordinates of their left-front-bottom vertices as (x′

j1
, y′j1 , z

′
j1
), (x′

j2
, y′j2 , z

′
j2
), ..., (x′

jn
, y′jn , z

′
jn
).
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Figure 2: Six orientations.

We define IS = (R3 − U) ∪ (∪ni=1(x
′
ji
, y′ji , z

′
ji
, xji , yji , zji)). We represent the empty set as

ϕ.
Definition 1 (Key Point) A point (x′, y′, z′) ∈ U is deemed a Key Point (KP) if ∀δ1, δ2, δ3 ≥ 0 ∧∑3

i=1 δi > 0, there exists δ4, δ5, δ6 > 0, such that (x′, y′, z′, x′+ δ4, y
′+ δ5, z

′+ δ6)∩ IS = ϕ and
(x′ − δ1, y

′ − δ2, z
′ − δ3, x

′ − δ1 + δ4, y
′ − δ2 + δ5, z

′ − δ3 + δ6) ∩ IS ̸= ϕ

Packing the left-front-bottom vertex of a box on a KP is referred to as packing the box on a KP.
When no boxes are packed in the bin, there is only one KP, i.e., (0, 0, 0). When a box is packed, the
KPs change. Figure 3 provides an illustrative example.

If a face of a box neither contacts other boxes nor the surface of the bin, we refer to this face as a
blank face. Intuitively, fewer blank faces are desirable. In the extreme case of a 100% loading rate,
each of the six faces (up, down, left, right, front, back) of every box either contacts another box or
the surface of the bin. We continue to use Figure 3 to illustrate the principle that fewer blank faces
yield better results after box placement. Suppose L,W = 3, the quantity of blank faces in Figures
3a, 3b, 3c, and 3d are 3, 4, 5, 6, respectively. Upon insertion of three boxes, it can be observed that
in Figure 3d, when the second box is packed, H = 4; in Figure 3c, after the third box is packed,
H = 4; in Figure 3b, after four boxes are packed, H = 4; and in Figure 3a, after four boxes are
packed, H = 3. These instances demonstrate that after box placement, fewer blank faces handle
larger boxes more easily.

Figure 3a has 3 KPs, while Figures 3b, 3c, and 3d each have 4 KPs. When a box is packed on a KP ,
the increase in the number of KPs is less than when the box is packed on a non-KP. The fewer KPs,
the better, because our method only considers placing boxes at KPs. If there are fewer KPs, it is
equivalent to having fewer potential valid positions, which typically means the model can converge
faster. We define the set Ω3 = {(x, y, z)|(x, y, z) is KP} to be the set of all KPs.

Next, we describe the decision-making process in offline 3D BPP. We denote the input to the neural
network as X. The process is as follows:

1. πs = fs(X): Based on πs, we decide on the index of the box k.
2. πo = fo(X, lk, wk, hk): Based on πo, we decide on the orientation of the box ok.
3. πp = fp(X, ok(lk), ok(wk), ok(hk)): Based on πp, we decide on the position of the box.

Where fs, fo, fp are the corresponding neural networks, and ok(lk), ok(wk), ok(hk) represent the
measurements of the edges parallel to the x, y, z axes when the box k is placed in orientation ok.
Our method only pertains to the modification of πp, so we will further discuss the computation
process of πp. The last layer of fp is a Softmax layer, and we denote the output of the preceding
layer as p ∈ R(L×W ). Before feeding into the Softmax layer, p needs to be processed as follows:

p[i×W + j]← −∞, i+ ok(lk) > L ∨ j + ok(wk) > W (2)

Here, i ∈ {0, 1, ..., L − 1}, j ∈ {0, 1, 2...,W − 1}, ← denotes assignment, and the condition
i + ok(lk) > L ∨ j + ok(wk) > W arises because if the x, y coordinates of the box’s left-front-
bottom vertex are i, j, respectively, then a part of the box would inevitably be outside the larger
box. At this point, the number of valid position actions is given by (L− ok(lk))× (W − ok(wk)).
Assuming L,W = 100 and the box’s length, width, and height are all 60, the number of valid
position actions is 3600. Even though the box is large enough, the number of valid position actions
remains substantial, necessitating the use of heuristic rules to reduce the number of valid position
actions.
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Figure 3: The subtitle (a, b, c)+d denotes that the left-front-bottom vertex of the first box is located
at (a, b, c) and that d boxes have already been placed inside. In the first row, a box with dimensions
1 × 1 × 1 is placed in four different positions. The red points indicate the KPs. In Figures 3b and
3c, the highest KP is (0, 0, 1), and in Figure 3d, the highest KP is (0, 0, 2). In the second row, a box
with dimensions 3 × 3 × 2 is placed. In the third row, a box with dimensions 3 × 2 × 1 is placed.
Finally, in the fourth row, a box with dimensions 2× 1× 1 is placed.
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Incorporating KP, we propose a novel method. We define condition C1 as ∀m, if (i, j,m) ∈
Ω3, (i, j,m, i+ ok(lk), j+ ok(wk),m+ ok(hk))∩ IS ̸= ϕ and condition C2 as ∀m, (i, j,m) /∈ Ω3.
The modifications made by our method are:

p[i×W + j]← −∞, i, j satisfy C1 ∨ C2 (3)

Condition C1 implies that even when the box’s left-front-bottom vertex is packed on a KP, it’s
necessary to ensure that no part of the box is outside the larger box or overlapping with other boxes.
Condition C2 implies not considering non-KPs. For both Equation 2 and 3, actions set to −∞ are
referred to as invalid actions. Position actions that are not assigned a value of −∞ are termed as
valid position actions.

Next, we will demonstrate the effectiveness of our algorithm from a theoretical perspective. We
consider a special class of box data, where their optimal solutions precisely correspond to a cuboid
with length L and width W . We refer to this as 3D CUT DATA. Figure 1b provides an example.

Theorem 1 In offline 3D BPP, for 3D CUT DATA, there exists at least one packing order where
every box is packed on a KP, achieving the optimal solution.

Theorem 1 guarantees the existence of an optimal solution, suggesting that an optimal solution of 3D
CUT DATA can still be achieved even if we solely contemplate placing the box at a KP. Compared
to non-3D CUT DATA, 3D CUT DATA has fewer optimal solutions since no space is wasted in
the optimal solutions of 3D CUT DATA. The choice of box placement is also stricter, thereby, we
believe that Theorem 1 can be generalized to non-3D CUT DATA.

5 EXPERIMENT

We implemented our approach on two state-of-the-art network architectures, namely attend2pack
(Zhang et al., 2021) and RCQL (Li et al., 2022).

For both attend2pack and RCQL, we employed Adam (Kingma & Ba, 2014) as the optimizer, with
training guided by the Rollout algorithm (Kool et al., 2019). When p in the Rollout algorithm
exceeds 0.95, the learning rate is reduced by 5%. The Rollout algorithm is run for 500 epochs, with
each epoch consisting of 10 steps, a batch size of 64, and a significance level of 0.05. Both models
use LayerNorm (Ba et al., 2016) for normalization. They incorporate multi-head attention layers or
their variants, with 8 heads, each of size 16, and 3 such layers or variants. The feedforward layer
is composed of two fully connected layers, with output dimensions of 512 and 128, and activation
functions being ReQUr (Yu et al., 2021) and ReQU (Li et al., 2019). The test set includes 16384
samples, with lengths, widths, and heights of the boxes in both the test and training sets randomly
generated with equal probability from integers between 10 and 50.

For attend2pack-specific hyperparameters, the initial learning rate is set to 10−5. The C value from
the original paper (Zhang et al., 2021) is 10. The model includes 3 convolutional layers, all with
4 output channels. The first convolutional layer has 2 input channels, while the second and third
convolutional layers have 4 input channels.

For RCQL-specific hyperparameters, the initial learning rate is 10−4, the length of the recurrent
FIFO queue is 20, the context size of the packed state is 30, and the context size of the unpacked
state is min{N, 100}.
Our comparison includes both traditional and learning-based algorithms: 1) Genetic Algorithm with
Deepest Bottom Left Heuristic (GA+DBLF) (Wu et al., 2010), where the population size and number
of generations are set at 120 and 200 respectively; 2) Extreme Point (EP) (Crainic et al., 2008); 3)
Largest Area Fit First (LAFF) (Gürbüz et al., 2009); 4) EB-AFIT packing algorithm (Baltacioglu,
2001); 5) MTSL (Duan et al., 2019); 6) Multimodal (MM) (Jiang et al., 2021); 7) attend2pack (A)
(Zhang et al., 2021); 8) RCQL (R) (Li et al., 2022).

Table 1 illustrates the experimental outcomes for varying N with L = 120,W = 100. K implies the
inclusion of our method solely during test truncation, and KT implies the inclusion of our method
during both the training and testing stage. We observe that upon incorporating our method during
training and testing of attend2pack, the greatest results are achieved across all N . Furthermore,
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Table 1: The experimental outcomes for varying N with L = 120,W = 100. Both figures outside
and inside parentheses exclude the % symbol. The figure outside the parentheses denotes the aver-
age loading rate following seven experimental repetitions, while the figure within the parentheses
signifies the standard deviation.

N 25 50 100 200 400

GA+DBLF 60.2(1.7) 62.4(1.6) 65.9(1.8) 65.9(1.4) 61.8(2.4)
EP 62.6(0) 61.7(0) 62.9(0) 65.9(0) 60.6(0)
LAFF 62.5(0) 61.4(0) 60.7(0) 63.1(0) 64.3(0)
EB-AFIT 61.4(0) 60.7(0) 63.1(0) 62.3(0) 61.2(0)
MTSL 65.8(2.0) 65.7(2.8) 51.2(2.4) 52.9(3.4) 54.4(2.5)
MM 68.0(2.1) 68.3(2.6) 68.7(1.6) 52.0(1.0) 55.9(1.9)
A 73.0(1.4) 74.3(1.6) 73.4(3.5) 55.7(2.2) 50.1(1.5)
A+K(Our) 78.0(2.6) 79.5(1.2) 78.4(1.4) 67.9(3.8) 66.0(3.5)
A+KT(Our) 81.9(1.8) 81.8(0.8) 82.6(0.4) 82.0(0.6) 81.8(0.4)
R 69.8(2.6) 70.4(1.8) 71.1(3.8) 70.5(3.0) 71.1(1.0)
R+K(Our) 73.3(2.9) 73.9(1.7) 73.6(2.2) 72.7(1.2) 73.7(1.3)
R+KT(Our) 75.4(1.1) 75.5(1.2) 76.7(1.3) 75.6(1.6) 75.8(1.4)

we note that an improvement is seen for either attend2pack or RCQL when our method is incor-
porated during the testing phase, which is particularly noticeable when the model is attend2pack
and N is fairly large. This suggests that improvements can be made without retraining the model.
Simultaneously, we observe that after incorporating our method during both training and testing
stages, not only does the standard deviation decrease, indicating greater training stability, but also
for attend2pack, the model can still converge even when N is larger.

Table 2: The experimental outcomes for varying L,W with N = 100. Both figures outside and
inside parentheses exclude the % symbol. The figure outside the parentheses denotes the average
loading rate following seven experimental repetitions, while the figure within the parentheses signi-
fies the standard deviation.

(L,W) (140,120) (160,140) (180,160)

GA+DBLF 60.1(2.0) 63.3(3.8) 61.7(2.3)
EP 62.9(0) 65.2(0) 64.2(0)
LAFF 61.4(0) 62.5(0) 62.2(0)
EB-AFIT 62.5(0) 60.4(0) 62.7(0)
MTSL 60.0(3.9) 61.1(2.3) 55.2(1.8)
MM 70.7(2.9) 69.1(3.2) 70.3(3.4)
A 73.9(2.0) 74.9(2.6) 74.8(2.3)
A+K(Our) 78.3(1.4) 77.3(1.2) 77.4(2.8)
A+KT(Our) 81.0(1.3) 81.9(0.1) 81.4(1.8)
R 72.6(1.7) 71.7(2.9) 72.7(2.3)
R+K(Our) 73.9(1.8) 73.8(2.5) 73.4(3.4)
R+KT(Our) 75.9(1.0) 77.0(1.3) 76.9(2.2)

Table 2 exhibits the experimental outcomes for varying L,W with N = 100. We continue to observe
that combining attend2pack with our method surpasses existing models.

We next compare with the four heuristic rules in (Zhao et al., 2021b), namely Corner Point (CP),
Extreme Point (EP), Empty Maximal Space (EMS), and Event Point (EV).Table 3 provides the
average count of valid position actions (ACOVPA) and initial loading rate (ILR) for the original
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model, other heuristic rules, and our approach. From Table 3 and Figure 4, we infer that: the lesser
the average count of valid position actions, the quicker the convergence; employing heuristic rules
often yields a comparably high initial loading rate, a crucial cause for the hastened convergence post
heuristic rule addition; KP’s final effect is akin to EMS and EV, but its convergence is significantly
faster, partly due to fewer average count of valid position actions and partly due to KP’s higher
initial loading rate, further indicating that in offline 3D BPP, EMS and EV incorporate numerous
superfluous valid position actions; in offline 3D BPP, the performance of EV approximates that of
EMS, while the experimental results of online 3D BPP from (Zhao et al., 2021b) indicate that EV
surpasses EMS. It has been traditionally believed that offline 3D BPP is more challenging than online
3D BPP due to the action count in offline 3D BPP being N × 6× L×W , while in online 3D BPP,
owing to a fixed packing sequence, the action count is 6×L×W , implying that a smaller action space
enables easier learning of the optimal solution.However, as it currently stands, position selection in
offline 3D BPP is more flexible. For some heuristic rules that excel in online 3D BPP with regard
to position selection, before their application to offline 3D BPP, we should contemplate whether we
can develop new heuristic rules building on these. The newly proposed heuristic rules should aim to
further curtail the number of valid position actions and demonstrate superior performance in offline
3D BPP.

Table 3: The average count of valid position actions for N = 100, L = 120,W = 100.

origin CP EP EMS EV KP(Our)

ACOVPA 6941.4 10.0 13.2 58.9 153.8 16.7
ILR 25.2(4.2) 52.7(1.5) 53.2(2.6) 53.2(3.7) 52.4(3.9) 54.9(3.4)
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Figure 4: The training curve of attend2pack for L = 120,W = 100, N = 100. Figure 4a contrasts
the training curves of our method with the original model, while Figure 4b contrasts our method
with the other four heuristic rules.

6 CONCLUSION

In this study, for offline 3D BPP, we introduce KP, a heuristic rule that seamlessly integrates with
DRL. Incorporating KP into the initial model enhances both the model’s convergence speed and ef-
fectiveness. In comparison to other heuristic rules, KP strikes a balance between rate of convergence
and performance. Furthermore, our experimental outcomes highlight the differences in employing
DRL for solving offline 3D BPP versus online 3D BPP, with the former offering more flexible posi-
tion selection. Future research will delve into whether it’s possible to further decrease the count of
valid position actions based on KP, with the aim to expedite model convergence and achieve further
enhancement in performance.
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Korhan Karabulut and Mustafa Murat İnceoğlu. A hybrid genetic algorithm for packing in 3d with
deepest bottom left with fill method. In International Conference on Advances in Information
Systems, pp. 441–450, 2004.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
ICLR, 2019.

Kenneth L Krause, Vincent Y Shen, and Herbert D Schwetman. Analysis of several task-scheduling
algorithms for a model of multiprogramming computer systems. Journal of the ACM (JACM), 22
(4):522–550, 1975.

Bo Li, Shanshan Tang, and Haijun Yu. Better approximations of high dimensional smooth functions
by deep neural networks with rectified power units. Communications in Computational Physics,
27(2):379–411, 2019.

Dongda Li, Zhaoquan Gu, Yuexuan Wang, Changwei Ren, and Francis CM Lau. One model packs
thousands of items with recurrent conditional query learning. Knowledge-Based Systems, 235:
107683, 2022.

Silvano Martello, David Pisinger, and Daniele Vigo. The three-dimensional bin packing problem.
Operations research, 48(2):256–267, 2000.

K Maruyama, SK Chang, and DT Tang. A general packing algorithm for multidimensional resource
requirements. International Journal of Computer & Information Sciences, 6:131–149, 1977.

Francisco Parreño, Ramón Alvarez-Valdés, Jose Manuel Tamarit, and Jose Fernando Oliveira. A
maximal-space algorithm for the container loading problem. INFORMS Journal on Computing,
20(3):412–422, 2008.

Everton Fernandes Silva, Tony Wauters, et al. Exact methods for three-dimensional cutting and
packing: A comparative study concerning single container problems. Computers & Operations
Research, 109:12–27, 2019.

Miguel Espinheira Silveira, Susana Margarida Vieira, and João Miguel Da Costa Sousa. An aco
algorithm for the 3d bin packing problem in the steel industry. In International Conference on In-
dustrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 535–544, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Sebastián V. Romero, Eneko Osaba, Esther Villar-Rodriguez, Izaskun Oregi, and Yue Ban. Hybrid
approach for solving real-world bin packing problem instances using quantum annealers. Scien-
tific Reports, 13(1):11777, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

TS Wee and Michael J Magazine. Assembly line balancing as generalized bin packing. Operations
Research Letters, 1(2):56–58, 1982.

11



Under review as a conference paper at ICLR 2024

Darrell Whitley and Timothy Starkweather. Genitor ii: A distributed genetic algorithm. Journal of
Experimental & Theoretical Artificial Intelligence, 2(3):189–214, 1990.

Yong Wu, Wenkai Li, Mark Goh, and Robert De Souza. Three-dimensional bin packing problem
with variable bin height. European journal of operational research, 202(2):347–355, 2010.

Haijun Yu, Xinyuan Tian, E Weinan, and Qianxiao Li. Onsagernet: Learning stable and interpretable
dynamics using a generalized onsager principle. Physical Review Fluids, 6(11):114402, 2021.

Defu Zhang, Lijun Wei, Qingshan Chen, and Huowang Chen. Combinatorial heuristic algorithm for
three-dimensional binning problem. Journal of Software, 18(9):2083–2089, 2007.

Jingwei Zhang, Bin Zi, and Xiaoyu Ge. Attend2pack: Bin packing through deep reinforcement
learning with attention. arXiv:2107.04333, 2021.

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. Online 3d bin packing with con-
strained deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 741–749, 2021a.

Hang Zhao, Yang Yu, and Kai Xu. Learning efficient online 3d bin packing on packing configuration
trees. In International Conference on Learning Representations, 2021b.

A APPENDIX

A.1 PROOF OF THEOREM 1

Algorithm 1 packing order where every box is packed on a KP to achieve the optimal solution

Input: left-front-bottom vertex coordinate and orientation of item set I =
{(x′

1, y
′
1, z

′
1, o

′
1), (x

′
2, y

′
2, z

′
2, o

′
2), ..., (x

′
N , y′N , z′N , o′N )}

1: Initialize the KP set Ω3 = {(0, 0, 0)}
2: while Ω3 ̸= ϕ do
3: for (x′, y′, z′) in Ω3 do
4: for (x′

i, y
′
i, z

′
i, o

′
i) in I do

5: if x′ = x′
i and y′ = y′i and z′ = z′i then

6: ith box is packed on (x′, y′, z′) in orientation o′i. I ← I\(x′
i, y

′
i, z

′
i, o

′
i), Update Ω3.

7: break
8: end if
9: end for

10: end for
11: end while

Proof The measure appearing in the proof is assumed to be the Lebesgue measure on R3. We define
the optimal solution of 3D CUT DATA, corresponding to H , as Hmin. Subsequently, U is redefined
as {(x, y, z)|0 ≤ x ≤ L, 0 ≤ y ≤W, 0 ≤ z ≤ Hmin}, from which it is apparent that:

N∑
i=1

liwihi = LWHmin (4)

We hypothesize that when achieving the optimal solution, the coordinate of the left-front-bottom ver-
tex of the i-th box is (x′

i, y
′
i, z

′
i), with an orientation of o′i. We term (x′

i, y
′
i, z

′
i) as the pre-determined

position of the i-th box. Algorithm 1 provides a boxing order that can reach the optimum and posi-
tions the box on the KP at every step. We will prove the effectiveness of Algorithm 1 using proof by
contradiction.

Clearly, each step of Algorithm 1 positions a box on the KP. If Algorithm 1 cannot achieve the order
in Theorem 1, only the following three scenarios could occur:

1. Ω3 ̸= ϕ and I = ϕ, which corresponds to the existence of KP in U , but no boxes remaining.
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2. Ω3 = ϕ and I ̸= ϕ, which corresponds to the absence of KP in U , but surplus boxes still
exist.

3. Ω3 ̸= ϕ and I ̸= ϕ, which corresponds to the existence of KP in U , as well as boxes
that have not been packed into the bin, but none of the remaining boxes’ pre-determined
positions are KPs.

We will prove that none of these scenarios will occur.

Considering the first scenario, where Ω3 ̸= ϕ and I = ϕ, corresponding to the exis-
tence of KP in U , but no boxes remain.Recalling the definition of KP (x′, y′, z′), there ex-
ist δ4, δ5, δ6 > 0 such that(x′, y′, z′, x′ + δ4, y

′ + δ5, z
′ + δ6) ∩ IS = ϕ, where IS =

(R3 − U) ∪ (∪Ni=1(x
′
ji
, y′ji , z

′
ji
, xji , yji , zji)). We note the current δ4, δ5, δ6. We define ISS =

∪Ni=1(x
′
ji
, y′ji , z

′
ji
, xji , yji , zji), clearly,(x′, y′, z′, x′+ δ4, y

′+ δ5, z
′+ δ6)∩ ISS = ϕ We use m(Ω)

to denote the measure of set Ω, because (x′, y′, z′, x′ + δ4, y
′ + δ5, z

′ + δ6) ∪ ISS ⊂ U , we have
m((x′, y′, z′, x′ + δ4, y

′ + δ5, z
′ + δ6)) +m(ISS) ≤ m(U), which leads to

δ4δ5δ6 +

N∑
i=1

liwihi ≤ LWHmin (5)

Equation 5 and Equation 4 are in conflict.

Considering the second scenario, Ω3 = ϕ and I ̸= ϕ, corresponding to the absence of KP in U ,
but there are surplus boxes. Assume that n boxes have been packed at this point, with ISS =
∪ni=1(x

′
ji
, y′ji , z

′
ji
, xji , yji , zji). We define S = U − ISS, which is clearly a closed set. If there

exists a KP, it must belong to S, with the following equation:

m(S) = m(U)−m(ISS) = LWHmin −
n∑

i=1

liwihi > 0 (6)

Let’s discuss two sub-scenarios.

First sub-scenario: ∃(x′, y′, z′) ∈ S, ∃δ4, δ5, δ6 > 0, (x′, y′, z′, x′ + δ4, y
′ + δ5, z

′ + δ6)∩ IS = ϕ.
Since (x′, y′, z′) is not a KP, there must exist δ(1)1 , δ

(1)
2 , δ

(1)
3 ≥ 0 ∧

∑3
i=1 δ

(1)
i > 0 such that (x′ −

δ
(1)
1 , y′−δ(1)2 , z′−δ(1)3 , x′−δ(1)1 +δ4, y

′−δ(1)2 +δ5, z
′−δ(1)3 +δ6)∩IS = ϕ. Clearly, (x′−δ(1)1 , y′−

δ
(1)
2 , z′ − δ

(1)
3 ) ∈ S is not a KP. Therefore, we can find δ

(2)
1 , δ

(2)
2 , δ

(2)
3 ≥ 0 ∧

∑3
i=1 δ

(2)
i > 0 such

that (x′−
∑2

i=1 δ
(i)
1 , y′−

∑2
i=1 δ

(i)
2 , z′−

∑2
i=1 δ

(i)
3 ) ∈ S is not a KP. We can continue this process,

defining the sequence of points aj = (x′ −
∑j

i=1 δ
(i)
1 , y′ −

∑j
i=1 δ

(i)
2 , z′ −

∑j
i=1 δ

(i)
3 ). Obviously,

limj→+∞ aj exists, so let a = limj→+∞ aj . As S is a closed set, a ∈ S. According to the original
assumption, a cannot be a KP. Let a = (x′

a, y
′
a, z

′
a). By the contrapositive of the definition of KP,

∃δ1, δ2, δ3 ≥ 0∧
∑3

i=1 δi > 0, such that for all δ4, δ5, δ6 > 0, when (x′
a, y

′
a, z

′
a, x

′
a+δ4, y

′
a+δ5, z

′
a+

δ6)∩IS = ϕ, we have (x′
a−δ1, y

′
a−δ2, z

′
a−δ3, x

′
a−δ1+δ4, y

′
a−δ2+δ5, z

′
a−δ3+δ6)∩IS = ϕ.

Clearly, (x′
a − δ1, y

′
a − δ2, z

′a − δ3) ∈ S, so limj→+∞ aj ̸= a, which contradicts the previous
condition.

Second sub-scenario: ∀(x′, y′, z′) ∈ S and ∀δ4, δ5, δ6 > 0, (x′, y′, z′, x′+δ4, y
′+δ5, z

′+δ6)∩IS ̸=
ϕ. We define int(S) as the interior set of S, cl(S) as the closure of set S, and ∂S as the boundary of
set S. Since S is a closed set, S = cl(S), and because cl(S) = int(S) ∪ ∂S and int(S) ∩ ∂S = ϕ,
we have

m(S) = m(int(S)) +m(∂S) (7)

Obviously, ∂S ⊂ ∂U ∪ (∪ni=1∂(x
′
ji
, y′ji , z

′
ji
, xji , yji , zji)), so we have

m(∂S) ≤ m(∂U) +

n∑
i=1

m(∂(x′
ji , y

′
ji , z

′
ji , xji , yji , zji)) = 0 (8)
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Therefore, m(∂S) = 0, and from Equations 6 and 7, m(int(S)) > 0. For (x′, y′, z′) ∈ int(S),
there exists δ > 0 such that {(x, y, z)|(x− x′)2 + (y − y′)2 + (z − z′)2 < δ} ⊂ S. Hence, we let
δ′ = δ

10 and find that (x′, y′, z′, x′ + δ′, y′ + δ′, z′ + δ′) ∩ IS = ϕ, which contradicts the premise.

In the third scenario, Ω3 ̸= ϕ and I ̸= ϕ, corresponding to the existence of KP in U and remaining
boxes that haven’t been packed into the bin, but the pre-determined positions of the remaining boxes
are not KPs. We define:

Ωz = {(x, y, z)|(x, y, z) ∈ Ω3 ∧ z = min
(x′′,y′′,z′′)∈Ω3

z′′} (9)

Ωy = {(x, y, z)|(x, y, z) ∈ Ωz ∧ y = min
(x′′,y′′,z′′)∈Ωz

y′′} (10)

Ωx = {(x, y, z)|(x, y, z) ∈ Ωy ∧ x = min
(x′′,y′′,z′′)∈Ωy

x′′} (11)

It is apparent that Ωx has only one element, which we designate as point b = (xb, yb, zb). Next, we
prove that for KP b, if the box is not packed on b, then b remains a KP. We prove this in two steps:

1. For all δ1, δ2, δ3 ≥ 0 ∧
∑3

i=1 δi > 0, and for all δ4, δ5, δ6 > 0, we have (xb − δ1, yb −
δ2, zb − δ3, xb − δ1 + δ4, yb − δ2 + δ5, zb − δ3 + δ6) ∩ IS ̸= ϕ.

2. After a new box is packed and it’s not packed on b, the condition ∃δ4, δ5, δ6 >
0, (xb, yb, zb, xb + δ4, yb + δ5, zb + δ6) ∩ IS = ϕ still holds.

For the first step, suppose there exist δ(1)1 , δ
(1)
2 , δ

(1)
3 ≥ 0 ∧

∑3
i=1 δ

(1)
i > 0, and δ4, δ5, δ6 > 0 such

that (xb− δ
(1)
1 , yb− δ

(1)
2 , zb− δ

(1)
3 , xb− δ

(1)
1 + δ4, yb− δ

(1)
2 + δ5, zb− δ

(1)
3 + δ6)∩ IS = ϕ. This is

similar to the first sub-scenario of the second scenario. Since (xb − δ
(1)
1 , yb − δ

(1)
2 , zb − δ

(1)
3 ) is not

a KP, we can construct a sequence of points bj = (xb−
∑j

i=1 δ
(i)
1 , yb−

∑j
i=1 δ

(i)
2 , zb−

∑j
i=1 δ

(i)
3 ).

Clearly limj→+∞ bj exists, so let B = limj→+∞ bj and B = (xB , yB , zB). Obviously, xB ≤
xb, yB ≤ yb, zB ≤ zb and xB + yB + zB < xb + yb + zb. However, according to Equations 9, 10,
and 11, ∀(x, y, z) ∈ Ω3−Ωx, it is not true that ¬∃x ≤ xb∧y ≤ yb∧z ≤ zb. This is a contradiction.

In the second step, assume a new box is packed but not packed on b. For all δ4, δ5, δ6 > 0, we
have (xb, yb, zb, xb + δ4, yb + δ5, zb + δ6) ∩ IS ̸= ϕ. Let the coordinate of left-front-bottom
vertex of the new box be (x′

k, y
′
k, z

′
k) and the top right corner coordinates be (xk, yk, zk). It is

clear that (xb, yb, zb) ∈ (x′
k, y

′
k, z

′
k, xk, yk, zk). However, based on the conclusion of the first step,

∀δ1, δ2, δ3 ≥ 0∧
∑

i = 13δi > 0,∀δ4, δ5, δ6 > 0, when (xb−δ1, yb−δ2, zb−δ3, xb−δ1+δ4, yb−
δ2 + δ5, zb − δ3 + δ6) ∩ IS = ϕ, we have (x′

k, y
′
k, z

′
k, xk, yk, zk) ∩ IS ̸= ϕ. This implies that the

boxes overlap or a part of the box is placed outside the bin, contradicting the constraints.

With the completion of the proofs in the first and second steps, we have proven that for KP b, if
the box is not packed on b, then b remains a KP. According to this conclusion, even after the bin
is filled with boxes, a KP still exists. This is identical to the first scenario, which we have already
disproven.□
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